|  | /* | 
|  | * ARM MPS2 AN505 FPGAIO emulation | 
|  | * | 
|  | * Copyright (c) 2018 Linaro Limited | 
|  | * Written by Peter Maydell | 
|  | * | 
|  | *  This program is free software; you can redistribute it and/or modify | 
|  | *  it under the terms of the GNU General Public License version 2 or | 
|  | *  (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | /* This is a model of the "FPGA system control and I/O" block found | 
|  | * in the AN505 FPGA image for the MPS2 devboard. | 
|  | * It is documented in AN505: | 
|  | * https://developer.arm.com/documentation/dai0505/latest/ | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/log.h" | 
|  | #include "qemu/module.h" | 
|  | #include "qapi/error.h" | 
|  | #include "trace.h" | 
|  | #include "hw/sysbus.h" | 
|  | #include "migration/vmstate.h" | 
|  | #include "hw/registerfields.h" | 
|  | #include "hw/misc/mps2-fpgaio.h" | 
|  | #include "hw/misc/led.h" | 
|  | #include "hw/qdev-properties.h" | 
|  | #include "qemu/timer.h" | 
|  |  | 
|  | REG32(LED0, 0) | 
|  | REG32(DBGCTRL, 4) | 
|  | REG32(BUTTON, 8) | 
|  | REG32(CLK1HZ, 0x10) | 
|  | REG32(CLK100HZ, 0x14) | 
|  | REG32(COUNTER, 0x18) | 
|  | REG32(PRESCALE, 0x1c) | 
|  | REG32(PSCNTR, 0x20) | 
|  | REG32(SWITCH, 0x28) | 
|  | REG32(MISC, 0x4c) | 
|  |  | 
|  | static uint32_t counter_from_tickoff(int64_t now, int64_t tick_offset, int frq) | 
|  | { | 
|  | return muldiv64(now - tick_offset, frq, NANOSECONDS_PER_SECOND); | 
|  | } | 
|  |  | 
|  | static int64_t tickoff_from_counter(int64_t now, uint32_t count, int frq) | 
|  | { | 
|  | return now - muldiv64(count, NANOSECONDS_PER_SECOND, frq); | 
|  | } | 
|  |  | 
|  | static void resync_counter(MPS2FPGAIO *s) | 
|  | { | 
|  | /* | 
|  | * Update s->counter and s->pscntr to their true current values | 
|  | * by calculating how many times PSCNTR has ticked since the | 
|  | * last time we did a resync. | 
|  | */ | 
|  | int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
|  | int64_t elapsed = now - s->pscntr_sync_ticks; | 
|  |  | 
|  | /* | 
|  | * Round elapsed down to a whole number of PSCNTR ticks, so we don't | 
|  | * lose time if we do multiple resyncs in a single tick. | 
|  | */ | 
|  | uint64_t ticks = muldiv64(elapsed, s->prescale_clk, NANOSECONDS_PER_SECOND); | 
|  |  | 
|  | /* | 
|  | * Work out what PSCNTR and COUNTER have moved to. We assume that | 
|  | * PSCNTR reloads from PRESCALE one tick-period after it hits zero, | 
|  | * and that COUNTER increments at the same moment. | 
|  | */ | 
|  | if (ticks == 0) { | 
|  | /* We haven't ticked since the last time we were asked */ | 
|  | return; | 
|  | } else if (ticks < s->pscntr) { | 
|  | /* We haven't yet reached zero, just reduce the PSCNTR */ | 
|  | s->pscntr -= ticks; | 
|  | } else { | 
|  | if (s->prescale == 0) { | 
|  | /* | 
|  | * If the reload value is zero then the PSCNTR will stick | 
|  | * at zero once it reaches it, and so we will increment | 
|  | * COUNTER every tick after that. | 
|  | */ | 
|  | s->counter += ticks - s->pscntr; | 
|  | s->pscntr = 0; | 
|  | } else { | 
|  | /* | 
|  | * This is the complicated bit. This ASCII art diagram gives an | 
|  | * example with PRESCALE==5 PSCNTR==7: | 
|  | * | 
|  | * ticks  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 | 
|  | * PSCNTR 7  6  5  4  3  2  1  0  5  4  3  2  1  0  5 | 
|  | * cinc                           1                 2 | 
|  | * y            0  1  2  3  4  5  6  7  8  9 10 11 12 | 
|  | * x            0  1  2  3  4  5  0  1  2  3  4  5  0 | 
|  | * | 
|  | * where x = y % (s->prescale + 1) | 
|  | * and so PSCNTR = s->prescale - x | 
|  | * and COUNTER is incremented by y / (s->prescale + 1) | 
|  | * | 
|  | * The case where PSCNTR < PRESCALE works out the same, | 
|  | * though we must be careful to calculate y as 64-bit unsigned | 
|  | * for all parts of the expression. | 
|  | * y < 0 is not possible because that implies ticks < s->pscntr. | 
