blob: 7e53a5f97781086f06c1483bf4890661d60babae [file] [log] [blame]
/*
* QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
*
* Copyright (c) 2004-2007 Fabrice Bellard
* Copyright (c) 2007 Jocelyn Mayer
* Copyright (c) 2010 David Gibson, IBM Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include "sysemu/sysemu.h"
#include "hw/hw.h"
#include "elf.h"
#include "net/net.h"
#include "sysemu/blockdev.h"
#include "sysemu/cpus.h"
#include "sysemu/kvm.h"
#include "kvm_ppc.h"
#include "mmu-hash64.h"
#include "hw/boards.h"
#include "hw/ppc/ppc.h"
#include "hw/loader.h"
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/pci-host/spapr.h"
#include "hw/ppc/xics.h"
#include "hw/pci/msi.h"
#include "hw/pci/pci.h"
#include "exec/address-spaces.h"
#include "hw/usb.h"
#include "qemu/config-file.h"
#include <libfdt.h>
/* SLOF memory layout:
*
* SLOF raw image loaded at 0, copies its romfs right below the flat
* device-tree, then position SLOF itself 31M below that
*
* So we set FW_OVERHEAD to 40MB which should account for all of that
* and more
*
* We load our kernel at 4M, leaving space for SLOF initial image
*/
#define FDT_MAX_SIZE 0x40000
#define RTAS_MAX_SIZE 0x10000
#define FW_MAX_SIZE 0x400000
#define FW_FILE_NAME "slof.bin"
#define FW_OVERHEAD 0x2800000
#define KERNEL_LOAD_ADDR FW_MAX_SIZE
#define MIN_RMA_SLOF 128UL
#define TIMEBASE_FREQ 512000000ULL
#define MAX_CPUS 256
#define XICS_IRQS 1024
#define PHANDLE_XICP 0x00001111
#define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
sPAPREnvironment *spapr;
int spapr_allocate_irq(int hint, bool lsi)
{
int irq;
if (hint) {
irq = hint;
if (hint >= spapr->next_irq) {
spapr->next_irq = hint + 1;
}
/* FIXME: we should probably check for collisions somehow */
} else {
irq = spapr->next_irq++;
}
/* Configure irq type */
if (!xics_get_qirq(spapr->icp, irq)) {
return 0;
}
xics_set_irq_type(spapr->icp, irq, lsi);
return irq;
}
/*
* Allocate block of consequtive IRQs, returns a number of the first.
* If msi==true, aligns the first IRQ number to num.
*/
int spapr_allocate_irq_block(int num, bool lsi, bool msi)
{
int first = -1;
int i, hint = 0;
/*
* MSIMesage::data is used for storing VIRQ so
* it has to be aligned to num to support multiple
* MSI vectors. MSI-X is not affected by this.
* The hint is used for the first IRQ, the rest should
* be allocated continuously.
