| /* |
| * vfio based device assignment support |
| * |
| * Copyright Red Hat, Inc. 2012 |
| * |
| * Authors: |
| * Alex Williamson <alex.williamson@redhat.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| * |
| * Based on qemu-kvm device-assignment: |
| * Adapted for KVM by Qumranet. |
| * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com) |
| * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com) |
| * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com) |
| * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com) |
| * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com) |
| */ |
| |
| #include "qemu/osdep.h" |
| #include CONFIG_DEVICES /* CONFIG_IOMMUFD */ |
| #include <linux/vfio.h> |
| #include <sys/ioctl.h> |
| |
| #include "hw/hw.h" |
| #include "hw/pci/msi.h" |
| #include "hw/pci/msix.h" |
| #include "hw/pci/pci_bridge.h" |
| #include "hw/qdev-properties.h" |
| #include "hw/qdev-properties-system.h" |
| #include "migration/vmstate.h" |
| #include "qapi/qmp/qdict.h" |
| #include "qemu/error-report.h" |
| #include "qemu/main-loop.h" |
| #include "qemu/module.h" |
| #include "qemu/range.h" |
| #include "qemu/units.h" |
| #include "sysemu/kvm.h" |
| #include "sysemu/runstate.h" |
| #include "pci.h" |
| #include "trace.h" |
| #include "qapi/error.h" |
| #include "migration/blocker.h" |
| #include "migration/qemu-file.h" |
| #include "sysemu/iommufd.h" |
| |
| #define TYPE_VFIO_PCI_NOHOTPLUG "vfio-pci-nohotplug" |
| |
| /* Protected by BQL */ |
| static KVMRouteChange vfio_route_change; |
| |
| static void vfio_disable_interrupts(VFIOPCIDevice *vdev); |
| static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled); |
| static void vfio_msi_disable_common(VFIOPCIDevice *vdev); |
| |
| /* |
| * Disabling BAR mmaping can be slow, but toggling it around INTx can |
| * also be a huge overhead. We try to get the best of both worlds by |
| * waiting until an interrupt to disable mmaps (subsequent transitions |
| * to the same state are effectively no overhead). If the interrupt has |
| * been serviced and the time gap is long enough, we re-enable mmaps for |
| * performance. This works well for things like graphics cards, which |
| * may not use their interrupt at all and are penalized to an unusable |
| * level by read/write BAR traps. Other devices, like NICs, have more |
| * regular interrupts and see much better latency by staying in non-mmap |
| * mode. We therefore set the default mmap_timeout such that a ping |
| * is just enough to keep the mmap disabled. Users can experiment with |
| * other options with the x-intx-mmap-timeout-ms parameter (a value of |
| * zero disables the timer). |
| */ |
| static void vfio_intx_mmap_enable(void *opaque) |
| { |
| VFIOPCIDevice *vdev = opaque; |
| |
| if (vdev->intx.pending) { |
| timer_mod(vdev->intx.mmap_timer, |
| qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout); |
| return; |
| } |
| |
| vfio_mmap_set_enabled(vdev, true); |
| } |
| |
| static void vfio_intx_interrupt(void *opaque) |
| { |
| VFIOPCIDevice *vdev = opaque; |
| |
| if (!event_notifier_test_and_clear(&vdev->intx.interrupt)) { |
| return; |
| } |
| |
| trace_vfio_intx_interrupt(vdev->vbasedev.name, 'A' + vdev->intx.pin); |
| |
| vdev->intx.pending = true; |
| pci_irq_assert(&vdev->pdev); |
| vfio_mmap_set_enabled(vdev, false); |
| if (vdev->intx.mmap_timeout) { |
| timer_mod(vdev->intx.mmap_timer, |
| qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout); |
| } |
| } |
| |
| static void vfio_intx_eoi(VFIODevice *vbasedev) |
| { |
| VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); |
| |
| if (!vdev->intx.pending) { |
| return; |
| } |
| |
| trace_vfio_intx_eoi(vbasedev->name); |
| |
| vdev->intx.pending = false; |
| pci_irq_deassert(&vdev->pdev); |
| vfio_unmask_single_irqindex(vbasedev, VFIO_PCI_INTX_IRQ_INDEX); |
| } |
| |
| static void vfio_intx_enable_kvm(VFIOPCIDevice *vdev, Error **errp) |
| { |
| #ifdef CONFIG_KVM |
| int irq_fd = event_notifier_get_fd(&vdev->intx.interrupt); |
| |
| if (vdev->no_kvm_intx || !kvm_irqfds_enabled() || |
| vdev->intx.route.mode != PCI_INTX_ENABLED || |
| !kvm_resamplefds_enabled()) { |
| return; |
| } |
| |
| /* Get to a known interrupt state */ |
| qemu_set_fd_handler(irq_fd, NULL, NULL, vdev); |
| vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); |
| vdev->intx.pending = false; |
| pci_irq_deassert(&vdev->pdev); |
| |
| /* Get an eventfd for resample/unmask */ |
| if (event_notifier_init(&vdev->intx.unmask, 0)) { |
| error_setg(errp, "event_notifier_init failed eoi"); |
| goto fail; |
| } |
| |
| if (kvm_irqchip_add_irqfd_notifier_gsi(kvm_state, |
| &vdev->intx.interrupt, |
| &vdev->intx.unmask, |
| vdev->intx.route.irq)) { |
| error_setg_errno(errp, errno, "failed to setup resample irqfd"); |
| goto fail_irqfd; |
| } |
| |
| if (vfio_set_irq_signaling(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX, 0, |
| VFIO_IRQ_SET_ACTION_UNMASK, |
| event_notifier_get_fd(&vdev->intx.unmask), |
| errp)) { |
| goto fail_vfio; |
| } |
| |
| /* Let'em rip */ |
| vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); |
| |
| vdev->intx.kvm_accel = true; |
| |
| trace_vfio_intx_enable_kvm(vdev->vbasedev.name); |
| |
| return; |
| |
| fail_vfio: |
| kvm_irqchip_remove_irqfd_notifier_gsi(kvm_state, &vdev->intx.interrupt, |
| vdev->intx.route.irq); |
| fail_irqfd: |
| event_notifier_cleanup(&vdev->intx.unmask); |
| fail: |
| qemu_set_fd_handler(irq_fd, vfio_intx_interrupt, NULL, vdev); |
| vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); |
| #endif |
| } |
| |
| static void vfio_intx_disable_kvm(VFIOPCIDevice *vdev) |
| { |
| #ifdef CONFIG_KVM |
| if (!vdev->intx.kvm_accel) { |
| return; |
| } |
| |
| /* |
| * Get to a known state, hardware masked, QEMU ready to accept new |
| * interrupts, QEMU IRQ de-asserted. |
| */ |
| vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); |
| vdev->intx.pending = false; |
| pci_irq_deassert(&vdev->pdev); |
| |
| /* Tell KVM to stop listening for an INTx irqfd */ |
| if (kvm_irqchip_remove_irqfd_notifier_gsi(kvm_state, &vdev->intx.interrupt, |
| vdev->intx.route.irq)) { |
| error_report("vfio: Error: Failed to disable INTx irqfd: %m"); |
| } |
| |
| /* We only need to close the eventfd for VFIO to cleanup the kernel side */ |
| event_notifier_cleanup(&vdev->intx.unmask); |
| |
| /* QEMU starts listening for interrupt events. */ |
| qemu_set_fd_handler(event_notifier_get_fd(&vdev->intx.interrupt), |
| vfio_intx_interrupt, NULL, vdev); |
| |
| vdev->intx.kvm_accel = false; |
| |
| /* If we've missed an event, let it re-fire through QEMU */ |
| vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); |
| |
| trace_vfio_intx_disable_kvm(vdev->vbasedev.name); |
| #endif |
| } |
| |
| static void vfio_intx_update(VFIOPCIDevice *vdev, PCIINTxRoute *route) |
| { |
| Error *err = NULL; |
| |
| trace_vfio_intx_update(vdev->vbasedev.name, |
| vdev->intx.route.irq, route->irq); |
| |
| vfio_intx_disable_kvm(vdev); |
| |
| vdev->intx.route = *route; |
| |
| if (route->mode != PCI_INTX_ENABLED) { |
| return; |
| } |
| |
| vfio_intx_enable_kvm(vdev, &err); |
| if (err) { |
| warn_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); |
| } |
| |
| /* Re-enable the interrupt in cased we missed an EOI */ |
| vfio_intx_eoi(&vdev->vbasedev); |
| } |
| |
| static void vfio_intx_routing_notifier(PCIDevice *pdev) |
| { |
| VFIOPCIDevice *vdev = VFIO_PCI(pdev); |
| PCIINTxRoute route; |
| |
| if (vdev->interrupt != VFIO_INT_INTx) { |
| return; |
| } |
| |
| route = pci_device_route_intx_to_irq(&vdev->pdev, vdev->intx.pin); |
| |
| if (pci_intx_route_changed(&vdev->intx.route, &route)) { |
| vfio_intx_update(vdev, &route); |
| } |
| } |
| |
| static void vfio_irqchip_change(Notifier *notify, void *data) |
| { |
| VFIOPCIDevice *vdev = container_of(notify, VFIOPCIDevice, |
| irqchip_change_notifier); |
| |
| vfio_intx_update(vdev, &vdev->intx.route); |
| } |
| |
| static int vfio_intx_enable(VFIOPCIDevice *vdev, Error **errp) |
| { |
| uint8_t pin = vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1); |
| Error *err = NULL; |
| int32_t fd; |
| int ret; |
| |
| |
| if (!pin) { |
| return 0; |
| } |
| |
| vfio_disable_interrupts(vdev); |
| |
| vdev->intx.pin = pin - 1; /* Pin A (1) -> irq[0] */ |
| pci_config_set_interrupt_pin(vdev->pdev.config, pin); |
| |
| #ifdef CONFIG_KVM |
| /* |
| * Only conditional to avoid generating error messages on platforms |
| * where we won't actually use the result anyway. |
| */ |
| if (kvm_irqfds_enabled() && kvm_resamplefds_enabled()) { |
| vdev->intx.route = pci_device_route_intx_to_irq(&vdev->pdev, |
| vdev->intx.pin); |
| } |
| #endif |
| |
| ret = event_notifier_init(&vdev->intx.interrupt, 0); |
| if (ret) { |
| error_setg_errno(errp, -ret, "event_notifier_init failed"); |
| return ret; |
| } |
| fd = event_notifier_get_fd(&vdev->intx.interrupt); |
| qemu_set_fd_handler(fd, vfio_intx_interrupt, NULL, vdev); |
| |
| if (vfio_set_irq_signaling(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX, 0, |
| VFIO_IRQ_SET_ACTION_TRIGGER, fd, errp)) { |
| qemu_set_fd_handler(fd, NULL, NULL, vdev); |
| event_notifier_cleanup(&vdev->intx.interrupt); |
| return -errno; |
| } |
| |
| vfio_intx_enable_kvm(vdev, &err); |
| if (err) { |
| warn_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); |
| } |
| |
| vdev->interrupt = VFIO_INT_INTx; |
| |
| trace_vfio_intx_enable(vdev->vbasedev.name); |
| return 0; |
| } |
| |
| static void vfio_intx_disable(VFIOPCIDevice *vdev) |
| { |
| int fd; |
| |
| timer_del(vdev->intx.mmap_timer); |
| vfio_intx_disable_kvm(vdev); |
| vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); |
| vdev->intx.pending = false; |
| pci_irq_deassert(&vdev->pdev); |
| vfio_mmap_set_enabled(vdev, true); |
| |
| fd = event_notifier_get_fd(&vdev->intx.interrupt); |
| qemu_set_fd_handler(fd, NULL, NULL, vdev); |
| event_notifier_cleanup(&vdev->intx.interrupt); |
| |
| vdev->interrupt = VFIO_INT_NONE; |
| |
| trace_vfio_intx_disable(vdev->vbasedev.name); |
| } |
| |
| /* |
| * MSI/X |
| */ |
| static void vfio_msi_interrupt(void *opaque) |
| { |
| VFIOMSIVector *vector = opaque; |
| VFIOPCIDevice *vdev = vector->vdev; |
| MSIMessage (*get_msg)(PCIDevice *dev, unsigned vector); |
| void (*notify)(PCIDevice *dev, unsigned vector); |
| MSIMessage msg; |
| int nr = vector - vdev->msi_vectors; |
| |
| if (!event_notifier_test_and_clear(&vector->interrupt)) { |
| return; |
| } |
| |
| if (vdev->interrupt == VFIO_INT_MSIX) { |
| get_msg = msix_get_message; |
| notify = msix_notify; |
| |
| /* A masked vector firing needs to use the PBA, enable it */ |
| if (msix_is_masked(&vdev->pdev, nr)) { |
| set_bit(nr, vdev->msix->pending); |
| memory_region_set_enabled(&vdev->pdev.msix_pba_mmio, true); |
| trace_vfio_msix_pba_enable(vdev->vbasedev.name); |
| } |
| } else if (vdev->interrupt == VFIO_INT_MSI) { |
| get_msg = msi_get_message; |
| notify = msi_notify; |
| } else { |
| abort(); |
| } |
| |
| msg = get_msg(&vdev->pdev, nr); |
| trace_vfio_msi_interrupt(vdev->vbasedev.name, nr, msg.address, msg.data); |
| notify(&vdev->pdev, nr); |
| } |
| |
| /* |
| * Get MSI-X enabled, but no vector enabled, by setting vector 0 with an invalid |
| * fd to kernel. |
| */ |
| static int vfio_enable_msix_no_vec(VFIOPCIDevice *vdev) |
| { |
| g_autofree struct vfio_irq_set *irq_set = NULL; |
| int ret = 0, argsz; |
| int32_t *fd; |
| |
| argsz = sizeof(*irq_set) + sizeof(*fd); |
| |
| irq_set = g_malloc0(argsz); |
| irq_set->argsz = argsz; |
| irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | |
| VFIO_IRQ_SET_ACTION_TRIGGER; |
| irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX; |
| irq_set->start = 0; |
| irq_set->count = 1; |
| fd = (int32_t *)&irq_set->data; |
| *fd = -1; |
| |
| ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); |
| |
| return ret; |
| } |
| |
| static int vfio_enable_vectors(VFIOPCIDevice *vdev, bool msix) |
| { |
| struct vfio_irq_set *irq_set; |
| int ret = 0, i, argsz; |
| int32_t *fds; |
| |
| /* |
| * If dynamic MSI-X allocation is supported, the vectors to be allocated |
| * and enabled can be scattered. Before kernel enabling MSI-X, setting |
| * nr_vectors causes all these vectors to be allocated on host. |
| * |
| * To keep allocation as needed, use vector 0 with an invalid fd to get |
| * MSI-X enabled first, then set vectors with a potentially sparse set of |
| * eventfds to enable interrupts only when enabled in guest. |
| */ |
| if (msix && !vdev->msix->noresize) { |
| ret = vfio_enable_msix_no_vec(vdev); |
| |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| argsz = sizeof(*irq_set) + (vdev->nr_vectors * sizeof(*fds)); |
| |
| irq_set = g_malloc0(argsz); |
| irq_set->argsz = argsz; |
| irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; |
| irq_set->index = msix ? VFIO_PCI_MSIX_IRQ_INDEX : VFIO_PCI_MSI_IRQ_INDEX; |
| irq_set->start = 0; |
| irq_set->count = vdev->nr_vectors; |
| fds = (int32_t *)&irq_set->data; |
| |
| for (i = 0; i < vdev->nr_vectors; i++) { |
| int fd = -1; |
| |
| /* |
| * MSI vs MSI-X - The guest has direct access to MSI mask and pending |
| * bits, therefore we always use the KVM signaling path when setup. |
| * MSI-X mask and pending bits are emulated, so we want to use the |
| * KVM signaling path only when configured and unmasked. |
| */ |
| if (vdev->msi_vectors[i].use) { |
| if (vdev->msi_vectors[i].virq < 0 || |
| (msix && msix_is_masked(&vdev->pdev, i))) { |
| fd = event_notifier_get_fd(&vdev->msi_vectors[i].interrupt); |
| } else { |