|  | */ | 
|  | uint64_t y = ticks - s->pscntr + s->prescale; | 
|  | s->pscntr = s->prescale - (y % (s->prescale + 1)); | 
|  | s->counter += y / (s->prescale + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only advance the sync time to the timestamp of the last PSCNTR tick, | 
|  | * not all the way to 'now', so we don't lose time if we do multiple | 
|  | * resyncs in a single tick. | 
|  | */ | 
|  | s->pscntr_sync_ticks += muldiv64(ticks, NANOSECONDS_PER_SECOND, | 
|  | s->prescale_clk); | 
|  | } | 
|  |  | 
|  | static uint64_t mps2_fpgaio_read(void *opaque, hwaddr offset, unsigned size) | 
|  | { | 
|  | MPS2FPGAIO *s = MPS2_FPGAIO(opaque); | 
|  | uint64_t r; | 
|  | int64_t now; | 
|  |  | 
|  | switch (offset) { | 
|  | case A_LED0: | 
|  | r = s->led0; | 
|  | break; | 
|  | case A_DBGCTRL: | 
|  | if (!s->has_dbgctrl) { | 
|  | goto bad_offset; | 
|  | } | 
|  | r = s->dbgctrl; | 
|  | break; | 
|  | case A_BUTTON: | 
|  | /* User-pressable board buttons. We don't model that, so just return | 
|  | * zeroes. | 
|  | */ | 
|  | r = 0; | 
|  | break; | 
|  | case A_PRESCALE: | 
|  | r = s->prescale; | 
|  | break; | 
|  | case A_MISC: | 
|  | r = s->misc; | 
|  | break; | 
|  | case A_CLK1HZ: | 
|  | now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
|  | r = counter_from_tickoff(now, s->clk1hz_tick_offset, 1); | 
|  | break; | 
|  | case A_CLK100HZ: | 
|  | now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
|  | r = counter_from_tickoff(now, s->clk100hz_tick_offset, 100); | 
|  | break; | 
|  | case A_COUNTER: | 
|  | resync_counter(s); | 
|  | r = s->counter; | 
|  | break; | 
|  | case A_PSCNTR: | 
|  | resync_counter(s); | 
|  | r = s->pscntr; | 
|  | break; | 
|  | case A_SWITCH: | 
|  | if (!s->has_switches) { | 
|  | goto bad_offset; | 
|  | } | 
|  | /* User-togglable board switches. We don't model that, so report 0. */ | 
|  | r = 0; | 
|  | break; | 
|  | default: | 
|  | bad_offset: | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "MPS2 FPGAIO read: bad offset %x\n", (int) offset); | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | trace_mps2_fpgaio_read(offset, r, size); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void mps2_fpgaio_write(void *opaque, hwaddr offset, uint64_t value, | 
|  | unsigned size) | 
|  | { | 
|  | MPS2FPGAIO *s = MPS2_FPGAIO(opaque); | 
|  | int64_t now; | 
|  |  | 
|  | trace_mps2_fpgaio_write(offset, value, size); | 
|  |  | 
|  | switch (offset) { | 
|  | case A_LED0: | 
|  | if (s->num_leds != 0) { | 
|  | uint32_t i; | 
|  |  | 
|  | s->led0 = value & MAKE_64BIT_MASK(0, s->num_leds); | 
|  | for (i = 0; i < s->num_leds; i++) { | 
|  | led_set_state(s->led[i], value & (1 << i)); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case A_DBGCTRL: | 
|  | if (!s->has_dbgctrl) { | 
|  | goto bad_offset; | 
|  | } | 
|  | qemu_log_mask(LOG_UNIMP, | 
|  | "MPS2 FPGAIO: DBGCTRL unimplemented\n"); | 
|  | s->dbgctrl = value; | 
|  | break; | 
|  | case A_PRESCALE: | 
|  | resync_counter(s); | 
|  | s->prescale = value; | 
|  | break; | 
|  | case A_MISC: | 
|  | /* These are control bits for some of the other devices on the | 
|  | * board (SPI, CLCD, etc). We don't implement that yet, so just | 
|  | * make the bits read as written. | 
|  | */ | 
|  | qemu_log_mask(LOG_UNIMP, | 
|  | "MPS2 FPGAIO: MISC control bits unimplemented\n"); | 
|  | s->misc = value; | 
|  | break; | 
|  | case A_CLK1HZ: | 
|  | now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
|  | s->clk1hz_tick_offset = tickoff_from_counter(now, value, 1); | 
|  | break; | 
|  | case A_CLK100HZ: | 
|  | now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
|  | s->clk100hz_tick_offset = tickoff_from_counter(now, value, 100); | 
|  | break; | 
|  | case A_COUNTER: | 
|  | resync_counter(s); | 
|  | s->counter = value; | 
|  | break; | 
|  | case A_PSCNTR: | 
|  | resync_counter(s); | 
|  | s->pscntr = value; | 
