| /* |
| * QEMU emulation of an Intel IOMMU (VT-d) |
| * (DMA Remapping device) |
| * |
| * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com> |
| * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/error-report.h" |
| #include "qapi/error.h" |
| #include "hw/sysbus.h" |
| #include "exec/address-spaces.h" |
| #include "intel_iommu_internal.h" |
| #include "hw/pci/pci.h" |
| #include "hw/pci/pci_bus.h" |
| #include "hw/i386/pc.h" |
| #include "hw/i386/apic-msidef.h" |
| #include "hw/boards.h" |
| #include "hw/i386/x86-iommu.h" |
| #include "hw/pci-host/q35.h" |
| #include "sysemu/kvm.h" |
| #include "hw/i386/apic_internal.h" |
| #include "kvm_i386.h" |
| #include "trace.h" |
| |
| /* context entry operations */ |
| #define VTD_CE_GET_RID2PASID(ce) \ |
| ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK) |
| #define VTD_CE_GET_PASID_DIR_TABLE(ce) \ |
| ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK) |
| |
| /* pe operations */ |
| #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT) |
| #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW)) |
| #define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\ |
| if (ret_fr) { \ |
| ret_fr = -ret_fr; \ |
| if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { \ |
| trace_vtd_fault_disabled(); \ |
| } else { \ |
| vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); \ |
| } \ |
| goto error; \ |
| } \ |
| } |
| |
| static void vtd_address_space_refresh_all(IntelIOMMUState *s); |
| static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n); |
| |
| static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val, |
| uint64_t wmask, uint64_t w1cmask) |
| { |
| stq_le_p(&s->csr[addr], val); |
| stq_le_p(&s->wmask[addr], wmask); |
| stq_le_p(&s->w1cmask[addr], w1cmask); |
| } |
| |
| static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask) |
| { |
| stq_le_p(&s->womask[addr], mask); |
| } |
| |
| static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val, |
| uint32_t wmask, uint32_t w1cmask) |
| { |
| stl_le_p(&s->csr[addr], val); |
| stl_le_p(&s->wmask[addr], wmask); |
| stl_le_p(&s->w1cmask[addr], w1cmask); |
| } |
| |
| static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask) |
| { |
| stl_le_p(&s->womask[addr], mask); |
| } |
| |
| /* "External" get/set operations */ |
| static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val) |
| { |
| uint64_t oldval = ldq_le_p(&s->csr[addr]); |
| uint64_t wmask = ldq_le_p(&s->wmask[addr]); |
| uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]); |
| stq_le_p(&s->csr[addr], |
| ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val)); |
| } |
| |
| static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val) |
| { |
| uint32_t oldval = ldl_le_p(&s->csr[addr]); |
| uint32_t wmask = ldl_le_p(&s->wmask[addr]); |
| uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]); |
| stl_le_p(&s->csr[addr], |
| ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val)); |
| } |
| |
| static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr) |
| { |
| uint64_t val = ldq_le_p(&s->csr[addr]); |
| uint64_t womask = ldq_le_p(&s->womask[addr]); |
| return val & ~womask; |
| } |
| |
| static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr) |
| { |
| uint32_t val = ldl_le_p(&s->csr[addr]); |
| uint32_t womask = ldl_le_p(&s->womask[addr]); |
| return val & ~womask; |
| } |
| |
| /* "Internal" get/set operations */ |
| static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr) |
| { |
| return ldq_le_p(&s->csr[addr]); |
| } |
| |
| static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr) |
| { |
| return ldl_le_p(&s->csr[addr]); |
| } |
| |
| static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val) |
| { |
| stq_le_p(&s->csr[addr], val); |
| } |
| |
| static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr, |
| uint32_t clear, uint32_t mask) |
| { |
| uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask; |
| stl_le_p(&s->csr[addr], new_val); |
| return new_val; |
| } |
| |
| static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr, |
| uint64_t clear, uint64_t mask) |
| { |
| uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask; |
| stq_le_p(&s->csr[addr], new_val); |
| return new_val; |
| } |
| |
| static inline void vtd_iommu_lock(IntelIOMMUState *s) |
| { |
| qemu_mutex_lock(&s->iommu_lock); |
| } |
| |
| static inline void vtd_iommu_unlock(IntelIOMMUState *s) |
| { |
| qemu_mutex_unlock(&s->iommu_lock); |
| } |
| |
| static void vtd_update_scalable_state(IntelIOMMUState *s) |
| { |
| uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG); |
| |
| if (s->scalable_mode) { |
| s->root_scalable = val & VTD_RTADDR_SMT; |
| } |
| } |
| |
| /* Whether the address space needs to notify new mappings */ |
| static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as) |
| { |
| return as->notifier_flags & IOMMU_NOTIFIER_MAP; |
| } |
| |
| /* GHashTable functions */ |
| static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2) |
| { |
| return *((const uint64_t *)v1) == *((const uint64_t *)v2); |
| } |
| |
| static guint vtd_uint64_hash(gconstpointer v) |
| { |
| return (guint)*(const uint64_t *)v; |
| } |
| |
| static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value, |
| gpointer user_data) |
| { |
| VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value; |
| uint16_t domain_id = *(uint16_t *)user_data; |
| return entry->domain_id == domain_id; |
| } |
| |
| /* The shift of an addr for a certain level of paging structure */ |
| static inline uint32_t vtd_slpt_level_shift(uint32_t level) |
| { |
| assert(level != 0); |
| return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS; |
| } |
| |
| static inline uint64_t vtd_slpt_level_page_mask(uint32_t level) |
| { |
| return ~((1ULL << vtd_slpt_level_shift(level)) - 1); |
| } |
| |
| static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value, |
| gpointer user_data) |
| { |
| VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value; |
| VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data; |
| uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask; |
| uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K; |
| return (entry->domain_id == info->domain_id) && |
| (((entry->gfn & info->mask) == gfn) || |
| (entry->gfn == gfn_tlb)); |
| } |
| |
| /* Reset all the gen of VTDAddressSpace to zero and set the gen of |
| * IntelIOMMUState to 1. Must be called with IOMMU lock held. |
| */ |
| static void vtd_reset_context_cache_locked(IntelIOMMUState *s) |
| { |
| VTDAddressSpace *vtd_as; |
| VTDBus *vtd_bus; |
| GHashTableIter bus_it; |
| uint32_t devfn_it; |
| |
| trace_vtd_context_cache_reset(); |
| |
| g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr); |
| |
| while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) { |
| for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) { |
| vtd_as = vtd_bus->dev_as[devfn_it]; |
| if (!vtd_as) { |
| continue; |
| } |
| vtd_as->context_cache_entry.context_cache_gen = 0; |
| } |
| } |
| s->context_cache_gen = 1; |
| } |
| |
| /* Must be called with IOMMU lock held. */ |
| static void vtd_reset_iotlb_locked(IntelIOMMUState *s) |
| { |
| assert(s->iotlb); |
| g_hash_table_remove_all(s->iotlb); |
| } |
| |
| static void vtd_reset_iotlb(IntelIOMMUState *s) |
| { |
| vtd_iommu_lock(s); |
| vtd_reset_iotlb_locked(s); |
| vtd_iommu_unlock(s); |
| } |
| |
| static void vtd_reset_caches(IntelIOMMUState *s) |
| { |
| vtd_iommu_lock(s); |
| vtd_reset_iotlb_locked(s); |
| vtd_reset_context_cache_locked(s); |
| vtd_iommu_unlock(s); |
| } |
| |
| static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id, |
| uint32_t level) |
| { |
| return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) | |
| ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT); |
| } |
| |
| static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level) |
| { |
| return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K; |
| } |
| |
| /* Must be called with IOMMU lock held */ |
| static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id, |
| hwaddr addr) |
| { |
| VTDIOTLBEntry *entry; |
| uint64_t key; |
| int level; |
| |
| for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) { |
| key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level), |
| source_id, level); |
| entry = g_hash_table_lookup(s->iotlb, &key); |
| if (entry) { |
| goto out; |
| } |
| } |
| |
| out: |
| return entry; |
| } |
| |
| /* Must be with IOMMU lock held */ |
| static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id, |
| uint16_t domain_id, hwaddr addr, uint64_t slpte, |
| uint8_t access_flags, uint32_t level) |
| { |
| VTDIOTLBEntry *entry = g_malloc(sizeof(*entry)); |
| uint64_t *key = g_malloc(sizeof(*key)); |
| uint64_t gfn = vtd_get_iotlb_gfn(addr, level); |
| |
| trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id); |
| if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) { |
| trace_vtd_iotlb_reset("iotlb exceeds size limit"); |
| vtd_reset_iotlb_locked(s); |
| } |
| |
| entry->gfn = gfn; |
| entry->domain_id = domain_id; |
| entry->slpte = slpte; |
| entry->access_flags = access_flags; |
| entry->mask = vtd_slpt_level_page_mask(level); |
| *key = vtd_get_iotlb_key(gfn, source_id, level); |
| g_hash_table_replace(s->iotlb, key, entry); |
| } |
| |
| /* Given the reg addr of both the message data and address, generate an |
| * interrupt via MSI. |
| */ |
| static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg, |
| hwaddr mesg_data_reg) |
| { |
| MSIMessage msi; |
| |
| assert(mesg_data_reg < DMAR_REG_SIZE); |
| assert(mesg_addr_reg < DMAR_REG_SIZE); |
| |
| msi.address = vtd_get_long_raw(s, mesg_addr_reg); |
| msi.data = vtd_get_long_raw(s, mesg_data_reg); |
| |
| trace_vtd_irq_generate(msi.address, msi.data); |
| |
| apic_get_class()->send_msi(&msi); |
| } |
| |
| /* Generate a fault event to software via MSI if conditions are met. |
| * Notice that the value of FSTS_REG being passed to it should be the one |
| * before any update. |
| */ |
| static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts) |
| { |
| if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO || |
| pre_fsts & VTD_FSTS_IQE) { |
| error_report_once("There are previous interrupt conditions " |
| "to be serviced by software, fault event " |
| "is not generated"); |
| return; |
| } |
| vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP); |
| if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) { |
| error_report_once("Interrupt Mask set, irq is not generated"); |
| } else { |
| vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG); |
| vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); |
| } |
| } |
| |
| /* Check if the Fault (F) field of the Fault Recording Register referenced by |
| * @index is Set. |
| */ |
| static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index) |
| { |
| /* Each reg is 128-bit */ |
| hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); |
| addr += 8; /* Access the high 64-bit half */ |
| |
| assert(index < DMAR_FRCD_REG_NR); |
| |
| return vtd_get_quad_raw(s, addr) & VTD_FRCD_F; |
| } |
| |
| /* Update the PPF field of Fault Status Register. |
| * Should be called whenever change the F field of any fault recording |
| * registers. |
| */ |
| static void vtd_update_fsts_ppf(IntelIOMMUState *s) |
| { |
| uint32_t i; |
| uint32_t ppf_mask = 0; |
| |
| for (i = 0; i < DMAR_FRCD_REG_NR; i++) { |
| if (vtd_is_frcd_set(s, i)) { |
| ppf_mask = VTD_FSTS_PPF; |
| break; |
| } |
| } |
| vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask); |
| trace_vtd_fsts_ppf(!!ppf_mask); |
| } |
| |
| static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index) |
| { |
| /* Each reg is 128-bit */ |
| hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); |
| addr += 8; /* Access the high 64-bit half */ |
| |
| assert(index < DMAR_FRCD_REG_NR); |
| |
| vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F); |
| vtd_update_fsts_ppf(s); |
| } |
| |
| /* Must not update F field now, should be done later */ |
| static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index, |
| uint16_t source_id, hwaddr addr, |
| VTDFaultReason fault, bool is_write) |
| { |
| uint64_t hi = 0, lo; |
| hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); |
| |
| assert(index < DMAR_FRCD_REG_NR); |
| |
| lo = VTD_FRCD_FI(addr); |
| hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault); |
| if (!is_write) { |
| hi |= VTD_FRCD_T; |
| } |
| vtd_set_quad_raw(s, frcd_reg_addr, lo); |
| vtd_set_quad_raw(s, frcd_reg_addr + 8, hi); |
| |
| trace_vtd_frr_new(index, hi, lo); |
| } |
| |
| /* Try to collapse multiple pending faults from the same requester */ |
| static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id) |
| { |
| uint32_t i; |
| uint64_t frcd_reg; |
| hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */ |
| |
| for (i = 0; i < DMAR_FRCD_REG_NR; i++) { |
| frcd_reg = vtd_get_quad_raw(s, addr); |
| if ((frcd_reg & VTD_FRCD_F) && |
| ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) { |
| return true; |
| } |
| addr += 16; /* 128-bit for each */ |
| } |
| return false; |
| } |
| |
| /* Log and report an DMAR (address translation) fault to software */ |
| static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id, |
| hwaddr addr, VTDFaultReason fault, |
| bool is_write) |
| { |
| uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); |
| |
| assert(fault < VTD_FR_MAX); |
| |
| if (fault == VTD_FR_RESERVED_ERR) { |
| /* This is not a normal fault reason case. Drop it. */ |
| return; |
| } |
| |
| trace_vtd_dmar_fault(source_id, fault, addr, is_write); |
| |
| if (fsts_reg & VTD_FSTS_PFO) { |
| error_report_once("New fault is not recorded due to " |
| "Primary Fault Overflow"); |
| return; |
| } |
| |
| if (vtd_try_collapse_fault(s, source_id)) { |
