| /* |
| * Utility compute operations used by translated code. |
| * |
| * Copyright (c) 2007 Thiemo Seufer |
| * Copyright (c) 2007 Jocelyn Mayer |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| /* Portions of this work are licensed under the terms of the GNU GPL, |
| * version 2 or later. See the COPYING file in the top-level directory. |
| */ |
| |
| #ifndef HOST_UTILS_H |
| #define HOST_UTILS_H |
| |
| #include "qemu/bswap.h" |
| #include "qemu/int128.h" |
| |
| #ifdef CONFIG_INT128 |
| static inline void mulu64(uint64_t *plow, uint64_t *phigh, |
| uint64_t a, uint64_t b) |
| { |
| __uint128_t r = (__uint128_t)a * b; |
| *plow = r; |
| *phigh = r >> 64; |
| } |
| |
| static inline void muls64(uint64_t *plow, uint64_t *phigh, |
| int64_t a, int64_t b) |
| { |
| __int128_t r = (__int128_t)a * b; |
| *plow = r; |
| *phigh = r >> 64; |
| } |
| |
| /* compute with 96 bit intermediate result: (a*b)/c */ |
| static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c) |
| { |
| return (__int128_t)a * b / c; |
| } |
| |
| static inline uint64_t muldiv64_round_up(uint64_t a, uint32_t b, uint32_t c) |
| { |
| return ((__int128_t)a * b + c - 1) / c; |
| } |
| |
| static inline uint64_t divu128(uint64_t *plow, uint64_t *phigh, |
| uint64_t divisor) |
| { |
| __uint128_t dividend = ((__uint128_t)*phigh << 64) | *plow; |
| __uint128_t result = dividend / divisor; |
| |
| *plow = result; |
| *phigh = result >> 64; |
| return dividend % divisor; |
| } |
| |
| static inline int64_t divs128(uint64_t *plow, int64_t *phigh, |
| int64_t divisor) |
| { |
| __int128_t dividend = ((__int128_t)*phigh << 64) | *plow; |
| __int128_t result = dividend / divisor; |
| |
| *plow = result; |
| *phigh = result >> 64; |
| return dividend % divisor; |
| } |
| #else |
| void muls64(uint64_t *plow, uint64_t *phigh, int64_t a, int64_t b); |
| void mulu64(uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b); |
| uint64_t divu128(uint64_t *plow, uint64_t *phigh, uint64_t divisor); |
| int64_t divs128(uint64_t *plow, int64_t *phigh, int64_t divisor); |
| |
| static inline uint64_t muldiv64_rounding(uint64_t a, uint32_t b, uint32_t c, |
| bool round_up) |
| { |
| union { |
| uint64_t ll; |
| struct { |
| #if HOST_BIG_ENDIAN |
| uint32_t high, low; |
| #else |
| uint32_t low, high; |
| #endif |
| } l; |
| } u, res; |
| uint64_t rl, rh; |
| |
| u.ll = a; |
| rl = (uint64_t)u.l.low * (uint64_t)b; |
| if (round_up) { |
| rl += c - 1; |
| } |
| rh = (uint64_t)u.l.high * (uint64_t)b; |
| rh += (rl >> 32); |
| res.l.high = rh / c; |
| res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c; |
| return res.ll; |
| } |
| |
| static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c) |
| { |
| return muldiv64_rounding(a, b, c, false); |
| } |
| |
| static inline uint64_t muldiv64_round_up(uint64_t a, uint32_t b, uint32_t c) |
| { |
| return muldiv64_rounding(a, b, c, true); |
| } |
| #endif |
| |
| /** |
| * clz8 - count leading zeros in a 8-bit value. |
| * @val: The value to search |
| * |
| * Returns 8 if the value is zero. Note that the GCC builtin is |
| * undefined if the value is zero. |
| * |
| * Note that the GCC builtin will upcast its argument to an `unsigned int` |