*/
if (msi) {
assert((num == 1) || (num == 2) || (num == 4) ||
(num == 8) || (num == 16) || (num == 32));
hint = (spapr->next_irq + num - 1) & ~(num - 1);
}
for (i = 0; i < num; ++i) {
int irq;
irq = spapr_allocate_irq(hint, lsi);
if (!irq) {
return -1;
}
if (0 == i) {
first = irq;
hint = 0;
}
/* If the above doesn't create a consecutive block then that's
* an internal bug */
assert(irq == (first + i));
}
return first;
}
static XICSState *try_create_xics(const char *type, int nr_servers,
int nr_irqs)
{
DeviceState *dev;
dev = qdev_create(NULL, type);
qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
if (qdev_init(dev) < 0) {
return NULL;
}
return XICS_COMMON(dev);
}
static XICSState *xics_system_init(int nr_servers, int nr_irqs)
{
XICSState *icp = NULL;
if (kvm_enabled()) {
QemuOpts *machine_opts = qemu_get_machine_opts();
bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
"kernel_irqchip", true);
bool irqchip_required = qemu_opt_get_bool(machine_opts,
"kernel_irqchip", false);
if (irqchip_allowed) {
icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs);
}
if (irqchip_required && !icp) {
perror("Failed to create in-kernel XICS\n");
abort();
}
}
if (!icp) {
icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
}
if (!icp) {
perror("Failed to create XICS\n");
abort();
}
return icp;
}
static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
{
int ret = 0, offset;
CPUState *cpu;
char cpu_model[32];
int smt = kvmppc_smt_threads();
uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
CPU_FOREACH(cpu) {
DeviceClass *dc = DEVICE_GET_CLASS(cpu);
uint32_t associativity[] = {cpu_to_be32(0x5),
cpu_to_be32(0x0),
cpu_to_be32(0x0),
cpu_to_be32(0x0),
cpu_to_be32(cpu->numa_node),
cpu_to_be32(cpu->cpu_index)};
if ((cpu->cpu_index % smt) != 0) {
continue;
}
snprintf(cpu_model, 32, "/cpus/%s@%x", dc->fw_name,
cpu->cpu_index);
offset = fdt_path_offset(fdt, cpu_model);
if (offset < 0) {
return offset;
}
if (nb_numa_nodes > 1) {
ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
sizeof(associativity));
if (ret < 0) {
return ret;
}
}
ret = fdt_setprop(fdt, offset, "ibm,pft-size",
pft_size_prop, sizeof(pft_size_prop));
if (ret < 0) {
return ret;
}
}
return ret;
}
static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
size_t maxsize)
{
size_t maxcells = maxsize / sizeof(uint32_t);
int i, j, count;
uint32_t *p = prop;
for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
if (!sps->page_shift) {
break;
}
for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
if (sps->enc[count].page_shift == 0) {
break;
}
}
if ((p - prop) >= (maxcells - 3 - count * 2)) {
break;
}
*(p++) = cpu_to_be32(sps->page_shift);
*(p++) = cpu_to_be32(sps->slb_enc);
*(p++) = cpu_to_be32(count);
for (j = 0; j < count; j++) {
*(p++) = cpu_to_be32(sps->enc[j].page_shift);
*(p++) = cpu_to_be32(sps->enc[j].pte_enc);
}
}
return (p - prop) * sizeof(uint32_t);
}
#define _FDT(exp) \
do { \
int ret = (exp); \
if (ret < 0) { \
fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
#exp, fdt_strerror(ret)); \
exit(1); \
} \
} while (0)
static void *spapr_create_fdt_skel(hwaddr initrd_base,
hwaddr initrd_size,
hwaddr kernel_size,
bool little_endian,
const char *boot_device,
const char *kernel_cmdline,
uint32_t epow_irq)
{
void *fdt;
CPUState *cs;
uint32_t start_prop = cpu_to_be32(initrd_base);
uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
"\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk\0hcall-set-mode";
char qemu_hypertas_prop[] = "hcall-memop1";
uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
int i, smt = kvmppc_smt_threads();
unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
fdt = g_malloc0(FDT_MAX_SIZE);
_FDT((fdt_create(fdt, FDT_MAX_SIZE)));
if (kernel_size) {
_FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
}
if (initrd_size) {
_FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
}
_FDT((fdt_finish_reservemap(fdt)));
/* Root node */
_FDT((fdt_begin_node(fdt, "")));
_FDT((fdt_property_string(fdt, "device_type", "chrp")));
_FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
_FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
_FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
_FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
/* /chosen */
_FDT((fdt_begin_node(fdt, "chosen")));
/* Set Form1_affinity */
_FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
_FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
_FDT((fdt_property(fdt, "linux,initrd-start",
&start_prop, sizeof(start_prop))));
_FDT((fdt_property(fdt, "linux,initrd-end",
&end_prop, sizeof(end_prop))));
if (kernel_size) {
uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
cpu_to_be64(kernel_size) };
_FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
if (little_endian) {
_FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
}
}
if (boot_device) {
_FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
}
_FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
_FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
_FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
_FDT((fdt_end_node(fdt)));
/* cpus */
_FDT((fdt_begin_node(fdt, "cpus")));
_FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
_FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
CPU_FOREACH(cs) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
DeviceClass *dc = DEVICE_GET_CLASS(cs);
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
int index = cs->cpu_index;
uint32_t servers_prop[smp_threads];
uint32_t gservers_prop[smp_threads * 2];
char *nodename;
uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
0xffffffff, 0xffffffff};
uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
uint32_t page_sizes_prop[64];
size_t page_sizes_prop_size;
if ((index % smt) != 0) {
continue;
}
nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
_FDT((fdt_begin_node(fdt, nodename)));
g_free(nodename);
_FDT((fdt_property_cell(fdt, "reg", index)));
_FDT((fdt_property_string(fdt, "device_type", "cpu")));
_FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
_FDT((fdt_property_cell(fdt, "d-cache-block-size",
env->dcache_line_size)));
_FDT((fdt_property_cell(fdt, "d-cache-line-size",
env->dcache_line_size)));
_FDT((fdt_property_cell(fdt, "i-cache-block-size",
env->icache_line_size)));
_FDT((fdt_property_cell(fdt, "i-cache-line-size",
env->icache_line_size)));
if (pcc->l1_dcache_size) {
_FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
} else {
fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
}
if (pcc->l1_icache_size) {
_FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
} else {
fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
}
_FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
_FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
_FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
_FDT((fdt_property_string(fdt, "status", "okay")));
_FDT((fdt_property(fdt, "64-bit", NULL, 0)));
/* Build interrupt servers and gservers properties */
for (i = 0; i < smp_threads; i++) {
servers_prop[i] = cpu_to_be32(index + i);
/* Hack, direct the group queues back to cpu 0 */
gservers_prop[i*2] = cpu_to_be32(index + i);
gservers_prop[i*2 + 1] = 0;
}
_FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
servers_prop, sizeof(servers_prop))));
_FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
gservers_prop, sizeof(gservers_prop))));
if (env->spr_cb[SPR_PURR].oea_read) {
_FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
}
if (env->mmu_model & POWERPC_MMU_1TSEG) {
_FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
segs, sizeof(segs))));
}
/* Advertise VMX/VSX (vector extensions) if available
* 0 / no property == no vector extensions
* 1 == VMX / Altivec available
* 2 == VSX available */
if (env->insns_flags & PPC_ALTIVEC) {
uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
_FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
}
/* Advertise DFP (Decimal Floating Point) if available
* 0 / no property == no DFP
* 1 == DFP available */
if (env->insns_flags2 & PPC2_DFP) {
_FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
}
page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
sizeof(page_sizes_prop));
if (page_sizes_prop_size) {
_FDT((fdt_property(fdt, "ibm,segment-page-sizes",
page_sizes_prop, page_sizes_prop_size)));
}
_FDT((fdt_end_node(fdt)));
}
_FDT((fdt_end_node(fdt)));