| error_report_once("New fault is not recorded due to " |
| "compression of faults"); |
| return; |
| } |
| |
| if (vtd_is_frcd_set(s, s->next_frcd_reg)) { |
| error_report_once("Next Fault Recording Reg is used, " |
| "new fault is not recorded, set PFO field"); |
| vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO); |
| return; |
| } |
| |
| vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write); |
| |
| if (fsts_reg & VTD_FSTS_PPF) { |
| error_report_once("There are pending faults already, " |
| "fault event is not generated"); |
| vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); |
| s->next_frcd_reg++; |
| if (s->next_frcd_reg == DMAR_FRCD_REG_NR) { |
| s->next_frcd_reg = 0; |
| } |
| } else { |
| vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK, |
| VTD_FSTS_FRI(s->next_frcd_reg)); |
| vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */ |
| s->next_frcd_reg++; |
| if (s->next_frcd_reg == DMAR_FRCD_REG_NR) { |
| s->next_frcd_reg = 0; |
| } |
| /* This case actually cause the PPF to be Set. |
| * So generate fault event (interrupt). |
| */ |
| vtd_generate_fault_event(s, fsts_reg); |
| } |
| } |
| |
| /* Handle Invalidation Queue Errors of queued invalidation interface error |
| * conditions. |
| */ |
| static void vtd_handle_inv_queue_error(IntelIOMMUState *s) |
| { |
| uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); |
| |
| vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE); |
| vtd_generate_fault_event(s, fsts_reg); |
| } |
| |
| /* Set the IWC field and try to generate an invalidation completion interrupt */ |
| static void vtd_generate_completion_event(IntelIOMMUState *s) |
| { |
| if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) { |
| trace_vtd_inv_desc_wait_irq("One pending, skip current"); |
| return; |
| } |
| vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC); |
| vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP); |
| if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) { |
| trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, " |
| "new event not generated"); |
| return; |
| } else { |
| /* Generate the interrupt event */ |
| trace_vtd_inv_desc_wait_irq("Generating complete event"); |
| vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG); |
| vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); |
| } |
| } |
| |
| static inline bool vtd_root_entry_present(IntelIOMMUState *s, |
| VTDRootEntry *re, |
| uint8_t devfn) |
| { |
| if (s->root_scalable && devfn > UINT8_MAX / 2) { |
| return re->hi & VTD_ROOT_ENTRY_P; |
| } |
| |
| return re->lo & VTD_ROOT_ENTRY_P; |
| } |
| |
| static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index, |
| VTDRootEntry *re) |
| { |
| dma_addr_t addr; |
| |
| addr = s->root + index * sizeof(*re); |
| if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) { |
| re->lo = 0; |
| return -VTD_FR_ROOT_TABLE_INV; |
| } |
| re->lo = le64_to_cpu(re->lo); |
| re->hi = le64_to_cpu(re->hi); |
| return 0; |
| } |
| |
| static inline bool vtd_ce_present(VTDContextEntry *context) |
| { |
| return context->lo & VTD_CONTEXT_ENTRY_P; |
| } |
| |
| static int vtd_get_context_entry_from_root(IntelIOMMUState *s, |
| VTDRootEntry *re, |
| uint8_t index, |
| VTDContextEntry *ce) |
| { |
| dma_addr_t addr, ce_size; |
| |
| /* we have checked that root entry is present */ |
| ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE : |
| VTD_CTX_ENTRY_LEGACY_SIZE; |
| |
| if (s->root_scalable && index > UINT8_MAX / 2) { |
| index = index & (~VTD_DEVFN_CHECK_MASK); |
| addr = re->hi & VTD_ROOT_ENTRY_CTP; |
| } else { |
| addr = re->lo & VTD_ROOT_ENTRY_CTP; |
| } |
| |
| addr = addr + index * ce_size; |
| if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) { |
| return -VTD_FR_CONTEXT_TABLE_INV; |
| } |
| |
| ce->lo = le64_to_cpu(ce->lo); |
| ce->hi = le64_to_cpu(ce->hi); |
| if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) { |
| ce->val[2] = le64_to_cpu(ce->val[2]); |
| ce->val[3] = le64_to_cpu(ce->val[3]); |
| } |
| return 0; |
| } |
| |
| static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce) |
| { |
| return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR; |
| } |
| |
| static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw) |
| { |
| return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw); |
| } |
| |
| /* Whether the pte indicates the address of the page frame */ |
| static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level) |
| { |
| return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK); |
| } |
| |
| /* Get the content of a spte located in @base_addr[@index] */ |
| static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index) |
| { |
| uint64_t slpte; |
| |
| assert(index < VTD_SL_PT_ENTRY_NR); |
| |
| if (dma_memory_read(&address_space_memory, |
| base_addr + index * sizeof(slpte), &slpte, |
| sizeof(slpte))) { |
| slpte = (uint64_t)-1; |
| return slpte; |
| } |
| slpte = le64_to_cpu(slpte); |
| return slpte; |
| } |
| |
| /* Given an iova and the level of paging structure, return the offset |
| * of current level. |
| */ |
| static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level) |
| { |
| return (iova >> vtd_slpt_level_shift(level)) & |
| ((1ULL << VTD_SL_LEVEL_BITS) - 1); |
| } |
| |
| /* Check Capability Register to see if the @level of page-table is supported */ |
| static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level) |
| { |
| return VTD_CAP_SAGAW_MASK & s->cap & |
| (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT)); |
| } |
| |
| /* Return true if check passed, otherwise false */ |
| static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu, |
| VTDPASIDEntry *pe) |
| { |
| switch (VTD_PE_GET_TYPE(pe)) { |
| case VTD_SM_PASID_ENTRY_FLT: |
| case VTD_SM_PASID_ENTRY_SLT: |
| case VTD_SM_PASID_ENTRY_NESTED: |
| break; |
| case VTD_SM_PASID_ENTRY_PT: |
| if (!x86_iommu->pt_supported) { |
| return false; |
| } |
| break; |
| default: |
| /* Unknwon type */ |
| return false; |
| } |
| return true; |
| } |
| |
| static int vtd_get_pasid_dire(dma_addr_t pasid_dir_base, |
| uint32_t pasid, |
| VTDPASIDDirEntry *pdire) |
| { |
| uint32_t index; |
| dma_addr_t addr, entry_size; |
| |
| index = VTD_PASID_DIR_INDEX(pasid); |
| entry_size = VTD_PASID_DIR_ENTRY_SIZE; |
| addr = pasid_dir_base + index * entry_size; |
| if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) { |
| return -VTD_FR_PASID_TABLE_INV; |
| } |
| |
| return 0; |
| } |
| |
| static int vtd_get_pasid_entry(IntelIOMMUState *s, |
| uint32_t pasid, |
| VTDPASIDDirEntry *pdire, |
| VTDPASIDEntry *pe) |
| { |
| uint32_t index; |
| dma_addr_t addr, entry_size; |
| X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); |
| |
| index = VTD_PASID_TABLE_INDEX(pasid); |
| entry_size = VTD_PASID_ENTRY_SIZE; |
| addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK; |
| addr = addr + index * entry_size; |
| if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) { |
| return -VTD_FR_PASID_TABLE_INV; |
| } |
| |
| /* Do translation type check */ |
| if (!vtd_pe_type_check(x86_iommu, pe)) { |
| return -VTD_FR_PASID_TABLE_INV; |
| } |
| |
| if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) { |
| return -VTD_FR_PASID_TABLE_INV; |
| } |
| |
| return 0; |
| } |
| |
| static int vtd_get_pasid_entry_from_pasid(IntelIOMMUState *s, |
| dma_addr_t pasid_dir_base, |
| uint32_t pasid, |
| VTDPASIDEntry *pe) |
| { |
| int ret; |
| VTDPASIDDirEntry pdire; |
| |
| ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire); |
| if (ret) { |
| return ret; |
| } |
| |
| ret = vtd_get_pasid_entry(s, pasid, &pdire, pe); |
| if (ret) { |
| return ret; |
| } |
| |
| return ret; |
| } |
| |
| static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s, |
| VTDContextEntry *ce, |
| VTDPASIDEntry *pe) |
| { |
| uint32_t pasid; |
| dma_addr_t pasid_dir_base; |
| int ret = 0; |
| |
| pasid = VTD_CE_GET_RID2PASID(ce); |
| pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce); |
| ret = vtd_get_pasid_entry_from_pasid(s, pasid_dir_base, pasid, pe); |
| |
| return ret; |
| } |
| |
| static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s, |
| VTDContextEntry *ce, |
| bool *pe_fpd_set) |
| { |
| int ret; |
| uint32_t pasid; |
| dma_addr_t pasid_dir_base; |
| VTDPASIDDirEntry pdire; |
| VTDPASIDEntry pe; |
| |
| pasid = VTD_CE_GET_RID2PASID(ce); |
| pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce); |
| |
| ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire); |
| if (ret) { |
| return ret; |
| } |
| |
| if (pdire.val & VTD_PASID_DIR_FPD) { |
| *pe_fpd_set = true; |
| return 0; |
| } |
| |
| ret = vtd_get_pasid_entry(s, pasid, &pdire, &pe); |
| if (ret) { |
| return ret; |
| } |
| |
| if (pe.val[0] & VTD_PASID_ENTRY_FPD) { |
| *pe_fpd_set = true; |
| } |
| |
| return 0; |
| } |
| |
| /* Get the page-table level that hardware should use for the second-level |
| * page-table walk from the Address Width field of context-entry. |
| */ |
| static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce) |
| { |
| return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW); |
| } |
| |
| static uint32_t vtd_get_iova_level(IntelIOMMUState *s, |
| VTDContextEntry *ce) |
| { |
| VTDPASIDEntry pe; |
| |
| if (s->root_scalable) { |
| vtd_ce_get_rid2pasid_entry(s, ce, &pe); |
| return VTD_PE_GET_LEVEL(&pe); |
| } |
| |
| return vtd_ce_get_level(ce); |
| } |
| |
| static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce) |
| { |
| return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9; |
| } |
| |
| static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s, |
| VTDContextEntry *ce) |
| { |
| VTDPASIDEntry pe; |
| |
| if (s->root_scalable) { |
| vtd_ce_get_rid2pasid_entry(s, ce, &pe); |
| return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9; |
| } |
| |
| return vtd_ce_get_agaw(ce); |
| } |
| |
| static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce) |
| { |
| return ce->lo & VTD_CONTEXT_ENTRY_TT; |
| } |
| |
| /* Only for Legacy Mode. Return true if check passed, otherwise false */ |
| static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu, |
| VTDContextEntry *ce) |
| { |
| switch (vtd_ce_get_type(ce)) { |
| case VTD_CONTEXT_TT_MULTI_LEVEL: |
| /* Always supported */ |
| break; |
| case VTD_CONTEXT_TT_DEV_IOTLB: |
| if (!x86_iommu->dt_supported) { |
| error_report_once("%s: DT specified but not supported", __func__); |
| return false; |
| } |
| break; |
| case VTD_CONTEXT_TT_PASS_THROUGH: |
| if (!x86_iommu->pt_supported) { |
| error_report_once("%s: PT specified but not supported", __func__); |
| return false; |
| } |
| break; |
| default: |
| /* Unknown type */ |
| error_report_once("%s: unknown ce type: %"PRIu32, __func__, |
| vtd_ce_get_type(ce)); |
| return false; |
| } |
| return true; |
| } |
| |
| static inline uint64_t vtd_iova_limit(IntelIOMMUState *s, |
| VTDContextEntry *ce, uint8_t aw) |
| { |
| uint32_t ce_agaw = vtd_get_iova_agaw(s, ce); |
| return 1ULL << MIN(ce_agaw, aw); |
| } |
| |
| /* Return true if IOVA passes range check, otherwise false. */ |
| static inline bool vtd_iova_range_check(IntelIOMMUState *s, |
| uint64_t iova, VTDContextEntry *ce, |
| uint8_t aw) |
| { |
| /* |
| * Check if @iova is above 2^X-1, where X is the minimum of MGAW |
| * in CAP_REG and AW in context-entry. |
| */ |
| return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1)); |
| } |
| |
| static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s, |
| VTDContextEntry *ce) |
| { |
| VTDPASIDEntry pe; |
| |
| if (s->root_scalable) { |
| vtd_ce_get_rid2pasid_entry(s, ce, &pe); |
| return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR; |
| } |
| |
| return vtd_ce_get_slpt_base(ce); |
| } |
| |
| /* |
| * Rsvd field masks for spte: |
| * Index [1] to [4] 4k pages |
| * Index [5] to [8] large pages |
| */ |
| static uint64_t vtd_paging_entry_rsvd_field[9]; |
| |
| static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level) |
| { |
| if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) { |
| /* Maybe large page */ |
| return slpte & vtd_paging_entry_rsvd_field[level + 4]; |
| } else { |
| return slpte & vtd_paging_entry_rsvd_field[level]; |
| } |
| } |
| |
| /* Find the VTD address space associated with a given bus number */ |
| static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num) |
| { |
| VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num]; |
| if (!vtd_bus) { |
| /* |
| * Iterate over the registered buses to find the one which |
| * currently hold this bus number, and update the bus_num |
| * lookup table: |
| */ |
| GHashTableIter iter; |
| |
| g_hash_table_iter_init(&iter, s->vtd_as_by_busptr); |
| while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) { |
| if (pci_bus_num(vtd_bus->bus) == bus_num) { |
| s->vtd_as_by_bus_num[bus_num] = vtd_bus; |
| return vtd_bus; |
| } |
| } |
| } |
| return vtd_bus; |
| } |
| |
| /* Given the @iova, get relevant @slptep. @slpte_level will be the last level |
| * of the translation, can be used for deciding the size of large page. |
| */ |
| static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce, |
| uint64_t iova, bool is_write, |
| uint64_t *slptep, uint32_t *slpte_level, |
| bool *reads, bool *writes, uint8_t aw_bits) |
| { |
| dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce); |
| uint32_t level = vtd_get_iova_level(s, ce); |
| uint32_t offset; |
| uint64_t slpte; |
| uint64_t access_right_check; |
| |
| if (!vtd_iova_range_check(s, iova, ce, aw_bits)) { |
| error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")", |
| __func__, iova); |
| return -VTD_FR_ADDR_BEYOND_MGAW; |
| } |
| |
| /* FIXME: what is the Atomics request here? */ |
| access_right_check = is_write ? VTD_SL_W : VTD_SL_R; |
| |
| while (true) { |
| offset = vtd_iova_level_offset(iova, level); |