| fd = event_notifier_get_fd(&vdev->msi_vectors[i].kvm_interrupt); |
| } |
| } |
| |
| fds[i] = fd; |
| } |
| |
| ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); |
| |
| g_free(irq_set); |
| |
| return ret; |
| } |
| |
| static void vfio_add_kvm_msi_virq(VFIOPCIDevice *vdev, VFIOMSIVector *vector, |
| int vector_n, bool msix) |
| { |
| if ((msix && vdev->no_kvm_msix) || (!msix && vdev->no_kvm_msi)) { |
| return; |
| } |
| |
| vector->virq = kvm_irqchip_add_msi_route(&vfio_route_change, |
| vector_n, &vdev->pdev); |
| } |
| |
| static void vfio_connect_kvm_msi_virq(VFIOMSIVector *vector) |
| { |
| if (vector->virq < 0) { |
| return; |
| } |
| |
| if (event_notifier_init(&vector->kvm_interrupt, 0)) { |
| goto fail_notifier; |
| } |
| |
| if (kvm_irqchip_add_irqfd_notifier_gsi(kvm_state, &vector->kvm_interrupt, |
| NULL, vector->virq) < 0) { |
| goto fail_kvm; |
| } |
| |
| return; |
| |
| fail_kvm: |
| event_notifier_cleanup(&vector->kvm_interrupt); |
| fail_notifier: |
| kvm_irqchip_release_virq(kvm_state, vector->virq); |
| vector->virq = -1; |
| } |
| |
| static void vfio_remove_kvm_msi_virq(VFIOMSIVector *vector) |
| { |
| kvm_irqchip_remove_irqfd_notifier_gsi(kvm_state, &vector->kvm_interrupt, |
| vector->virq); |
| kvm_irqchip_release_virq(kvm_state, vector->virq); |
| vector->virq = -1; |
| event_notifier_cleanup(&vector->kvm_interrupt); |
| } |
| |
| static void vfio_update_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage msg, |
| PCIDevice *pdev) |
| { |
| kvm_irqchip_update_msi_route(kvm_state, vector->virq, msg, pdev); |
| kvm_irqchip_commit_routes(kvm_state); |
| } |
| |
| static int vfio_msix_vector_do_use(PCIDevice *pdev, unsigned int nr, |
| MSIMessage *msg, IOHandler *handler) |
| { |
| VFIOPCIDevice *vdev = VFIO_PCI(pdev); |
| VFIOMSIVector *vector; |
| int ret; |
| bool resizing = !!(vdev->nr_vectors < nr + 1); |
| |
| trace_vfio_msix_vector_do_use(vdev->vbasedev.name, nr); |
| |
| vector = &vdev->msi_vectors[nr]; |
| |
| if (!vector->use) { |
| vector->vdev = vdev; |
| vector->virq = -1; |
| if (event_notifier_init(&vector->interrupt, 0)) { |
| error_report("vfio: Error: event_notifier_init failed"); |
| } |
| vector->use = true; |
| msix_vector_use(pdev, nr); |
| } |
| |
| qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), |
| handler, NULL, vector); |
| |
| /* |
| * Attempt to enable route through KVM irqchip, |
| * default to userspace handling if unavailable. |
| */ |
| if (vector->virq >= 0) { |
| if (!msg) { |
| vfio_remove_kvm_msi_virq(vector); |
| } else { |
| vfio_update_kvm_msi_virq(vector, *msg, pdev); |
| } |
| } else { |
| if (msg) { |
| if (vdev->defer_kvm_irq_routing) { |
| vfio_add_kvm_msi_virq(vdev, vector, nr, true); |
| } else { |
| vfio_route_change = kvm_irqchip_begin_route_changes(kvm_state); |
| vfio_add_kvm_msi_virq(vdev, vector, nr, true); |
| kvm_irqchip_commit_route_changes(&vfio_route_change); |
| vfio_connect_kvm_msi_virq(vector); |
| } |
| } |
| } |
| |
| /* |
| * When dynamic allocation is not supported, we don't want to have the |
| * host allocate all possible MSI vectors for a device if they're not |
| * in use, so we shutdown and incrementally increase them as needed. |
| * nr_vectors represents the total number of vectors allocated. |
| * |
| * When dynamic allocation is supported, let the host only allocate |
| * and enable a vector when it is in use in guest. nr_vectors represents |
| * the upper bound of vectors being enabled (but not all of the ranges |
| * is allocated or enabled). |
| */ |
| if (resizing) { |
| vdev->nr_vectors = nr + 1; |
| } |
| |
| if (!vdev->defer_kvm_irq_routing) { |
| if (vdev->msix->noresize && resizing) { |
| vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX); |
| ret = vfio_enable_vectors(vdev, true); |
| if (ret) { |
| error_report("vfio: failed to enable vectors, %d", ret); |
| } |
| } else { |
| Error *err = NULL; |
| int32_t fd; |
| |
| if (vector->virq >= 0) { |
| fd = event_notifier_get_fd(&vector->kvm_interrupt); |
| } else { |
| fd = event_notifier_get_fd(&vector->interrupt); |
| } |
| |
| if (vfio_set_irq_signaling(&vdev->vbasedev, |
| VFIO_PCI_MSIX_IRQ_INDEX, nr, |
| VFIO_IRQ_SET_ACTION_TRIGGER, fd, &err)) { |
| error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); |
| } |
| } |
| } |
| |
| /* Disable PBA emulation when nothing more is pending. */ |
| clear_bit(nr, vdev->msix->pending); |
| if (find_first_bit(vdev->msix->pending, |
| vdev->nr_vectors) == vdev->nr_vectors) { |
| memory_region_set_enabled(&vdev->pdev.msix_pba_mmio, false); |
| trace_vfio_msix_pba_disable(vdev->vbasedev.name); |
| } |
| |
| return 0; |
| } |
| |
| static int vfio_msix_vector_use(PCIDevice *pdev, |
| unsigned int nr, MSIMessage msg) |
| { |
| return vfio_msix_vector_do_use(pdev, nr, &msg, vfio_msi_interrupt); |
| } |
| |
| static void vfio_msix_vector_release(PCIDevice *pdev, unsigned int nr) |
| { |
| VFIOPCIDevice *vdev = VFIO_PCI(pdev); |
| VFIOMSIVector *vector = &vdev->msi_vectors[nr]; |
| |
| trace_vfio_msix_vector_release(vdev->vbasedev.name, nr); |
| |
| /* |
| * There are still old guests that mask and unmask vectors on every |
| * interrupt. If we're using QEMU bypass with a KVM irqfd, leave all of |
| * the KVM setup in place, simply switch VFIO to use the non-bypass |
| * eventfd. We'll then fire the interrupt through QEMU and the MSI-X |
| * core will mask the interrupt and set pending bits, allowing it to |
| * be re-asserted on unmask. Nothing to do if already using QEMU mode. |
| */ |
| if (vector->virq >= 0) { |
| int32_t fd = event_notifier_get_fd(&vector->interrupt); |
| Error *err = NULL; |
| |
| if (vfio_set_irq_signaling(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX, nr, |
| VFIO_IRQ_SET_ACTION_TRIGGER, fd, &err)) { |
| error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); |
| } |
| } |
| } |
| |
| static void vfio_prepare_kvm_msi_virq_batch(VFIOPCIDevice *vdev) |
| { |
| assert(!vdev->defer_kvm_irq_routing); |
| vdev->defer_kvm_irq_routing = true; |
| vfio_route_change = kvm_irqchip_begin_route_changes(kvm_state); |
| } |
| |
| static void vfio_commit_kvm_msi_virq_batch(VFIOPCIDevice *vdev) |
| { |
| int i; |
| |
| assert(vdev->defer_kvm_irq_routing); |
| vdev->defer_kvm_irq_routing = false; |
| |
| kvm_irqchip_commit_route_changes(&vfio_route_change); |
| |
| for (i = 0; i < vdev->nr_vectors; i++) { |
| vfio_connect_kvm_msi_virq(&vdev->msi_vectors[i]); |
| } |
| } |
| |
| static void vfio_msix_enable(VFIOPCIDevice *vdev) |
| { |
| int ret; |
| |
| vfio_disable_interrupts(vdev); |
| |
| vdev->msi_vectors = g_new0(VFIOMSIVector, vdev->msix->entries); |
| |
| vdev->interrupt = VFIO_INT_MSIX; |
| |
| /* |
| * Setting vector notifiers triggers synchronous vector-use |
| * callbacks for each active vector. Deferring to commit the KVM |
| * routes once rather than per vector provides a substantial |
| * performance improvement. |
| */ |
| vfio_prepare_kvm_msi_virq_batch(vdev); |
| |
| if (msix_set_vector_notifiers(&vdev->pdev, vfio_msix_vector_use, |
| vfio_msix_vector_release, NULL)) { |
| error_report("vfio: msix_set_vector_notifiers failed"); |
| } |
| |
| vfio_commit_kvm_msi_virq_batch(vdev); |
| |
| if (vdev->nr_vectors) { |
| ret = vfio_enable_vectors(vdev, true); |
| if (ret) { |
| error_report("vfio: failed to enable vectors, %d", ret); |
| } |
| } else { |
| /* |
| * Some communication channels between VF & PF or PF & fw rely on the |
| * physical state of the device and expect that enabling MSI-X from the |
| * guest enables the same on the host. When our guest is Linux, the |
| * guest driver call to pci_enable_msix() sets the enabling bit in the |
| * MSI-X capability, but leaves the vector table masked. We therefore |
| * can't rely on a vector_use callback (from request_irq() in the guest) |
| * to switch the physical device into MSI-X mode because that may come a |
| * long time after pci_enable_msix(). This code sets vector 0 with an |
| * invalid fd to make the physical device MSI-X enabled, but with no |
| * vectors enabled, just like the guest view. |
| */ |
| ret = vfio_enable_msix_no_vec(vdev); |
| if (ret) { |
| error_report("vfio: failed to enable MSI-X, %d", ret); |
| } |
| } |
| |
| trace_vfio_msix_enable(vdev->vbasedev.name); |
| } |
| |
| static void vfio_msi_enable(VFIOPCIDevice *vdev) |
| { |
| int ret, i; |
| |
| vfio_disable_interrupts(vdev); |
| |
| vdev->nr_vectors = msi_nr_vectors_allocated(&vdev->pdev); |
| retry: |
| /* |
| * Setting vector notifiers needs to enable route for each vector. |
| * Deferring to commit the KVM routes once rather than per vector |
| * provides a substantial performance improvement. |
| */ |
| vfio_prepare_kvm_msi_virq_batch(vdev); |
| |
| vdev->msi_vectors = g_new0(VFIOMSIVector, vdev->nr_vectors); |
| |
| for (i = 0; i < vdev->nr_vectors; i++) { |
| VFIOMSIVector *vector = &vdev->msi_vectors[i]; |
| |
| vector->vdev = vdev; |
| vector->virq = -1; |
| vector->use = true; |
| |
| if (event_notifier_init(&vector->interrupt, 0)) { |
| error_report("vfio: Error: event_notifier_init failed"); |
| } |
| |
| qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), |
| vfio_msi_interrupt, NULL, vector); |
| |
| /* |
| * Attempt to enable route through KVM irqchip, |
| * default to userspace handling if unavailable. |
| */ |
| vfio_add_kvm_msi_virq(vdev, vector, i, false); |
| } |
| |
| vfio_commit_kvm_msi_virq_batch(vdev); |
| |
| /* Set interrupt type prior to possible interrupts */ |
| vdev->interrupt = VFIO_INT_MSI; |
| |
| ret = vfio_enable_vectors(vdev, false); |
| if (ret) { |
| if (ret < 0) { |
| error_report("vfio: Error: Failed to setup MSI fds: %m"); |
| } else { |
| error_report("vfio: Error: Failed to enable %d " |
| "MSI vectors, retry with %d", vdev->nr_vectors, ret); |
| } |
| |
| vfio_msi_disable_common(vdev); |
| |
| if (ret > 0) { |
| vdev->nr_vectors = ret; |
| goto retry; |
| } |
| |
| /* |
| * Failing to setup MSI doesn't really fall within any specification. |
| * Let's try leaving interrupts disabled and hope the guest figures |
| * out to fall back to INTx for this device. |
| */ |
| error_report("vfio: Error: Failed to enable MSI"); |
| |
| return; |
| } |
| |
| trace_vfio_msi_enable(vdev->vbasedev.name, vdev->nr_vectors); |
| } |
| |
| static void vfio_msi_disable_common(VFIOPCIDevice *vdev) |
| { |
| int i; |
| |
| for (i = 0; i < vdev->nr_vectors; i++) { |
| VFIOMSIVector *vector = &vdev->msi_vectors[i]; |
| if (vdev->msi_vectors[i].use) { |
| if (vector->virq >= 0) { |
| vfio_remove_kvm_msi_virq(vector); |
| } |
| qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), |
| NULL, NULL, NULL); |
| event_notifier_cleanup(&vector->interrupt); |
| } |
| } |
| |
| g_free(vdev->msi_vectors); |
| vdev->msi_vectors = NULL; |
| vdev->nr_vectors = 0; |
| vdev->interrupt = VFIO_INT_NONE; |
| } |
| |
| static void vfio_msix_disable(VFIOPCIDevice *vdev) |
| { |
| Error *err = NULL; |
| int i; |
| |
| msix_unset_vector_notifiers(&vdev->pdev); |
| |
| /* |
| * MSI-X will only release vectors if MSI-X is still enabled on the |
| * device, check through the rest and release it ourselves if necessary. |
| */ |
| for (i = 0; i < vdev->nr_vectors; i++) { |
| if (vdev->msi_vectors[i].use) { |
| vfio_msix_vector_release(&vdev->pdev, i); |
| msix_vector_unuse(&vdev->pdev, i); |
| } |
| } |
| |
| /* |
| * Always clear MSI-X IRQ index. A PF device could have enabled |
| * MSI-X with no vectors. See vfio_msix_enable(). |
| */ |
| vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX); |
| |
| vfio_msi_disable_common(vdev); |
| vfio_intx_enable(vdev, &err); |
| if (err) { |
| error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); |
| } |
| |
| memset(vdev->msix->pending, 0, |
| BITS_TO_LONGS(vdev->msix->entries) * sizeof(unsigned long)); |
| |
| trace_vfio_msix_disable(vdev->vbasedev.name); |
| } |
| |
| static void vfio_msi_disable(VFIOPCIDevice *vdev) |
| { |
| Error *err = NULL; |
| |
| vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSI_IRQ_INDEX); |
| vfio_msi_disable_common(vdev); |
| vfio_intx_enable(vdev, &err); |
| if (err) { |
| error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); |
| } |
| |
| trace_vfio_msi_disable(vdev->vbasedev.name); |
| } |
| |
| static void vfio_update_msi(VFIOPCIDevice *vdev) |
| { |
| int i; |
| |
| for (i = 0; i < vdev->nr_vectors; i++) { |
| VFIOMSIVector *vector = &vdev->msi_vectors[i]; |
| MSIMessage msg; |
| |
| if (!vector->use || vector->virq < 0) { |
| continue; |
| } |
| |
| msg = msi_get_message(&vdev->pdev, i); |
| vfio_update_kvm_msi_virq(vector, msg, &vdev->pdev); |
| } |
| } |
| |
| static void vfio_pci_load_rom(VFIOPCIDevice *vdev) |
| { |
| struct vfio_region_info *reg_info; |
| uint64_t size; |
| off_t off = 0; |
| ssize_t bytes; |
| |
| if (vfio_get_region_info(&vdev->vbasedev, |
| VFIO_PCI_ROM_REGION_INDEX, ®_info)) { |
| error_report("vfio: Error getting ROM info: %m"); |
| return; |
| } |
| |
| trace_vfio_pci_load_rom(vdev->vbasedev.name, (unsigned long)reg_info->size, |
| (unsigned long)reg_info->offset, |
| (unsigned long)reg_info->flags); |
| |
| vdev->rom_size = size = reg_info->size; |
| vdev->rom_offset = reg_info->offset; |
| |
| g_free(reg_info); |
| |
| if (!vdev->rom_size) { |
| vdev->rom_read_failed = true; |
| error_report("vfio-pci: Cannot read device rom at " |
| "%s", vdev->vbasedev.name); |
| error_printf("Device option ROM contents are probably invalid " |
| "(check dmesg).\nSkip option ROM probe with rombar=0, " |
| "or load from file with romfile=\n"); |
| return; |
| } |
| |