/* RTAS */
_FDT((fdt_begin_node(fdt, "rtas")));
_FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
sizeof(hypertas_prop))));
_FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
sizeof(qemu_hypertas_prop))));
_FDT((fdt_property(fdt, "ibm,associativity-reference-points",
refpoints, sizeof(refpoints))));
_FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
_FDT((fdt_end_node(fdt)));
/* interrupt controller */
_FDT((fdt_begin_node(fdt, "interrupt-controller")));
_FDT((fdt_property_string(fdt, "device_type",
"PowerPC-External-Interrupt-Presentation")));
_FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
_FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
_FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
interrupt_server_ranges_prop,
sizeof(interrupt_server_ranges_prop))));
_FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
_FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
_FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
_FDT((fdt_end_node(fdt)));
/* vdevice */
_FDT((fdt_begin_node(fdt, "vdevice")));
_FDT((fdt_property_string(fdt, "device_type", "vdevice")));
_FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
_FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
_FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
_FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
_FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
_FDT((fdt_end_node(fdt)));
/* event-sources */
spapr_events_fdt_skel(fdt, epow_irq);
_FDT((fdt_end_node(fdt))); /* close root node */
_FDT((fdt_finish(fdt)));
return fdt;
}
static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
{
uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
cpu_to_be32(0x0), cpu_to_be32(0x0),
cpu_to_be32(0x0)};
char mem_name[32];
hwaddr node0_size, mem_start;
uint64_t mem_reg_property[2];
int i, off;
/* memory node(s) */
node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
if (spapr->rma_size > node0_size) {
spapr->rma_size = node0_size;
}
/* RMA */
mem_reg_property[0] = 0;
mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
off = fdt_add_subnode(fdt, 0, "memory@0");
_FDT(off);
_FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
_FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
sizeof(mem_reg_property))));
_FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
sizeof(associativity))));
/* RAM: Node 0 */
if (node0_size > spapr->rma_size) {
mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
off = fdt_add_subnode(fdt, 0, mem_name);
_FDT(off);
_FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
_FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
sizeof(mem_reg_property))));
_FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
sizeof(associativity))));
}
/* RAM: Node 1 and beyond */
mem_start = node0_size;
for (i = 1; i < nb_numa_nodes; i++) {
mem_reg_property[0] = cpu_to_be64(mem_start);
mem_reg_property[1] = cpu_to_be64(node_mem[i]);
associativity[3] = associativity[4] = cpu_to_be32(i);
sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
off = fdt_add_subnode(fdt, 0, mem_name);
_FDT(off);
_FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
_FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
sizeof(mem_reg_property))));
_FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
sizeof(associativity))));
mem_start += node_mem[i];
}
return 0;
}
static void spapr_finalize_fdt(sPAPREnvironment *spapr,
hwaddr fdt_addr,
hwaddr rtas_addr,
hwaddr rtas_size)
{
int ret;
void *fdt;
sPAPRPHBState *phb;
fdt = g_malloc(FDT_MAX_SIZE);
/* open out the base tree into a temp buffer for the final tweaks */
_FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
ret = spapr_populate_memory(spapr, fdt);
if (ret < 0) {
fprintf(stderr, "couldn't setup memory nodes in fdt\n");
exit(1);
}
ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
if (ret < 0) {
fprintf(stderr, "couldn't setup vio devices in fdt\n");
exit(1);
}
QLIST_FOREACH(phb, &spapr->phbs, list) {
ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
}
if (ret < 0) {
fprintf(stderr, "couldn't setup PCI devices in fdt\n");
exit(1);
}
/* RTAS */
ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
if (ret < 0) {
fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
}
/* Advertise NUMA via ibm,associativity */
ret = spapr_fixup_cpu_dt(fdt, spapr);
if (ret < 0) {
fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
}
if (!spapr->has_graphics) {
spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
}
_FDT((fdt_pack(fdt)));
if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
fdt_totalsize(fdt), FDT_MAX_SIZE);
exit(1);
}
cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
g_free(fdt);
}
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
}
static void emulate_spapr_hypercall(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
if (msr_pr) {
hcall_dprintf("Hypercall made with MSR[PR]=1\n");
env->gpr[3] = H_PRIVILEGE;
} else {
env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
}
}
static void spapr_reset_htab(sPAPREnvironment *spapr)
{
long shift;
/* allocate hash page table. For now we always make this 16mb,
* later we should probably make it scale to the size of guest
* RAM */
shift = kvmppc_reset_htab(spapr->htab_shift);
if (shift > 0) {
/* Kernel handles htab, we don't need to allocate one */
spapr->htab_shift = shift;
} else {
if (!spapr->htab) {
/* Allocate an htab if we don't yet have one */
spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
}
/* And clear it */
memset(spapr->htab, 0, HTAB_SIZE(spapr));
}
/* Update the RMA size if necessary */
if (spapr->vrma_adjust) {
spapr->rma_size = kvmppc_rma_size(ram_size, spapr->htab_shift);
}
}
static void ppc_spapr_reset(void)
{
PowerPCCPU *first_ppc_cpu;
/* Reset the hash table & recalc the RMA */
spapr_reset_htab(spapr);
qemu_devices_reset();
/* Load the fdt */
spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
spapr->rtas_size);
/* Set up the entry state */
first_ppc_cpu = POWERPC_CPU(first_cpu);
first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
first_ppc_cpu->env.gpr[5] = 0;
first_cpu->halted = 0;
first_ppc_cpu->env.nip = spapr->entry_point;
}
static void spapr_cpu_reset(void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
cpu_reset(cs);
/* All CPUs start halted. CPU0 is unhalted from the machine level
* reset code and the rest are explicitly started up by the guest
* using an RTAS call */
cs->halted = 1;
env->spr[SPR_HIOR] = 0;
env->external_htab = (uint8_t *)spapr->htab;
env->htab_base = -1;
env->htab_mask = HTAB_SIZE(spapr) - 1;
env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
(spapr->htab_shift - 18);
}
static void spapr_create_nvram(sPAPREnvironment *spapr)
{
DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
const char *drivename = qemu_opt_get(qemu_get_machine_opts(), "nvram");
if (drivename) {
BlockDriverState *bs;
bs = bdrv_find(drivename);
if (!bs) {
fprintf(stderr, "No such block device \"%s\" for nvram\n",
drivename);
exit(1);
}
qdev_prop_set_drive_nofail(dev, "drive", bs);
}
qdev_init_nofail(dev);
spapr->nvram = (struct sPAPRNVRAM *)dev;
}
/* Returns whether we want to use VGA or not */
static int spapr_vga_init(PCIBus *pci_bus)
{
switch (vga_interface_type) {
case VGA_NONE:
case VGA_STD:
return pci_vga_init(pci_bus) != NULL;
default:
fprintf(stderr, "This vga model is not supported,"
"currently it only supports -vga std\n");
exit(0);
break;
}
}
static const VMStateDescription vmstate_spapr = {
.name = "spapr",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField []) {
VMSTATE_UINT32(next_irq, sPAPREnvironment),
/* RTC offset */
VMSTATE_UINT64(rtc_offset, sPAPREnvironment),
VMSTATE_END_OF_LIST()
},
};
#define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
#define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
#define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
#define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
static int htab_save_setup(QEMUFile *f, void *opaque)
{
sPAPREnvironment *spapr = opaque;
/* "Iteration" header */
qemu_put_be32(f, spapr->htab_shift);
if (spapr->htab) {
spapr->htab_save_index = 0;
spapr->htab_first_pass = true;
} else {
assert(kvm_enabled());
spapr->htab_fd = kvmppc_get_htab_fd(false);
if (spapr->htab_fd < 0) {
fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
strerror(errno));
return -1;
}
}
return 0;
}