| slpte = vtd_get_slpte(addr, offset); |
| |
| if (slpte == (uint64_t)-1) { |
| error_report_once("%s: detected read error on DMAR slpte " |
| "(iova=0x%" PRIx64 ")", __func__, iova); |
| if (level == vtd_get_iova_level(s, ce)) { |
| /* Invalid programming of context-entry */ |
| return -VTD_FR_CONTEXT_ENTRY_INV; |
| } else { |
| return -VTD_FR_PAGING_ENTRY_INV; |
| } |
| } |
| *reads = (*reads) && (slpte & VTD_SL_R); |
| *writes = (*writes) && (slpte & VTD_SL_W); |
| if (!(slpte & access_right_check)) { |
| error_report_once("%s: detected slpte permission error " |
| "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", " |
| "slpte=0x%" PRIx64 ", write=%d)", __func__, |
| iova, level, slpte, is_write); |
| return is_write ? -VTD_FR_WRITE : -VTD_FR_READ; |
| } |
| if (vtd_slpte_nonzero_rsvd(slpte, level)) { |
| error_report_once("%s: detected splte reserve non-zero " |
| "iova=0x%" PRIx64 ", level=0x%" PRIx32 |
| "slpte=0x%" PRIx64 ")", __func__, iova, |
| level, slpte); |
| return -VTD_FR_PAGING_ENTRY_RSVD; |
| } |
| |
| if (vtd_is_last_slpte(slpte, level)) { |
| *slptep = slpte; |
| *slpte_level = level; |
| return 0; |
| } |
| addr = vtd_get_slpte_addr(slpte, aw_bits); |
| level--; |
| } |
| } |
| |
| typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private); |
| |
| /** |
| * Constant information used during page walking |
| * |
| * @hook_fn: hook func to be called when detected page |
| * @private: private data to be passed into hook func |
| * @notify_unmap: whether we should notify invalid entries |
| * @as: VT-d address space of the device |
| * @aw: maximum address width |
| * @domain: domain ID of the page walk |
| */ |
| typedef struct { |
| VTDAddressSpace *as; |
| vtd_page_walk_hook hook_fn; |
| void *private; |
| bool notify_unmap; |
| uint8_t aw; |
| uint16_t domain_id; |
| } vtd_page_walk_info; |
| |
| static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info) |
| { |
| VTDAddressSpace *as = info->as; |
| vtd_page_walk_hook hook_fn = info->hook_fn; |
| void *private = info->private; |
| DMAMap target = { |
| .iova = entry->iova, |
| .size = entry->addr_mask, |
| .translated_addr = entry->translated_addr, |
| .perm = entry->perm, |
| }; |
| DMAMap *mapped = iova_tree_find(as->iova_tree, &target); |
| |
| if (entry->perm == IOMMU_NONE && !info->notify_unmap) { |
| trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask); |
| return 0; |
| } |
| |
| assert(hook_fn); |
| |
| /* Update local IOVA mapped ranges */ |
| if (entry->perm) { |
| if (mapped) { |
| /* If it's exactly the same translation, skip */ |
| if (!memcmp(mapped, &target, sizeof(target))) { |
| trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask, |
| entry->translated_addr); |
| return 0; |
| } else { |
| /* |
| * Translation changed. Normally this should not |
| * happen, but it can happen when with buggy guest |
| * OSes. Note that there will be a small window that |
| * we don't have map at all. But that's the best |
| * effort we can do. The ideal way to emulate this is |
| * atomically modify the PTE to follow what has |
| * changed, but we can't. One example is that vfio |
| * driver only has VFIO_IOMMU_[UN]MAP_DMA but no |
| * interface to modify a mapping (meanwhile it seems |
| * meaningless to even provide one). Anyway, let's |
| * mark this as a TODO in case one day we'll have |
| * a better solution. |
| */ |
| IOMMUAccessFlags cache_perm = entry->perm; |
| int ret; |
| |
| /* Emulate an UNMAP */ |
| entry->perm = IOMMU_NONE; |
| trace_vtd_page_walk_one(info->domain_id, |
| entry->iova, |
| entry->translated_addr, |
| entry->addr_mask, |
| entry->perm); |
| ret = hook_fn(entry, private); |
| if (ret) { |
| return ret; |
| } |
| /* Drop any existing mapping */ |
| iova_tree_remove(as->iova_tree, &target); |
| /* Recover the correct permission */ |
| entry->perm = cache_perm; |
| } |
| } |
| iova_tree_insert(as->iova_tree, &target); |
| } else { |
| if (!mapped) { |
| /* Skip since we didn't map this range at all */ |
| trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask); |
| return 0; |
| } |
| iova_tree_remove(as->iova_tree, &target); |
| } |
| |
| trace_vtd_page_walk_one(info->domain_id, entry->iova, |
| entry->translated_addr, entry->addr_mask, |
| entry->perm); |
| return hook_fn(entry, private); |
| } |
| |
| /** |
| * vtd_page_walk_level - walk over specific level for IOVA range |
| * |
| * @addr: base GPA addr to start the walk |
| * @start: IOVA range start address |
| * @end: IOVA range end address (start <= addr < end) |
| * @read: whether parent level has read permission |
| * @write: whether parent level has write permission |
| * @info: constant information for the page walk |
| */ |
| static int vtd_page_walk_level(dma_addr_t addr, uint64_t start, |
| uint64_t end, uint32_t level, bool read, |
| bool write, vtd_page_walk_info *info) |
| { |
| bool read_cur, write_cur, entry_valid; |
| uint32_t offset; |
| uint64_t slpte; |
| uint64_t subpage_size, subpage_mask; |
| IOMMUTLBEntry entry; |
| uint64_t iova = start; |
| uint64_t iova_next; |
| int ret = 0; |
| |
| trace_vtd_page_walk_level(addr, level, start, end); |
| |
| subpage_size = 1ULL << vtd_slpt_level_shift(level); |
| subpage_mask = vtd_slpt_level_page_mask(level); |
| |
| while (iova < end) { |
| iova_next = (iova & subpage_mask) + subpage_size; |
| |
| offset = vtd_iova_level_offset(iova, level); |
| slpte = vtd_get_slpte(addr, offset); |
| |
| if (slpte == (uint64_t)-1) { |
| trace_vtd_page_walk_skip_read(iova, iova_next); |
| goto next; |
| } |
| |
| if (vtd_slpte_nonzero_rsvd(slpte, level)) { |
| trace_vtd_page_walk_skip_reserve(iova, iova_next); |
| goto next; |
| } |
| |
| /* Permissions are stacked with parents' */ |
| read_cur = read && (slpte & VTD_SL_R); |
| write_cur = write && (slpte & VTD_SL_W); |
| |
| /* |
| * As long as we have either read/write permission, this is a |
| * valid entry. The rule works for both page entries and page |
| * table entries. |
| */ |
| entry_valid = read_cur | write_cur; |
| |
| if (!vtd_is_last_slpte(slpte, level) && entry_valid) { |
| /* |
| * This is a valid PDE (or even bigger than PDE). We need |
| * to walk one further level. |
| */ |
| ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw), |
| iova, MIN(iova_next, end), level - 1, |
| read_cur, write_cur, info); |
| } else { |
| /* |
| * This means we are either: |
| * |
| * (1) the real page entry (either 4K page, or huge page) |
| * (2) the whole range is invalid |
| * |
| * In either case, we send an IOTLB notification down. |
| */ |
| entry.target_as = &address_space_memory; |
| entry.iova = iova & subpage_mask; |
| entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur); |
| entry.addr_mask = ~subpage_mask; |
| /* NOTE: this is only meaningful if entry_valid == true */ |
| entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw); |
| ret = vtd_page_walk_one(&entry, info); |
| } |
| |
| if (ret < 0) { |
| return ret; |
| } |
| |
| next: |
| iova = iova_next; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * vtd_page_walk - walk specific IOVA range, and call the hook |
| * |
| * @s: intel iommu state |
| * @ce: context entry to walk upon |
| * @start: IOVA address to start the walk |
| * @end: IOVA range end address (start <= addr < end) |
| * @info: page walking information struct |
| */ |
| static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce, |
| uint64_t start, uint64_t end, |
| vtd_page_walk_info *info) |
| { |
| dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce); |
| uint32_t level = vtd_get_iova_level(s, ce); |
| |
| if (!vtd_iova_range_check(s, start, ce, info->aw)) { |
| return -VTD_FR_ADDR_BEYOND_MGAW; |
| } |
| |
| if (!vtd_iova_range_check(s, end, ce, info->aw)) { |
| /* Fix end so that it reaches the maximum */ |
| end = vtd_iova_limit(s, ce, info->aw); |
| } |
| |
| return vtd_page_walk_level(addr, start, end, level, true, true, info); |
| } |
| |
| static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s, |
| VTDRootEntry *re) |
| { |
| /* Legacy Mode reserved bits check */ |
| if (!s->root_scalable && |
| (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)))) |
| goto rsvd_err; |
| |
| /* Scalable Mode reserved bits check */ |
| if (s->root_scalable && |
| ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) || |
| (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits)))) |
| goto rsvd_err; |
| |
| return 0; |
| |
| rsvd_err: |
| error_report_once("%s: invalid root entry: hi=0x%"PRIx64 |
| ", lo=0x%"PRIx64, |
| __func__, re->hi, re->lo); |
| return -VTD_FR_ROOT_ENTRY_RSVD; |
| } |
| |
| static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s, |
| VTDContextEntry *ce) |
| { |
| if (!s->root_scalable && |
| (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI || |
| ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) { |
| error_report_once("%s: invalid context entry: hi=%"PRIx64 |
| ", lo=%"PRIx64" (reserved nonzero)", |
| __func__, ce->hi, ce->lo); |
| return -VTD_FR_CONTEXT_ENTRY_RSVD; |
| } |
| |
| if (s->root_scalable && |
| (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) || |
| ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 || |
| ce->val[2] || |
| ce->val[3])) { |
| error_report_once("%s: invalid context entry: val[3]=%"PRIx64 |
| ", val[2]=%"PRIx64 |
| ", val[1]=%"PRIx64 |
| ", val[0]=%"PRIx64" (reserved nonzero)", |
| __func__, ce->val[3], ce->val[2], |
| ce->val[1], ce->val[0]); |
| return -VTD_FR_CONTEXT_ENTRY_RSVD; |
| } |
| |
| return 0; |
| } |
| |
| static int vtd_ce_rid2pasid_check(IntelIOMMUState *s, |
| VTDContextEntry *ce) |
| { |
| VTDPASIDEntry pe; |
| |
| /* |
| * Make sure in Scalable Mode, a present context entry |
| * has valid rid2pasid setting, which includes valid |
| * rid2pasid field and corresponding pasid entry setting |
| */ |
| return vtd_ce_get_rid2pasid_entry(s, ce, &pe); |
| } |
| |
| /* Map a device to its corresponding domain (context-entry) */ |
| static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num, |
| uint8_t devfn, VTDContextEntry *ce) |
| { |
| VTDRootEntry re; |
| int ret_fr; |
| X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); |
| |
| ret_fr = vtd_get_root_entry(s, bus_num, &re); |
| if (ret_fr) { |
| return ret_fr; |
| } |
| |
| if (!vtd_root_entry_present(s, &re, devfn)) { |
| /* Not error - it's okay we don't have root entry. */ |
| trace_vtd_re_not_present(bus_num); |
| return -VTD_FR_ROOT_ENTRY_P; |
| } |
| |
| ret_fr = vtd_root_entry_rsvd_bits_check(s, &re); |
| if (ret_fr) { |
| return ret_fr; |
| } |
| |
| ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce); |
| if (ret_fr) { |
| return ret_fr; |
| } |
| |
| if (!vtd_ce_present(ce)) { |
| /* Not error - it's okay we don't have context entry. */ |
| trace_vtd_ce_not_present(bus_num, devfn); |
| return -VTD_FR_CONTEXT_ENTRY_P; |
| } |
| |
| ret_fr = vtd_context_entry_rsvd_bits_check(s, ce); |
| if (ret_fr) { |
| return ret_fr; |
| } |
| |
| /* Check if the programming of context-entry is valid */ |
| if (!s->root_scalable && |
| !vtd_is_level_supported(s, vtd_ce_get_level(ce))) { |
| error_report_once("%s: invalid context entry: hi=%"PRIx64 |
| ", lo=%"PRIx64" (level %d not supported)", |
| __func__, ce->hi, ce->lo, |
| vtd_ce_get_level(ce)); |
| return -VTD_FR_CONTEXT_ENTRY_INV; |
| } |
| |
| if (!s->root_scalable) { |
| /* Do translation type check */ |
| if (!vtd_ce_type_check(x86_iommu, ce)) { |
| /* Errors dumped in vtd_ce_type_check() */ |
| return -VTD_FR_CONTEXT_ENTRY_INV; |
| } |
| } else { |
| /* |
| * Check if the programming of context-entry.rid2pasid |
| * and corresponding pasid setting is valid, and thus |
| * avoids to check pasid entry fetching result in future |
| * helper function calling. |
| */ |
| ret_fr = vtd_ce_rid2pasid_check(s, ce); |
| if (ret_fr) { |
| return ret_fr; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry, |
| void *private) |
| { |
| memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry); |
| return 0; |
| } |
| |
| static uint16_t vtd_get_domain_id(IntelIOMMUState *s, |
| VTDContextEntry *ce) |
| { |
| VTDPASIDEntry pe; |
| |
| if (s->root_scalable) { |
| vtd_ce_get_rid2pasid_entry(s, ce, &pe); |
| return VTD_SM_PASID_ENTRY_DID(pe.val[1]); |
| } |
| |
| return VTD_CONTEXT_ENTRY_DID(ce->hi); |
| } |
| |
| static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as, |
| VTDContextEntry *ce, |
| hwaddr addr, hwaddr size) |
| { |
| IntelIOMMUState *s = vtd_as->iommu_state; |
| vtd_page_walk_info info = { |
| .hook_fn = vtd_sync_shadow_page_hook, |
| .private = (void *)&vtd_as->iommu, |
| .notify_unmap = true, |
| .aw = s->aw_bits, |
| .as = vtd_as, |
| .domain_id = vtd_get_domain_id(s, ce), |
| }; |
| |
| return vtd_page_walk(s, ce, addr, addr + size, &info); |
| } |
| |
| static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as) |
| { |
| int ret; |
| VTDContextEntry ce; |
| IOMMUNotifier *n; |
| |
| ret = vtd_dev_to_context_entry(vtd_as->iommu_state, |
| pci_bus_num(vtd_as->bus), |
| vtd_as->devfn, &ce); |
| if (ret) { |
| if (ret == -VTD_FR_CONTEXT_ENTRY_P) { |
| /* |
| * It's a valid scenario to have a context entry that is |
| * not present. For example, when a device is removed |
| * from an existing domain then the context entry will be |
| * zeroed by the guest before it was put into another |
| * domain. When this happens, instead of synchronizing |
| * the shadow pages we should invalidate all existing |
| * mappings and notify the backends. |
| */ |
| IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) { |
| vtd_address_space_unmap(vtd_as, n); |
| } |
| ret = 0; |
| } |
| return ret; |
| } |
| |
| return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX); |
| } |
| |
| /* |
| * Check if specific device is configed to bypass address |
| * translation for DMA requests. In Scalable Mode, bypass |