| * so this function subtracts off the number of prepended zeroes. |
| */ |
| static inline int clz8(uint8_t val) |
| { |
| return val ? __builtin_clz(val) - 24 : 8; |
| } |
| |
| /** |
| * clz16 - count leading zeros in a 16-bit value. |
| * @val: The value to search |
| * |
| * Returns 16 if the value is zero. Note that the GCC builtin is |
| * undefined if the value is zero. |
| * |
| * Note that the GCC builtin will upcast its argument to an `unsigned int` |
| * so this function subtracts off the number of prepended zeroes. |
| */ |
| static inline int clz16(uint16_t val) |
| { |
| return val ? __builtin_clz(val) - 16 : 16; |
| } |
| |
| /** |
| * clz32 - count leading zeros in a 32-bit value. |
| * @val: The value to search |
| * |
| * Returns 32 if the value is zero. Note that the GCC builtin is |
| * undefined if the value is zero. |
| */ |
| static inline int clz32(uint32_t val) |
| { |
| return val ? __builtin_clz(val) : 32; |
| } |
| |
| /** |
| * clo32 - count leading ones in a 32-bit value. |
| * @val: The value to search |
| * |
| * Returns 32 if the value is -1. |
| */ |
| static inline int clo32(uint32_t val) |
| { |
| return clz32(~val); |
| } |
| |
| /** |
| * clz64 - count leading zeros in a 64-bit value. |
| * @val: The value to search |
| * |
| * Returns 64 if the value is zero. Note that the GCC builtin is |
| * undefined if the value is zero. |
| */ |
| static inline int clz64(uint64_t val) |
| { |
| return val ? __builtin_clzll(val) : 64; |
| } |
| |
| /** |
| * clo64 - count leading ones in a 64-bit value. |
| * @val: The value to search |
| * |
| * Returns 64 if the value is -1. |
| */ |
| static inline int clo64(uint64_t val) |
| { |
| return clz64(~val); |
| } |
| |
| /** |
| * ctz8 - count trailing zeros in a 8-bit value. |
| * @val: The value to search |
| * |
| * Returns 8 if the value is zero. Note that the GCC builtin is |
| * undefined if the value is zero. |
| */ |
| static inline int ctz8(uint8_t val) |
| { |
| return val ? __builtin_ctz(val) : 8; |
| } |
| |
| /** |
| * ctz16 - count trailing zeros in a 16-bit value. |
| * @val: The value to search |
| * |
| * Returns 16 if the value is zero. Note that the GCC builtin is |
| * undefined if the value is zero. |
| */ |
| static inline int ctz16(uint16_t val) |
| { |
| return val ? __builtin_ctz(val) : 16; |
| } |
| |
| /** |
| * ctz32 - count trailing zeros in a 32-bit value. |
| * @val: The value to search |
| * |
| * Returns 32 if the value is zero. Note that the GCC builtin is |
| * undefined if the value is zero. |
| */ |
| static inline int ctz32(uint32_t val) |
| { |
| return val ? __builtin_ctz(val) : 32; |
| } |
| |
| /** |
| * cto32 - count trailing ones in a 32-bit value. |
| * @val: The value to search |
| * |
| * Returns 32 if the value is -1. |
| */ |
| static inline int cto32(uint32_t val) |
| { |
| return ctz32(~val); |
| } |
| |
| /** |
| * ctz64 - count trailing zeros in a 64-bit value. |
| * @val: The value to search |
| * |
| * Returns 64 if the value is zero. Note that the GCC builtin is |
| * undefined if the value is zero. |
| */ |
| static inline int ctz64(uint64_t val) |
| { |
| return val ? __builtin_ctzll(val) : 64; |
| } |
| |
| /** |
| * cto64 - count trailing ones in a 64-bit value. |