static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
int64_t max_ns)
{
int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
int index = spapr->htab_save_index;
int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
assert(spapr->htab_first_pass);
do {
int chunkstart;
/* Consume invalid HPTEs */
while ((index < htabslots)
&& !HPTE_VALID(HPTE(spapr->htab, index))) {
index++;
CLEAN_HPTE(HPTE(spapr->htab, index));
}
/* Consume valid HPTEs */
chunkstart = index;
while ((index < htabslots)
&& HPTE_VALID(HPTE(spapr->htab, index))) {
index++;
CLEAN_HPTE(HPTE(spapr->htab, index));
}
if (index > chunkstart) {
int n_valid = index - chunkstart;
qemu_put_be32(f, chunkstart);
qemu_put_be16(f, n_valid);
qemu_put_be16(f, 0);
qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
HASH_PTE_SIZE_64 * n_valid);
if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
break;
}
}
} while ((index < htabslots) && !qemu_file_rate_limit(f));
if (index >= htabslots) {
assert(index == htabslots);
index = 0;
spapr->htab_first_pass = false;
}
spapr->htab_save_index = index;
}
static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
int64_t max_ns)
{
bool final = max_ns < 0;
int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
int examined = 0, sent = 0;
int index = spapr->htab_save_index;
int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
assert(!spapr->htab_first_pass);
do {
int chunkstart, invalidstart;
/* Consume non-dirty HPTEs */
while ((index < htabslots)
&& !HPTE_DIRTY(HPTE(spapr->htab, index))) {
index++;
examined++;
}
chunkstart = index;
/* Consume valid dirty HPTEs */
while ((index < htabslots)
&& HPTE_DIRTY(HPTE(spapr->htab, index))
&& HPTE_VALID(HPTE(spapr->htab, index))) {
CLEAN_HPTE(HPTE(spapr->htab, index));
index++;
examined++;
}
invalidstart = index;
/* Consume invalid dirty HPTEs */
while ((index < htabslots)
&& HPTE_DIRTY(HPTE(spapr->htab, index))
&& !HPTE_VALID(HPTE(spapr->htab, index))) {
CLEAN_HPTE(HPTE(spapr->htab, index));
index++;
examined++;
}
if (index > chunkstart) {
int n_valid = invalidstart - chunkstart;
int n_invalid = index - invalidstart;
qemu_put_be32(f, chunkstart);
qemu_put_be16(f, n_valid);
qemu_put_be16(f, n_invalid);
qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
HASH_PTE_SIZE_64 * n_valid);
sent += index - chunkstart;
if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
break;
}
}
if (examined >= htabslots) {
break;
}
if (index >= htabslots) {
assert(index == htabslots);
index = 0;
}
} while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
if (index >= htabslots) {
assert(index == htabslots);
index = 0;
}
spapr->htab_save_index = index;
return (examined >= htabslots) && (sent == 0) ? 1 : 0;
}
#define MAX_ITERATION_NS 5000000 /* 5 ms */
#define MAX_KVM_BUF_SIZE 2048
static int htab_save_iterate(QEMUFile *f, void *opaque)
{
sPAPREnvironment *spapr = opaque;
int rc = 0;
/* Iteration header */
qemu_put_be32(f, 0);
if (!spapr->htab) {
assert(kvm_enabled());
rc = kvmppc_save_htab(f, spapr->htab_fd,
MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
if (rc < 0) {
return rc;
}
} else if (spapr->htab_first_pass) {
htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
} else {
rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
}
/* End marker */
qemu_put_be32(f, 0);
qemu_put_be16(f, 0);
qemu_put_be16(f, 0);
return rc;
}
static int htab_save_complete(QEMUFile *f, void *opaque)
{
sPAPREnvironment *spapr = opaque;
/* Iteration header */
qemu_put_be32(f, 0);
if (!spapr->htab) {
int rc;
assert(kvm_enabled());
rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
if (rc < 0) {
return rc;
}
close(spapr->htab_fd);
spapr->htab_fd = -1;
} else {
htab_save_later_pass(f, spapr, -1);
}
/* End marker */
qemu_put_be32(f, 0);
qemu_put_be16(f, 0);
qemu_put_be16(f, 0);
return 0;
}
static int htab_load(QEMUFile *f, void *opaque, int version_id)
{
sPAPREnvironment *spapr = opaque;
uint32_t section_hdr;
int fd = -1;
if (version_id < 1 || version_id > 1) {
fprintf(stderr, "htab_load() bad version\n");
return -EINVAL;
}
section_hdr = qemu_get_be32(f);
if (section_hdr) {
/* First section, just the hash shift */
if (spapr->htab_shift != section_hdr) {
return -EINVAL;