| * 1st-level translation or 2nd-level translation, it depends |
| * on PGTT setting. |
| */ |
| static bool vtd_dev_pt_enabled(VTDAddressSpace *as) |
| { |
| IntelIOMMUState *s; |
| VTDContextEntry ce; |
| VTDPASIDEntry pe; |
| int ret; |
| |
| assert(as); |
| |
| s = as->iommu_state; |
| ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus), |
| as->devfn, &ce); |
| if (ret) { |
| /* |
| * Possibly failed to parse the context entry for some reason |
| * (e.g., during init, or any guest configuration errors on |
| * context entries). We should assume PT not enabled for |
| * safety. |
| */ |
| return false; |
| } |
| |
| if (s->root_scalable) { |
| ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe); |
| if (ret) { |
| error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32, |
| __func__, ret); |
| return false; |
| } |
| return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT); |
| } |
| |
| return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH); |
| } |
| |
| /* Return whether the device is using IOMMU translation. */ |
| static bool vtd_switch_address_space(VTDAddressSpace *as) |
| { |
| bool use_iommu; |
| /* Whether we need to take the BQL on our own */ |
| bool take_bql = !qemu_mutex_iothread_locked(); |
| |
| assert(as); |
| |
| use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as); |
| |
| trace_vtd_switch_address_space(pci_bus_num(as->bus), |
| VTD_PCI_SLOT(as->devfn), |
| VTD_PCI_FUNC(as->devfn), |
| use_iommu); |
| |
| /* |
| * It's possible that we reach here without BQL, e.g., when called |
| * from vtd_pt_enable_fast_path(). However the memory APIs need |
| * it. We'd better make sure we have had it already, or, take it. |
| */ |
| if (take_bql) { |
| qemu_mutex_lock_iothread(); |
| } |
| |
| /* Turn off first then on the other */ |
| if (use_iommu) { |
| memory_region_set_enabled(&as->nodmar, false); |
| memory_region_set_enabled(MEMORY_REGION(&as->iommu), true); |
| } else { |
| memory_region_set_enabled(MEMORY_REGION(&as->iommu), false); |
| memory_region_set_enabled(&as->nodmar, true); |
| } |
| |
| if (take_bql) { |
| qemu_mutex_unlock_iothread(); |
| } |
| |
| return use_iommu; |
| } |
| |
| static void vtd_switch_address_space_all(IntelIOMMUState *s) |
| { |
| GHashTableIter iter; |
| VTDBus *vtd_bus; |
| int i; |
| |
| g_hash_table_iter_init(&iter, s->vtd_as_by_busptr); |
| while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) { |
| for (i = 0; i < PCI_DEVFN_MAX; i++) { |
| if (!vtd_bus->dev_as[i]) { |
| continue; |
| } |
| vtd_switch_address_space(vtd_bus->dev_as[i]); |
| } |
| } |
| } |
| |
| static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn) |
| { |
| return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL); |
| } |
| |
| static const bool vtd_qualified_faults[] = { |
| [VTD_FR_RESERVED] = false, |
| [VTD_FR_ROOT_ENTRY_P] = false, |
| [VTD_FR_CONTEXT_ENTRY_P] = true, |
| [VTD_FR_CONTEXT_ENTRY_INV] = true, |
| [VTD_FR_ADDR_BEYOND_MGAW] = true, |
| [VTD_FR_WRITE] = true, |
| [VTD_FR_READ] = true, |
| [VTD_FR_PAGING_ENTRY_INV] = true, |
| [VTD_FR_ROOT_TABLE_INV] = false, |
| [VTD_FR_CONTEXT_TABLE_INV] = false, |
| [VTD_FR_ROOT_ENTRY_RSVD] = false, |
| [VTD_FR_PAGING_ENTRY_RSVD] = true, |
| [VTD_FR_CONTEXT_ENTRY_TT] = true, |
| [VTD_FR_PASID_TABLE_INV] = false, |
| [VTD_FR_RESERVED_ERR] = false, |
| [VTD_FR_MAX] = false, |
| }; |
| |
| /* To see if a fault condition is "qualified", which is reported to software |
| * only if the FPD field in the context-entry used to process the faulting |
| * request is 0. |
| */ |
| static inline bool vtd_is_qualified_fault(VTDFaultReason fault) |
| { |
| return vtd_qualified_faults[fault]; |
| } |
| |
| static inline bool vtd_is_interrupt_addr(hwaddr addr) |
| { |
| return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST; |
| } |
| |
| static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id) |
| { |
| VTDBus *vtd_bus; |
| VTDAddressSpace *vtd_as; |
| bool success = false; |
| |
| vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id)); |
| if (!vtd_bus) { |
| goto out; |
| } |
| |
| vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)]; |
| if (!vtd_as) { |
| goto out; |
| } |
| |
| if (vtd_switch_address_space(vtd_as) == false) { |
| /* We switched off IOMMU region successfully. */ |
| success = true; |
| } |
| |
| out: |
| trace_vtd_pt_enable_fast_path(source_id, success); |
| } |
| |
| /* Map dev to context-entry then do a paging-structures walk to do a iommu |
| * translation. |
| * |
| * Called from RCU critical section. |
| * |
| * @bus_num: The bus number |
| * @devfn: The devfn, which is the combined of device and function number |
| * @is_write: The access is a write operation |
| * @entry: IOMMUTLBEntry that contain the addr to be translated and result |
| * |
| * Returns true if translation is successful, otherwise false. |
| */ |
| static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus, |
| uint8_t devfn, hwaddr addr, bool is_write, |
| IOMMUTLBEntry *entry) |
| { |
| IntelIOMMUState *s = vtd_as->iommu_state; |
| VTDContextEntry ce; |
| uint8_t bus_num = pci_bus_num(bus); |
| VTDContextCacheEntry *cc_entry; |
| uint64_t slpte, page_mask; |
| uint32_t level; |
| uint16_t source_id = vtd_make_source_id(bus_num, devfn); |
| int ret_fr; |
| bool is_fpd_set = false; |
| bool reads = true; |
| bool writes = true; |
| uint8_t access_flags; |
| VTDIOTLBEntry *iotlb_entry; |
| |
| /* |
| * We have standalone memory region for interrupt addresses, we |
| * should never receive translation requests in this region. |
| */ |
| assert(!vtd_is_interrupt_addr(addr)); |
| |
| vtd_iommu_lock(s); |
| |
| cc_entry = &vtd_as->context_cache_entry; |
| |
| /* Try to fetch slpte form IOTLB */ |
| iotlb_entry = vtd_lookup_iotlb(s, source_id, addr); |
| if (iotlb_entry) { |
| trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte, |
| iotlb_entry->domain_id); |
| slpte = iotlb_entry->slpte; |
| access_flags = iotlb_entry->access_flags; |
| page_mask = iotlb_entry->mask; |
| goto out; |
| } |
| |
| /* Try to fetch context-entry from cache first */ |
| if (cc_entry->context_cache_gen == s->context_cache_gen) { |
| trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi, |
| cc_entry->context_entry.lo, |
| cc_entry->context_cache_gen); |
| ce = cc_entry->context_entry; |
| is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; |
| if (!is_fpd_set && s->root_scalable) { |
| ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set); |
| VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write); |
| } |
| } else { |
| ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce); |
| is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; |
| if (!ret_fr && !is_fpd_set && s->root_scalable) { |
| ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set); |
| } |
| VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write); |
| /* Update context-cache */ |
| trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo, |
| cc_entry->context_cache_gen, |
| s->context_cache_gen); |
| cc_entry->context_entry = ce; |
| cc_entry->context_cache_gen = s->context_cache_gen; |
| } |
| |
| /* |
| * We don't need to translate for pass-through context entries. |
| * Also, let's ignore IOTLB caching as well for PT devices. |
| */ |
| if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) { |
| entry->iova = addr & VTD_PAGE_MASK_4K; |
| entry->translated_addr = entry->iova; |
| entry->addr_mask = ~VTD_PAGE_MASK_4K; |
| entry->perm = IOMMU_RW; |
| trace_vtd_translate_pt(source_id, entry->iova); |
| |
| /* |
| * When this happens, it means firstly caching-mode is not |
| * enabled, and this is the first passthrough translation for |
| * the device. Let's enable the fast path for passthrough. |
| * |
| * When passthrough is disabled again for the device, we can |
| * capture it via the context entry invalidation, then the |
| * IOMMU region can be swapped back. |
| */ |
| vtd_pt_enable_fast_path(s, source_id); |
| vtd_iommu_unlock(s); |
| return true; |
| } |
| |
| ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level, |
| &reads, &writes, s->aw_bits); |
| VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write); |
| |
| page_mask = vtd_slpt_level_page_mask(level); |
| access_flags = IOMMU_ACCESS_FLAG(reads, writes); |
| vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte, |
| access_flags, level); |
| out: |
| vtd_iommu_unlock(s); |
| entry->iova = addr & page_mask; |
| entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask; |
| entry->addr_mask = ~page_mask; |
| entry->perm = access_flags; |
| return true; |
| |
| error: |
| vtd_iommu_unlock(s); |
| entry->iova = 0; |
| entry->translated_addr = 0; |
| entry->addr_mask = 0; |
| entry->perm = IOMMU_NONE; |
| return false; |
| } |
| |
| static void vtd_root_table_setup(IntelIOMMUState *s) |
| { |
| s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG); |
| s->root_extended = s->root & VTD_RTADDR_RTT; |
| s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits); |
| |
| vtd_update_scalable_state(s); |
| |
| trace_vtd_reg_dmar_root(s->root, s->root_extended); |
| } |
| |
| static void vtd_iec_notify_all(IntelIOMMUState *s, bool global, |
| uint32_t index, uint32_t mask) |
| { |
| x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask); |
| } |
| |
| static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s) |
| { |
| uint64_t value = 0; |
| value = vtd_get_quad_raw(s, DMAR_IRTA_REG); |
| s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1); |
| s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits); |
| s->intr_eime = value & VTD_IRTA_EIME; |
| |
| /* Notify global invalidation */ |
| vtd_iec_notify_all(s, true, 0, 0); |
| |
| trace_vtd_reg_ir_root(s->intr_root, s->intr_size); |
| } |
| |
| static void vtd_iommu_replay_all(IntelIOMMUState *s) |
| { |
| VTDAddressSpace *vtd_as; |
| |
| QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { |
| vtd_sync_shadow_page_table(vtd_as); |
| } |
| } |
| |
| static void vtd_context_global_invalidate(IntelIOMMUState *s) |
| { |
| trace_vtd_inv_desc_cc_global(); |
| /* Protects context cache */ |
| vtd_iommu_lock(s); |
| s->context_cache_gen++; |
| if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) { |
| vtd_reset_context_cache_locked(s); |
| } |
| vtd_iommu_unlock(s); |
| vtd_address_space_refresh_all(s); |
| /* |
| * From VT-d spec 6.5.2.1, a global context entry invalidation |
| * should be followed by a IOTLB global invalidation, so we should |
| * be safe even without this. Hoewever, let's replay the region as |
| * well to be safer, and go back here when we need finer tunes for |
| * VT-d emulation codes. |
| */ |
| vtd_iommu_replay_all(s); |
| } |
| |
| /* Do a context-cache device-selective invalidation. |
| * @func_mask: FM field after shifting |
| */ |
| static void vtd_context_device_invalidate(IntelIOMMUState *s, |
| uint16_t source_id, |
| uint16_t func_mask) |
| { |
| uint16_t mask; |
| VTDBus *vtd_bus; |
| VTDAddressSpace *vtd_as; |
| uint8_t bus_n, devfn; |
| uint16_t devfn_it; |
| |
| trace_vtd_inv_desc_cc_devices(source_id, func_mask); |
| |
| switch (func_mask & 3) { |
| case 0: |
| mask = 0; /* No bits in the SID field masked */ |
| break; |
| case 1: |
| mask = 4; /* Mask bit 2 in the SID field */ |
| break; |
| case 2: |
| mask = 6; /* Mask bit 2:1 in the SID field */ |
| break; |
| case 3: |
| mask = 7; /* Mask bit 2:0 in the SID field */ |
| break; |
| } |
| mask = ~mask; |
| |
| bus_n = VTD_SID_TO_BUS(source_id); |
| vtd_bus = vtd_find_as_from_bus_num(s, bus_n); |
| if (vtd_bus) { |
| devfn = VTD_SID_TO_DEVFN(source_id); |
| for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) { |
| vtd_as = vtd_bus->dev_as[devfn_it]; |
| if (vtd_as && ((devfn_it & mask) == (devfn & mask))) { |
| trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it), |
| VTD_PCI_FUNC(devfn_it)); |
| vtd_iommu_lock(s); |
| vtd_as->context_cache_entry.context_cache_gen = 0; |
| vtd_iommu_unlock(s); |
| /* |
| * Do switch address space when needed, in case if the |
| * device passthrough bit is switched. |
| */ |
| vtd_switch_address_space(vtd_as); |
| /* |
| * So a device is moving out of (or moving into) a |
| * domain, resync the shadow page table. |
| * This won't bring bad even if we have no such |
| * notifier registered - the IOMMU notification |
| * framework will skip MAP notifications if that |
| * happened. |
| */ |
| vtd_sync_shadow_page_table(vtd_as); |
| } |
| } |
| } |
| } |
| |
| /* Context-cache invalidation |
| * Returns the Context Actual Invalidation Granularity. |
| * @val: the content of the CCMD_REG |
| */ |
| static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val) |
| { |
| uint64_t caig; |
| uint64_t type = val & VTD_CCMD_CIRG_MASK; |
| |
| switch (type) { |
| case VTD_CCMD_DOMAIN_INVL: |
| /* Fall through */ |
| case VTD_CCMD_GLOBAL_INVL: |
| caig = VTD_CCMD_GLOBAL_INVL_A; |
| vtd_context_global_invalidate(s); |
| break; |
| |
| case VTD_CCMD_DEVICE_INVL: |
| caig = VTD_CCMD_DEVICE_INVL_A; |
| vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val)); |
| break; |
| |
| default: |
| error_report_once("%s: invalid context: 0x%" PRIx64, |
| __func__, val); |
| caig = 0; |
| } |
| return caig; |
| } |
| |
| static void vtd_iotlb_global_invalidate(IntelIOMMUState *s) |
| { |
| trace_vtd_inv_desc_iotlb_global(); |
| vtd_reset_iotlb(s); |
| vtd_iommu_replay_all(s); |
| } |
| |
| static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id) |
| { |
| VTDContextEntry ce; |
| VTDAddressSpace *vtd_as; |
| |
| trace_vtd_inv_desc_iotlb_domain(domain_id); |
| |
| vtd_iommu_lock(s); |
| g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain, |
| &domain_id); |
| vtd_iommu_unlock(s); |
| |
| QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { |
| if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus), |
| vtd_as->devfn, &ce) && |
