| /* |
| * ARM implementation of KVM hooks |
| * |
| * Copyright Christoffer Dall 2009-2010 |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include <stdio.h> |
| #include <sys/types.h> |
| #include <sys/ioctl.h> |
| #include <sys/mman.h> |
| |
| #include <linux/kvm.h> |
| |
| #include "qemu-common.h" |
| #include "qemu/timer.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/kvm.h" |
| #include "kvm_arm.h" |
| #include "cpu.h" |
| #include "internals.h" |
| #include "hw/arm/arm.h" |
| #include "exec/memattrs.h" |
| |
| const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
| KVM_CAP_LAST_INFO |
| }; |
| |
| static bool cap_has_mp_state; |
| |
| int kvm_arm_vcpu_init(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| struct kvm_vcpu_init init; |
| |
| init.target = cpu->kvm_target; |
| memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); |
| |
| return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); |
| } |
| |
| bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, |
| int *fdarray, |
| struct kvm_vcpu_init *init) |
| { |
| int ret, kvmfd = -1, vmfd = -1, cpufd = -1; |
| |
| kvmfd = qemu_open("/dev/kvm", O_RDWR); |
| if (kvmfd < 0) { |
| goto err; |
| } |
| vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); |
| if (vmfd < 0) { |
| goto err; |
| } |
| cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); |
| if (cpufd < 0) { |
| goto err; |
| } |
| |
| ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init); |
| if (ret >= 0) { |
| ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); |
| if (ret < 0) { |
| goto err; |
| } |
| } else { |
| /* Old kernel which doesn't know about the |
| * PREFERRED_TARGET ioctl: we know it will only support |
| * creating one kind of guest CPU which is its preferred |
| * CPU type. |
| */ |
| while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { |
| init->target = *cpus_to_try++; |
| memset(init->features, 0, sizeof(init->features)); |
| ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); |
| if (ret >= 0) { |
| break; |
| } |
| } |
| if (ret < 0) { |
| goto err; |
| } |
| } |
| |
| fdarray[0] = kvmfd; |
| fdarray[1] = vmfd; |
| fdarray[2] = cpufd; |
| |
| return true; |
| |
| err: |
| if (cpufd >= 0) { |
| close(cpufd); |
| } |
| if (vmfd >= 0) { |
| close(vmfd); |
| } |
| if (kvmfd >= 0) { |
| close(kvmfd); |
| } |
| |
| return false; |
| } |
| |
| void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) |
| { |
| int i; |
| |
| for (i = 2; i >= 0; i--) { |
| close(fdarray[i]); |
| } |
| } |
| |
| static void kvm_arm_host_cpu_class_init(ObjectClass *oc, void *data) |
| { |
| ARMHostCPUClass *ahcc = ARM_HOST_CPU_CLASS(oc); |
| |
| /* All we really need to set up for the 'host' CPU |
| * is the feature bits -- we rely on the fact that the |
| * various ID register values in ARMCPU are only used for |
| * TCG CPUs. |
| */ |
| if (!kvm_arm_get_host_cpu_features(ahcc)) { |
| fprintf(stderr, "Failed to retrieve host CPU features!\n"); |
| abort(); |
| } |
| } |
| |
| static void kvm_arm_host_cpu_initfn(Object *obj) |
| { |
| ARMHostCPUClass *ahcc = ARM_HOST_CPU_GET_CLASS(obj); |
| ARMCPU *cpu = ARM_CPU(obj); |
| CPUARMState *env = &cpu->env; |
| |
| cpu->kvm_target = ahcc->target; |
| cpu->dtb_compatible = ahcc->dtb_compatible; |
| env->features = ahcc->features; |
| } |
| |
| static const TypeInfo host_arm_cpu_type_info = { |
| .name = TYPE_ARM_HOST_CPU, |
| #ifdef TARGET_AARCH64 |
| .parent = TYPE_AARCH64_CPU, |
| #else |
| .parent = TYPE_ARM_CPU, |
| #endif |
| .instance_init = kvm_arm_host_cpu_initfn, |
| .class_init = kvm_arm_host_cpu_class_init, |
| .class_size = sizeof(ARMHostCPUClass), |
| }; |
| |
| int kvm_arch_init(MachineState *ms, KVMState *s) |
| { |
| /* For ARM interrupt delivery is always asynchronous, |
| * whether we are using an in-kernel VGIC or not. |