| vdev->rom = g_malloc(size); |
| memset(vdev->rom, 0xff, size); |
| |
| while (size) { |
| bytes = pread(vdev->vbasedev.fd, vdev->rom + off, |
| size, vdev->rom_offset + off); |
| if (bytes == 0) { |
| break; |
| } else if (bytes > 0) { |
| off += bytes; |
| size -= bytes; |
| } else { |
| if (errno == EINTR || errno == EAGAIN) { |
| continue; |
| } |
| error_report("vfio: Error reading device ROM: %m"); |
| break; |
| } |
| } |
| |
| /* |
| * Test the ROM signature against our device, if the vendor is correct |
| * but the device ID doesn't match, store the correct device ID and |
| * recompute the checksum. Intel IGD devices need this and are known |
| * to have bogus checksums so we can't simply adjust the checksum. |
| */ |
| if (pci_get_word(vdev->rom) == 0xaa55 && |
| pci_get_word(vdev->rom + 0x18) + 8 < vdev->rom_size && |
| !memcmp(vdev->rom + pci_get_word(vdev->rom + 0x18), "PCIR", 4)) { |
| uint16_t vid, did; |
| |
| vid = pci_get_word(vdev->rom + pci_get_word(vdev->rom + 0x18) + 4); |
| did = pci_get_word(vdev->rom + pci_get_word(vdev->rom + 0x18) + 6); |
| |
| if (vid == vdev->vendor_id && did != vdev->device_id) { |
| int i; |
| uint8_t csum, *data = vdev->rom; |
| |
| pci_set_word(vdev->rom + pci_get_word(vdev->rom + 0x18) + 6, |
| vdev->device_id); |
| data[6] = 0; |
| |
| for (csum = 0, i = 0; i < vdev->rom_size; i++) { |
| csum += data[i]; |
| } |
| |
| data[6] = -csum; |
| } |
| } |
| } |
| |
| static uint64_t vfio_rom_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| VFIOPCIDevice *vdev = opaque; |
| union { |
| uint8_t byte; |
| uint16_t word; |
| uint32_t dword; |
| uint64_t qword; |
| } val; |
| uint64_t data = 0; |
| |
| /* Load the ROM lazily when the guest tries to read it */ |
| if (unlikely(!vdev->rom && !vdev->rom_read_failed)) { |
| vfio_pci_load_rom(vdev); |
| } |
| |
| memcpy(&val, vdev->rom + addr, |
| (addr < vdev->rom_size) ? MIN(size, vdev->rom_size - addr) : 0); |
| |
| switch (size) { |
| case 1: |
| data = val.byte; |
| break; |
| case 2: |
| data = le16_to_cpu(val.word); |
| break; |
| case 4: |
| data = le32_to_cpu(val.dword); |
| break; |
| default: |
| hw_error("vfio: unsupported read size, %d bytes\n", size); |
| break; |
| } |
| |
| trace_vfio_rom_read(vdev->vbasedev.name, addr, size, data); |
| |
| return data; |
| } |
| |
| static void vfio_rom_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| } |
| |
| static const MemoryRegionOps vfio_rom_ops = { |
| .read = vfio_rom_read, |
| .write = vfio_rom_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static void vfio_pci_size_rom(VFIOPCIDevice *vdev) |
| { |
| uint32_t orig, size = cpu_to_le32((uint32_t)PCI_ROM_ADDRESS_MASK); |
| off_t offset = vdev->config_offset + PCI_ROM_ADDRESS; |
| DeviceState *dev = DEVICE(vdev); |
| char *name; |
| int fd = vdev->vbasedev.fd; |
| |
| if (vdev->pdev.romfile || !vdev->pdev.rom_bar) { |
| /* Since pci handles romfile, just print a message and return */ |
| if (vfio_opt_rom_in_denylist(vdev) && vdev->pdev.romfile) { |
| warn_report("Device at %s is known to cause system instability" |
| " issues during option rom execution", |
| vdev->vbasedev.name); |
| error_printf("Proceeding anyway since user specified romfile\n"); |
| } |
| return; |
| } |
| |
| /* |
| * Use the same size ROM BAR as the physical device. The contents |
| * will get filled in later when the guest tries to read it. |
| */ |
| if (pread(fd, &orig, 4, offset) != 4 || |
| pwrite(fd, &size, 4, offset) != 4 || |
| pread(fd, &size, 4, offset) != 4 || |
| pwrite(fd, &orig, 4, offset) != 4) { |
| error_report("%s(%s) failed: %m", __func__, vdev->vbasedev.name); |
| return; |
| } |
| |
| size = ~(le32_to_cpu(size) & PCI_ROM_ADDRESS_MASK) + 1; |
| |
| if (!size) { |
| return; |
| } |
| |
| if (vfio_opt_rom_in_denylist(vdev)) { |
| if (dev->opts && qdict_haskey(dev->opts, "rombar")) { |
| warn_report("Device at %s is known to cause system instability" |
| " issues during option rom execution", |
| vdev->vbasedev.name); |
| error_printf("Proceeding anyway since user specified" |
| " non zero value for rombar\n"); |
| } else { |
| warn_report("Rom loading for device at %s has been disabled" |
| " due to system instability issues", |
| vdev->vbasedev.name); |
| error_printf("Specify rombar=1 or romfile to force\n"); |
| return; |
| } |
| } |
| |
| trace_vfio_pci_size_rom(vdev->vbasedev.name, size); |
| |
| name = g_strdup_printf("vfio[%s].rom", vdev->vbasedev.name); |
| |
| memory_region_init_io(&vdev->pdev.rom, OBJECT(vdev), |
| &vfio_rom_ops, vdev, name, size); |
| g_free(name); |
| |
| pci_register_bar(&vdev->pdev, PCI_ROM_SLOT, |
| PCI_BASE_ADDRESS_SPACE_MEMORY, &vdev->pdev.rom); |
| |
| vdev->rom_read_failed = false; |
| } |
| |
| void vfio_vga_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIOVGARegion *region = opaque; |
| VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]); |
| union { |
| uint8_t byte; |
| uint16_t word; |
| uint32_t dword; |
| uint64_t qword; |
| } buf; |
| off_t offset = vga->fd_offset + region->offset + addr; |
| |
| switch (size) { |
| case 1: |
| buf.byte = data; |
| break; |
| case 2: |
| buf.word = cpu_to_le16(data); |
| break; |
| case 4: |
| buf.dword = cpu_to_le32(data); |
| break; |
| default: |
| hw_error("vfio: unsupported write size, %d bytes", size); |
| break; |
| } |
| |
| if (pwrite(vga->fd, &buf, size, offset) != size) { |
| error_report("%s(,0x%"HWADDR_PRIx", 0x%"PRIx64", %d) failed: %m", |
| __func__, region->offset + addr, data, size); |
| } |
| |
| trace_vfio_vga_write(region->offset + addr, data, size); |
| } |
| |
| uint64_t vfio_vga_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| VFIOVGARegion *region = opaque; |
| VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]); |
| union { |
| uint8_t byte; |
| uint16_t word; |
| uint32_t dword; |
| uint64_t qword; |
| } buf; |
| uint64_t data = 0; |
| off_t offset = vga->fd_offset + region->offset + addr; |
| |
| if (pread(vga->fd, &buf, size, offset) != size) { |
| error_report("%s(,0x%"HWADDR_PRIx", %d) failed: %m", |
| __func__, region->offset + addr, size); |
| return (uint64_t)-1; |
| } |
| |
| switch (size) { |
| case 1: |
| data = buf.byte; |
| break; |
| case 2: |
| data = le16_to_cpu(buf.word); |
| break; |
| case 4: |
| data = le32_to_cpu(buf.dword); |
| break; |
| default: |
| hw_error("vfio: unsupported read size, %d bytes", size); |
| break; |
| } |
| |
| trace_vfio_vga_read(region->offset + addr, size, data); |
| |
| return data; |
| } |
| |
| static const MemoryRegionOps vfio_vga_ops = { |
| .read = vfio_vga_read, |
| .write = vfio_vga_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| /* |
| * Expand memory region of sub-page(size < PAGE_SIZE) MMIO BAR to page |
| * size if the BAR is in an exclusive page in host so that we could map |
| * this BAR to guest. But this sub-page BAR may not occupy an exclusive |
| * page in guest. So we should set the priority of the expanded memory |
| * region to zero in case of overlap with BARs which share the same page |
| * with the sub-page BAR in guest. Besides, we should also recover the |
| * size of this sub-page BAR when its base address is changed in guest |
| * and not page aligned any more. |
| */ |
| static void vfio_sub_page_bar_update_mapping(PCIDevice *pdev, int bar) |
| { |
| VFIOPCIDevice *vdev = VFIO_PCI(pdev); |
| VFIORegion *region = &vdev->bars[bar].region; |
| MemoryRegion *mmap_mr, *region_mr, *base_mr; |
| PCIIORegion *r; |
| pcibus_t bar_addr; |
| uint64_t size = region->size; |
| |
| /* Make sure that the whole region is allowed to be mmapped */ |
| if (region->nr_mmaps != 1 || !region->mmaps[0].mmap || |
| region->mmaps[0].size != region->size) { |
| return; |
| } |
| |
| r = &pdev->io_regions[bar]; |
| bar_addr = r->addr; |
| base_mr = vdev->bars[bar].mr; |
| region_mr = region->mem; |
| mmap_mr = ®ion->mmaps[0].mem; |
| |
| /* If BAR is mapped and page aligned, update to fill PAGE_SIZE */ |
| if (bar_addr != PCI_BAR_UNMAPPED && |
| !(bar_addr & ~qemu_real_host_page_mask())) { |
| size = qemu_real_host_page_size(); |
| } |
| |
| memory_region_transaction_begin(); |
| |
| if (vdev->bars[bar].size < size) { |
| memory_region_set_size(base_mr, size); |
| } |
| memory_region_set_size(region_mr, size); |
| memory_region_set_size(mmap_mr, size); |
| if (size != vdev->bars[bar].size && memory_region_is_mapped(base_mr)) { |
| memory_region_del_subregion(r->address_space, base_mr); |
| memory_region_add_subregion_overlap(r->address_space, |
| bar_addr, base_mr, 0); |
| } |
| |
| memory_region_transaction_commit(); |
| } |
| |
| /* |
| * PCI config space |
| */ |
| uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len) |
| { |
| VFIOPCIDevice *vdev = VFIO_PCI(pdev); |
| uint32_t emu_bits = 0, emu_val = 0, phys_val = 0, val; |
| |
| memcpy(&emu_bits, vdev->emulated_config_bits + addr, len); |
| emu_bits = le32_to_cpu(emu_bits); |
| |
| if (emu_bits) { |
| emu_val = pci_default_read_config(pdev, addr, len); |
| } |
| |
| if (~emu_bits & (0xffffffffU >> (32 - len * 8))) { |
| ssize_t ret; |
| |
| ret = pread(vdev->vbasedev.fd, &phys_val, len, |
| vdev->config_offset + addr); |
| if (ret != len) { |
| error_report("%s(%s, 0x%x, 0x%x) failed: %m", |
| __func__, vdev->vbasedev.name, addr, len); |
| return -errno; |
| } |
| phys_val = le32_to_cpu(phys_val); |
| } |
| |
| val = (emu_val & emu_bits) | (phys_val & ~emu_bits); |
| |
| trace_vfio_pci_read_config(vdev->vbasedev.name, addr, len, val); |
| |
| return val; |
| } |
| |
| void vfio_pci_write_config(PCIDevice *pdev, |
| uint32_t addr, uint32_t val, int len) |
| { |
| VFIOPCIDevice *vdev = VFIO_PCI(pdev); |
| uint32_t val_le = cpu_to_le32(val); |
| |
| trace_vfio_pci_write_config(vdev->vbasedev.name, addr, val, len); |
| |
| /* Write everything to VFIO, let it filter out what we can't write */ |
| if (pwrite(vdev->vbasedev.fd, &val_le, len, vdev->config_offset + addr) |
| != len) { |
| error_report("%s(%s, 0x%x, 0x%x, 0x%x) failed: %m", |
| __func__, vdev->vbasedev.name, addr, val, len); |
| } |
| |
| /* MSI/MSI-X Enabling/Disabling */ |
| if (pdev->cap_present & QEMU_PCI_CAP_MSI && |
| ranges_overlap(addr, len, pdev->msi_cap, vdev->msi_cap_size)) { |
| int is_enabled, was_enabled = msi_enabled(pdev); |
| |
| pci_default_write_config(pdev, addr, val, len); |
| |
| is_enabled = msi_enabled(pdev); |
| |
| if (!was_enabled) { |
| if (is_enabled) { |
| vfio_msi_enable(vdev); |
| } |
| } else { |
| if (!is_enabled) { |
| vfio_msi_disable(vdev); |
| } else { |
| vfio_update_msi(vdev); |
| } |
| } |
| } else if (pdev->cap_present & QEMU_PCI_CAP_MSIX && |
| ranges_overlap(addr, len, pdev->msix_cap, MSIX_CAP_LENGTH)) { |
| int is_enabled, was_enabled = msix_enabled(pdev); |
| |
| pci_default_write_config(pdev, addr, val, len); |
| |
| is_enabled = msix_enabled(pdev); |
| |
| if (!was_enabled && is_enabled) { |
| vfio_msix_enable(vdev); |
| } else if (was_enabled && !is_enabled) { |
| vfio_msix_disable(vdev); |
| } |
| } else if (ranges_overlap(addr, len, PCI_BASE_ADDRESS_0, 24) || |
| range_covers_byte(addr, len, PCI_COMMAND)) { |
| pcibus_t old_addr[PCI_NUM_REGIONS - 1]; |
| int bar; |
| |
| for (bar = 0; bar < PCI_ROM_SLOT; bar++) { |
| old_addr[bar] = pdev->io_regions[bar].addr; |
| } |
| |
| pci_default_write_config(pdev, addr, val, len); |
| |
| for (bar = 0; bar < PCI_ROM_SLOT; bar++) { |
| if (old_addr[bar] != pdev->io_regions[bar].addr && |
| vdev->bars[bar].region.size > 0 && |
| vdev->bars[bar].region.size < qemu_real_host_page_size()) { |
| vfio_sub_page_bar_update_mapping(pdev, bar); |
| } |
| } |
| } else { |
| /* Write everything to QEMU to keep emulated bits correct */ |
| pci_default_write_config(pdev, addr, val, len); |
| } |
| } |
| |
| /* |
| * Interrupt setup |
| */ |
| static void vfio_disable_interrupts(VFIOPCIDevice *vdev) |
| { |
| /* |
| * More complicated than it looks. Disabling MSI/X transitions the |
| * device to INTx mode (if supported). Therefore we need to first |
| * disable MSI/X and then cleanup by disabling INTx. |
| */ |
| if (vdev->interrupt == VFIO_INT_MSIX) { |
| vfio_msix_disable(vdev); |
| } else if (vdev->interrupt == VFIO_INT_MSI) { |
| vfio_msi_disable(vdev); |
| } |
| |
| if (vdev->interrupt == VFIO_INT_INTx) { |
| vfio_intx_disable(vdev); |
| } |
| } |
| |
| static int vfio_msi_setup(VFIOPCIDevice *vdev, int pos, Error **errp) |
| { |
| uint16_t ctrl; |
| bool msi_64bit, msi_maskbit; |
| int ret, entries; |
| Error *err = NULL; |
| |
| if (pread(vdev->vbasedev.fd, &ctrl, sizeof(ctrl), |
| vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) { |
| error_setg_errno(errp, errno, "failed reading MSI PCI_CAP_FLAGS"); |
| return -errno; |
| } |
| ctrl = le16_to_cpu(ctrl); |
| |
| msi_64bit = !!(ctrl & PCI_MSI_FLAGS_64BIT); |
| msi_maskbit = !!(ctrl & PCI_MSI_FLAGS_MASKBIT); |
| entries = 1 << ((ctrl & PCI_MSI_FLAGS_QMASK) >> 1); |
| |
| trace_vfio_msi_setup(vdev->vbasedev.name, pos); |
| |
| ret = msi_init(&vdev->pdev, pos, entries, msi_64bit, msi_maskbit, &err); |
| if (ret < 0) { |
| if (ret == -ENOTSUP) { |
| return 0; |
| } |
| error_propagate_prepend(errp, err, "msi_init failed: "); |
| return ret; |
| } |
| vdev->msi_cap_size = 0xa + (msi_maskbit ? 0xa : 0) + (msi_64bit ? 0x4 : 0); |
| |
| return 0; |
| } |
| |
| static void vfio_pci_fixup_msix_region(VFIOPCIDevice *vdev) |
| { |
| off_t start, end; |
| VFIORegion *region = &vdev->bars[vdev->msix->table_bar].region; |
| |
| /* |
| * If the host driver allows mapping of a MSIX data, we are going to |
| * do map the entire BAR and emulate MSIX table on top of that. |