| domain_id == vtd_get_domain_id(s, &ce)) { |
| vtd_sync_shadow_page_table(vtd_as); |
| } |
| } |
| } |
| |
| static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s, |
| uint16_t domain_id, hwaddr addr, |
| uint8_t am) |
| { |
| VTDAddressSpace *vtd_as; |
| VTDContextEntry ce; |
| int ret; |
| hwaddr size = (1 << am) * VTD_PAGE_SIZE; |
| |
| QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) { |
| ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus), |
| vtd_as->devfn, &ce); |
| if (!ret && domain_id == vtd_get_domain_id(s, &ce)) { |
| if (vtd_as_has_map_notifier(vtd_as)) { |
| /* |
| * As long as we have MAP notifications registered in |
| * any of our IOMMU notifiers, we need to sync the |
| * shadow page table. |
| */ |
| vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size); |
| } else { |
| /* |
| * For UNMAP-only notifiers, we don't need to walk the |
| * page tables. We just deliver the PSI down to |
| * invalidate caches. |
| */ |
| IOMMUTLBEntry entry = { |
| .target_as = &address_space_memory, |
| .iova = addr, |
| .translated_addr = 0, |
| .addr_mask = size - 1, |
| .perm = IOMMU_NONE, |
| }; |
| memory_region_notify_iommu(&vtd_as->iommu, 0, entry); |
| } |
| } |
| } |
| } |
| |
| static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id, |
| hwaddr addr, uint8_t am) |
| { |
| VTDIOTLBPageInvInfo info; |
| |
| trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am); |
| |
| assert(am <= VTD_MAMV); |
| info.domain_id = domain_id; |
| info.addr = addr; |
| info.mask = ~((1 << am) - 1); |
| vtd_iommu_lock(s); |
| g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info); |
| vtd_iommu_unlock(s); |
| vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am); |
| } |
| |
| /* Flush IOTLB |
| * Returns the IOTLB Actual Invalidation Granularity. |
| * @val: the content of the IOTLB_REG |
| */ |
| static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val) |
| { |
| uint64_t iaig; |
| uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK; |
| uint16_t domain_id; |
| hwaddr addr; |
| uint8_t am; |
| |
| switch (type) { |
| case VTD_TLB_GLOBAL_FLUSH: |
| iaig = VTD_TLB_GLOBAL_FLUSH_A; |
| vtd_iotlb_global_invalidate(s); |
| break; |
| |
| case VTD_TLB_DSI_FLUSH: |
| domain_id = VTD_TLB_DID(val); |
| iaig = VTD_TLB_DSI_FLUSH_A; |
| vtd_iotlb_domain_invalidate(s, domain_id); |
| break; |
| |
| case VTD_TLB_PSI_FLUSH: |
| domain_id = VTD_TLB_DID(val); |
| addr = vtd_get_quad_raw(s, DMAR_IVA_REG); |
| am = VTD_IVA_AM(addr); |
| addr = VTD_IVA_ADDR(addr); |
| if (am > VTD_MAMV) { |
| error_report_once("%s: address mask overflow: 0x%" PRIx64, |
| __func__, vtd_get_quad_raw(s, DMAR_IVA_REG)); |
| iaig = 0; |
| break; |
| } |
| iaig = VTD_TLB_PSI_FLUSH_A; |
| vtd_iotlb_page_invalidate(s, domain_id, addr, am); |
| break; |
| |
| default: |
| error_report_once("%s: invalid granularity: 0x%" PRIx64, |
| __func__, val); |
| iaig = 0; |
| } |
| return iaig; |
| } |
| |
| static void vtd_fetch_inv_desc(IntelIOMMUState *s); |
| |
| static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s) |
| { |
| return s->qi_enabled && (s->iq_tail == s->iq_head) && |
| (s->iq_last_desc_type == VTD_INV_DESC_WAIT); |
| } |
| |
| static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en) |
| { |
| uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG); |
| |
| trace_vtd_inv_qi_enable(en); |
| |
| if (en) { |
| s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits); |
| /* 2^(x+8) entries */ |
| s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0)); |
| s->qi_enabled = true; |
| trace_vtd_inv_qi_setup(s->iq, s->iq_size); |
| /* Ok - report back to driver */ |
| vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES); |
| |
| if (s->iq_tail != 0) { |
| /* |
| * This is a spec violation but Windows guests are known to set up |
| * Queued Invalidation this way so we allow the write and process |
| * Invalidation Descriptors right away. |
| */ |
| trace_vtd_warn_invalid_qi_tail(s->iq_tail); |
| if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) { |
| vtd_fetch_inv_desc(s); |
| } |
| } |
| } else { |
| if (vtd_queued_inv_disable_check(s)) { |
| /* disable Queued Invalidation */ |
| vtd_set_quad_raw(s, DMAR_IQH_REG, 0); |
| s->iq_head = 0; |
| s->qi_enabled = false; |
| /* Ok - report back to driver */ |
| vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0); |
| } else { |
| error_report_once("%s: detected improper state when disable QI " |
| "(head=0x%x, tail=0x%x, last_type=%d)", |
| __func__, |
| s->iq_head, s->iq_tail, s->iq_last_desc_type); |
| } |
| } |
| } |
| |
| /* Set Root Table Pointer */ |
| static void vtd_handle_gcmd_srtp(IntelIOMMUState *s) |
| { |
| vtd_root_table_setup(s); |
| /* Ok - report back to driver */ |
| vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS); |
| vtd_reset_caches(s); |
| vtd_address_space_refresh_all(s); |
| } |
| |
| /* Set Interrupt Remap Table Pointer */ |
| static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s) |
| { |
| vtd_interrupt_remap_table_setup(s); |
| /* Ok - report back to driver */ |
| vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS); |
| } |
| |
| /* Handle Translation Enable/Disable */ |
| static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en) |
| { |
| if (s->dmar_enabled == en) { |
| return; |
| } |
| |
| trace_vtd_dmar_enable(en); |
| |
| if (en) { |
| s->dmar_enabled = true; |
| /* Ok - report back to driver */ |
| vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES); |
| } else { |
| s->dmar_enabled = false; |
| |
| /* Clear the index of Fault Recording Register */ |
| s->next_frcd_reg = 0; |
| /* Ok - report back to driver */ |
| vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0); |
| } |
| |
| vtd_reset_caches(s); |
| vtd_address_space_refresh_all(s); |
| } |
| |
| /* Handle Interrupt Remap Enable/Disable */ |
| static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en) |
| { |
| trace_vtd_ir_enable(en); |
| |
| if (en) { |
| s->intr_enabled = true; |
| /* Ok - report back to driver */ |
| vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES); |
| } else { |
| s->intr_enabled = false; |
| /* Ok - report back to driver */ |
| vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0); |
| } |
| } |
| |
| /* Handle write to Global Command Register */ |
| static void vtd_handle_gcmd_write(IntelIOMMUState *s) |
| { |
| uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG); |
| uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG); |
| uint32_t changed = status ^ val; |
| |
| trace_vtd_reg_write_gcmd(status, val); |
| if (changed & VTD_GCMD_TE) { |
| /* Translation enable/disable */ |
| vtd_handle_gcmd_te(s, val & VTD_GCMD_TE); |
| } |
| if (val & VTD_GCMD_SRTP) { |
| /* Set/update the root-table pointer */ |
| vtd_handle_gcmd_srtp(s); |
| } |
| if (changed & VTD_GCMD_QIE) { |
| /* Queued Invalidation Enable */ |
| vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE); |
| } |
| if (val & VTD_GCMD_SIRTP) { |
| /* Set/update the interrupt remapping root-table pointer */ |
| vtd_handle_gcmd_sirtp(s); |
| } |
| if (changed & VTD_GCMD_IRE) { |
| /* Interrupt remap enable/disable */ |
| vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE); |
| } |
| } |
| |
| /* Handle write to Context Command Register */ |
| static void vtd_handle_ccmd_write(IntelIOMMUState *s) |
| { |
| uint64_t ret; |
| uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG); |
| |
| /* Context-cache invalidation request */ |
| if (val & VTD_CCMD_ICC) { |
| if (s->qi_enabled) { |
| error_report_once("Queued Invalidation enabled, " |
| "should not use register-based invalidation"); |
| return; |
| } |
| ret = vtd_context_cache_invalidate(s, val); |
| /* Invalidation completed. Change something to show */ |
| vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL); |
| ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK, |
| ret); |
| } |
| } |
| |
| /* Handle write to IOTLB Invalidation Register */ |
| static void vtd_handle_iotlb_write(IntelIOMMUState *s) |
| { |
| uint64_t ret; |
| uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG); |
| |
| /* IOTLB invalidation request */ |
| if (val & VTD_TLB_IVT) { |
| if (s->qi_enabled) { |
| error_report_once("Queued Invalidation enabled, " |
| "should not use register-based invalidation"); |
| return; |
| } |
| ret = vtd_iotlb_flush(s, val); |
| /* Invalidation completed. Change something to show */ |
| vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL); |
| ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, |
| VTD_TLB_FLUSH_GRANU_MASK_A, ret); |
| } |
| } |
| |
| /* Fetch an Invalidation Descriptor from the Invalidation Queue */ |
| static bool vtd_get_inv_desc(IntelIOMMUState *s, |
| VTDInvDesc *inv_desc) |
| { |
| dma_addr_t base_addr = s->iq; |
| uint32_t offset = s->iq_head; |
| uint32_t dw = s->iq_dw ? 32 : 16; |
| dma_addr_t addr = base_addr + offset * dw; |
| |
| if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) { |
| error_report_once("Read INV DESC failed."); |
| return false; |
| } |
| inv_desc->lo = le64_to_cpu(inv_desc->lo); |
| inv_desc->hi = le64_to_cpu(inv_desc->hi); |
| if (dw == 32) { |
| inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]); |
| inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]); |
| } |
| return true; |
| } |
| |
| static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) |
| { |
| if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) || |
| (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) { |
| error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64 |
| " (reserved nonzero)", __func__, inv_desc->hi, |
| inv_desc->lo); |
| return false; |
| } |
| if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) { |
| /* Status Write */ |
| uint32_t status_data = (uint32_t)(inv_desc->lo >> |
| VTD_INV_DESC_WAIT_DATA_SHIFT); |
| |
| assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF)); |
| |
| /* FIXME: need to be masked with HAW? */ |
| dma_addr_t status_addr = inv_desc->hi; |
| trace_vtd_inv_desc_wait_sw(status_addr, status_data); |
| status_data = cpu_to_le32(status_data); |
| if (dma_memory_write(&address_space_memory, status_addr, &status_data, |
| sizeof(status_data))) { |
| trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo); |
| return false; |
| } |
| } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) { |
| /* Interrupt flag */ |
| vtd_generate_completion_event(s); |
| } else { |
| error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64 |
| " (unknown type)", __func__, inv_desc->hi, |
| inv_desc->lo); |
| return false; |
| } |
| return true; |
| } |
| |
| static bool vtd_process_context_cache_desc(IntelIOMMUState *s, |
| VTDInvDesc *inv_desc) |
| { |
| uint16_t sid, fmask; |
| |
| if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) { |
| error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64 |
| " (reserved nonzero)", __func__, inv_desc->hi, |
| inv_desc->lo); |
| return false; |
| } |
| switch (inv_desc->lo & VTD_INV_DESC_CC_G) { |
| case VTD_INV_DESC_CC_DOMAIN: |
| trace_vtd_inv_desc_cc_domain( |
| (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo)); |
| /* Fall through */ |
| case VTD_INV_DESC_CC_GLOBAL: |
| vtd_context_global_invalidate(s); |
| break; |
| |
| case VTD_INV_DESC_CC_DEVICE: |
| sid = VTD_INV_DESC_CC_SID(inv_desc->lo); |
| fmask = VTD_INV_DESC_CC_FM(inv_desc->lo); |
| vtd_context_device_invalidate(s, sid, fmask); |
| break; |
| |
| default: |
| error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64 |
| " (invalid type)", __func__, inv_desc->hi, |
| inv_desc->lo); |
| return false; |
| } |
| return true; |
| } |
| |
| static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) |
| { |
| uint16_t domain_id; |
| uint8_t am; |
| hwaddr addr; |
| |
| if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) || |
| (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) { |
| error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 |
| ", lo=0x%"PRIx64" (reserved bits unzero)\n", |
| __func__, inv_desc->hi, inv_desc->lo); |
| return false; |
| } |
| |
| switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) { |
| case VTD_INV_DESC_IOTLB_GLOBAL: |
| vtd_iotlb_global_invalidate(s); |
| break; |
| |
| case VTD_INV_DESC_IOTLB_DOMAIN: |
| domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo); |
| vtd_iotlb_domain_invalidate(s, domain_id); |
| break; |
| |
| case VTD_INV_DESC_IOTLB_PAGE: |
| domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo); |
| addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi); |
| am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi); |
| if (am > VTD_MAMV) { |
| error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 |
| ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)\n", |
| __func__, inv_desc->hi, inv_desc->lo, |
| am, (unsigned)VTD_MAMV); |
| return false; |
| } |
| vtd_iotlb_page_invalidate(s, domain_id, addr, am); |
| break; |
| |
| default: |
| error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 |
| ", lo=0x%"PRIx64" (type mismatch: 0x%llx)\n", |
| __func__, inv_desc->hi, inv_desc->lo, |
| inv_desc->lo & VTD_INV_DESC_IOTLB_G); |
| return false; |
| } |
| return true; |
| } |
| |
| static bool vtd_process_inv_iec_desc(IntelIOMMUState *s, |
| VTDInvDesc *inv_desc) |
| { |
| trace_vtd_inv_desc_iec(inv_desc->iec.granularity, |
| inv_desc->iec.index, |
| inv_desc->iec.index_mask); |
| |
| vtd_iec_notify_all(s, !inv_desc->iec.granularity, |
| inv_desc->iec.index, |
| inv_desc->iec.index_mask); |
| return true; |
| } |
| |
| static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s, |
| VTDInvDesc *inv_desc) |
| { |
| VTDAddressSpace *vtd_dev_as; |
| IOMMUTLBEntry entry; |
| struct VTDBus *vtd_bus; |
| hwaddr addr; |
| uint64_t sz; |
| uint16_t sid; |
| uint8_t devfn; |
| bool size; |