|  | break; | 
|  | default: | 
|  | bad_offset: | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "MPS2 FPGAIO write: bad offset 0x%x\n", (int) offset); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps mps2_fpgaio_ops = { | 
|  | .read = mps2_fpgaio_read, | 
|  | .write = mps2_fpgaio_write, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | }; | 
|  |  | 
|  | static void mps2_fpgaio_reset(DeviceState *dev) | 
|  | { | 
|  | MPS2FPGAIO *s = MPS2_FPGAIO(dev); | 
|  | int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
|  |  | 
|  | trace_mps2_fpgaio_reset(); | 
|  | s->led0 = 0; | 
|  | s->prescale = 0; | 
|  | s->misc = 0; | 
|  | s->clk1hz_tick_offset = tickoff_from_counter(now, 0, 1); | 
|  | s->clk100hz_tick_offset = tickoff_from_counter(now, 0, 100); | 
|  | s->counter = 0; | 
|  | s->pscntr = 0; | 
|  | s->pscntr_sync_ticks = now; | 
|  |  | 
|  | for (size_t i = 0; i < s->num_leds; i++) { | 
|  | device_cold_reset(DEVICE(s->led[i])); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mps2_fpgaio_init(Object *obj) | 
|  | { | 
|  | SysBusDevice *sbd = SYS_BUS_DEVICE(obj); | 
|  | MPS2FPGAIO *s = MPS2_FPGAIO(obj); | 
|  |  | 
|  | memory_region_init_io(&s->iomem, obj, &mps2_fpgaio_ops, s, | 
|  | "mps2-fpgaio", 0x1000); | 
|  | sysbus_init_mmio(sbd, &s->iomem); | 
|  | } | 
|  |  | 
|  | static void mps2_fpgaio_realize(DeviceState *dev, Error **errp) | 
|  | { | 
|  | MPS2FPGAIO *s = MPS2_FPGAIO(dev); | 
|  | uint32_t i; | 
|  |  | 
|  | if (s->num_leds > MPS2FPGAIO_MAX_LEDS) { | 
|  | error_setg(errp, "num-leds cannot be greater than %d", | 
|  | MPS2FPGAIO_MAX_LEDS); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < s->num_leds; i++) { | 
|  | g_autofree char *ledname = g_strdup_printf("USERLED%d", i); | 
|  | s->led[i] = led_create_simple(OBJECT(dev), GPIO_POLARITY_ACTIVE_HIGH, | 
|  | LED_COLOR_GREEN, ledname); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const VMStateDescription mps2_fpgaio_vmstate = { | 
|  | .name = "mps2-fpgaio", | 
|  | .version_id = 3, | 
|  | .minimum_version_id = 3, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_UINT32(led0, MPS2FPGAIO), | 
|  | VMSTATE_UINT32(prescale, MPS2FPGAIO), | 
|  | VMSTATE_UINT32(misc, MPS2FPGAIO), | 
|  | VMSTATE_UINT32(dbgctrl, MPS2FPGAIO), | 
|  | VMSTATE_INT64(clk1hz_tick_offset, MPS2FPGAIO), | 
|  | VMSTATE_INT64(clk100hz_tick_offset, MPS2FPGAIO), | 
|  | VMSTATE_UINT32(counter, MPS2FPGAIO), | 
|  | VMSTATE_UINT32(pscntr, MPS2FPGAIO), | 
|  | VMSTATE_INT64(pscntr_sync_ticks, MPS2FPGAIO), | 
|  | VMSTATE_END_OF_LIST() | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static Property mps2_fpgaio_properties[] = { | 
|  | /* Frequency of the prescale counter */ | 
|  | DEFINE_PROP_UINT32("prescale-clk", MPS2FPGAIO, prescale_clk, 20000000), | 
|  | /* Number of LEDs controlled by LED0 register */ | 
|  | DEFINE_PROP_UINT32("num-leds", MPS2FPGAIO, num_leds, 2), | 
|  | DEFINE_PROP_BOOL("has-switches", MPS2FPGAIO, has_switches, false), | 
|  | DEFINE_PROP_BOOL("has-dbgctrl", MPS2FPGAIO, has_dbgctrl, false), | 
|  | DEFINE_PROP_END_OF_LIST(), | 
|  | }; | 
|  |  | 
|  | static void mps2_fpgaio_class_init(ObjectClass *klass, void *data) | 
|  | { | 
|  | DeviceClass *dc = DEVICE_CLASS(klass); | 
|  |  | 
|  | dc->vmsd = &mps2_fpgaio_vmstate; | 
|  | dc->realize = mps2_fpgaio_realize; | 
|  | device_class_set_legacy_reset(dc, mps2_fpgaio_reset); | 
|  | device_class_set_props(dc, mps2_fpgaio_properties); | 
|  | } | 
|  |  | 
|  | static const TypeInfo mps2_fpgaio_info = { | 
|  | .name = TYPE_MPS2_FPGAIO, | 
|  | .parent = TYPE_SYS_BUS_DEVICE, | 
|  | .instance_size = sizeof(MPS2FPGAIO), | 
|  | .instance_init = mps2_fpgaio_init, | 
|  | .class_init = mps2_fpgaio_class_init, | 
|  | }; | 
|  |  | 
|  | static void mps2_fpgaio_register_types(void) | 
|  | { | 
|  | type_register_static(&mps2_fpgaio_info); | 
|  | } | 
|  |  | 
|  | type_init(mps2_fpgaio_register_types); |