| */ |
| if (vfio_has_region_cap(&vdev->vbasedev, region->nr, |
| VFIO_REGION_INFO_CAP_MSIX_MAPPABLE)) { |
| return; |
| } |
| |
| /* |
| * We expect to find a single mmap covering the whole BAR, anything else |
| * means it's either unsupported or already setup. |
| */ |
| if (region->nr_mmaps != 1 || region->mmaps[0].offset || |
| region->size != region->mmaps[0].size) { |
| return; |
| } |
| |
| /* MSI-X table start and end aligned to host page size */ |
| start = vdev->msix->table_offset & qemu_real_host_page_mask(); |
| end = REAL_HOST_PAGE_ALIGN((uint64_t)vdev->msix->table_offset + |
| (vdev->msix->entries * PCI_MSIX_ENTRY_SIZE)); |
| |
| /* |
| * Does the MSI-X table cover the beginning of the BAR? The whole BAR? |
| * NB - Host page size is necessarily a power of two and so is the PCI |
| * BAR (not counting EA yet), therefore if we have host page aligned |
| * @start and @end, then any remainder of the BAR before or after those |
| * must be at least host page sized and therefore mmap'able. |
| */ |
| if (!start) { |
| if (end >= region->size) { |
| region->nr_mmaps = 0; |
| g_free(region->mmaps); |
| region->mmaps = NULL; |
| trace_vfio_msix_fixup(vdev->vbasedev.name, |
| vdev->msix->table_bar, 0, 0); |
| } else { |
| region->mmaps[0].offset = end; |
| region->mmaps[0].size = region->size - end; |
| trace_vfio_msix_fixup(vdev->vbasedev.name, |
| vdev->msix->table_bar, region->mmaps[0].offset, |
| region->mmaps[0].offset + region->mmaps[0].size); |
| } |
| |
| /* Maybe it's aligned at the end of the BAR */ |
| } else if (end >= region->size) { |
| region->mmaps[0].size = start; |
| trace_vfio_msix_fixup(vdev->vbasedev.name, |
| vdev->msix->table_bar, region->mmaps[0].offset, |
| region->mmaps[0].offset + region->mmaps[0].size); |
| |
| /* Otherwise it must split the BAR */ |
| } else { |
| region->nr_mmaps = 2; |
| region->mmaps = g_renew(VFIOMmap, region->mmaps, 2); |
| |
| memcpy(®ion->mmaps[1], ®ion->mmaps[0], sizeof(VFIOMmap)); |
| |
| region->mmaps[0].size = start; |
| trace_vfio_msix_fixup(vdev->vbasedev.name, |
| vdev->msix->table_bar, region->mmaps[0].offset, |
| region->mmaps[0].offset + region->mmaps[0].size); |
| |
| region->mmaps[1].offset = end; |
| region->mmaps[1].size = region->size - end; |
| trace_vfio_msix_fixup(vdev->vbasedev.name, |
| vdev->msix->table_bar, region->mmaps[1].offset, |
| region->mmaps[1].offset + region->mmaps[1].size); |
| } |
| } |
| |
| static void vfio_pci_relocate_msix(VFIOPCIDevice *vdev, Error **errp) |
| { |
| int target_bar = -1; |
| size_t msix_sz; |
| |
| if (!vdev->msix || vdev->msix_relo == OFF_AUTOPCIBAR_OFF) { |
| return; |
| } |
| |
| /* The actual minimum size of MSI-X structures */ |
| msix_sz = (vdev->msix->entries * PCI_MSIX_ENTRY_SIZE) + |
| (QEMU_ALIGN_UP(vdev->msix->entries, 64) / 8); |
| /* Round up to host pages, we don't want to share a page */ |
| msix_sz = REAL_HOST_PAGE_ALIGN(msix_sz); |
| /* PCI BARs must be a power of 2 */ |
| msix_sz = pow2ceil(msix_sz); |
| |
| if (vdev->msix_relo == OFF_AUTOPCIBAR_AUTO) { |
| /* |
| * TODO: Lookup table for known devices. |
| * |
| * Logically we might use an algorithm here to select the BAR adding |
| * the least additional MMIO space, but we cannot programmatically |
| * predict the driver dependency on BAR ordering or sizing, therefore |
| * 'auto' becomes a lookup for combinations reported to work. |
| */ |
| if (target_bar < 0) { |
| error_setg(errp, "No automatic MSI-X relocation available for " |
| "device %04x:%04x", vdev->vendor_id, vdev->device_id); |
| return; |
| } |
| } else { |
| target_bar = (int)(vdev->msix_relo - OFF_AUTOPCIBAR_BAR0); |
| } |
| |
| /* I/O port BARs cannot host MSI-X structures */ |
| if (vdev->bars[target_bar].ioport) { |
| error_setg(errp, "Invalid MSI-X relocation BAR %d, " |
| "I/O port BAR", target_bar); |
| return; |
| } |
| |
| /* Cannot use a BAR in the "shadow" of a 64-bit BAR */ |
| if (!vdev->bars[target_bar].size && |
| target_bar > 0 && vdev->bars[target_bar - 1].mem64) { |
| error_setg(errp, "Invalid MSI-X relocation BAR %d, " |
| "consumed by 64-bit BAR %d", target_bar, target_bar - 1); |
| return; |
| } |
| |
| /* 2GB max size for 32-bit BARs, cannot double if already > 1G */ |
| if (vdev->bars[target_bar].size > 1 * GiB && |
| !vdev->bars[target_bar].mem64) { |
| error_setg(errp, "Invalid MSI-X relocation BAR %d, " |
| "no space to extend 32-bit BAR", target_bar); |
| return; |
| } |
| |
| /* |
| * If adding a new BAR, test if we can make it 64bit. We make it |
| * prefetchable since QEMU MSI-X emulation has no read side effects |
| * and doing so makes mapping more flexible. |
| */ |
| if (!vdev->bars[target_bar].size) { |
| if (target_bar < (PCI_ROM_SLOT - 1) && |
| !vdev->bars[target_bar + 1].size) { |
| vdev->bars[target_bar].mem64 = true; |
| vdev->bars[target_bar].type = PCI_BASE_ADDRESS_MEM_TYPE_64; |
| } |
| vdev->bars[target_bar].type |= PCI_BASE_ADDRESS_MEM_PREFETCH; |
| vdev->bars[target_bar].size = msix_sz; |
| vdev->msix->table_offset = 0; |
| } else { |
| vdev->bars[target_bar].size = MAX(vdev->bars[target_bar].size * 2, |
| msix_sz * 2); |
| /* |
| * Due to above size calc, MSI-X always starts halfway into the BAR, |
| * which will always be a separate host page. |
| */ |
| vdev->msix->table_offset = vdev->bars[target_bar].size / 2; |
| } |
| |
| vdev->msix->table_bar = target_bar; |
| vdev->msix->pba_bar = target_bar; |
| /* Requires 8-byte alignment, but PCI_MSIX_ENTRY_SIZE guarantees that */ |
| vdev->msix->pba_offset = vdev->msix->table_offset + |
| (vdev->msix->entries * PCI_MSIX_ENTRY_SIZE); |
| |
| trace_vfio_msix_relo(vdev->vbasedev.name, |
| vdev->msix->table_bar, vdev->msix->table_offset); |
| } |
| |
| /* |
| * We don't have any control over how pci_add_capability() inserts |
| * capabilities into the chain. In order to setup MSI-X we need a |
| * MemoryRegion for the BAR. In order to setup the BAR and not |
| * attempt to mmap the MSI-X table area, which VFIO won't allow, we |
| * need to first look for where the MSI-X table lives. So we |
| * unfortunately split MSI-X setup across two functions. |
| */ |
| static void vfio_msix_early_setup(VFIOPCIDevice *vdev, Error **errp) |
| { |
| uint8_t pos; |
| uint16_t ctrl; |
| uint32_t table, pba; |
| int ret, fd = vdev->vbasedev.fd; |
| struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info), |
| .index = VFIO_PCI_MSIX_IRQ_INDEX }; |
| VFIOMSIXInfo *msix; |
| |
| pos = pci_find_capability(&vdev->pdev, PCI_CAP_ID_MSIX); |
| if (!pos) { |
| return; |
| } |
| |
| if (pread(fd, &ctrl, sizeof(ctrl), |
| vdev->config_offset + pos + PCI_MSIX_FLAGS) != sizeof(ctrl)) { |
| error_setg_errno(errp, errno, "failed to read PCI MSIX FLAGS"); |
| return; |
| } |
| |
| if (pread(fd, &table, sizeof(table), |
| vdev->config_offset + pos + PCI_MSIX_TABLE) != sizeof(table)) { |
| error_setg_errno(errp, errno, "failed to read PCI MSIX TABLE"); |
| return; |
| } |
| |
| if (pread(fd, &pba, sizeof(pba), |
| vdev->config_offset + pos + PCI_MSIX_PBA) != sizeof(pba)) { |
| error_setg_errno(errp, errno, "failed to read PCI MSIX PBA"); |
| return; |
| } |
| |
| ctrl = le16_to_cpu(ctrl); |
| table = le32_to_cpu(table); |
| pba = le32_to_cpu(pba); |
| |
| msix = g_malloc0(sizeof(*msix)); |
| msix->table_bar = table & PCI_MSIX_FLAGS_BIRMASK; |
| msix->table_offset = table & ~PCI_MSIX_FLAGS_BIRMASK; |
| msix->pba_bar = pba & PCI_MSIX_FLAGS_BIRMASK; |
| msix->pba_offset = pba & ~PCI_MSIX_FLAGS_BIRMASK; |
| msix->entries = (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; |
| |
| ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_IRQ_INFO, &irq_info); |
| if (ret < 0) { |
| error_setg_errno(errp, -ret, "failed to get MSI-X irq info"); |
| g_free(msix); |
| return; |
| } |
| |
| msix->noresize = !!(irq_info.flags & VFIO_IRQ_INFO_NORESIZE); |
| |
| /* |
| * Test the size of the pba_offset variable and catch if it extends outside |
| * of the specified BAR. If it is the case, we need to apply a hardware |
| * specific quirk if the device is known or we have a broken configuration. |
| */ |
| if (msix->pba_offset >= vdev->bars[msix->pba_bar].region.size) { |
| /* |
| * Chelsio T5 Virtual Function devices are encoded as 0x58xx for T5 |
| * adapters. The T5 hardware returns an incorrect value of 0x8000 for |
| * the VF PBA offset while the BAR itself is only 8k. The correct value |
| * is 0x1000, so we hard code that here. |
| */ |
| if (vdev->vendor_id == PCI_VENDOR_ID_CHELSIO && |
| (vdev->device_id & 0xff00) == 0x5800) { |
| msix->pba_offset = 0x1000; |
| /* |
| * BAIDU KUNLUN Virtual Function devices for KUNLUN AI processor |
| * return an incorrect value of 0x460000 for the VF PBA offset while |
| * the BAR itself is only 0x10000. The correct value is 0xb400. |
| */ |
| } else if (vfio_pci_is(vdev, PCI_VENDOR_ID_BAIDU, |
| PCI_DEVICE_ID_KUNLUN_VF)) { |
| msix->pba_offset = 0xb400; |
| } else if (vdev->msix_relo == OFF_AUTOPCIBAR_OFF) { |
| error_setg(errp, "hardware reports invalid configuration, " |
| "MSIX PBA outside of specified BAR"); |
| g_free(msix); |
| return; |
| } |
| } |
| |
| trace_vfio_msix_early_setup(vdev->vbasedev.name, pos, msix->table_bar, |
| msix->table_offset, msix->entries, |
| msix->noresize); |
| vdev->msix = msix; |
| |
| vfio_pci_fixup_msix_region(vdev); |
| |
| vfio_pci_relocate_msix(vdev, errp); |
| } |
| |
| static int vfio_msix_setup(VFIOPCIDevice *vdev, int pos, Error **errp) |
| { |
| int ret; |
| Error *err = NULL; |
| |
| vdev->msix->pending = g_new0(unsigned long, |
| BITS_TO_LONGS(vdev->msix->entries)); |
| ret = msix_init(&vdev->pdev, vdev->msix->entries, |
| vdev->bars[vdev->msix->table_bar].mr, |
| vdev->msix->table_bar, vdev->msix->table_offset, |
| vdev->bars[vdev->msix->pba_bar].mr, |
| vdev->msix->pba_bar, vdev->msix->pba_offset, pos, |
| &err); |
| if (ret < 0) { |
| if (ret == -ENOTSUP) { |
| warn_report_err(err); |
| return 0; |
| } |
| |
| error_propagate(errp, err); |
| return ret; |
| } |
| |
| /* |
| * The PCI spec suggests that devices provide additional alignment for |
| * MSI-X structures and avoid overlapping non-MSI-X related registers. |
| * For an assigned device, this hopefully means that emulation of MSI-X |
| * structures does not affect the performance of the device. If devices |
| * fail to provide that alignment, a significant performance penalty may |
| * result, for instance Mellanox MT27500 VFs: |
| * http://www.spinics.net/lists/kvm/msg125881.html |
| * |
| * The PBA is simply not that important for such a serious regression and |
| * most drivers do not appear to look at it. The solution for this is to |
| * disable the PBA MemoryRegion unless it's being used. We disable it |
| * here and only enable it if a masked vector fires through QEMU. As the |
| * vector-use notifier is called, which occurs on unmask, we test whether |
| * PBA emulation is needed and again disable if not. |
| */ |
| memory_region_set_enabled(&vdev->pdev.msix_pba_mmio, false); |
| |
| /* |
| * The emulated machine may provide a paravirt interface for MSIX setup |
| * so it is not strictly necessary to emulate MSIX here. This becomes |
| * helpful when frequently accessed MMIO registers are located in |
| * subpages adjacent to the MSIX table but the MSIX data containing page |
| * cannot be mapped because of a host page size bigger than the MSIX table |
| * alignment. |
| */ |
| if (object_property_get_bool(OBJECT(qdev_get_machine()), |
| "vfio-no-msix-emulation", NULL)) { |
| memory_region_set_enabled(&vdev->pdev.msix_table_mmio, false); |
| } |
| |
| return 0; |
| } |
| |
| static void vfio_teardown_msi(VFIOPCIDevice *vdev) |
| { |
| msi_uninit(&vdev->pdev); |
| |
| if (vdev->msix) { |
| msix_uninit(&vdev->pdev, |
| vdev->bars[vdev->msix->table_bar].mr, |
| vdev->bars[vdev->msix->pba_bar].mr); |
| g_free(vdev->msix->pending); |
| } |
| } |
| |
| /* |
| * Resource setup |
| */ |
| static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled) |
| { |
| int i; |
| |
| for (i = 0; i < PCI_ROM_SLOT; i++) { |
| vfio_region_mmaps_set_enabled(&vdev->bars[i].region, enabled); |
| } |
| } |
| |
| static void vfio_bar_prepare(VFIOPCIDevice *vdev, int nr) |
| { |
| VFIOBAR *bar = &vdev->bars[nr]; |
| |
| uint32_t pci_bar; |
| int ret; |
| |
| /* Skip both unimplemented BARs and the upper half of 64bit BARS. */ |
| if (!bar->region.size) { |
| return; |
| } |
| |
| /* Determine what type of BAR this is for registration */ |
| ret = pread(vdev->vbasedev.fd, &pci_bar, sizeof(pci_bar), |
| vdev->config_offset + PCI_BASE_ADDRESS_0 + (4 * nr)); |
| if (ret != sizeof(pci_bar)) { |
| error_report("vfio: Failed to read BAR %d (%m)", nr); |
| return; |
| } |
| |
| pci_bar = le32_to_cpu(pci_bar); |
| bar->ioport = (pci_bar & PCI_BASE_ADDRESS_SPACE_IO); |
| bar->mem64 = bar->ioport ? 0 : (pci_bar & PCI_BASE_ADDRESS_MEM_TYPE_64); |
| bar->type = pci_bar & (bar->ioport ? ~PCI_BASE_ADDRESS_IO_MASK : |
| ~PCI_BASE_ADDRESS_MEM_MASK); |
| bar->size = bar->region.size; |
| } |
| |
| static void vfio_bars_prepare(VFIOPCIDevice *vdev) |
| { |
| int i; |
| |
| for (i = 0; i < PCI_ROM_SLOT; i++) { |
| vfio_bar_prepare(vdev, i); |
| } |
| } |
| |
| static void vfio_bar_register(VFIOPCIDevice *vdev, int nr) |
| { |
| VFIOBAR *bar = &vdev->bars[nr]; |
| char *name; |
| |
| if (!bar->size) { |
| return; |
| } |
| |
| bar->mr = g_new0(MemoryRegion, 1); |
| name = g_strdup_printf("%s base BAR %d", vdev->vbasedev.name, nr); |
| memory_region_init_io(bar->mr, OBJECT(vdev), NULL, NULL, name, bar->size); |
| g_free(name); |
| |
| if (bar->region.size) { |