| * @val: The value to search |
| * |
| * Returns 64 if the value is -1. |
| */ |
| static inline int cto64(uint64_t val) |
| { |
| return ctz64(~val); |
| } |
| |
| /** |
| * clrsb32 - count leading redundant sign bits in a 32-bit value. |
| * @val: The value to search |
| * |
| * Returns the number of bits following the sign bit that are equal to it. |
| * No special cases; output range is [0-31]. |
| */ |
| static inline int clrsb32(uint32_t val) |
| { |
| #if __has_builtin(__builtin_clrsb) || !defined(__clang__) |
| return __builtin_clrsb(val); |
| #else |
| return clz32(val ^ ((int32_t)val >> 1)) - 1; |
| #endif |
| } |
| |
| /** |
| * clrsb64 - count leading redundant sign bits in a 64-bit value. |
| * @val: The value to search |
| * |
| * Returns the number of bits following the sign bit that are equal to it. |
| * No special cases; output range is [0-63]. |
| */ |
| static inline int clrsb64(uint64_t val) |
| { |
| #if __has_builtin(__builtin_clrsbll) || !defined(__clang__) |
| return __builtin_clrsbll(val); |
| #else |
| return clz64(val ^ ((int64_t)val >> 1)) - 1; |
| #endif |
| } |
| |
| /** |
| * ctpop8 - count the population of one bits in an 8-bit value. |
| * @val: The value to search |
| */ |
| static inline int ctpop8(uint8_t val) |
| { |
| return __builtin_popcount(val); |
| } |
| |
| /** |
| * ctpop16 - count the population of one bits in a 16-bit value. |
| * @val: The value to search |
| */ |
| static inline int ctpop16(uint16_t val) |
| { |
| return __builtin_popcount(val); |
| } |
| |
| /** |
| * ctpop32 - count the population of one bits in a 32-bit value. |
| * @val: The value to search |
| */ |
| static inline int ctpop32(uint32_t val) |
| { |
| return __builtin_popcount(val); |
| } |
| |
| /** |
| * ctpop64 - count the population of one bits in a 64-bit value. |
| * @val: The value to search |
| */ |
| static inline int ctpop64(uint64_t val) |
| { |
| return __builtin_popcountll(val); |
| } |
| |
| /** |
| * revbit8 - reverse the bits in an 8-bit value. |
| * @x: The value to modify. |
| */ |
| static inline uint8_t revbit8(uint8_t x) |
| { |
| #if __has_builtin(__builtin_bitreverse8) |
| return __builtin_bitreverse8(x); |
| #else |
| /* Assign the correct nibble position. */ |
| x = ((x & 0xf0) >> 4) |
| | ((x & 0x0f) << 4); |
| /* Assign the correct bit position. */ |
| x = ((x & 0x88) >> 3) |
| | ((x & 0x44) >> 1) |
| | ((x & 0x22) << 1) |
| | ((x & 0x11) << 3); |
| return x; |
| #endif |
| } |
| |
| /** |
| * revbit16 - reverse the bits in a 16-bit value. |
| * @x: The value to modify. |
| */ |
| static inline uint16_t revbit16(uint16_t x) |
| { |
| #if __has_builtin(__builtin_bitreverse16) |
| return __builtin_bitreverse16(x); |
| #else |
| /* Assign the correct byte position. */ |
| x = bswap16(x); |
| /* Assign the correct nibble position. */ |
| x = ((x & 0xf0f0) >> 4) |
| | ((x & 0x0f0f) << 4); |
| /* Assign the correct bit position. */ |
| x = ((x & 0x8888) >> 3) |
| | ((x & 0x4444) >> 1) |
| | ((x & 0x2222) << 1) |
| | ((x & 0x1111) << 3); |
| return x; |
| #endif |
| } |
| |
| /** |
| * revbit32 - reverse the bits in a 32-bit value. |
| * @x: The value to modify. |
| */ |