}
return 0;
}
if (!spapr->htab) {
assert(kvm_enabled());
fd = kvmppc_get_htab_fd(true);
if (fd < 0) {
fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
strerror(errno));
}
}
while (true) {
uint32_t index;
uint16_t n_valid, n_invalid;
index = qemu_get_be32(f);
n_valid = qemu_get_be16(f);
n_invalid = qemu_get_be16(f);
if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
/* End of Stream */
break;
}
if ((index + n_valid + n_invalid) >
(HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
/* Bad index in stream */
fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
"in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
spapr->htab_shift);
return -EINVAL;
}
if (spapr->htab) {
if (n_valid) {
qemu_get_buffer(f, HPTE(spapr->htab, index),
HASH_PTE_SIZE_64 * n_valid);
}
if (n_invalid) {
memset(HPTE(spapr->htab, index + n_valid), 0,
HASH_PTE_SIZE_64 * n_invalid);
}
} else {
int rc;
assert(fd >= 0);
rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
if (rc < 0) {
return rc;
}
}
}
if (!spapr->htab) {
assert(fd >= 0);
close(fd);
}
return 0;
}
static SaveVMHandlers savevm_htab_handlers = {
.save_live_setup = htab_save_setup,
.save_live_iterate = htab_save_iterate,
.save_live_complete = htab_save_complete,
.load_state = htab_load,
};
/* pSeries LPAR / sPAPR hardware init */
static void ppc_spapr_init(QEMUMachineInitArgs *args)
{
ram_addr_t ram_size = args->ram_size;
const char *cpu_model = args->cpu_model;
const char *kernel_filename = args->kernel_filename;
const char *kernel_cmdline = args->kernel_cmdline;
const char *initrd_filename = args->initrd_filename;
const char *boot_device = args->boot_order;
PowerPCCPU *cpu;
CPUPPCState *env;
PCIHostState *phb;
int i;
MemoryRegion *sysmem = get_system_memory();
MemoryRegion *ram = g_new(MemoryRegion, 1);
hwaddr rma_alloc_size;
uint32_t initrd_base = 0;
long kernel_size = 0, initrd_size = 0;
long load_limit, rtas_limit, fw_size;
bool kernel_le = false;
char *filename;
msi_supported = true;
spapr = g_malloc0(sizeof(*spapr));
QLIST_INIT(&spapr->phbs);
cpu_ppc_hypercall = emulate_spapr_hypercall;
/* Allocate RMA if necessary */
rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
if (rma_alloc_size == -1) {
hw_error("qemu: Unable to create RMA\n");
exit(1);
}
if (rma_alloc_size && (rma_alloc_size < ram_size)) {
spapr->rma_size = rma_alloc_size;
} else {
spapr->rma_size = ram_size;
/* With KVM, we don't actually know whether KVM supports an
* unbounded RMA (PR KVM) or is limited by the hash table size
* (HV KVM using VRMA), so we always assume the latter
*
* In that case, we also limit the initial allocations for RTAS
* etc... to 256M since we have no way to know what the VRMA size
* is going to be as it depends on the size of the hash table
* isn't determined yet.
*/
if (kvm_enabled()) {
spapr->vrma_adjust = 1;
spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
}
}
/* We place the device tree and RTAS just below either the top of the RMA,
* or just below 2GB, whichever is lowere, so that it can be
* processed with 32-bit real mode code if necessary */
rtas_limit = MIN(spapr->rma_size, 0x80000000);
spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
load_limit = spapr->fdt_addr - FW_OVERHEAD;
/* We aim for a hash table of size 1/128 the size of RAM. The
* normal rule of thumb is 1/64 the size of RAM, but that's much
* more than needed for the Linux guests we support. */
spapr->htab_shift = 18; /* Minimum architected size */
while (spapr->htab_shift <= 46) {
if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
break;
}
spapr->htab_shift++;
}
/* Set up Interrupt Controller before we create the VCPUs */
spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
XICS_IRQS);
spapr->next_irq = XICS_IRQ_BASE;
/* init CPUs */
if (cpu_model == NULL) {
cpu_model = kvm_enabled() ? "host" : "POWER7";
}
for (i = 0; i < smp_cpus; i++) {
cpu = cpu_ppc_init(cpu_model);
if (cpu == NULL) {
fprintf(stderr, "Unable to find PowerPC CPU definition\n");
exit(1);
}
env = &cpu->env;
/* Set time-base frequency to 512 MHz */
cpu_ppc_tb_init(env, TIMEBASE_FREQ);
/* PAPR always has exception vectors in RAM not ROM. To ensure this,
* MSR[IP] should never be set.