| memory_region_add_subregion(bar->mr, 0, bar->region.mem); |
| |
| if (vfio_region_mmap(&bar->region)) { |
| error_report("Failed to mmap %s BAR %d. Performance may be slow", |
| vdev->vbasedev.name, nr); |
| } |
| } |
| |
| pci_register_bar(&vdev->pdev, nr, bar->type, bar->mr); |
| } |
| |
| static void vfio_bars_register(VFIOPCIDevice *vdev) |
| { |
| int i; |
| |
| for (i = 0; i < PCI_ROM_SLOT; i++) { |
| vfio_bar_register(vdev, i); |
| } |
| } |
| |
| static void vfio_bars_exit(VFIOPCIDevice *vdev) |
| { |
| int i; |
| |
| for (i = 0; i < PCI_ROM_SLOT; i++) { |
| VFIOBAR *bar = &vdev->bars[i]; |
| |
| vfio_bar_quirk_exit(vdev, i); |
| vfio_region_exit(&bar->region); |
| if (bar->region.size) { |
| memory_region_del_subregion(bar->mr, bar->region.mem); |
| } |
| } |
| |
| if (vdev->vga) { |
| pci_unregister_vga(&vdev->pdev); |
| vfio_vga_quirk_exit(vdev); |
| } |
| } |
| |
| static void vfio_bars_finalize(VFIOPCIDevice *vdev) |
| { |
| int i; |
| |
| for (i = 0; i < PCI_ROM_SLOT; i++) { |
| VFIOBAR *bar = &vdev->bars[i]; |
| |
| vfio_bar_quirk_finalize(vdev, i); |
| vfio_region_finalize(&bar->region); |
| if (bar->mr) { |
| assert(bar->size); |
| object_unparent(OBJECT(bar->mr)); |
| g_free(bar->mr); |
| bar->mr = NULL; |
| } |
| } |
| |
| if (vdev->vga) { |
| vfio_vga_quirk_finalize(vdev); |
| for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) { |
| object_unparent(OBJECT(&vdev->vga->region[i].mem)); |
| } |
| g_free(vdev->vga); |
| } |
| } |
| |
| /* |
| * General setup |
| */ |
| static uint8_t vfio_std_cap_max_size(PCIDevice *pdev, uint8_t pos) |
| { |
| uint8_t tmp; |
| uint16_t next = PCI_CONFIG_SPACE_SIZE; |
| |
| for (tmp = pdev->config[PCI_CAPABILITY_LIST]; tmp; |
| tmp = pdev->config[tmp + PCI_CAP_LIST_NEXT]) { |
| if (tmp > pos && tmp < next) { |
| next = tmp; |
| } |
| } |
| |
| return next - pos; |
| } |
| |
| |
| static uint16_t vfio_ext_cap_max_size(const uint8_t *config, uint16_t pos) |
| { |
| uint16_t tmp, next = PCIE_CONFIG_SPACE_SIZE; |
| |
| for (tmp = PCI_CONFIG_SPACE_SIZE; tmp; |
| tmp = PCI_EXT_CAP_NEXT(pci_get_long(config + tmp))) { |
| if (tmp > pos && tmp < next) { |
| next = tmp; |
| } |
| } |
| |
| return next - pos; |
| } |
| |
| static void vfio_set_word_bits(uint8_t *buf, uint16_t val, uint16_t mask) |
| { |
| pci_set_word(buf, (pci_get_word(buf) & ~mask) | val); |
| } |
| |
| static void vfio_add_emulated_word(VFIOPCIDevice *vdev, int pos, |
| uint16_t val, uint16_t mask) |
| { |
| vfio_set_word_bits(vdev->pdev.config + pos, val, mask); |
| vfio_set_word_bits(vdev->pdev.wmask + pos, ~mask, mask); |
| vfio_set_word_bits(vdev->emulated_config_bits + pos, mask, mask); |
| } |
| |
| static void vfio_set_long_bits(uint8_t *buf, uint32_t val, uint32_t mask) |
| { |
| pci_set_long(buf, (pci_get_long(buf) & ~mask) | val); |
| } |
| |
| static void vfio_add_emulated_long(VFIOPCIDevice *vdev, int pos, |
| uint32_t val, uint32_t mask) |
| { |
| vfio_set_long_bits(vdev->pdev.config + pos, val, mask); |
| vfio_set_long_bits(vdev->pdev.wmask + pos, ~mask, mask); |
| vfio_set_long_bits(vdev->emulated_config_bits + pos, mask, mask); |
| } |
| |
| static void vfio_pci_enable_rp_atomics(VFIOPCIDevice *vdev) |
| { |
| struct vfio_device_info_cap_pci_atomic_comp *cap; |
| g_autofree struct vfio_device_info *info = NULL; |
| PCIBus *bus = pci_get_bus(&vdev->pdev); |
| PCIDevice *parent = bus->parent_dev; |
| struct vfio_info_cap_header *hdr; |
| uint32_t mask = 0; |
| uint8_t *pos; |
| |
| /* |
| * PCIe Atomic Ops completer support is only added automatically for single |
| * function devices downstream of a root port supporting DEVCAP2. Support |
| * is added during realize and, if added, removed during device exit. The |
| * single function requirement avoids conflicting requirements should a |
| * slot be composed of multiple devices with differing capabilities. |
| */ |
| if (pci_bus_is_root(bus) || !parent || !parent->exp.exp_cap || |
| pcie_cap_get_type(parent) != PCI_EXP_TYPE_ROOT_PORT || |
| pcie_cap_get_version(parent) != PCI_EXP_FLAGS_VER2 || |
| vdev->pdev.devfn || |
| vdev->pdev.cap_present & QEMU_PCI_CAP_MULTIFUNCTION) { |
| return; |
| } |
| |
| pos = parent->config + parent->exp.exp_cap + PCI_EXP_DEVCAP2; |
| |
| /* Abort if there'a already an Atomic Ops configuration on the root port */ |
| if (pci_get_long(pos) & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 | |
| PCI_EXP_DEVCAP2_ATOMIC_COMP64 | |
| PCI_EXP_DEVCAP2_ATOMIC_COMP128)) { |
| return; |
| } |
| |
| info = vfio_get_device_info(vdev->vbasedev.fd); |
| if (!info) { |
| return; |
| } |
| |
| hdr = vfio_get_device_info_cap(info, VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP); |
| if (!hdr) { |
| return; |
| } |
| |
| cap = (void *)hdr; |
| if (cap->flags & VFIO_PCI_ATOMIC_COMP32) { |
| mask |= PCI_EXP_DEVCAP2_ATOMIC_COMP32; |
| } |
| if (cap->flags & VFIO_PCI_ATOMIC_COMP64) { |
| mask |= PCI_EXP_DEVCAP2_ATOMIC_COMP64; |
| } |
| if (cap->flags & VFIO_PCI_ATOMIC_COMP128) { |
| mask |= PCI_EXP_DEVCAP2_ATOMIC_COMP128; |
| } |
| |
| if (!mask) { |
| return; |
| } |
| |
| pci_long_test_and_set_mask(pos, mask); |
| vdev->clear_parent_atomics_on_exit = true; |
| } |
| |
| static void vfio_pci_disable_rp_atomics(VFIOPCIDevice *vdev) |
| { |
| if (vdev->clear_parent_atomics_on_exit) { |
| PCIDevice *parent = pci_get_bus(&vdev->pdev)->parent_dev; |
| uint8_t *pos = parent->config + parent->exp.exp_cap + PCI_EXP_DEVCAP2; |
| |
| pci_long_test_and_clear_mask(pos, PCI_EXP_DEVCAP2_ATOMIC_COMP32 | |
| PCI_EXP_DEVCAP2_ATOMIC_COMP64 | |
| PCI_EXP_DEVCAP2_ATOMIC_COMP128); |
| } |
| } |
| |
| static int vfio_setup_pcie_cap(VFIOPCIDevice *vdev, int pos, uint8_t size, |
| Error **errp) |
| { |
| uint16_t flags; |
| uint8_t type; |
| |
| flags = pci_get_word(vdev->pdev.config + pos + PCI_CAP_FLAGS); |
| type = (flags & PCI_EXP_FLAGS_TYPE) >> 4; |
| |
| if (type != PCI_EXP_TYPE_ENDPOINT && |
| type != PCI_EXP_TYPE_LEG_END && |
| type != PCI_EXP_TYPE_RC_END) { |
| |
| error_setg(errp, "assignment of PCIe type 0x%x " |
| "devices is not currently supported", type); |
| return -EINVAL; |
| } |
| |
| if (!pci_bus_is_express(pci_get_bus(&vdev->pdev))) { |
| PCIBus *bus = pci_get_bus(&vdev->pdev); |
| PCIDevice *bridge; |
| |
| /* |
| * Traditionally PCI device assignment exposes the PCIe capability |
| * as-is on non-express buses. The reason being that some drivers |
| * simply assume that it's there, for example tg3. However when |
| * we're running on a native PCIe machine type, like Q35, we need |
| * to hide the PCIe capability. The reason for this is twofold; |
| * first Windows guests get a Code 10 error when the PCIe capability |
| * is exposed in this configuration. Therefore express devices won't |
| * work at all unless they're attached to express buses in the VM. |
| * Second, a native PCIe machine introduces the possibility of fine |
| * granularity IOMMUs supporting both translation and isolation. |
| * Guest code to discover the IOMMU visibility of a device, such as |
| * IOMMU grouping code on Linux, is very aware of device types and |
| * valid transitions between bus types. An express device on a non- |
| * express bus is not a valid combination on bare metal systems. |
| * |
| * Drivers that require a PCIe capability to make the device |
| * functional are simply going to need to have their devices placed |
| * on a PCIe bus in the VM. |
| */ |
| while (!pci_bus_is_root(bus)) { |
| bridge = pci_bridge_get_device(bus); |
| bus = pci_get_bus(bridge); |
| } |
| |
| if (pci_bus_is_express(bus)) { |
| return 0; |
| } |
| |
| } else if (pci_bus_is_root(pci_get_bus(&vdev->pdev))) { |
| /* |
| * On a Root Complex bus Endpoints become Root Complex Integrated |
| * Endpoints, which changes the type and clears the LNK & LNK2 fields. |
| */ |
| if (type == PCI_EXP_TYPE_ENDPOINT) { |
| vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS, |
| PCI_EXP_TYPE_RC_END << 4, |
| PCI_EXP_FLAGS_TYPE); |
| |
| /* Link Capabilities, Status, and Control goes away */ |
| if (size > PCI_EXP_LNKCTL) { |
| vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, 0, ~0); |
| vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0); |
| vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA, 0, ~0); |
| |
| #ifndef PCI_EXP_LNKCAP2 |
| #define PCI_EXP_LNKCAP2 44 |
| #endif |
| #ifndef PCI_EXP_LNKSTA2 |
| #define PCI_EXP_LNKSTA2 50 |
| #endif |
| /* Link 2 Capabilities, Status, and Control goes away */ |
| if (size > PCI_EXP_LNKCAP2) { |
| vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP2, 0, ~0); |
| vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL2, 0, ~0); |
| vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA2, 0, ~0); |
| } |
| } |
| |
| } else if (type == PCI_EXP_TYPE_LEG_END) { |
| /* |
| * Legacy endpoints don't belong on the root complex. Windows |
| * seems to be happier with devices if we skip the capability. |
| */ |
| return 0; |
| } |
| |
| } else { |
| /* |
| * Convert Root Complex Integrated Endpoints to regular endpoints. |
| * These devices don't support LNK/LNK2 capabilities, so make them up. |
| */ |
| if (type == PCI_EXP_TYPE_RC_END) { |
| vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS, |
| PCI_EXP_TYPE_ENDPOINT << 4, |
| PCI_EXP_FLAGS_TYPE); |
| vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, |
| QEMU_PCI_EXP_LNKCAP_MLW(QEMU_PCI_EXP_LNK_X1) | |
| QEMU_PCI_EXP_LNKCAP_MLS(QEMU_PCI_EXP_LNK_2_5GT), ~0); |
| vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0); |
| } |
| |
| vfio_pci_enable_rp_atomics(vdev); |
| } |
| |
| /* |
| * Intel 82599 SR-IOV VFs report an invalid PCIe capability version 0 |
| * (Niantic errate #35) causing Windows to error with a Code 10 for the |
| * device on Q35. Fixup any such devices to report version 1. If we |
| * were to remove the capability entirely the guest would lose extended |
| * config space. |
| */ |
| if ((flags & PCI_EXP_FLAGS_VERS) == 0) { |
| vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS, |
| 1, PCI_EXP_FLAGS_VERS); |
| } |
| |
| pos = pci_add_capability(&vdev->pdev, PCI_CAP_ID_EXP, pos, size, |
| errp); |
| if (pos < 0) { |
| return pos; |
| } |
| |
| vdev->pdev.exp.exp_cap = pos; |
| |
| return pos; |
| } |
| |
| static void vfio_check_pcie_flr(VFIOPCIDevice *vdev, uint8_t pos) |
| { |
| uint32_t cap = pci_get_long(vdev->pdev.config + pos + PCI_EXP_DEVCAP); |
| |
| if (cap & PCI_EXP_DEVCAP_FLR) { |
| trace_vfio_check_pcie_flr(vdev->vbasedev.name); |
| vdev->has_flr = true; |
| } |
| } |
| |
| static void vfio_check_pm_reset(VFIOPCIDevice *vdev, uint8_t pos) |
| { |
| uint16_t csr = pci_get_word(vdev->pdev.config + pos + PCI_PM_CTRL); |
| |
| if (!(csr & PCI_PM_CTRL_NO_SOFT_RESET)) { |
| trace_vfio_check_pm_reset(vdev->vbasedev.name); |
| vdev->has_pm_reset = true; |
| } |
| } |
| |
| static void vfio_check_af_flr(VFIOPCIDevice *vdev, uint8_t pos) |
| { |
| uint8_t cap = pci_get_byte(vdev->pdev.config + pos + PCI_AF_CAP); |
| |
| if ((cap & PCI_AF_CAP_TP) && (cap & PCI_AF_CAP_FLR)) { |
| trace_vfio_check_af_flr(vdev->vbasedev.name); |
| vdev->has_flr = true; |
| } |
| } |
| |
| static int vfio_add_std_cap(VFIOPCIDevice *vdev, uint8_t pos, Error **errp) |
| { |
| PCIDevice *pdev = &vdev->pdev; |
| uint8_t cap_id, next, size; |
| int ret; |
| |
| cap_id = pdev->config[pos]; |
| next = pdev->config[pos + PCI_CAP_LIST_NEXT]; |
| |
| /* |
| * If it becomes important to configure capabilities to their actual |
| * size, use this as the default when it's something we don't recognize. |
| * Since QEMU doesn't actually handle many of the config accesses, |
| * exact size doesn't seem worthwhile. |
| */ |
| size = vfio_std_cap_max_size(pdev, pos); |
| |
| /* |
| * pci_add_capability always inserts the new capability at the head |
| * of the chain. Therefore to end up with a chain that matches the |
| * physical device, we insert from the end by making this recursive. |
| * This is also why we pre-calculate size above as cached config space |
| * will be changed as we unwind the stack. |
| */ |
| if (next) { |
| ret = vfio_add_std_cap(vdev, next, errp); |
| if (ret) { |
| return ret; |
| } |
| } else { |
| /* Begin the rebuild, use QEMU emulated list bits */ |
| pdev->config[PCI_CAPABILITY_LIST] = 0; |
| vdev->emulated_config_bits[PCI_CAPABILITY_LIST] = 0xff; |
| vdev->emulated_config_bits[PCI_STATUS] |= PCI_STATUS_CAP_LIST; |
| |
| ret = vfio_add_virt_caps(vdev, errp); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| /* Scale down size, esp in case virt caps were added above */ |
| size = MIN(size, vfio_std_cap_max_size(pdev, pos)); |
| |
| /* Use emulated next pointer to allow dropping caps */ |
| pci_set_byte(vdev->emulated_config_bits + pos + PCI_CAP_LIST_NEXT, 0xff); |
| |
| switch (cap_id) { |
| case PCI_CAP_ID_MSI: |
| ret = vfio_msi_setup(vdev, pos, errp); |
| break; |
| case PCI_CAP_ID_EXP: |
| vfio_check_pcie_flr(vdev, pos); |
| ret = vfio_setup_pcie_cap(vdev, pos, size, errp); |
| break; |
| case PCI_CAP_ID_MSIX: |
| ret = vfio_msix_setup(vdev, pos, errp); |
| break; |
| case PCI_CAP_ID_PM: |
| vfio_check_pm_reset(vdev, pos); |
| vdev->pm_cap = pos; |
| ret = pci_add_capability(pdev, cap_id, pos, size, errp); |
| break; |
| case PCI_CAP_ID_AF: |
| vfio_check_af_flr(vdev, pos); |
| ret = pci_add_capability(pdev, cap_id, pos, size, errp); |
| break; |
| default: |
| ret = pci_add_capability(pdev, cap_id, pos, size, errp); |
| break; |
| } |
| |
| if (ret < 0) { |
| error_prepend(errp, |
| "failed to add PCI capability 0x%x[0x%x]@0x%x: ", |