| static inline uint32_t revbit32(uint32_t x) |
| { |
| #if __has_builtin(__builtin_bitreverse32) |
| return __builtin_bitreverse32(x); |
| #else |
| /* Assign the correct byte position. */ |
| x = bswap32(x); |
| /* Assign the correct nibble position. */ |
| x = ((x & 0xf0f0f0f0u) >> 4) |
| | ((x & 0x0f0f0f0fu) << 4); |
| /* Assign the correct bit position. */ |
| x = ((x & 0x88888888u) >> 3) |
| | ((x & 0x44444444u) >> 1) |
| | ((x & 0x22222222u) << 1) |
| | ((x & 0x11111111u) << 3); |
| return x; |
| #endif |
| } |
| |
| /** |
| * revbit64 - reverse the bits in a 64-bit value. |
| * @x: The value to modify. |
| */ |
| static inline uint64_t revbit64(uint64_t x) |
| { |
| #if __has_builtin(__builtin_bitreverse64) |
| return __builtin_bitreverse64(x); |
| #else |
| /* Assign the correct byte position. */ |
| x = bswap64(x); |
| /* Assign the correct nibble position. */ |
| x = ((x & 0xf0f0f0f0f0f0f0f0ull) >> 4) |
| | ((x & 0x0f0f0f0f0f0f0f0full) << 4); |
| /* Assign the correct bit position. */ |
| x = ((x & 0x8888888888888888ull) >> 3) |
| | ((x & 0x4444444444444444ull) >> 1) |
| | ((x & 0x2222222222222222ull) << 1) |
| | ((x & 0x1111111111111111ull) << 3); |
| return x; |
| #endif |
| } |
| |
| /** |
| * Return the absolute value of a 64-bit integer as an unsigned 64-bit value |
| */ |
| static inline uint64_t uabs64(int64_t v) |
| { |
| return v < 0 ? -v : v; |
| } |
| |
| /** |
| * sadd32_overflow - addition with overflow indication |
| * @x, @y: addends |
| * @ret: Output for sum |
| * |
| * Computes *@ret = @x + @y, and returns true if and only if that |
| * value has been truncated. |
| */ |
| static inline bool sadd32_overflow(int32_t x, int32_t y, int32_t *ret) |
| { |
| return __builtin_add_overflow(x, y, ret); |
| } |
| |
| /** |
| * sadd64_overflow - addition with overflow indication |
| * @x, @y: addends |
| * @ret: Output for sum |
| * |
| * Computes *@ret = @x + @y, and returns true if and only if that |
| * value has been truncated. |
| */ |
| static inline bool sadd64_overflow(int64_t x, int64_t y, int64_t *ret) |
| { |
| return __builtin_add_overflow(x, y, ret); |
| } |
| |
| /** |
| * uadd32_overflow - addition with overflow indication |
| * @x, @y: addends |
| * @ret: Output for sum |
| * |
| * Computes *@ret = @x + @y, and returns true if and only if that |
| * value has been truncated. |
| */ |
| static inline bool uadd32_overflow(uint32_t x, uint32_t y, uint32_t *ret) |
| { |
| return __builtin_add_overflow(x, y, ret); |
| } |
| |
| /** |
| * uadd64_overflow - addition with overflow indication |
| * @x, @y: addends |
| * @ret: Output for sum |
| * |
| * Computes *@ret = @x + @y, and returns true if and only if that |
| * value has been truncated. |
| */ |
| static inline bool uadd64_overflow(uint64_t x, uint64_t y, uint64_t *ret) |
| { |
| return __builtin_add_overflow(x, y, ret); |
| } |
| |
| /** |
| * ssub32_overflow - subtraction with overflow indication |
| * @x: Minuend |
| * @y: Subtrahend |
| * @ret: Output for difference |
| * |
| * Computes *@ret = @x - @y, and returns true if and only if that |
| * value has been truncated. |
| */ |
| static inline bool ssub32_overflow(int32_t x, int32_t y, int32_t *ret) |
| { |
| return __builtin_sub_overflow(x, y, ret); |