*/
env->msr_mask &= ~(1 << 6);
/* Tell KVM that we're in PAPR mode */
if (kvm_enabled()) {
kvmppc_set_papr(cpu);
}
xics_cpu_setup(spapr->icp, cpu);
qemu_register_reset(spapr_cpu_reset, cpu);
}
/* allocate RAM */
spapr->ram_limit = ram_size;
if (spapr->ram_limit > rma_alloc_size) {
ram_addr_t nonrma_base = rma_alloc_size;
ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size);
vmstate_register_ram_global(ram);
memory_region_add_subregion(sysmem, nonrma_base, ram);
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
rtas_limit - spapr->rtas_addr);
if (spapr->rtas_size < 0) {
hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
exit(1);
}
if (spapr->rtas_size > RTAS_MAX_SIZE) {
hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
spapr->rtas_size, RTAS_MAX_SIZE);
exit(1);
}
g_free(filename);
/* Set up EPOW events infrastructure */
spapr_events_init(spapr);
/* Set up VIO bus */
spapr->vio_bus = spapr_vio_bus_init();
for (i = 0; i < MAX_SERIAL_PORTS; i++) {
if (serial_hds[i]) {
spapr_vty_create(spapr->vio_bus, serial_hds[i]);
}
}
/* We always have at least the nvram device on VIO */
spapr_create_nvram(spapr);
/* Set up PCI */
spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW);
spapr_pci_rtas_init();
phb = spapr_create_phb(spapr, 0);
for (i = 0; i < nb_nics; i++) {
NICInfo *nd = &nd_table[i];
if (!nd->model) {
nd->model = g_strdup("ibmveth");
}
if (strcmp(nd->model, "ibmveth") == 0) {
spapr_vlan_create(spapr->vio_bus, nd);
} else {
pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
}
}
for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
spapr_vscsi_create(spapr->vio_bus);
}
/* Graphics */
if (spapr_vga_init(phb->bus)) {
spapr->has_graphics = true;
}
if (usb_enabled(spapr->has_graphics)) {
pci_create_simple(phb->bus, -1, "pci-ohci");
if (spapr->has_graphics) {
usbdevice_create("keyboard");
usbdevice_create("mouse");
}
}
if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
"%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
exit(1);
}
if (kernel_filename) {
uint64_t lowaddr = 0;
kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
if (kernel_size < 0) {
kernel_size = load_elf(kernel_filename,
translate_kernel_address, NULL,
NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
kernel_le = kernel_size > 0;
}
if (kernel_size < 0) {
kernel_size = load_image_targphys(kernel_filename,
KERNEL_LOAD_ADDR,
load_limit - KERNEL_LOAD_ADDR);
}
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
/* load initrd */
if (initrd_filename) {
/* Try to locate the initrd in the gap between the kernel
* and the firmware. Add a bit of space just in case
*/
initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
initrd_size = load_image_targphys(initrd_filename, initrd_base,
load_limit - initrd_base);
if (initrd_size < 0) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
initrd_filename);
exit(1);
}
} else {
initrd_base = 0;
initrd_size = 0;
}
}
if (bios_name == NULL) {
bios_name = FW_FILE_NAME;
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
if (fw_size < 0) {
hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
exit(1);
}
g_free(filename);
spapr->entry_point = 0x100;
vmstate_register(NULL, 0, &vmstate_spapr, spapr);
register_savevm_live(NULL, "spapr/htab", -1, 1,
&savevm_htab_handlers, spapr);
/* Prepare the device tree */
spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
kernel_size, kernel_le,
boot_device, kernel_cmdline,
spapr->epow_irq);
assert(spapr->fdt_skel != NULL);
}
static QEMUMachine spapr_machine = {
.name = "pseries",
.desc = "pSeries Logical Partition (PAPR compliant)",
.is_default = 1,
.init = ppc_spapr_init,
.reset = ppc_spapr_reset,
.block_default_type = IF_SCSI,
.max_cpus = MAX_CPUS,
.no_parallel = 1,
.default_boot_order = NULL,
};
static void spapr_machine_init(void)
{
qemu_register_machine(&spapr_machine);
}
machine_init(spapr_machine_init);