| */ |
| kvm_async_interrupts_allowed = true; |
| |
| cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); |
| |
| type_register_static(&host_arm_cpu_type_info); |
| |
| return 0; |
| } |
| |
| unsigned long kvm_arch_vcpu_id(CPUState *cpu) |
| { |
| return cpu->cpu_index; |
| } |
| |
| /* We track all the KVM devices which need their memory addresses |
| * passing to the kernel in a list of these structures. |
| * When board init is complete we run through the list and |
| * tell the kernel the base addresses of the memory regions. |
| * We use a MemoryListener to track mapping and unmapping of |
| * the regions during board creation, so the board models don't |
| * need to do anything special for the KVM case. |
| */ |
| typedef struct KVMDevice { |
| struct kvm_arm_device_addr kda; |
| struct kvm_device_attr kdattr; |
| MemoryRegion *mr; |
| QSLIST_ENTRY(KVMDevice) entries; |
| int dev_fd; |
| } KVMDevice; |
| |
| static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head; |
| |
| static void kvm_arm_devlistener_add(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| KVMDevice *kd; |
| |
| QSLIST_FOREACH(kd, &kvm_devices_head, entries) { |
| if (section->mr == kd->mr) { |
| kd->kda.addr = section->offset_within_address_space; |
| } |
| } |
| } |
| |
| static void kvm_arm_devlistener_del(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| KVMDevice *kd; |
| |
| QSLIST_FOREACH(kd, &kvm_devices_head, entries) { |
| if (section->mr == kd->mr) { |
| kd->kda.addr = -1; |
| } |
| } |
| } |
| |
| static MemoryListener devlistener = { |
| .region_add = kvm_arm_devlistener_add, |
| .region_del = kvm_arm_devlistener_del, |
| }; |
| |
| static void kvm_arm_set_device_addr(KVMDevice *kd) |
| { |
| struct kvm_device_attr *attr = &kd->kdattr; |
| int ret; |
| |
| /* If the device control API is available and we have a device fd on the |
| * KVMDevice struct, let's use the newer API |
| */ |
| if (kd->dev_fd >= 0) { |
| uint64_t addr = kd->kda.addr; |
| attr->addr = (uintptr_t)&addr; |
| ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); |
| } else { |
| ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); |
| } |
| |
| if (ret < 0) { |
| fprintf(stderr, "Failed to set device address: %s\n", |
| strerror(-ret)); |
| abort(); |
| } |
| } |
| |
| static void kvm_arm_machine_init_done(Notifier *notifier, void *data) |
| { |
| KVMDevice *kd, *tkd; |
| |
| memory_listener_unregister(&devlistener); |
| QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { |
| if (kd->kda.addr != -1) { |
| kvm_arm_set_device_addr(kd); |
| } |
| memory_region_unref(kd->mr); |
| g_free(kd); |
| } |
| } |
| |
| static Notifier notify = { |
| .notify = kvm_arm_machine_init_done, |
| }; |
| |
| void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, |
| uint64_t attr, int dev_fd) |
| { |
| KVMDevice *kd; |
| |
| if (!kvm_irqchip_in_kernel()) { |
| return; |
| } |
| |
| if (QSLIST_EMPTY(&kvm_devices_head)) { |
| memory_listener_register(&devlistener, NULL); |
| qemu_add_machine_init_done_notifier(¬ify); |
| } |
| kd = g_new0(KVMDevice, 1); |
| kd->mr = mr; |
| kd->kda.id = devid; |
| kd->kda.addr = -1; |
| kd->kdattr.flags = 0; |
| kd->kdattr.group = group; |
| kd->kdattr.attr = attr; |
| kd->dev_fd = dev_fd; |
| QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); |
| memory_region_ref(kd->mr); |
| } |
| |
| static int compare_u64(const void *a, const void *b) |
| { |
| if (*(uint64_t *)a > *(uint64_t *)b) { |
| return 1; |
| } |
| if (*(uint64_t *)a < *(uint64_t *)b) { |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* Initialize the CPUState's cpreg list according to the kernel's |
| * definition of what CPU registers it knows about (and throw away |
| * the previous TCG-created cpreg list). |
| */ |
| int kvm_arm_init_cpreg_list(ARMCPU *cpu) |