| } |
| |
| /** |
| * ssub64_overflow - subtraction with overflow indication |
| * @x: Minuend |
| * @y: Subtrahend |
| * @ret: Output for sum |
| * |
| * Computes *@ret = @x - @y, and returns true if and only if that |
| * value has been truncated. |
| */ |
| static inline bool ssub64_overflow(int64_t x, int64_t y, int64_t *ret) |
| { |
| return __builtin_sub_overflow(x, y, ret); |
| } |
| |
| /** |
| * usub32_overflow - subtraction with overflow indication |
| * @x: Minuend |
| * @y: Subtrahend |
| * @ret: Output for sum |
| * |
| * Computes *@ret = @x - @y, and returns true if and only if that |
| * value has been truncated. |
| */ |
| static inline bool usub32_overflow(uint32_t x, uint32_t y, uint32_t *ret) |
| { |
| return __builtin_sub_overflow(x, y, ret); |
| } |
| |
| /** |
| * usub64_overflow - subtraction with overflow indication |
| * @x: Minuend |
| * @y: Subtrahend |
| * @ret: Output for sum |
| * |
| * Computes *@ret = @x - @y, and returns true if and only if that |
| * value has been truncated. |
| */ |
| static inline bool usub64_overflow(uint64_t x, uint64_t y, uint64_t *ret) |
| { |
| return __builtin_sub_overflow(x, y, ret); |
| } |
| |
| /** |
| * smul32_overflow - multiplication with overflow indication |
| * @x, @y: Input multipliers |
| * @ret: Output for product |
| * |
| * Computes *@ret = @x * @y, and returns true if and only if that |
| * value has been truncated. |
| */ |
| static inline bool smul32_overflow(int32_t x, int32_t y, int32_t *ret) |
| { |
| return __builtin_mul_overflow(x, y, ret); |
| } |
| |
| /** |
| * smul64_overflow - multiplication with overflow indication |
| * @x, @y: Input multipliers |
| * @ret: Output for product |
| * |
| * Computes *@ret = @x * @y, and returns true if and only if that |
| * value has been truncated. |
| */ |
| static inline bool smul64_overflow(int64_t x, int64_t y, int64_t *ret) |
| { |
| return __builtin_mul_overflow(x, y, ret); |
| } |
| |
| /** |
| * umul32_overflow - multiplication with overflow indication |
| * @x, @y: Input multipliers |
| * @ret: Output for product |
| * |
| * Computes *@ret = @x * @y, and returns true if and only if that |
| * value has been truncated. |
| */ |
| static inline bool umul32_overflow(uint32_t x, uint32_t y, uint32_t *ret) |
| { |
| return __builtin_mul_overflow(x, y, ret); |
| } |
| |
| /** |
| * umul64_overflow - multiplication with overflow indication |
| * @x, @y: Input multipliers |
| * @ret: Output for product |
| * |
| * Computes *@ret = @x * @y, and returns true if and only if that |
| * value has been truncated. |
| */ |
| static inline bool umul64_overflow(uint64_t x, uint64_t y, uint64_t *ret) |
| { |
| return __builtin_mul_overflow(x, y, ret); |
| } |
| |
| /* |
| * Unsigned 128x64 multiplication. |
| * Returns true if the result got truncated to 128 bits. |
| * Otherwise, returns false and the multiplication result via plow and phigh. |
| */ |
| static inline bool mulu128(uint64_t *plow, uint64_t *phigh, uint64_t factor) |
| { |
| #if defined(CONFIG_INT128) |
| bool res; |
| __uint128_t r; |
| __uint128_t f = ((__uint128_t)*phigh << 64) | *plow; |
| res = __builtin_mul_overflow(f, factor, &r); |
| |
| *plow = r; |
| *phigh = r >> 64; |