| cap_id, size, pos); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int vfio_setup_rebar_ecap(VFIOPCIDevice *vdev, uint16_t pos) |
| { |
| uint32_t ctrl; |
| int i, nbar; |
| |
| ctrl = pci_get_long(vdev->pdev.config + pos + PCI_REBAR_CTRL); |
| nbar = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> PCI_REBAR_CTRL_NBAR_SHIFT; |
| |
| for (i = 0; i < nbar; i++) { |
| uint32_t cap; |
| int size; |
| |
| ctrl = pci_get_long(vdev->pdev.config + pos + PCI_REBAR_CTRL + (i * 8)); |
| size = (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; |
| |
| /* The cap register reports sizes 1MB to 128TB, with 4 reserved bits */ |
| cap = size <= 27 ? 1U << (size + 4) : 0; |
| |
| /* |
| * The PCIe spec (v6.0.1, 7.8.6) requires HW to support at least one |
| * size in the range 1MB to 512GB. We intend to mask all sizes except |
| * the one currently enabled in the size field, therefore if it's |
| * outside the range, hide the whole capability as this virtualization |
| * trick won't work. If >512GB resizable BARs start to appear, we |
| * might need an opt-in or reservation scheme in the kernel. |
| */ |
| if (!(cap & PCI_REBAR_CAP_SIZES)) { |
| return -EINVAL; |
| } |
| |
| /* Hide all sizes reported in the ctrl reg per above requirement. */ |
| ctrl &= (PCI_REBAR_CTRL_BAR_SIZE | |
| PCI_REBAR_CTRL_NBAR_MASK | |
| PCI_REBAR_CTRL_BAR_IDX); |
| |
| /* |
| * The BAR size field is RW, however we've mangled the capability |
| * register such that we only report a single size, ie. the current |
| * BAR size. A write of an unsupported value is undefined, therefore |
| * the register field is essentially RO. |
| */ |
| vfio_add_emulated_long(vdev, pos + PCI_REBAR_CAP + (i * 8), cap, ~0); |
| vfio_add_emulated_long(vdev, pos + PCI_REBAR_CTRL + (i * 8), ctrl, ~0); |
| } |
| |
| return 0; |
| } |
| |
| static void vfio_add_ext_cap(VFIOPCIDevice *vdev) |
| { |
| PCIDevice *pdev = &vdev->pdev; |
| uint32_t header; |
| uint16_t cap_id, next, size; |
| uint8_t cap_ver; |
| uint8_t *config; |
| |
| /* Only add extended caps if we have them and the guest can see them */ |
| if (!pci_is_express(pdev) || !pci_bus_is_express(pci_get_bus(pdev)) || |
| !pci_get_long(pdev->config + PCI_CONFIG_SPACE_SIZE)) { |
| return; |
| } |
| |
| /* |
| * pcie_add_capability always inserts the new capability at the tail |
| * of the chain. Therefore to end up with a chain that matches the |
| * physical device, we cache the config space to avoid overwriting |
| * the original config space when we parse the extended capabilities. |
| */ |
| config = g_memdup(pdev->config, vdev->config_size); |
| |
| /* |
| * Extended capabilities are chained with each pointing to the next, so we |
| * can drop anything other than the head of the chain simply by modifying |
| * the previous next pointer. Seed the head of the chain here such that |
| * we can simply skip any capabilities we want to drop below, regardless |
| * of their position in the chain. If this stub capability still exists |
| * after we add the capabilities we want to expose, update the capability |
| * ID to zero. Note that we cannot seed with the capability header being |
| * zero as this conflicts with definition of an absent capability chain |
| * and prevents capabilities beyond the head of the list from being added. |
| * By replacing the dummy capability ID with zero after walking the device |
| * chain, we also transparently mark extended capabilities as absent if |
| * no capabilities were added. Note that the PCIe spec defines an absence |
| * of extended capabilities to be determined by a value of zero for the |
| * capability ID, version, AND next pointer. A non-zero next pointer |
| * should be sufficient to indicate additional capabilities are present, |
| * which will occur if we call pcie_add_capability() below. The entire |
| * first dword is emulated to support this. |
| * |
| * NB. The kernel side does similar masking, so be prepared that our |
| * view of the device may also contain a capability ID zero in the head |
| * of the chain. Skip it for the same reason that we cannot seed the |
| * chain with a zero capability. |
| */ |
| pci_set_long(pdev->config + PCI_CONFIG_SPACE_SIZE, |
| PCI_EXT_CAP(0xFFFF, 0, 0)); |
| pci_set_long(pdev->wmask + PCI_CONFIG_SPACE_SIZE, 0); |
| pci_set_long(vdev->emulated_config_bits + PCI_CONFIG_SPACE_SIZE, ~0); |
| |
| for (next = PCI_CONFIG_SPACE_SIZE; next; |
| next = PCI_EXT_CAP_NEXT(pci_get_long(config + next))) { |
| header = pci_get_long(config + next); |
| cap_id = PCI_EXT_CAP_ID(header); |
| cap_ver = PCI_EXT_CAP_VER(header); |
| |
| /* |
| * If it becomes important to configure extended capabilities to their |
| * actual size, use this as the default when it's something we don't |
| * recognize. Since QEMU doesn't actually handle many of the config |
| * accesses, exact size doesn't seem worthwhile. |
| */ |
| size = vfio_ext_cap_max_size(config, next); |
| |
| /* Use emulated next pointer to allow dropping extended caps */ |
| pci_long_test_and_set_mask(vdev->emulated_config_bits + next, |
| PCI_EXT_CAP_NEXT_MASK); |
| |
| switch (cap_id) { |
| case 0: /* kernel masked capability */ |
| case PCI_EXT_CAP_ID_SRIOV: /* Read-only VF BARs confuse OVMF */ |
| case PCI_EXT_CAP_ID_ARI: /* XXX Needs next function virtualization */ |
| trace_vfio_add_ext_cap_dropped(vdev->vbasedev.name, cap_id, next); |
| break; |
| case PCI_EXT_CAP_ID_REBAR: |
| if (!vfio_setup_rebar_ecap(vdev, next)) { |
| pcie_add_capability(pdev, cap_id, cap_ver, next, size); |
| } |
| break; |
| default: |
| pcie_add_capability(pdev, cap_id, cap_ver, next, size); |
| } |
| |
| } |
| |
| /* Cleanup chain head ID if necessary */ |
| if (pci_get_word(pdev->config + PCI_CONFIG_SPACE_SIZE) == 0xFFFF) { |
| pci_set_word(pdev->config + PCI_CONFIG_SPACE_SIZE, 0); |
| } |
| |
| g_free(config); |
| return; |
| } |
| |
| static int vfio_add_capabilities(VFIOPCIDevice *vdev, Error **errp) |
| { |
| PCIDevice *pdev = &vdev->pdev; |
| int ret; |
| |
| if (!(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST) || |
| !pdev->config[PCI_CAPABILITY_LIST]) { |
| return 0; /* Nothing to add */ |
| } |
| |
| ret = vfio_add_std_cap(vdev, pdev->config[PCI_CAPABILITY_LIST], errp); |
| if (ret) { |
| return ret; |
| } |
| |
| vfio_add_ext_cap(vdev); |
| return 0; |
| } |
| |
| void vfio_pci_pre_reset(VFIOPCIDevice *vdev) |
| { |
| PCIDevice *pdev = &vdev->pdev; |
| uint16_t cmd; |
| |
| vfio_disable_interrupts(vdev); |
| |
| /* Make sure the device is in D0 */ |
| if (vdev->pm_cap) { |
| uint16_t pmcsr; |
| uint8_t state; |
| |
| pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2); |
| state = pmcsr & PCI_PM_CTRL_STATE_MASK; |
| if (state) { |
| pmcsr &= ~PCI_PM_CTRL_STATE_MASK; |
| vfio_pci_write_config(pdev, vdev->pm_cap + PCI_PM_CTRL, pmcsr, 2); |
| /* vfio handles the necessary delay here */ |
| pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2); |
| state = pmcsr & PCI_PM_CTRL_STATE_MASK; |
| if (state) { |
| error_report("vfio: Unable to power on device, stuck in D%d", |
| state); |
| } |
| } |
| } |
| |
| /* |
| * Stop any ongoing DMA by disconnecting I/O, MMIO, and bus master. |
| * Also put INTx Disable in known state. |
| */ |
| cmd = vfio_pci_read_config(pdev, PCI_COMMAND, 2); |
| cmd &= ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | |
| PCI_COMMAND_INTX_DISABLE); |
| vfio_pci_write_config(pdev, PCI_COMMAND, cmd, 2); |
| } |
| |
| void vfio_pci_post_reset(VFIOPCIDevice *vdev) |
| { |
| Error *err = NULL; |
| int nr; |
| |
| vfio_intx_enable(vdev, &err); |
| if (err) { |
| error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); |
| } |
| |
| for (nr = 0; nr < PCI_NUM_REGIONS - 1; ++nr) { |
| off_t addr = vdev->config_offset + PCI_BASE_ADDRESS_0 + (4 * nr); |
| uint32_t val = 0; |
| uint32_t len = sizeof(val); |
| |
| if (pwrite(vdev->vbasedev.fd, &val, len, addr) != len) { |
| error_report("%s(%s) reset bar %d failed: %m", __func__, |
| vdev->vbasedev.name, nr); |
| } |
| } |
| |
| vfio_quirk_reset(vdev); |
| } |
| |
| bool vfio_pci_host_match(PCIHostDeviceAddress *addr, const char *name) |
| { |
| char tmp[13]; |
| |
| sprintf(tmp, "%04x:%02x:%02x.%1x", addr->domain, |
| addr->bus, addr->slot, addr->function); |
| |
| return (strcmp(tmp, name) == 0); |
| } |
| |
| int vfio_pci_get_pci_hot_reset_info(VFIOPCIDevice *vdev, |
| struct vfio_pci_hot_reset_info **info_p) |
| { |
| struct vfio_pci_hot_reset_info *info; |
| int ret, count; |
| |
| assert(info_p && !*info_p); |
| |
| info = g_malloc0(sizeof(*info)); |
| info->argsz = sizeof(*info); |
| |
| ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info); |
| if (ret && errno != ENOSPC) { |
| ret = -errno; |
| g_free(info); |
| if (!vdev->has_pm_reset) { |
| error_report("vfio: Cannot reset device %s, " |
| "no available reset mechanism.", vdev->vbasedev.name); |
| } |
| return ret; |
| } |
| |
| count = info->count; |
| info = g_realloc(info, sizeof(*info) + (count * sizeof(info->devices[0]))); |
| info->argsz = sizeof(*info) + (count * sizeof(info->devices[0])); |
| |
| ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info); |
| if (ret) { |
| ret = -errno; |
| g_free(info); |
| error_report("vfio: hot reset info failed: %m"); |
| return ret; |
| } |
| |
| *info_p = info; |
| return 0; |
| } |
| |
| static int vfio_pci_hot_reset(VFIOPCIDevice *vdev, bool single) |
| { |
| VFIODevice *vbasedev = &vdev->vbasedev; |
| const VFIOIOMMUClass *ops = vbasedev->bcontainer->ops; |
| |
| return ops->pci_hot_reset(vbasedev, single); |
| } |
| |
| /* |
| * We want to differentiate hot reset of multiple in-use devices vs hot reset |
| * of a single in-use device. VFIO_DEVICE_RESET will already handle the case |
| * of doing hot resets when there is only a single device per bus. The in-use |
| * here refers to how many VFIODevices are affected. A hot reset that affects |
| * multiple devices, but only a single in-use device, means that we can call |
| * it from our bus ->reset() callback since the extent is effectively a single |
| * device. This allows us to make use of it in the hotplug path. When there |
| * are multiple in-use devices, we can only trigger the hot reset during a |
| * system reset and thus from our reset handler. We separate _one vs _multi |
| * here so that we don't overlap and do a double reset on the system reset |
| * path where both our reset handler and ->reset() callback are used. Calling |
| * _one() will only do a hot reset for the one in-use devices case, calling |
| * _multi() will do nothing if a _one() would have been sufficient. |
| */ |
| static int vfio_pci_hot_reset_one(VFIOPCIDevice *vdev) |
| { |
| return vfio_pci_hot_reset(vdev, true); |
| } |
| |
| static int vfio_pci_hot_reset_multi(VFIODevice *vbasedev) |
| { |
| VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); |
| return vfio_pci_hot_reset(vdev, false); |
| } |
| |
| static void vfio_pci_compute_needs_reset(VFIODevice *vbasedev) |
| { |
| VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); |
| if (!vbasedev->reset_works || (!vdev->has_flr && vdev->has_pm_reset)) { |
| vbasedev->needs_reset = true; |
| } |
| } |
| |
| static Object *vfio_pci_get_object(VFIODevice *vbasedev) |
| { |
| VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); |
| |
| return OBJECT(vdev); |
| } |
| |
| static bool vfio_msix_present(void *opaque, int version_id) |
| { |
| PCIDevice *pdev = opaque; |
| |
| return msix_present(pdev); |
| } |
| |
| static bool vfio_display_migration_needed(void *opaque) |
| { |
| VFIOPCIDevice *vdev = opaque; |
| |
| /* |
| * We need to migrate the VFIODisplay object if ramfb *migration* was |
| * explicitly requested (in which case we enforced both ramfb=on and |
| * display=on), or ramfb migration was left at the default "auto" |
| * setting, and *ramfb* was explicitly requested (in which case we |
| * enforced display=on). |
| */ |
| return vdev->ramfb_migrate == ON_OFF_AUTO_ON || |
| (vdev->ramfb_migrate == ON_OFF_AUTO_AUTO && vdev->enable_ramfb); |
| } |
| |
| static const VMStateDescription vmstate_vfio_display = { |
| .name = "VFIOPCIDevice/VFIODisplay", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = vfio_display_migration_needed, |
| .fields = (const VMStateField[]){ |
| VMSTATE_STRUCT_POINTER(dpy, VFIOPCIDevice, vfio_display_vmstate, |
| VFIODisplay), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static const VMStateDescription vmstate_vfio_pci_config = { |
| .name = "VFIOPCIDevice", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (const VMStateField[]) { |
| VMSTATE_PCI_DEVICE(pdev, VFIOPCIDevice), |
| VMSTATE_MSIX_TEST(pdev, VFIOPCIDevice, vfio_msix_present), |
| VMSTATE_END_OF_LIST() |
| }, |
| .subsections = (const VMStateDescription * const []) { |
| &vmstate_vfio_display, |
| NULL |
| } |
| }; |
| |
| static void vfio_pci_save_config(VFIODevice *vbasedev, QEMUFile *f) |
| { |
| VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); |
| |
| vmstate_save_state(f, &vmstate_vfio_pci_config, vdev, NULL); |
| } |
| |
| static int vfio_pci_load_config(VFIODevice *vbasedev, QEMUFile *f) |
| { |
| VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); |
| PCIDevice *pdev = &vdev->pdev; |
| pcibus_t old_addr[PCI_NUM_REGIONS - 1]; |
| int bar, ret; |
| |
| for (bar = 0; bar < PCI_ROM_SLOT; bar++) { |
| old_addr[bar] = pdev->io_regions[bar].addr; |
| } |
| |
| ret = vmstate_load_state(f, &vmstate_vfio_pci_config, vdev, 1); |
| if (ret) { |
| return ret; |
| } |
| |
| vfio_pci_write_config(pdev, PCI_COMMAND, |
| pci_get_word(pdev->config + PCI_COMMAND), 2); |
| |