| uint8_t bus_num; |
| |
| addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi); |
| sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo); |
| devfn = sid & 0xff; |
| bus_num = sid >> 8; |
| size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi); |
| |
| if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) || |
| (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) { |
| error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64 |
| ", lo=%"PRIx64" (reserved nonzero)", __func__, |
| inv_desc->hi, inv_desc->lo); |
| return false; |
| } |
| |
| vtd_bus = vtd_find_as_from_bus_num(s, bus_num); |
| if (!vtd_bus) { |
| goto done; |
| } |
| |
| vtd_dev_as = vtd_bus->dev_as[devfn]; |
| if (!vtd_dev_as) { |
| goto done; |
| } |
| |
| /* According to ATS spec table 2.4: |
| * S = 0, bits 15:12 = xxxx range size: 4K |
| * S = 1, bits 15:12 = xxx0 range size: 8K |
| * S = 1, bits 15:12 = xx01 range size: 16K |
| * S = 1, bits 15:12 = x011 range size: 32K |
| * S = 1, bits 15:12 = 0111 range size: 64K |
| * ... |
| */ |
| if (size) { |
| sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT); |
| addr &= ~(sz - 1); |
| } else { |
| sz = VTD_PAGE_SIZE; |
| } |
| |
| entry.target_as = &vtd_dev_as->as; |
| entry.addr_mask = sz - 1; |
| entry.iova = addr; |
| entry.perm = IOMMU_NONE; |
| entry.translated_addr = 0; |
| memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry); |
| |
| done: |
| return true; |
| } |
| |
| static bool vtd_process_inv_desc(IntelIOMMUState *s) |
| { |
| VTDInvDesc inv_desc; |
| uint8_t desc_type; |
| |
| trace_vtd_inv_qi_head(s->iq_head); |
| if (!vtd_get_inv_desc(s, &inv_desc)) { |
| s->iq_last_desc_type = VTD_INV_DESC_NONE; |
| return false; |
| } |
| |
| desc_type = inv_desc.lo & VTD_INV_DESC_TYPE; |
| /* FIXME: should update at first or at last? */ |
| s->iq_last_desc_type = desc_type; |
| |
| switch (desc_type) { |
| case VTD_INV_DESC_CC: |
| trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo); |
| if (!vtd_process_context_cache_desc(s, &inv_desc)) { |
| return false; |
| } |
| break; |
| |
| case VTD_INV_DESC_IOTLB: |
| trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo); |
| if (!vtd_process_iotlb_desc(s, &inv_desc)) { |
| return false; |
| } |
| break; |
| |
| /* |
| * TODO: the entity of below two cases will be implemented in future series. |
| * To make guest (which integrates scalable mode support patch set in |
| * iommu driver) work, just return true is enough so far. |
| */ |
| case VTD_INV_DESC_PC: |
| break; |
| |
| case VTD_INV_DESC_PIOTLB: |
| break; |
| |
| case VTD_INV_DESC_WAIT: |
| trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo); |
| if (!vtd_process_wait_desc(s, &inv_desc)) { |
| return false; |
| } |
| break; |
| |
| case VTD_INV_DESC_IEC: |
| trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo); |
| if (!vtd_process_inv_iec_desc(s, &inv_desc)) { |
| return false; |
| } |
| break; |
| |
| case VTD_INV_DESC_DEVICE: |
| trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo); |
| if (!vtd_process_device_iotlb_desc(s, &inv_desc)) { |
| return false; |
| } |
| break; |
| |
| default: |
| error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64 |
| " (unknown type)", __func__, inv_desc.hi, |
| inv_desc.lo); |
| return false; |
| } |
| s->iq_head++; |
| if (s->iq_head == s->iq_size) { |
| s->iq_head = 0; |
| } |
| return true; |
| } |
| |
| /* Try to fetch and process more Invalidation Descriptors */ |
| static void vtd_fetch_inv_desc(IntelIOMMUState *s) |
| { |
| trace_vtd_inv_qi_fetch(); |
| |
| if (s->iq_tail >= s->iq_size) { |
| /* Detects an invalid Tail pointer */ |
| error_report_once("%s: detected invalid QI tail " |
| "(tail=0x%x, size=0x%x)", |
| __func__, s->iq_tail, s->iq_size); |
| vtd_handle_inv_queue_error(s); |
| return; |
| } |
| while (s->iq_head != s->iq_tail) { |
| if (!vtd_process_inv_desc(s)) { |
| /* Invalidation Queue Errors */ |
| vtd_handle_inv_queue_error(s); |
| break; |
| } |
| /* Must update the IQH_REG in time */ |
| vtd_set_quad_raw(s, DMAR_IQH_REG, |
| (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) & |
| VTD_IQH_QH_MASK); |
| } |
| } |
| |
| /* Handle write to Invalidation Queue Tail Register */ |
| static void vtd_handle_iqt_write(IntelIOMMUState *s) |
| { |
| uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG); |
| |
| if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) { |
| error_report_once("%s: RSV bit is set: val=0x%"PRIx64, |
| __func__, val); |
| return; |
| } |
| s->iq_tail = VTD_IQT_QT(s->iq_dw, val); |
| trace_vtd_inv_qi_tail(s->iq_tail); |
| |
| if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) { |
| /* Process Invalidation Queue here */ |
| vtd_fetch_inv_desc(s); |
| } |
| } |
| |
| static void vtd_handle_fsts_write(IntelIOMMUState *s) |
| { |
| uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); |
| uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG); |
| uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE; |
| |
| if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) { |
| vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); |
| trace_vtd_fsts_clear_ip(); |
| } |
| /* FIXME: when IQE is Clear, should we try to fetch some Invalidation |
| * Descriptors if there are any when Queued Invalidation is enabled? |
| */ |
| } |
| |
| static void vtd_handle_fectl_write(IntelIOMMUState *s) |
| { |
| uint32_t fectl_reg; |
| /* FIXME: when software clears the IM field, check the IP field. But do we |
| * need to compare the old value and the new value to conclude that |
| * software clears the IM field? Or just check if the IM field is zero? |
| */ |
| fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG); |
| |
| trace_vtd_reg_write_fectl(fectl_reg); |
| |
| if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) { |
| vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG); |
| vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); |
| } |
| } |
| |
| static void vtd_handle_ics_write(IntelIOMMUState *s) |
| { |
| uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG); |
| uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG); |
| |
| if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) { |
| trace_vtd_reg_ics_clear_ip(); |
| vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); |
| } |
| } |
| |
| static void vtd_handle_iectl_write(IntelIOMMUState *s) |
| { |
| uint32_t iectl_reg; |
| /* FIXME: when software clears the IM field, check the IP field. But do we |
| * need to compare the old value and the new value to conclude that |
| * software clears the IM field? Or just check if the IM field is zero? |
| */ |
| iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG); |
| |
| trace_vtd_reg_write_iectl(iectl_reg); |
| |
| if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) { |
| vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG); |
| vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); |
| } |
| } |
| |
| static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| IntelIOMMUState *s = opaque; |
| uint64_t val; |
| |
| trace_vtd_reg_read(addr, size); |
| |
| if (addr + size > DMAR_REG_SIZE) { |
| error_report_once("%s: MMIO over range: addr=0x%" PRIx64 |
| " size=0x%u", __func__, addr, size); |
| return (uint64_t)-1; |
| } |
| |
| switch (addr) { |
| /* Root Table Address Register, 64-bit */ |
| case DMAR_RTADDR_REG: |
| if (size == 4) { |
| val = s->root & ((1ULL << 32) - 1); |
| } else { |
| val = s->root; |
| } |
| break; |
| |
| case DMAR_RTADDR_REG_HI: |
| assert(size == 4); |
| val = s->root >> 32; |
| break; |
| |
| /* Invalidation Queue Address Register, 64-bit */ |
| case DMAR_IQA_REG: |
| val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS); |
| if (size == 4) { |
| val = val & ((1ULL << 32) - 1); |
| } |
| break; |
| |
| case DMAR_IQA_REG_HI: |
| assert(size == 4); |
| val = s->iq >> 32; |
| break; |
| |
| default: |
| if (size == 4) { |
| val = vtd_get_long(s, addr); |
| } else { |
| val = vtd_get_quad(s, addr); |
| } |
| } |
| |
| return val; |
| } |
| |
| static void vtd_mem_write(void *opaque, hwaddr addr, |
| uint64_t val, unsigned size) |
| { |
| IntelIOMMUState *s = opaque; |
| |
| trace_vtd_reg_write(addr, size, val); |
| |
| if (addr + size > DMAR_REG_SIZE) { |
| error_report_once("%s: MMIO over range: addr=0x%" PRIx64 |
| " size=0x%u", __func__, addr, size); |
| return; |
| } |
| |
| switch (addr) { |
| /* Global Command Register, 32-bit */ |
| case DMAR_GCMD_REG: |
| vtd_set_long(s, addr, val); |
| vtd_handle_gcmd_write(s); |
| break; |
| |
| /* Context Command Register, 64-bit */ |
| case DMAR_CCMD_REG: |
| if (size == 4) { |
| vtd_set_long(s, addr, val); |
| } else { |
| vtd_set_quad(s, addr, val); |
| vtd_handle_ccmd_write(s); |
| } |
| break; |
| |
| case DMAR_CCMD_REG_HI: |
| assert(size == 4); |
| vtd_set_long(s, addr, val); |
| vtd_handle_ccmd_write(s); |
| break; |
| |
| /* IOTLB Invalidation Register, 64-bit */ |
| case DMAR_IOTLB_REG: |
| if (size == 4) { |
| vtd_set_long(s, addr, val); |
| } else { |
| vtd_set_quad(s, addr, val); |
| vtd_handle_iotlb_write(s); |
| } |
| break; |
| |
| case DMAR_IOTLB_REG_HI: |
| assert(size == 4); |
| vtd_set_long(s, addr, val); |
| vtd_handle_iotlb_write(s); |
| break; |
| |
| /* Invalidate Address Register, 64-bit */ |
| case DMAR_IVA_REG: |
| if (size == 4) { |
| vtd_set_long(s, addr, val); |
| } else { |
| vtd_set_quad(s, addr, val); |
| } |
| break; |
| |
| case DMAR_IVA_REG_HI: |
| assert(size == 4); |
| vtd_set_long(s, addr, val); |
| break; |
| |
| /* Fault Status Register, 32-bit */ |
| case DMAR_FSTS_REG: |
| assert(size == 4); |
| vtd_set_long(s, addr, val); |
| vtd_handle_fsts_write(s); |
| break; |
| |
| /* Fault Event Control Register, 32-bit */ |
| case DMAR_FECTL_REG: |
| assert(size == 4); |
| vtd_set_long(s, addr, val); |
| vtd_handle_fectl_write(s); |
| break; |
| |
| /* Fault Event Data Register, 32-bit */ |
| case DMAR_FEDATA_REG: |
| assert(size == 4); |
| vtd_set_long(s, addr, val); |
| break; |
| |
| /* Fault Event Address Register, 32-bit */ |
| case DMAR_FEADDR_REG: |
| if (size == 4) { |
| vtd_set_long(s, addr, val); |
| } else { |
| /* |
| * While the register is 32-bit only, some guests (Xen...) write to |
| * it with 64-bit. |
| */ |
| vtd_set_quad(s, addr, val); |
| } |
| break; |
| |
| /* Fault Event Upper Address Register, 32-bit */ |
| case DMAR_FEUADDR_REG: |
| assert(size == 4); |
| vtd_set_long(s, addr, val); |
| break; |
| |
| /* Protected Memory Enable Register, 32-bit */ |
| case DMAR_PMEN_REG: |
| assert(size == 4); |
| vtd_set_long(s, addr, val); |
| break; |
| |
| /* Root Table Address Register, 64-bit */ |
| case DMAR_RTADDR_REG: |
| if (size == 4) { |
| vtd_set_long(s, addr, val); |
| } else { |
| vtd_set_quad(s, addr, val); |
| } |
| break; |
| |
| case DMAR_RTADDR_REG_HI: |
| assert(size == 4); |
| vtd_set_long(s, addr, val); |
| break; |
| |
| /* Invalidation Queue Tail Register, 64-bit */ |
| case DMAR_IQT_REG: |
| if (size == 4) { |
| vtd_set_long(s, addr, val); |
| } else { |
| vtd_set_quad(s, addr, val); |
| } |
| vtd_handle_iqt_write(s); |
| break; |
| |
| case DMAR_IQT_REG_HI: |
| assert(size == 4); |
| vtd_set_long(s, addr, val); |
| /* 19:63 of IQT_REG is RsvdZ, do nothing here */ |
| break; |
| |
| /* Invalidation Queue Address Register, 64-bit */ |
| case DMAR_IQA_REG: |
| if (size == 4) { |
| vtd_set_long(s, addr, val); |
| } else { |
| vtd_set_quad(s, addr, val); |
| } |
| if (s->ecap & VTD_ECAP_SMTS && |
| val & VTD_IQA_DW_MASK) { |
| s->iq_dw = true; |
| } else { |
| s->iq_dw = false; |
| } |
| break; |
| |
| case DMAR_IQA_REG_HI: |
| assert(size == 4); |
| vtd_set_long(s, addr, val); |
| break; |
| |
| /* Invalidation Completion Status Register, 32-bit */ |
| case DMAR_ICS_REG: |
| assert(size == 4); |
| vtd_set_long(s, addr, val); |
| vtd_handle_ics_write(s); |
| break; |
| |
| /* Invalidation Event Control Register, 32-bit */ |
| case DMAR_IECTL_REG: |
| assert(size == 4); |
| vtd_set_long(s, addr, val); |
| vtd_handle_iectl_write(s); |
| break; |
| |
| /* Invalidation Event Data Register, 32-bit */ |
| case DMAR_IEDATA_REG: |
| assert(size == 4); |
| vtd_set_long(s, addr, val); |
| break; |
| |
| /* Invalidation Event Address Register, 32-bit */ |
| case DMAR_IEADDR_REG: |
| assert(size == 4); |
| vtd_set_long(s, addr, val); |
| break; |
| |
| /* Invalidation Event Upper Address Register, 32-bit */ |
| case DMAR_IEUADDR_REG: |
| assert(size == 4); |
| vtd_set_long(s, addr, val); |
| break; |
| |
| /* Fault Recording Registers, 128-bit */ |
| case DMAR_FRCD_REG_0_0: |
| if (size == 4) { |
| vtd_set_long(s, addr, val); |
| } else { |
| vtd_set_quad(s, addr, val); |
| } |
| break; |
| |
| case DMAR_FRCD_REG_0_1: |
| assert(size == 4); |
| vtd_set_long(s, addr, val); |
| break; |
| |
| case DMAR_FRCD_REG_0_2: |
| if (size == 4) { |
| vtd_set_long(s, addr, val); |
| } else { |
| vtd_set_quad(s, addr, val); |
| /* May clear bit 127 (Fault), update PPF */ |
| vtd_update_fsts_ppf(s); |
| } |
| break; |
| |
| case DMAR_FRCD_REG_0_3: |
| assert(size == 4); |
| vtd_set_long(s, addr, val); |
| /* May clear bit 127 (Fault), update PPF */ |
| vtd_update_fsts_ppf(s); |
| break; |
| |
| case DMAR_IRTA_REG: |
| if (size == 4) { |
| vtd_set_long(s, addr, val); |
| } else { |
| vtd_set_quad(s, addr, val); |
| } |
| break; |
| |
| case DMAR_IRTA_REG_HI: |
| assert(size == 4); |
| vtd_set_long(s, addr, val); |
| break; |
| |
| default: |
| if (size == 4) { |
| vtd_set_long(s, addr, val); |
| } else { |
| vtd_set_quad(s, addr, val); |
| } |
| } |
| } |
| |
| static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr, |
| IOMMUAccessFlags flag, int iommu_idx) |
| { |
| VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu); |
| IntelIOMMUState *s = vtd_as->iommu_state; |
| IOMMUTLBEntry iotlb = { |
| /* We'll fill in the rest later. */ |