| |
| return res; |
| #else |
| uint64_t dhi = *phigh; |
| uint64_t dlo = *plow; |
| uint64_t ahi; |
| uint64_t blo, bhi; |
| |
| if (dhi == 0) { |
| mulu64(plow, phigh, dlo, factor); |
| return false; |
| } |
| |
| mulu64(plow, &ahi, dlo, factor); |
| mulu64(&blo, &bhi, dhi, factor); |
| |
| return uadd64_overflow(ahi, blo, phigh) || bhi != 0; |
| #endif |
| } |
| |
| /** |
| * uadd64_carry - addition with carry-in and carry-out |
| * @x, @y: addends |
| * @pcarry: in-out carry value |
| * |
| * Computes @x + @y + *@pcarry, placing the carry-out back |
| * into *@pcarry and returning the 64-bit sum. |
| */ |
| static inline uint64_t uadd64_carry(uint64_t x, uint64_t y, bool *pcarry) |
| { |
| #if __has_builtin(__builtin_addcll) |
| unsigned long long c = *pcarry; |
| x = __builtin_addcll(x, y, c, &c); |
| *pcarry = c & 1; |
| return x; |
| #else |
| bool c = *pcarry; |
| /* This is clang's internal expansion of __builtin_addc. */ |
| c = uadd64_overflow(x, c, &x); |
| c |= uadd64_overflow(x, y, &x); |
| *pcarry = c; |
| return x; |
| #endif |
| } |
| |
| /** |
| * usub64_borrow - subtraction with borrow-in and borrow-out |
| * @x, @y: addends |
| * @pborrow: in-out borrow value |
| * |
| * Computes @x - @y - *@pborrow, placing the borrow-out back |
| * into *@pborrow and returning the 64-bit sum. |
| */ |
| static inline uint64_t usub64_borrow(uint64_t x, uint64_t y, bool *pborrow) |
| { |
| #if __has_builtin(__builtin_subcll) && !defined(BUILTIN_SUBCLL_BROKEN) |
| unsigned long long b = *pborrow; |
| x = __builtin_subcll(x, y, b, &b); |
| *pborrow = b & 1; |
| return x; |
| #else |
| bool b = *pborrow; |
| b = usub64_overflow(x, b, &x); |
| b |= usub64_overflow(x, y, &x); |
| *pborrow = b; |
| return x; |
| #endif |
| } |
| |
| /* Host type specific sizes of these routines. */ |
| |
| #if ULONG_MAX == UINT32_MAX |
| # define clzl clz32 |
| # define ctzl ctz32 |
| # define clol clo32 |
| # define ctol cto32 |
| # define ctpopl ctpop32 |
| # define revbitl revbit32 |
| #elif ULONG_MAX == UINT64_MAX |
| # define clzl clz64 |
| # define ctzl ctz64 |
| # define clol clo64 |
| # define ctol cto64 |
| # define ctpopl ctpop64 |
| # define revbitl revbit64 |
| #else |
| # error Unknown sizeof long |
| #endif |
| |
| static inline bool is_power_of_2(uint64_t value) |
| { |
| if (!value) { |
| return false; |
| } |
| |
| return !(value & (value - 1)); |
| } |
| |
| /** |
| * Return @value rounded down to the nearest power of two or zero. |
| */ |
| static inline uint64_t pow2floor(uint64_t value) |
| { |
| if (!value) { |
| /* Avoid undefined shift by 64 */ |
| return 0; |
| } |
| return 0x8000000000000000ull >> clz64(value); |
| } |
| |
| /* |
| * Return @value rounded up to the nearest power of two modulo 2^64. |
| * This is *zero* for @value > 2^63, so be careful. |
| */ |
| static inline uint64_t pow2ceil(uint64_t value) |
| { |
| int n = clz64(value - 1); |
| |
| if (!n) { |
| /* |
| * @value - 1 has no leading zeroes, thus @value - 1 >= 2^63 |
| * Therefore, either @value == 0 or @value > 2^63. |
| * If it's 0, return 1, else return 0. |
| */ |
| return !value; |
| } |
| return 0x8000000000000000ull >> (n - 1); |
| } |
| |
| static inline uint32_t pow2roundup32(uint32_t x) |