| for (bar = 0; bar < PCI_ROM_SLOT; bar++) { |
| /* |
| * The address may not be changed in some scenarios |
| * (e.g. the VF driver isn't loaded in VM). |
| */ |
| if (old_addr[bar] != pdev->io_regions[bar].addr && |
| vdev->bars[bar].region.size > 0 && |
| vdev->bars[bar].region.size < qemu_real_host_page_size()) { |
| vfio_sub_page_bar_update_mapping(pdev, bar); |
| } |
| } |
| |
| if (msi_enabled(pdev)) { |
| vfio_msi_enable(vdev); |
| } else if (msix_enabled(pdev)) { |
| vfio_msix_enable(vdev); |
| } |
| |
| return ret; |
| } |
| |
| static VFIODeviceOps vfio_pci_ops = { |
| .vfio_compute_needs_reset = vfio_pci_compute_needs_reset, |
| .vfio_hot_reset_multi = vfio_pci_hot_reset_multi, |
| .vfio_eoi = vfio_intx_eoi, |
| .vfio_get_object = vfio_pci_get_object, |
| .vfio_save_config = vfio_pci_save_config, |
| .vfio_load_config = vfio_pci_load_config, |
| }; |
| |
| int vfio_populate_vga(VFIOPCIDevice *vdev, Error **errp) |
| { |
| VFIODevice *vbasedev = &vdev->vbasedev; |
| struct vfio_region_info *reg_info; |
| int ret; |
| |
| ret = vfio_get_region_info(vbasedev, VFIO_PCI_VGA_REGION_INDEX, ®_info); |
| if (ret) { |
| error_setg_errno(errp, -ret, |
| "failed getting region info for VGA region index %d", |
| VFIO_PCI_VGA_REGION_INDEX); |
| return ret; |
| } |
| |
| if (!(reg_info->flags & VFIO_REGION_INFO_FLAG_READ) || |
| !(reg_info->flags & VFIO_REGION_INFO_FLAG_WRITE) || |
| reg_info->size < 0xbffff + 1) { |
| error_setg(errp, "unexpected VGA info, flags 0x%lx, size 0x%lx", |
| (unsigned long)reg_info->flags, |
| (unsigned long)reg_info->size); |
| g_free(reg_info); |
| return -EINVAL; |
| } |
| |
| vdev->vga = g_new0(VFIOVGA, 1); |
| |
| vdev->vga->fd_offset = reg_info->offset; |
| vdev->vga->fd = vdev->vbasedev.fd; |
| |
| g_free(reg_info); |
| |
| vdev->vga->region[QEMU_PCI_VGA_MEM].offset = QEMU_PCI_VGA_MEM_BASE; |
| vdev->vga->region[QEMU_PCI_VGA_MEM].nr = QEMU_PCI_VGA_MEM; |
| QLIST_INIT(&vdev->vga->region[QEMU_PCI_VGA_MEM].quirks); |
| |
| memory_region_init_io(&vdev->vga->region[QEMU_PCI_VGA_MEM].mem, |
| OBJECT(vdev), &vfio_vga_ops, |
| &vdev->vga->region[QEMU_PCI_VGA_MEM], |
| "vfio-vga-mmio@0xa0000", |
| QEMU_PCI_VGA_MEM_SIZE); |
| |
| vdev->vga->region[QEMU_PCI_VGA_IO_LO].offset = QEMU_PCI_VGA_IO_LO_BASE; |
| vdev->vga->region[QEMU_PCI_VGA_IO_LO].nr = QEMU_PCI_VGA_IO_LO; |
| QLIST_INIT(&vdev->vga->region[QEMU_PCI_VGA_IO_LO].quirks); |
| |
| memory_region_init_io(&vdev->vga->region[QEMU_PCI_VGA_IO_LO].mem, |
| OBJECT(vdev), &vfio_vga_ops, |
| &vdev->vga->region[QEMU_PCI_VGA_IO_LO], |
| "vfio-vga-io@0x3b0", |
| QEMU_PCI_VGA_IO_LO_SIZE); |
| |
| vdev->vga->region[QEMU_PCI_VGA_IO_HI].offset = QEMU_PCI_VGA_IO_HI_BASE; |
| vdev->vga->region[QEMU_PCI_VGA_IO_HI].nr = QEMU_PCI_VGA_IO_HI; |
| QLIST_INIT(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks); |
| |
| memory_region_init_io(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, |
| OBJECT(vdev), &vfio_vga_ops, |
| &vdev->vga->region[QEMU_PCI_VGA_IO_HI], |
| "vfio-vga-io@0x3c0", |
| QEMU_PCI_VGA_IO_HI_SIZE); |
| |
| pci_register_vga(&vdev->pdev, &vdev->vga->region[QEMU_PCI_VGA_MEM].mem, |
| &vdev->vga->region[QEMU_PCI_VGA_IO_LO].mem, |
| &vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem); |
| |
| return 0; |
| } |
| |
| static void vfio_populate_device(VFIOPCIDevice *vdev, Error **errp) |
| { |
| VFIODevice *vbasedev = &vdev->vbasedev; |
| struct vfio_region_info *reg_info; |
| struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info) }; |
| int i, ret = -1; |
| |
| /* Sanity check device */ |
| if (!(vbasedev->flags & VFIO_DEVICE_FLAGS_PCI)) { |
| error_setg(errp, "this isn't a PCI device"); |
| return; |
| } |
| |
| if (vbasedev->num_regions < VFIO_PCI_CONFIG_REGION_INDEX + 1) { |
| error_setg(errp, "unexpected number of io regions %u", |
| vbasedev->num_regions); |
| return; |
| } |
| |
| if (vbasedev->num_irqs < VFIO_PCI_MSIX_IRQ_INDEX + 1) { |
| error_setg(errp, "unexpected number of irqs %u", vbasedev->num_irqs); |
| return; |
| } |
| |
| for (i = VFIO_PCI_BAR0_REGION_INDEX; i < VFIO_PCI_ROM_REGION_INDEX; i++) { |
| char *name = g_strdup_printf("%s BAR %d", vbasedev->name, i); |
| |
| ret = vfio_region_setup(OBJECT(vdev), vbasedev, |
| &vdev->bars[i].region, i, name); |
| g_free(name); |
| |
| if (ret) { |
| error_setg_errno(errp, -ret, "failed to get region %d info", i); |
| return; |
| } |
| |
| QLIST_INIT(&vdev->bars[i].quirks); |
| } |
| |
| ret = vfio_get_region_info(vbasedev, |
| VFIO_PCI_CONFIG_REGION_INDEX, ®_info); |
| if (ret) { |
| error_setg_errno(errp, -ret, "failed to get config info"); |
| return; |
| } |
| |
| trace_vfio_populate_device_config(vdev->vbasedev.name, |
| (unsigned long)reg_info->size, |
| (unsigned long)reg_info->offset, |
| (unsigned long)reg_info->flags); |
| |
| vdev->config_size = reg_info->size; |
| if (vdev->config_size == PCI_CONFIG_SPACE_SIZE) { |
| vdev->pdev.cap_present &= ~QEMU_PCI_CAP_EXPRESS; |
| } |
| vdev->config_offset = reg_info->offset; |
| |
| g_free(reg_info); |
| |
| if (vdev->features & VFIO_FEATURE_ENABLE_VGA) { |
| ret = vfio_populate_vga(vdev, errp); |
| if (ret) { |
| error_append_hint(errp, "device does not support " |
| "requested feature x-vga\n"); |
| return; |
| } |
| } |
| |
| irq_info.index = VFIO_PCI_ERR_IRQ_INDEX; |
| |
| ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_IRQ_INFO, &irq_info); |
| if (ret) { |
| /* This can fail for an old kernel or legacy PCI dev */ |
| trace_vfio_populate_device_get_irq_info_failure(strerror(errno)); |
| } else if (irq_info.count == 1) { |
| vdev->pci_aer = true; |
| } else { |
| warn_report(VFIO_MSG_PREFIX |
| "Could not enable error recovery for the device", |
| vbasedev->name); |
| } |
| } |
| |
| static void vfio_pci_put_device(VFIOPCIDevice *vdev) |
| { |
| vfio_detach_device(&vdev->vbasedev); |
| |
| g_free(vdev->vbasedev.name); |
| g_free(vdev->msix); |
| } |
| |
| static void vfio_err_notifier_handler(void *opaque) |
| { |
| VFIOPCIDevice *vdev = opaque; |
| |
| if (!event_notifier_test_and_clear(&vdev->err_notifier)) { |
| return; |
| } |
| |
| /* |
| * TBD. Retrieve the error details and decide what action |
| * needs to be taken. One of the actions could be to pass |
| * the error to the guest and have the guest driver recover |
| * from the error. This requires that PCIe capabilities be |
| * exposed to the guest. For now, we just terminate the |
| * guest to contain the error. |
| */ |
| |
| error_report("%s(%s) Unrecoverable error detected. Please collect any data possible and then kill the guest", __func__, vdev->vbasedev.name); |
| |
| vm_stop(RUN_STATE_INTERNAL_ERROR); |
| } |
| |
| /* |
| * Registers error notifier for devices supporting error recovery. |
| * If we encounter a failure in this function, we report an error |
| * and continue after disabling error recovery support for the |
| * device. |
| */ |
| static void vfio_register_err_notifier(VFIOPCIDevice *vdev) |
| { |
| Error *err = NULL; |
| int32_t fd; |
| |
| if (!vdev->pci_aer) { |
| return; |
| } |
| |
| if (event_notifier_init(&vdev->err_notifier, 0)) { |
| error_report("vfio: Unable to init event notifier for error detection"); |
| vdev->pci_aer = false; |
| return; |
| } |
| |
| fd = event_notifier_get_fd(&vdev->err_notifier); |
| qemu_set_fd_handler(fd, vfio_err_notifier_handler, NULL, vdev); |
| |
| if (vfio_set_irq_signaling(&vdev->vbasedev, VFIO_PCI_ERR_IRQ_INDEX, 0, |
| VFIO_IRQ_SET_ACTION_TRIGGER, fd, &err)) { |
| error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); |
| qemu_set_fd_handler(fd, NULL, NULL, vdev); |
| event_notifier_cleanup(&vdev->err_notifier); |
| vdev->pci_aer = false; |
| } |
| } |
| |
| static void vfio_unregister_err_notifier(VFIOPCIDevice *vdev) |
| { |
| Error *err = NULL; |
| |
| if (!vdev->pci_aer) { |
| return; |
| } |
| |
| if (vfio_set_irq_signaling(&vdev->vbasedev, VFIO_PCI_ERR_IRQ_INDEX, 0, |
| VFIO_IRQ_SET_ACTION_TRIGGER, -1, &err)) { |
| error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); |
| } |
| qemu_set_fd_handler(event_notifier_get_fd(&vdev->err_notifier), |
| NULL, NULL, vdev); |
| event_notifier_cleanup(&vdev->err_notifier); |
| } |
| |
| static void vfio_req_notifier_handler(void *opaque) |
| { |
| VFIOPCIDevice *vdev = opaque; |
| Error *err = NULL; |
| |
| if (!event_notifier_test_and_clear(&vdev->req_notifier)) { |
| return; |
| } |
| |
| qdev_unplug(DEVICE(vdev), &err); |
| if (err) { |
| warn_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); |
| } |
| } |
| |
| static void vfio_register_req_notifier(VFIOPCIDevice *vdev) |
| { |
| struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info), |
| .index = VFIO_PCI_REQ_IRQ_INDEX }; |
| Error *err = NULL; |
| int32_t fd; |
| |
| if (!(vdev->features & VFIO_FEATURE_ENABLE_REQ)) { |
| return; |
| } |
| |
| if (ioctl(vdev->vbasedev.fd, |
| VFIO_DEVICE_GET_IRQ_INFO, &irq_info) < 0 || irq_info.count < 1) { |
| return; |
| } |
| |
| if (event_notifier_init(&vdev->req_notifier, 0)) { |
| error_report("vfio: Unable to init event notifier for device request"); |
| return; |
| } |
| |
| fd = event_notifier_get_fd(&vdev->req_notifier); |
| qemu_set_fd_handler(fd, vfio_req_notifier_handler, NULL, vdev); |
| |
| if (vfio_set_irq_signaling(&vdev->vbasedev, VFIO_PCI_REQ_IRQ_INDEX, 0, |
| VFIO_IRQ_SET_ACTION_TRIGGER, fd, &err)) { |
| error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); |
| qemu_set_fd_handler(fd, NULL, NULL, vdev); |
| event_notifier_cleanup(&vdev->req_notifier); |
| } else { |
| vdev->req_enabled = true; |
| } |
| } |
| |
| static void vfio_unregister_req_notifier(VFIOPCIDevice *vdev) |
| { |
| Error *err = NULL; |
| |
| if (!vdev->req_enabled) { |
| return; |
| } |
| |
| if (vfio_set_irq_signaling(&vdev->vbasedev, VFIO_PCI_REQ_IRQ_INDEX, 0, |
| VFIO_IRQ_SET_ACTION_TRIGGER, -1, &err)) { |
| error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); |
| } |
| qemu_set_fd_handler(event_notifier_get_fd(&vdev->req_notifier), |
| NULL, NULL, vdev); |
| event_notifier_cleanup(&vdev->req_notifier); |
| |
| vdev->req_enabled = false; |
| } |
| |
| static void vfio_realize(PCIDevice *pdev, Error **errp) |
| { |
| VFIOPCIDevice *vdev = VFIO_PCI(pdev); |
| VFIODevice *vbasedev = &vdev->vbasedev; |
| char *tmp, *subsys; |
| Error *err = NULL; |
| int i, ret; |
| bool is_mdev; |
| char uuid[UUID_STR_LEN]; |
| char *name; |
| |
| if (vbasedev->fd < 0 && !vbasedev->sysfsdev) { |
| if (!(~vdev->host.domain || ~vdev->host.bus || |
| ~vdev->host.slot || ~vdev->host.function)) { |
| error_setg(errp, "No provided host device"); |
| error_append_hint(errp, "Use -device vfio-pci,host=DDDD:BB:DD.F " |
| #ifdef CONFIG_IOMMUFD |
| "or -device vfio-pci,fd=DEVICE_FD " |
| #endif |
| "or -device vfio-pci,sysfsdev=PATH_TO_DEVICE\n"); |
| return; |
| } |
| vbasedev->sysfsdev = |
| g_strdup_printf("/sys/bus/pci/devices/%04x:%02x:%02x.%01x", |
| vdev->host.domain, vdev->host.bus, |
| vdev->host.slot, vdev->host.function); |
| } |
| |
| if (vfio_device_get_name(vbasedev, errp) < 0) { |
| return; |
| } |
| |
| /* |
| * Mediated devices *might* operate compatibly with discarding of RAM, but |
| * we cannot know for certain, it depends on whether the mdev vendor driver |
| * stays in sync with the active working set of the guest driver. Prevent |
| * the x-balloon-allowed option unless this is minimally an mdev device. |
| */ |
| tmp = g_strdup_printf("%s/subsystem", vbasedev->sysfsdev); |
| subsys = realpath(tmp, NULL); |
| g_free(tmp); |
| is_mdev = subsys && (strcmp(subsys, "/sys/bus/mdev") == 0); |
| free(subsys); |
| |
| trace_vfio_mdev(vbasedev->name, is_mdev); |
| |
| if (vbasedev->ram_block_discard_allowed && !is_mdev) { |
| error_setg(errp, "x-balloon-allowed only potentially compatible " |
| "with mdev devices"); |
| goto error; |
| } |
| |
| if (!qemu_uuid_is_null(&vdev->vf_token)) { |
| qemu_uuid_unparse(&vdev->vf_token, uuid); |
| name = g_strdup_printf("%s vf_token=%s", vbasedev->name, uuid); |
| } else { |
| name = g_strdup(vbasedev->name); |
| } |
| |
| ret = vfio_attach_device(name, vbasedev, |
| pci_device_iommu_address_space(pdev), errp); |
| g_free(name); |
| if (ret) { |
| goto error; |
| } |
| |
| vfio_populate_device(vdev, &err); |
| if (err) { |
| error_propagate(errp, err); |
| goto error; |
| } |
| |
| /* Get a copy of config space */ |
| ret = pread(vbasedev->fd, vdev->pdev.config, |
| MIN(pci_config_size(&vdev->pdev), vdev->config_size), |
| vdev->config_offset); |
| if (ret < (int)MIN(pci_config_size(&vdev->pdev), vdev->config_size)) { |
| ret = ret < 0 ? -errno : -EFAULT; |
| error_setg_errno(errp, -ret, "failed to read device config space"); |
| goto error; |
| } |
| |
| /* vfio emulates a lot for us, but some bits need extra love */ |
| vdev->emulated_config_bits = g_malloc0(vdev->config_size); |
| |
| /* QEMU can choose to expose the ROM or not */ |
| memset(vdev->emulated_config_bits + PCI_ROM_ADDRESS, 0xff, 4); |
| /* QEMU can also add or extend BARs */ |
| memset(vdev->emulated_config_bits + PCI_BASE_ADDRESS_0, 0xff, 6 * 4); |
| |
| /* |
| * The PCI spec reserves vendor ID 0xffff as an invalid value. The |
| * device ID is managed by the vendor and need only be a 16-bit value. |
| * Allow any 16-bit value for subsystem so they can be hidden or changed. |
| */ |
| if (vdev->vendor_id != PCI_ANY_ID) { |
| if (vdev->vendor_id >= 0xffff) { |
| error_setg(errp, "invalid PCI vendor ID provided"); |
| goto error; |
| } |
| vfio_add_emulated_word(vdev, PCI_VENDOR_ID, vdev->vendor_id, ~0); |
| trace_vfio_pci_emulated_vendor_id(vbasedev->name, vdev->vendor_id); |
| } else { |