| { |
| struct kvm_reg_list rl; |
| struct kvm_reg_list *rlp; |
| int i, ret, arraylen; |
| CPUState *cs = CPU(cpu); |
| |
| rl.n = 0; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); |
| if (ret != -E2BIG) { |
| return ret; |
| } |
| rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); |
| rlp->n = rl.n; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); |
| if (ret) { |
| goto out; |
| } |
| /* Sort the list we get back from the kernel, since cpreg_tuples |
| * must be in strictly ascending order. |
| */ |
| qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); |
| |
| for (i = 0, arraylen = 0; i < rlp->n; i++) { |
| if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { |
| continue; |
| } |
| switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { |
| case KVM_REG_SIZE_U32: |
| case KVM_REG_SIZE_U64: |
| break; |
| default: |
| fprintf(stderr, "Can't handle size of register in kernel list\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| arraylen++; |
| } |
| |
| cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); |
| cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); |
| cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, |
| arraylen); |
| cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, |
| arraylen); |
| cpu->cpreg_array_len = arraylen; |
| cpu->cpreg_vmstate_array_len = arraylen; |
| |
| for (i = 0, arraylen = 0; i < rlp->n; i++) { |
| uint64_t regidx = rlp->reg[i]; |
| if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { |
| continue; |
| } |
| cpu->cpreg_indexes[arraylen] = regidx; |
| arraylen++; |
| } |
| assert(cpu->cpreg_array_len == arraylen); |
| |
| if (!write_kvmstate_to_list(cpu)) { |
| /* Shouldn't happen unless kernel is inconsistent about |
| * what registers exist. |
| */ |
| fprintf(stderr, "Initial read of kernel register state failed\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| out: |
| g_free(rlp); |
| return ret; |
| } |
| |
| bool write_kvmstate_to_list(ARMCPU *cpu) |
| { |
| CPUState *cs = CPU(cpu); |
| int i; |
| bool ok = true; |
| |
| for (i = 0; i < cpu->cpreg_array_len; i++) { |
| struct kvm_one_reg r; |
| uint64_t regidx = cpu->cpreg_indexes[i]; |
| uint32_t v32; |
| int ret; |
| |
| r.id = regidx; |
| |
| switch (regidx & KVM_REG_SIZE_MASK) { |
| case KVM_REG_SIZE_U32: |
| r.addr = (uintptr_t)&v32; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); |
| if (!ret) { |
| cpu->cpreg_values[i] = v32; |
| } |
| break; |
| case KVM_REG_SIZE_U64: |
| r.addr = (uintptr_t)(cpu->cpreg_values + i); |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); |
| break; |
| default: |
| abort(); |
| } |
| if (ret) { |
| ok = false; |
| } |
| } |
| return ok; |
| } |
| |
| bool write_list_to_kvmstate(ARMCPU *cpu, int level) |
| { |
| CPUState *cs = CPU(cpu); |
| int i; |
| bool ok = true; |
| |
| for (i = 0; i < cpu->cpreg_array_len; i++) { |
| struct kvm_one_reg r; |
| uint64_t regidx = cpu->cpreg_indexes[i]; |
| uint32_t v32; |
| int ret; |
| |
| if (kvm_arm_cpreg_level(regidx) > level) { |
| continue; |
| } |
| |
| r.id = regidx; |
| switch (regidx & KVM_REG_SIZE_MASK) { |
| case KVM_REG_SIZE_U32: |
| v32 = cpu->cpreg_values[i]; |
| r.addr = (uintptr_t)&v32; |
| break; |
| case KVM_REG_SIZE_U64: |
| r.addr = (uintptr_t)(cpu->cpreg_values + i); |
| break; |
| default: |
| abort(); |
| } |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); |
| if (ret) { |
| /* We might fail for "unknown register" and also for |
| * "you tried to set a register which is constant with |
| * a different value from what it actually contains". |
| */ |
| ok = false; |
| } |
| } |
| return ok; |
| } |
| |
| void kvm_arm_reset_vcpu(ARMCPU *cpu) |
| { |
| int ret; |
| |
| /* Re-init VCPU so that all registers are set to |
| * their respective reset values. |
| */ |