| { |
| x |= (x >> 1); |
| x |= (x >> 2); |
| x |= (x >> 4); |
| x |= (x >> 8); |
| x |= (x >> 16); |
| return x + 1; |
| } |
| |
| /** |
| * urshift - 128-bit Unsigned Right Shift. |
| * @plow: in/out - lower 64-bit integer. |
| * @phigh: in/out - higher 64-bit integer. |
| * @shift: in - bytes to shift, between 0 and 127. |
| * |
| * Result is zero-extended and stored in plow/phigh, which are |
| * input/output variables. Shift values outside the range will |
| * be mod to 128. In other words, the caller is responsible to |
| * verify/assert both the shift range and plow/phigh pointers. |
| */ |
| void urshift(uint64_t *plow, uint64_t *phigh, int32_t shift); |
| |
| /** |
| * ulshift - 128-bit Unsigned Left Shift. |
| * @plow: in/out - lower 64-bit integer. |
| * @phigh: in/out - higher 64-bit integer. |
| * @shift: in - bytes to shift, between 0 and 127. |
| * @overflow: out - true if any 1-bit is shifted out. |
| * |
| * Result is zero-extended and stored in plow/phigh, which are |
| * input/output variables. Shift values outside the range will |
| * be mod to 128. In other words, the caller is responsible to |
| * verify/assert both the shift range and plow/phigh pointers. |
| */ |
| void ulshift(uint64_t *plow, uint64_t *phigh, int32_t shift, bool *overflow); |
| |
| /* From the GNU Multi Precision Library - longlong.h __udiv_qrnnd |
| * (https://gmplib.org/repo/gmp/file/tip/longlong.h) |
| * |
| * Licensed under the GPLv2/LGPLv3 |
| */ |
| static inline uint64_t udiv_qrnnd(uint64_t *r, uint64_t n1, |
| uint64_t n0, uint64_t d) |
| { |
| #if defined(__x86_64__) |
| uint64_t q; |
| asm("divq %4" : "=a"(q), "=d"(*r) : "0"(n0), "1"(n1), "rm"(d)); |
| return q; |
| #elif defined(__s390x__) && !defined(__clang__) |
| /* Need to use a TImode type to get an even register pair for DLGR. */ |
| unsigned __int128 n = (unsigned __int128)n1 << 64 | n0; |
| asm("dlgr %0, %1" : "+r"(n) : "r"(d)); |
| *r = n >> 64; |
| return n; |
| #elif defined(_ARCH_PPC64) && defined(_ARCH_PWR7) |
| /* From Power ISA 2.06, programming note for divdeu. */ |
| uint64_t q1, q2, Q, r1, r2, R; |
| asm("divdeu %0,%2,%4; divdu %1,%3,%4" |
| : "=&r"(q1), "=r"(q2) |
| : "r"(n1), "r"(n0), "r"(d)); |
| r1 = -(q1 * d); /* low part of (n1<<64) - (q1 * d) */ |
| r2 = n0 - (q2 * d); |
| Q = q1 + q2; |
| R = r1 + r2; |
| if (R >= d || R < r2) { /* overflow implies R > d */ |
| Q += 1; |
| R -= d; |
| } |
| *r = R; |
| return Q; |
| #else |
| uint64_t d0, d1, q0, q1, r1, r0, m; |
| |
| d0 = (uint32_t)d; |
| d1 = d >> 32; |
| |
| r1 = n1 % d1; |
| q1 = n1 / d1; |
| m = q1 * d0; |
| r1 = (r1 << 32) | (n0 >> 32); |
| if (r1 < m) { |
| q1 -= 1; |
| r1 += d; |
| if (r1 >= d) { |
| if (r1 < m) { |
| q1 -= 1; |
| r1 += d; |
| } |
| } |
| } |
| r1 -= m; |
| |
| r0 = r1 % d1; |
| q0 = r1 / d1; |
| m = q0 * d0; |
| r0 = (r0 << 32) | (uint32_t)n0; |
| if (r0 < m) { |
| q0 -= 1; |
| r0 += d; |
| if (r0 >= d) { |
| if (r0 < m) { |
| q0 -= 1; |
| r0 += d; |
| } |
| } |
| } |
| r0 -= m; |
| |
| *r = r0; |
| return (q1 << 32) | q0; |
| #endif |
| } |
| |
| Int128 divu256(Int128 *plow, Int128 *phigh, Int128 divisor); |
| Int128 divs256(Int128 *plow, Int128 *phigh, Int128 divisor); |
| #endif |