| .target_as = &address_space_memory, |
| }; |
| bool success; |
| |
| if (likely(s->dmar_enabled)) { |
| success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, |
| addr, flag & IOMMU_WO, &iotlb); |
| } else { |
| /* DMAR disabled, passthrough, use 4k-page*/ |
| iotlb.iova = addr & VTD_PAGE_MASK_4K; |
| iotlb.translated_addr = addr & VTD_PAGE_MASK_4K; |
| iotlb.addr_mask = ~VTD_PAGE_MASK_4K; |
| iotlb.perm = IOMMU_RW; |
| success = true; |
| } |
| |
| if (likely(success)) { |
| trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus), |
| VTD_PCI_SLOT(vtd_as->devfn), |
| VTD_PCI_FUNC(vtd_as->devfn), |
| iotlb.iova, iotlb.translated_addr, |
| iotlb.addr_mask); |
| } else { |
| error_report_once("%s: detected translation failure " |
| "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")", |
| __func__, pci_bus_num(vtd_as->bus), |
| VTD_PCI_SLOT(vtd_as->devfn), |
| VTD_PCI_FUNC(vtd_as->devfn), |
| addr); |
| } |
| |
| return iotlb; |
| } |
| |
| static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu, |
| IOMMUNotifierFlag old, |
| IOMMUNotifierFlag new) |
| { |
| VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu); |
| IntelIOMMUState *s = vtd_as->iommu_state; |
| |
| if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) { |
| error_report("We need to set caching-mode=on for intel-iommu to enable " |
| "device assignment with IOMMU protection."); |
| exit(1); |
| } |
| |
| /* Update per-address-space notifier flags */ |
| vtd_as->notifier_flags = new; |
| |
| if (old == IOMMU_NOTIFIER_NONE) { |
| QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next); |
| } else if (new == IOMMU_NOTIFIER_NONE) { |
| QLIST_REMOVE(vtd_as, next); |
| } |
| } |
| |
| static int vtd_post_load(void *opaque, int version_id) |
| { |
| IntelIOMMUState *iommu = opaque; |
| |
| /* |
| * Memory regions are dynamically turned on/off depending on |
| * context entry configurations from the guest. After migration, |
| * we need to make sure the memory regions are still correct. |
| */ |
| vtd_switch_address_space_all(iommu); |
| |
| /* |
| * We don't need to migrate the root_scalable because we can |
| * simply do the calculation after the loading is complete. We |
| * can actually do similar things with root, dmar_enabled, etc. |
| * however since we've had them already so we'd better keep them |
| * for compatibility of migration. |
| */ |
| vtd_update_scalable_state(iommu); |
| |
| return 0; |
| } |
| |
| static const VMStateDescription vtd_vmstate = { |
| .name = "iommu-intel", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .priority = MIG_PRI_IOMMU, |
| .post_load = vtd_post_load, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT64(root, IntelIOMMUState), |
| VMSTATE_UINT64(intr_root, IntelIOMMUState), |
| VMSTATE_UINT64(iq, IntelIOMMUState), |
| VMSTATE_UINT32(intr_size, IntelIOMMUState), |
| VMSTATE_UINT16(iq_head, IntelIOMMUState), |
| VMSTATE_UINT16(iq_tail, IntelIOMMUState), |
| VMSTATE_UINT16(iq_size, IntelIOMMUState), |
| VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState), |
| VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE), |
| VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState), |
| VMSTATE_BOOL(root_extended, IntelIOMMUState), |
| VMSTATE_BOOL(dmar_enabled, IntelIOMMUState), |
| VMSTATE_BOOL(qi_enabled, IntelIOMMUState), |
| VMSTATE_BOOL(intr_enabled, IntelIOMMUState), |
| VMSTATE_BOOL(intr_eime, IntelIOMMUState), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static const MemoryRegionOps vtd_mem_ops = { |
| .read = vtd_mem_read, |
| .write = vtd_mem_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| .impl = { |
| .min_access_size = 4, |
| .max_access_size = 8, |
| }, |
| .valid = { |
| .min_access_size = 4, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| static Property vtd_properties[] = { |
| DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0), |
| DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim, |
| ON_OFF_AUTO_AUTO), |
| DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false), |
| DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits, |
| VTD_HOST_ADDRESS_WIDTH), |
| DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE), |
| DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE), |
| DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| /* Read IRTE entry with specific index */ |
| static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index, |
| VTD_IR_TableEntry *entry, uint16_t sid) |
| { |
| static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \ |
| {0xffff, 0xfffb, 0xfff9, 0xfff8}; |
| dma_addr_t addr = 0x00; |
| uint16_t mask, source_id; |
| uint8_t bus, bus_max, bus_min; |
| |
| addr = iommu->intr_root + index * sizeof(*entry); |
| if (dma_memory_read(&address_space_memory, addr, entry, |
| sizeof(*entry))) { |
| error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64, |
| __func__, index, addr); |
| return -VTD_FR_IR_ROOT_INVAL; |
| } |
| |
| trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]), |
| le64_to_cpu(entry->data[0])); |
| |
| if (!entry->irte.present) { |
| error_report_once("%s: detected non-present IRTE " |
| "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")", |
| __func__, index, le64_to_cpu(entry->data[1]), |
| le64_to_cpu(entry->data[0])); |
| return -VTD_FR_IR_ENTRY_P; |
| } |
| |
| if (entry->irte.__reserved_0 || entry->irte.__reserved_1 || |
| entry->irte.__reserved_2) { |
| error_report_once("%s: detected non-zero reserved IRTE " |
| "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")", |
| __func__, index, le64_to_cpu(entry->data[1]), |
| le64_to_cpu(entry->data[0])); |
| return -VTD_FR_IR_IRTE_RSVD; |
| } |
| |
| if (sid != X86_IOMMU_SID_INVALID) { |
| /* Validate IRTE SID */ |
| source_id = le32_to_cpu(entry->irte.source_id); |
| switch (entry->irte.sid_vtype) { |
| case VTD_SVT_NONE: |
| break; |
| |
| case VTD_SVT_ALL: |
| mask = vtd_svt_mask[entry->irte.sid_q]; |
| if ((source_id & mask) != (sid & mask)) { |
| error_report_once("%s: invalid IRTE SID " |
| "(index=%u, sid=%u, source_id=%u)", |
| __func__, index, sid, source_id); |
| return -VTD_FR_IR_SID_ERR; |
| } |
| break; |
| |
| case VTD_SVT_BUS: |
| bus_max = source_id >> 8; |
| bus_min = source_id & 0xff; |
| bus = sid >> 8; |
| if (bus > bus_max || bus < bus_min) { |
| error_report_once("%s: invalid SVT_BUS " |
| "(index=%u, bus=%u, min=%u, max=%u)", |
| __func__, index, bus, bus_min, bus_max); |
| return -VTD_FR_IR_SID_ERR; |
| } |
| break; |
| |
| default: |
| error_report_once("%s: detected invalid IRTE SVT " |
| "(index=%u, type=%d)", __func__, |
| index, entry->irte.sid_vtype); |
| /* Take this as verification failure. */ |
| return -VTD_FR_IR_SID_ERR; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Fetch IRQ information of specific IR index */ |
| static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index, |
| X86IOMMUIrq *irq, uint16_t sid) |
| { |
| VTD_IR_TableEntry irte = {}; |
| int ret = 0; |
| |
| ret = vtd_irte_get(iommu, index, &irte, sid); |
| if (ret) { |
| return ret; |
| } |
| |
| irq->trigger_mode = irte.irte.trigger_mode; |
| irq->vector = irte.irte.vector; |
| irq->delivery_mode = irte.irte.delivery_mode; |
| irq->dest = le32_to_cpu(irte.irte.dest_id); |
| if (!iommu->intr_eime) { |
| #define VTD_IR_APIC_DEST_MASK (0xff00ULL) |
| #define VTD_IR_APIC_DEST_SHIFT (8) |
| irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >> |
| VTD_IR_APIC_DEST_SHIFT; |
| } |
| irq->dest_mode = irte.irte.dest_mode; |
| irq->redir_hint = irte.irte.redir_hint; |
| |
| trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector, |
| irq->delivery_mode, irq->dest, irq->dest_mode); |
| |
| return 0; |
| } |
| |
| /* Interrupt remapping for MSI/MSI-X entry */ |
| static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu, |
| MSIMessage *origin, |
| MSIMessage *translated, |
| uint16_t sid) |
| { |
| int ret = 0; |
| VTD_IR_MSIAddress addr; |
| uint16_t index; |
| X86IOMMUIrq irq = {}; |
| |
| assert(origin && translated); |
| |
| trace_vtd_ir_remap_msi_req(origin->address, origin->data); |
| |
| if (!iommu || !iommu->intr_enabled) { |
| memcpy(translated, origin, sizeof(*origin)); |
| goto out; |
| } |
| |
| if (origin->address & VTD_MSI_ADDR_HI_MASK) { |
| error_report_once("%s: MSI address high 32 bits non-zero detected: " |
| "address=0x%" PRIx64, __func__, origin->address); |
| return -VTD_FR_IR_REQ_RSVD; |
| } |
| |
| addr.data = origin->address & VTD_MSI_ADDR_LO_MASK; |
| if (addr.addr.__head != 0xfee) { |
| error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32, |
| __func__, addr.data); |
| return -VTD_FR_IR_REQ_RSVD; |
| } |
| |
| /* This is compatible mode. */ |
| if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) { |
| memcpy(translated, origin, sizeof(*origin)); |
| goto out; |
| } |
| |
| index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l); |
| |
| #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff) |
| #define VTD_IR_MSI_DATA_RESERVED (0xffff0000) |
| |
| if (addr.addr.sub_valid) { |
| /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */ |
| index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE; |
| } |
| |
| ret = vtd_remap_irq_get(iommu, index, &irq, sid); |
| if (ret) { |
| return ret; |
| } |
| |
| if (addr.addr.sub_valid) { |
| trace_vtd_ir_remap_type("MSI"); |
| if (origin->data & VTD_IR_MSI_DATA_RESERVED) { |
| error_report_once("%s: invalid IR MSI " |
| "(sid=%u, address=0x%" PRIx64 |
| ", data=0x%" PRIx32 ")", |
| __func__, sid, origin->address, origin->data); |
| return -VTD_FR_IR_REQ_RSVD; |
| } |
| } else { |
| uint8_t vector = origin->data & 0xff; |
| uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1; |
| |
| trace_vtd_ir_remap_type("IOAPIC"); |
| /* IOAPIC entry vector should be aligned with IRTE vector |
| * (see vt-d spec 5.1.5.1). */ |
| if (vector != irq.vector) { |
| trace_vtd_warn_ir_vector(sid, index, vector, irq.vector); |
| } |
| |
| /* The Trigger Mode field must match the Trigger Mode in the IRTE. |
| * (see vt-d spec 5.1.5.1). */ |
| if (trigger_mode != irq.trigger_mode) { |
| trace_vtd_warn_ir_trigger(sid, index, trigger_mode, |
| irq.trigger_mode); |
| } |
| } |
| |
| /* |
| * We'd better keep the last two bits, assuming that guest OS |
| * might modify it. Keep it does not hurt after all. |
| */ |
| irq.msi_addr_last_bits = addr.addr.__not_care; |
| |
| /* Translate X86IOMMUIrq to MSI message */ |
| x86_iommu_irq_to_msi_message(&irq, translated); |
| |
| out: |
| trace_vtd_ir_remap_msi(origin->address, origin->data, |
| translated->address, translated->data); |
| return 0; |
| } |
| |
| static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src, |
| MSIMessage *dst, uint16_t sid) |
| { |
| return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu), |
| src, dst, sid); |
| } |
| |
| static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr, |
| uint64_t *data, unsigned size, |
| MemTxAttrs attrs) |
| { |
| return MEMTX_OK; |
| } |
| |
| static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size, |
| MemTxAttrs attrs) |
| { |
| int ret = 0; |
| MSIMessage from = {}, to = {}; |
| uint16_t sid = X86_IOMMU_SID_INVALID; |
| |
| from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST; |
| from.data = (uint32_t) value; |
| |
| if (!attrs.unspecified) { |
| /* We have explicit Source ID */ |
| sid = attrs.requester_id; |
| } |
| |
| ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid); |
| if (ret) { |
| /* TODO: report error */ |
| /* Drop this interrupt */ |
| return MEMTX_ERROR; |
| } |
| |
| apic_get_class()->send_msi(&to); |
| |
| return MEMTX_OK; |
| } |
| |
| static const MemoryRegionOps vtd_mem_ir_ops = { |
| .read_with_attrs = vtd_mem_ir_read, |
| .write_with_attrs = vtd_mem_ir_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| .impl = { |
| .min_access_size = 4, |
| .max_access_size = 4, |
| }, |
| .valid = { |
| .min_access_size = 4, |
| .max_access_size = 4, |
| }, |
| }; |
| |
| VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn) |
| { |
| uintptr_t key = (uintptr_t)bus; |
| VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key); |
| VTDAddressSpace *vtd_dev_as; |
| char name[128]; |
| |
| if (!vtd_bus) { |
| uintptr_t *new_key = g_malloc(sizeof(*new_key)); |
| *new_key = (uintptr_t)bus; |
| /* No corresponding free() */ |
| vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \ |
| PCI_DEVFN_MAX); |
| vtd_bus->bus = bus; |
| g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus); |
| } |
| |
| vtd_dev_as = vtd_bus->dev_as[devfn]; |
| |
| if (!vtd_dev_as) { |
| snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn), |
| PCI_FUNC(devfn)); |
| vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace)); |
| |
| vtd_dev_as->bus = bus; |
| vtd_dev_as->devfn = (uint8_t)devfn; |
| vtd_dev_as->iommu_state = s; |
| vtd_dev_as->context_cache_entry.context_cache_gen = 0; |
| vtd_dev_as->iova_tree = iova_tree_new(); |
| |
| memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX); |
| address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root"); |
| |
| /* |
| * Build the DMAR-disabled container with aliases to the |
| * shared MRs. Note that aliasing to a shared memory region |
| * could help the memory API to detect same FlatViews so we |
| * can have devices to share the same FlatView when DMAR is |
| * disabled (either by not providing "intel_iommu=on" or with |
| * "iommu=pt"). It will greatly reduce the total number of |
| * FlatViews of the system hence VM runs faster. |
| */ |
| memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s), |
| "vtd-nodmar", &s->mr_nodmar, 0, |
| memory_region_size(&s->mr_nodmar)); |
| |
| /* |
| * Build the per-device DMAR-enabled container. |
| * |
| * TODO: currently we have per-device IOMMU memory region only |
| * because we have per-device IOMMU notifiers for devices. If |