| ret = kvm_arm_vcpu_init(CPU(cpu)); |
| if (ret < 0) { |
| fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); |
| abort(); |
| } |
| if (!write_kvmstate_to_list(cpu)) { |
| fprintf(stderr, "write_kvmstate_to_list failed\n"); |
| abort(); |
| } |
| } |
| |
| /* |
| * Update KVM's MP_STATE based on what QEMU thinks it is |
| */ |
| int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) |
| { |
| if (cap_has_mp_state) { |
| struct kvm_mp_state mp_state = { |
| .mp_state = |
| cpu->powered_off ? KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE |
| }; |
| int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); |
| if (ret) { |
| fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", |
| __func__, ret, strerror(-ret)); |
| return -1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Sync the KVM MP_STATE into QEMU |
| */ |
| int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) |
| { |
| if (cap_has_mp_state) { |
| struct kvm_mp_state mp_state; |
| int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); |
| if (ret) { |
| fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", |
| __func__, ret, strerror(-ret)); |
| abort(); |
| } |
| cpu->powered_off = (mp_state.mp_state == KVM_MP_STATE_STOPPED); |
| } |
| |
| return 0; |
| } |
| |
| void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) |
| { |
| } |
| |
| MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) |
| { |
| return MEMTXATTRS_UNSPECIFIED; |
| } |
| |
| int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
| { |
| return 0; |
| } |
| |
| bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
| { |
| return true; |
| } |
| |
| int kvm_arch_process_async_events(CPUState *cs) |
| { |
| return 0; |
| } |
| |
| int kvm_arch_on_sigbus_vcpu(CPUState *cs, int code, void *addr) |
| { |
| return 1; |
| } |
| |
| int kvm_arch_on_sigbus(int code, void *addr) |
| { |
| return 1; |
| } |
| |
| void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) |
| { |
| qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); |
| } |
| |
| int kvm_arch_insert_sw_breakpoint(CPUState *cs, |
| struct kvm_sw_breakpoint *bp) |
| { |
| qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); |
| return -EINVAL; |
| } |
| |
| int kvm_arch_insert_hw_breakpoint(target_ulong addr, |
| target_ulong len, int type) |
| { |
| qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); |
| return -EINVAL; |
| } |
| |
| int kvm_arch_remove_hw_breakpoint(target_ulong addr, |
| target_ulong len, int type) |
| { |
| qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); |
| return -EINVAL; |
| } |
| |
| int kvm_arch_remove_sw_breakpoint(CPUState *cs, |
| struct kvm_sw_breakpoint *bp) |
| { |
| qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); |
| return -EINVAL; |
| } |
| |
| void kvm_arch_remove_all_hw_breakpoints(void) |
| { |
| qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); |
| } |
| |
| void kvm_arch_init_irq_routing(KVMState *s) |
| { |
| } |
| |
| int kvm_arch_irqchip_create(KVMState *s) |
| { |
| /* If we can create the VGIC using the newer device control API, we |
| * let the device do this when it initializes itself, otherwise we |
| * fall back to the old API */ |
| return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); |
| } |
| |
| int kvm_arm_vgic_probe(void) |
| { |
| if (kvm_create_device(kvm_state, |
| KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { |
| return 3; |
| } else if (kvm_create_device(kvm_state, |
| KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { |
| return 2; |
| } else { |
| return 0; |
| } |
| } |
| |
| int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, |
| uint64_t address, uint32_t data, PCIDevice *dev) |
| { |
| return 0; |
| } |
| |
| int kvm_arch_msi_data_to_gsi(uint32_t data) |
| { |
| return (data - 32) & 0xffff; |
| } |