| vdev->vendor_id = pci_get_word(pdev->config + PCI_VENDOR_ID); |
| } |
| |
| if (vdev->device_id != PCI_ANY_ID) { |
| if (vdev->device_id > 0xffff) { |
| error_setg(errp, "invalid PCI device ID provided"); |
| goto error; |
| } |
| vfio_add_emulated_word(vdev, PCI_DEVICE_ID, vdev->device_id, ~0); |
| trace_vfio_pci_emulated_device_id(vbasedev->name, vdev->device_id); |
| } else { |
| vdev->device_id = pci_get_word(pdev->config + PCI_DEVICE_ID); |
| } |
| |
| if (vdev->sub_vendor_id != PCI_ANY_ID) { |
| if (vdev->sub_vendor_id > 0xffff) { |
| error_setg(errp, "invalid PCI subsystem vendor ID provided"); |
| goto error; |
| } |
| vfio_add_emulated_word(vdev, PCI_SUBSYSTEM_VENDOR_ID, |
| vdev->sub_vendor_id, ~0); |
| trace_vfio_pci_emulated_sub_vendor_id(vbasedev->name, |
| vdev->sub_vendor_id); |
| } |
| |
| if (vdev->sub_device_id != PCI_ANY_ID) { |
| if (vdev->sub_device_id > 0xffff) { |
| error_setg(errp, "invalid PCI subsystem device ID provided"); |
| goto error; |
| } |
| vfio_add_emulated_word(vdev, PCI_SUBSYSTEM_ID, vdev->sub_device_id, ~0); |
| trace_vfio_pci_emulated_sub_device_id(vbasedev->name, |
| vdev->sub_device_id); |
| } |
| |
| /* QEMU can change multi-function devices to single function, or reverse */ |
| vdev->emulated_config_bits[PCI_HEADER_TYPE] = |
| PCI_HEADER_TYPE_MULTI_FUNCTION; |
| |
| /* Restore or clear multifunction, this is always controlled by QEMU */ |
| if (vdev->pdev.cap_present & QEMU_PCI_CAP_MULTIFUNCTION) { |
| vdev->pdev.config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION; |
| } else { |
| vdev->pdev.config[PCI_HEADER_TYPE] &= ~PCI_HEADER_TYPE_MULTI_FUNCTION; |
| } |
| |
| /* |
| * Clear host resource mapping info. If we choose not to register a |
| * BAR, such as might be the case with the option ROM, we can get |
| * confusing, unwritable, residual addresses from the host here. |
| */ |
| memset(&vdev->pdev.config[PCI_BASE_ADDRESS_0], 0, 24); |
| memset(&vdev->pdev.config[PCI_ROM_ADDRESS], 0, 4); |
| |
| vfio_pci_size_rom(vdev); |
| |
| vfio_bars_prepare(vdev); |
| |
| vfio_msix_early_setup(vdev, &err); |
| if (err) { |
| error_propagate(errp, err); |
| goto error; |
| } |
| |
| vfio_bars_register(vdev); |
| |
| ret = vfio_add_capabilities(vdev, errp); |
| if (ret) { |
| goto out_teardown; |
| } |
| |
| if (vdev->vga) { |
| vfio_vga_quirk_setup(vdev); |
| } |
| |
| for (i = 0; i < PCI_ROM_SLOT; i++) { |
| vfio_bar_quirk_setup(vdev, i); |
| } |
| |
| if (!vdev->igd_opregion && |
| vdev->features & VFIO_FEATURE_ENABLE_IGD_OPREGION) { |
| struct vfio_region_info *opregion; |
| |
| if (vdev->pdev.qdev.hotplugged) { |
| error_setg(errp, |
| "cannot support IGD OpRegion feature on hotplugged " |
| "device"); |
| goto out_teardown; |
| } |
| |
| ret = vfio_get_dev_region_info(vbasedev, |
| VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, |
| VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion); |
| if (ret) { |
| error_setg_errno(errp, -ret, |
| "does not support requested IGD OpRegion feature"); |
| goto out_teardown; |
| } |
| |
| ret = vfio_pci_igd_opregion_init(vdev, opregion, errp); |
| g_free(opregion); |
| if (ret) { |
| goto out_teardown; |
| } |
| } |
| |
| /* QEMU emulates all of MSI & MSIX */ |
| if (pdev->cap_present & QEMU_PCI_CAP_MSIX) { |
| memset(vdev->emulated_config_bits + pdev->msix_cap, 0xff, |
| MSIX_CAP_LENGTH); |
| } |
| |
| if (pdev->cap_present & QEMU_PCI_CAP_MSI) { |
| memset(vdev->emulated_config_bits + pdev->msi_cap, 0xff, |
| vdev->msi_cap_size); |
| } |
| |
| if (vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1)) { |
| vdev->intx.mmap_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, |
| vfio_intx_mmap_enable, vdev); |
| pci_device_set_intx_routing_notifier(&vdev->pdev, |
| vfio_intx_routing_notifier); |
| vdev->irqchip_change_notifier.notify = vfio_irqchip_change; |
| kvm_irqchip_add_change_notifier(&vdev->irqchip_change_notifier); |
| ret = vfio_intx_enable(vdev, errp); |
| if (ret) { |
| goto out_deregister; |
| } |
| } |
| |
| if (vdev->display != ON_OFF_AUTO_OFF) { |
| ret = vfio_display_probe(vdev, errp); |
| if (ret) { |
| goto out_deregister; |
| } |
| } |
| if (vdev->enable_ramfb && vdev->dpy == NULL) { |
| error_setg(errp, "ramfb=on requires display=on"); |
| goto out_deregister; |
| } |
| if (vdev->display_xres || vdev->display_yres) { |
| if (vdev->dpy == NULL) { |
| error_setg(errp, "xres and yres properties require display=on"); |
| goto out_deregister; |
| } |
| if (vdev->dpy->edid_regs == NULL) { |
| error_setg(errp, "xres and yres properties need edid support"); |
| goto out_deregister; |
| } |
| } |
| |
| if (vdev->ramfb_migrate == ON_OFF_AUTO_ON && !vdev->enable_ramfb) { |
| warn_report("x-ramfb-migrate=on but ramfb=off. " |
| "Forcing x-ramfb-migrate to off."); |
| vdev->ramfb_migrate = ON_OFF_AUTO_OFF; |
| } |
| if (vbasedev->enable_migration == ON_OFF_AUTO_OFF) { |
| if (vdev->ramfb_migrate == ON_OFF_AUTO_AUTO) { |
| vdev->ramfb_migrate = ON_OFF_AUTO_OFF; |
| } else if (vdev->ramfb_migrate == ON_OFF_AUTO_ON) { |
| error_setg(errp, "x-ramfb-migrate requires enable-migration"); |
| goto out_deregister; |
| } |
| } |
| |
| if (!pdev->failover_pair_id) { |
| if (!vfio_migration_realize(vbasedev, errp)) { |
| goto out_deregister; |
| } |
| } |
| |
| vfio_register_err_notifier(vdev); |
| vfio_register_req_notifier(vdev); |
| vfio_setup_resetfn_quirk(vdev); |
| |
| return; |
| |
| out_deregister: |
| if (vdev->interrupt == VFIO_INT_INTx) { |
| vfio_intx_disable(vdev); |
| } |
| pci_device_set_intx_routing_notifier(&vdev->pdev, NULL); |
| if (vdev->irqchip_change_notifier.notify) { |
| kvm_irqchip_remove_change_notifier(&vdev->irqchip_change_notifier); |
| } |
| if (vdev->intx.mmap_timer) { |
| timer_free(vdev->intx.mmap_timer); |
| } |
| out_teardown: |
| vfio_teardown_msi(vdev); |
| vfio_bars_exit(vdev); |
| error: |
| error_prepend(errp, VFIO_MSG_PREFIX, vbasedev->name); |
| } |
| |
| static void vfio_instance_finalize(Object *obj) |
| { |
| VFIOPCIDevice *vdev = VFIO_PCI(obj); |
| |
| vfio_display_finalize(vdev); |
| vfio_bars_finalize(vdev); |
| g_free(vdev->emulated_config_bits); |
| g_free(vdev->rom); |
| /* |
| * XXX Leaking igd_opregion is not an oversight, we can't remove the |
| * fw_cfg entry therefore leaking this allocation seems like the safest |
| * option. |
| * |
| * g_free(vdev->igd_opregion); |
| */ |
| vfio_pci_put_device(vdev); |
| } |
| |
| static void vfio_exitfn(PCIDevice *pdev) |
| { |
| VFIOPCIDevice *vdev = VFIO_PCI(pdev); |
| |
| vfio_unregister_req_notifier(vdev); |
| vfio_unregister_err_notifier(vdev); |
| pci_device_set_intx_routing_notifier(&vdev->pdev, NULL); |
| if (vdev->irqchip_change_notifier.notify) { |
| kvm_irqchip_remove_change_notifier(&vdev->irqchip_change_notifier); |
| } |
| vfio_disable_interrupts(vdev); |
| if (vdev->intx.mmap_timer) { |
| timer_free(vdev->intx.mmap_timer); |
| } |
| vfio_teardown_msi(vdev); |
| vfio_pci_disable_rp_atomics(vdev); |
| vfio_bars_exit(vdev); |
| vfio_migration_exit(&vdev->vbasedev); |
| } |
| |
| static void vfio_pci_reset(DeviceState *dev) |
| { |
| VFIOPCIDevice *vdev = VFIO_PCI(dev); |
| |
| trace_vfio_pci_reset(vdev->vbasedev.name); |
| |
| vfio_pci_pre_reset(vdev); |
| |
| if (vdev->display != ON_OFF_AUTO_OFF) { |
| vfio_display_reset(vdev); |
| } |
| |
| if (vdev->resetfn && !vdev->resetfn(vdev)) { |
| goto post_reset; |
| } |
| |
| if (vdev->vbasedev.reset_works && |
| (vdev->has_flr || !vdev->has_pm_reset) && |
| !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) { |
| trace_vfio_pci_reset_flr(vdev->vbasedev.name); |
| goto post_reset; |
| } |
| |
| /* See if we can do our own bus reset */ |
| if (!vfio_pci_hot_reset_one(vdev)) { |
| goto post_reset; |
| } |
| |
| /* If nothing else works and the device supports PM reset, use it */ |
| if (vdev->vbasedev.reset_works && vdev->has_pm_reset && |
| !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) { |
| trace_vfio_pci_reset_pm(vdev->vbasedev.name); |
| goto post_reset; |
| } |
| |
| post_reset: |
| vfio_pci_post_reset(vdev); |
| } |
| |
| static void vfio_instance_init(Object *obj) |
| { |
| PCIDevice *pci_dev = PCI_DEVICE(obj); |
| VFIOPCIDevice *vdev = VFIO_PCI(obj); |
| VFIODevice *vbasedev = &vdev->vbasedev; |
| |
| device_add_bootindex_property(obj, &vdev->bootindex, |
| "bootindex", NULL, |
| &pci_dev->qdev); |
| vdev->host.domain = ~0U; |
| vdev->host.bus = ~0U; |
| vdev->host.slot = ~0U; |
| vdev->host.function = ~0U; |
| |
| vfio_device_init(vbasedev, VFIO_DEVICE_TYPE_PCI, &vfio_pci_ops, |
| DEVICE(vdev), false); |
| |
| vdev->nv_gpudirect_clique = 0xFF; |
| |
| /* QEMU_PCI_CAP_EXPRESS initialization does not depend on QEMU command |
| * line, therefore, no need to wait to realize like other devices */ |
| pci_dev->cap_present |= QEMU_PCI_CAP_EXPRESS; |
| } |
| |
| static Property vfio_pci_dev_properties[] = { |
| DEFINE_PROP_PCI_HOST_DEVADDR("host", VFIOPCIDevice, host), |
| DEFINE_PROP_UUID_NODEFAULT("vf-token", VFIOPCIDevice, vf_token), |
| DEFINE_PROP_STRING("sysfsdev", VFIOPCIDevice, vbasedev.sysfsdev), |
| DEFINE_PROP_ON_OFF_AUTO("x-pre-copy-dirty-page-tracking", VFIOPCIDevice, |
| vbasedev.pre_copy_dirty_page_tracking, |
| ON_OFF_AUTO_ON), |
| DEFINE_PROP_ON_OFF_AUTO("display", VFIOPCIDevice, |
| display, ON_OFF_AUTO_OFF), |
| DEFINE_PROP_UINT32("xres", VFIOPCIDevice, display_xres, 0), |
| DEFINE_PROP_UINT32("yres", VFIOPCIDevice, display_yres, 0), |
| DEFINE_PROP_UINT32("x-intx-mmap-timeout-ms", VFIOPCIDevice, |
| intx.mmap_timeout, 1100), |
| DEFINE_PROP_BIT("x-vga", VFIOPCIDevice, features, |
| VFIO_FEATURE_ENABLE_VGA_BIT, false), |
| DEFINE_PROP_BIT("x-req", VFIOPCIDevice, features, |
| VFIO_FEATURE_ENABLE_REQ_BIT, true), |
| DEFINE_PROP_BIT("x-igd-opregion", VFIOPCIDevice, features, |
| VFIO_FEATURE_ENABLE_IGD_OPREGION_BIT, false), |
| DEFINE_PROP_ON_OFF_AUTO("enable-migration", VFIOPCIDevice, |
| vbasedev.enable_migration, ON_OFF_AUTO_AUTO), |
| DEFINE_PROP_BOOL("x-no-mmap", VFIOPCIDevice, vbasedev.no_mmap, false), |
| DEFINE_PROP_BOOL("x-balloon-allowed", VFIOPCIDevice, |
| vbasedev.ram_block_discard_allowed, false), |
| DEFINE_PROP_BOOL("x-no-kvm-intx", VFIOPCIDevice, no_kvm_intx, false), |
| DEFINE_PROP_BOOL("x-no-kvm-msi", VFIOPCIDevice, no_kvm_msi, false), |
| DEFINE_PROP_BOOL("x-no-kvm-msix", VFIOPCIDevice, no_kvm_msix, false), |
| DEFINE_PROP_BOOL("x-no-geforce-quirks", VFIOPCIDevice, |
| no_geforce_quirks, false), |
| DEFINE_PROP_BOOL("x-no-kvm-ioeventfd", VFIOPCIDevice, no_kvm_ioeventfd, |
| false), |
| DEFINE_PROP_BOOL("x-no-vfio-ioeventfd", VFIOPCIDevice, no_vfio_ioeventfd, |
| false), |
| DEFINE_PROP_UINT32("x-pci-vendor-id", VFIOPCIDevice, vendor_id, PCI_ANY_ID), |
| DEFINE_PROP_UINT32("x-pci-device-id", VFIOPCIDevice, device_id, PCI_ANY_ID), |
| DEFINE_PROP_UINT32("x-pci-sub-vendor-id", VFIOPCIDevice, |
| sub_vendor_id, PCI_ANY_ID), |
| DEFINE_PROP_UINT32("x-pci-sub-device-id", VFIOPCIDevice, |
| sub_device_id, PCI_ANY_ID), |
| DEFINE_PROP_UINT32("x-igd-gms", VFIOPCIDevice, igd_gms, 0), |
| DEFINE_PROP_UNSIGNED_NODEFAULT("x-nv-gpudirect-clique", VFIOPCIDevice, |
| nv_gpudirect_clique, |
| qdev_prop_nv_gpudirect_clique, uint8_t), |
| DEFINE_PROP_OFF_AUTO_PCIBAR("x-msix-relocation", VFIOPCIDevice, msix_relo, |
| OFF_AUTOPCIBAR_OFF), |
| #ifdef CONFIG_IOMMUFD |
| DEFINE_PROP_LINK("iommufd", VFIOPCIDevice, vbasedev.iommufd, |
| TYPE_IOMMUFD_BACKEND, IOMMUFDBackend *), |
| #endif |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| #ifdef CONFIG_IOMMUFD |
| static void vfio_pci_set_fd(Object *obj, const char *str, Error **errp) |
| { |
| vfio_device_set_fd(&VFIO_PCI(obj)->vbasedev, str, errp); |
| } |
| #endif |
| |
| static void vfio_pci_dev_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| PCIDeviceClass *pdc = PCI_DEVICE_CLASS(klass); |
| |
| dc->reset = vfio_pci_reset; |
| device_class_set_props(dc, vfio_pci_dev_properties); |
| #ifdef CONFIG_IOMMUFD |
| object_class_property_add_str(klass, "fd", NULL, vfio_pci_set_fd); |
| #endif |
| dc->desc = "VFIO-based PCI device assignment"; |
| set_bit(DEVICE_CATEGORY_MISC, dc->categories); |
| pdc->realize = vfio_realize; |
| pdc->exit = vfio_exitfn; |
| pdc->config_read = vfio_pci_read_config; |
| pdc->config_write = vfio_pci_write_config; |
| } |
| |
| static const TypeInfo vfio_pci_dev_info = { |
| .name = TYPE_VFIO_PCI, |
| .parent = TYPE_PCI_DEVICE, |
| .instance_size = sizeof(VFIOPCIDevice), |
| .class_init = vfio_pci_dev_class_init, |
| .instance_init = vfio_instance_init, |
| .instance_finalize = vfio_instance_finalize, |
| .interfaces = (InterfaceInfo[]) { |
| { INTERFACE_PCIE_DEVICE }, |
| { INTERFACE_CONVENTIONAL_PCI_DEVICE }, |
| { } |
| }, |
| }; |
| |
| static Property vfio_pci_dev_nohotplug_properties[] = { |
| DEFINE_PROP_BOOL("ramfb", VFIOPCIDevice, enable_ramfb, false), |
| DEFINE_PROP_ON_OFF_AUTO("x-ramfb-migrate", VFIOPCIDevice, ramfb_migrate, |
| ON_OFF_AUTO_AUTO), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void vfio_pci_nohotplug_dev_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| device_class_set_props(dc, vfio_pci_dev_nohotplug_properties); |
| dc->hotpluggable = false; |
| } |
| |
| static const TypeInfo vfio_pci_nohotplug_dev_info = { |
| .name = TYPE_VFIO_PCI_NOHOTPLUG, |
| .parent = TYPE_VFIO_PCI, |
| .instance_size = sizeof(VFIOPCIDevice), |
| .class_init = vfio_pci_nohotplug_dev_class_init, |
| }; |
| |
| static void register_vfio_pci_dev_type(void) |
| { |
| type_register_static(&vfio_pci_dev_info); |
| type_register_static(&vfio_pci_nohotplug_dev_info); |
| } |
| |
| type_init(register_vfio_pci_dev_type) |