| * one day we can abstract the IOMMU notifiers out of the |
| * memory regions then we can also share the same memory |
| * region here just like what we've done above with the nodmar |
| * region. |
| */ |
| strcat(name, "-dmar"); |
| memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu), |
| TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s), |
| name, UINT64_MAX); |
| memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir", |
| &s->mr_ir, 0, memory_region_size(&s->mr_ir)); |
| memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu), |
| VTD_INTERRUPT_ADDR_FIRST, |
| &vtd_dev_as->iommu_ir, 1); |
| |
| /* |
| * Hook both the containers under the root container, we |
| * switch between DMAR & noDMAR by enable/disable |
| * corresponding sub-containers |
| */ |
| memory_region_add_subregion_overlap(&vtd_dev_as->root, 0, |
| MEMORY_REGION(&vtd_dev_as->iommu), |
| 0); |
| memory_region_add_subregion_overlap(&vtd_dev_as->root, 0, |
| &vtd_dev_as->nodmar, 0); |
| |
| vtd_switch_address_space(vtd_dev_as); |
| } |
| return vtd_dev_as; |
| } |
| |
| /* Unmap the whole range in the notifier's scope. */ |
| static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n) |
| { |
| IOMMUTLBEntry entry; |
| hwaddr size; |
| hwaddr start = n->start; |
| hwaddr end = n->end; |
| IntelIOMMUState *s = as->iommu_state; |
| DMAMap map; |
| |
| /* |
| * Note: all the codes in this function has a assumption that IOVA |
| * bits are no more than VTD_MGAW bits (which is restricted by |
| * VT-d spec), otherwise we need to consider overflow of 64 bits. |
| */ |
| |
| if (end > VTD_ADDRESS_SIZE(s->aw_bits)) { |
| /* |
| * Don't need to unmap regions that is bigger than the whole |
| * VT-d supported address space size |
| */ |
| end = VTD_ADDRESS_SIZE(s->aw_bits); |
| } |
| |
| assert(start <= end); |
| size = end - start; |
| |
| if (ctpop64(size) != 1) { |
| /* |
| * This size cannot format a correct mask. Let's enlarge it to |
| * suite the minimum available mask. |
| */ |
| int n = 64 - clz64(size); |
| if (n > s->aw_bits) { |
| /* should not happen, but in case it happens, limit it */ |
| n = s->aw_bits; |
| } |
| size = 1ULL << n; |
| } |
| |
| entry.target_as = &address_space_memory; |
| /* Adjust iova for the size */ |
| entry.iova = n->start & ~(size - 1); |
| /* This field is meaningless for unmap */ |
| entry.translated_addr = 0; |
| entry.perm = IOMMU_NONE; |
| entry.addr_mask = size - 1; |
| |
| trace_vtd_as_unmap_whole(pci_bus_num(as->bus), |
| VTD_PCI_SLOT(as->devfn), |
| VTD_PCI_FUNC(as->devfn), |
| entry.iova, size); |
| |
| map.iova = entry.iova; |
| map.size = entry.addr_mask; |
| iova_tree_remove(as->iova_tree, &map); |
| |
| memory_region_notify_one(n, &entry); |
| } |
| |
| static void vtd_address_space_unmap_all(IntelIOMMUState *s) |
| { |
| VTDAddressSpace *vtd_as; |
| IOMMUNotifier *n; |
| |
| QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { |
| IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) { |
| vtd_address_space_unmap(vtd_as, n); |
| } |
| } |
| } |
| |
| static void vtd_address_space_refresh_all(IntelIOMMUState *s) |
| { |
| vtd_address_space_unmap_all(s); |
| vtd_switch_address_space_all(s); |
| } |
| |
| static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private) |
| { |
| memory_region_notify_one((IOMMUNotifier *)private, entry); |
| return 0; |
| } |
| |
| static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n) |
| { |
| VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu); |
| IntelIOMMUState *s = vtd_as->iommu_state; |
| uint8_t bus_n = pci_bus_num(vtd_as->bus); |
| VTDContextEntry ce; |
| |
| /* |
| * The replay can be triggered by either a invalidation or a newly |
| * created entry. No matter what, we release existing mappings |
| * (it means flushing caches for UNMAP-only registers). |
| */ |
| vtd_address_space_unmap(vtd_as, n); |
| |
| if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) { |
| trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" : |
| "legacy mode", |
| bus_n, PCI_SLOT(vtd_as->devfn), |
| PCI_FUNC(vtd_as->devfn), |
| vtd_get_domain_id(s, &ce), |
| ce.hi, ce.lo); |
| if (vtd_as_has_map_notifier(vtd_as)) { |
| /* This is required only for MAP typed notifiers */ |
| vtd_page_walk_info info = { |
| .hook_fn = vtd_replay_hook, |
| .private = (void *)n, |
| .notify_unmap = false, |
| .aw = s->aw_bits, |
| .as = vtd_as, |
| .domain_id = vtd_get_domain_id(s, &ce), |
| }; |
| |
| vtd_page_walk(s, &ce, 0, ~0ULL, &info); |
| } |
| } else { |
| trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn), |
| PCI_FUNC(vtd_as->devfn)); |
| } |
| |
| return; |
| } |
| |
| /* Do the initialization. It will also be called when reset, so pay |
| * attention when adding new initialization stuff. |
| */ |
| static void vtd_init(IntelIOMMUState *s) |
| { |
| X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); |
| |
| memset(s->csr, 0, DMAR_REG_SIZE); |
| memset(s->wmask, 0, DMAR_REG_SIZE); |
| memset(s->w1cmask, 0, DMAR_REG_SIZE); |
| memset(s->womask, 0, DMAR_REG_SIZE); |
| |
| s->root = 0; |
| s->root_extended = false; |
| s->root_scalable = false; |
| s->dmar_enabled = false; |
| s->intr_enabled = false; |
| s->iq_head = 0; |
| s->iq_tail = 0; |
| s->iq = 0; |
| s->iq_size = 0; |
| s->qi_enabled = false; |
| s->iq_last_desc_type = VTD_INV_DESC_NONE; |
| s->iq_dw = false; |
| s->next_frcd_reg = 0; |
| s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | |
| VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS | |
| VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits); |
| if (s->dma_drain) { |
| s->cap |= VTD_CAP_DRAIN; |
| } |
| if (s->aw_bits == VTD_HOST_AW_48BIT) { |
| s->cap |= VTD_CAP_SAGAW_48bit; |
| } |
| s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO; |
| |
| /* |
| * Rsvd field masks for spte |
| */ |
| vtd_paging_entry_rsvd_field[0] = ~0ULL; |
| vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits); |
| vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits); |
| vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits); |
| vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits); |
| vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits); |
| vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits); |
| vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits); |
| vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits); |
| |
| if (x86_iommu_ir_supported(x86_iommu)) { |
| s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV; |
| if (s->intr_eim == ON_OFF_AUTO_ON) { |
| s->ecap |= VTD_ECAP_EIM; |
| } |
| assert(s->intr_eim != ON_OFF_AUTO_AUTO); |
| } |
| |
| if (x86_iommu->dt_supported) { |
| s->ecap |= VTD_ECAP_DT; |
| } |
| |
| if (x86_iommu->pt_supported) { |
| s->ecap |= VTD_ECAP_PT; |
| } |
| |
| if (s->caching_mode) { |
| s->cap |= VTD_CAP_CM; |
| } |
| |
| /* TODO: read cap/ecap from host to decide which cap to be exposed. */ |
| if (s->scalable_mode) { |
| s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS; |
| } |
| |
| vtd_reset_caches(s); |
| |
| /* Define registers with default values and bit semantics */ |
| vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0); |
| vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0); |
| vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0); |
| vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0); |
| vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL); |
| vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0); |
| vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0); |
| vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0); |
| vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL); |
| |
| /* Advanced Fault Logging not supported */ |
| vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL); |
| vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0); |
| vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0); |
| vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0); |
| |
| /* Treated as RsvdZ when EIM in ECAP_REG is not supported |
| * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0); |
| */ |
| vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0); |
| |
| /* Treated as RO for implementations that PLMR and PHMR fields reported |
| * as Clear in the CAP_REG. |
| * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0); |
| */ |
| vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0); |
| |
| vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0); |
| vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0); |
| vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0); |
| vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL); |
| vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0); |
| vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0); |
| vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0); |
| /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */ |
| vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0); |
| |
| /* IOTLB registers */ |
| vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0); |
| vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0); |
| vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL); |
| |
| /* Fault Recording Registers, 128-bit */ |
| vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0); |
| vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL); |
| |
| /* |
| * Interrupt remapping registers. |
| */ |
| vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0); |
| } |
| |
| /* Should not reset address_spaces when reset because devices will still use |
| * the address space they got at first (won't ask the bus again). |
| */ |
| static void vtd_reset(DeviceState *dev) |
| { |
| IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev); |
| |
| vtd_init(s); |
| vtd_address_space_refresh_all(s); |
| } |
| |
| static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn) |
| { |
| IntelIOMMUState *s = opaque; |
| VTDAddressSpace *vtd_as; |
| |
| assert(0 <= devfn && devfn < PCI_DEVFN_MAX); |
| |
| vtd_as = vtd_find_add_as(s, bus, devfn); |
| return &vtd_as->as; |
| } |
| |
| static bool vtd_decide_config(IntelIOMMUState *s, Error **errp) |
| { |
| X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); |
| |
| if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) { |
| error_setg(errp, "eim=on cannot be selected without intremap=on"); |
| return false; |
| } |
| |
| if (s->intr_eim == ON_OFF_AUTO_AUTO) { |
| s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim) |
| && x86_iommu_ir_supported(x86_iommu) ? |
| ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; |
| } |
| if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) { |
| if (!kvm_irqchip_in_kernel()) { |
| error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split"); |
| return false; |
| } |
| if (!kvm_enable_x2apic()) { |
| error_setg(errp, "eim=on requires support on the KVM side" |
| "(X2APIC_API, first shipped in v4.7)"); |
| return false; |
| } |
| } |
| |
| /* Currently only address widths supported are 39 and 48 bits */ |
| if ((s->aw_bits != VTD_HOST_AW_39BIT) && |
| (s->aw_bits != VTD_HOST_AW_48BIT)) { |
| error_setg(errp, "Supported values for x-aw-bits are: %d, %d", |
| VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT); |
| return false; |
| } |
| |
| if (s->scalable_mode && !s->dma_drain) { |
| error_setg(errp, "Need to set dma_drain for scalable mode"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void vtd_realize(DeviceState *dev, Error **errp) |
| { |
| MachineState *ms = MACHINE(qdev_get_machine()); |
| PCMachineState *pcms = PC_MACHINE(ms); |
| PCIBus *bus = pcms->bus; |
| IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev); |
| X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev); |
| |
| x86_iommu->type = TYPE_INTEL; |
| |
| if (!vtd_decide_config(s, errp)) { |
| return; |
| } |
| |
| QLIST_INIT(&s->vtd_as_with_notifiers); |
| qemu_mutex_init(&s->iommu_lock); |
| memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num)); |
| memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s, |
| "intel_iommu", DMAR_REG_SIZE); |
| |
| /* Create the shared memory regions by all devices */ |
| memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar", |
| UINT64_MAX); |
| memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops, |
| s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE); |
| memory_region_init_alias(&s->mr_sys_alias, OBJECT(s), |
| "vtd-sys-alias", get_system_memory(), 0, |
| memory_region_size(get_system_memory())); |
| memory_region_add_subregion_overlap(&s->mr_nodmar, 0, |
| &s->mr_sys_alias, 0); |
| memory_region_add_subregion_overlap(&s->mr_nodmar, |
| VTD_INTERRUPT_ADDR_FIRST, |
| &s->mr_ir, 1); |
| |
| sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem); |
| /* No corresponding destroy */ |
| s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal, |
| g_free, g_free); |
| s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal, |
| g_free, g_free); |
| vtd_init(s); |
| sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR); |
| pci_setup_iommu(bus, vtd_host_dma_iommu, dev); |
| /* Pseudo address space under root PCI bus. */ |
| pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC); |
| } |
| |
| static void vtd_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass); |
| |
| dc->reset = vtd_reset; |
| dc->vmsd = &vtd_vmstate; |
| dc->props = vtd_properties; |
| dc->hotpluggable = false; |
| x86_class->realize = vtd_realize; |
| x86_class->int_remap = vtd_int_remap; |
| /* Supported by the pc-q35-* machine types */ |
| dc->user_creatable = true; |
| } |
| |
| static const TypeInfo vtd_info = { |
| .name = TYPE_INTEL_IOMMU_DEVICE, |
| .parent = TYPE_X86_IOMMU_DEVICE, |
| .instance_size = sizeof(IntelIOMMUState), |
| .class_init = vtd_class_init, |
| }; |
| |
| static void vtd_iommu_memory_region_class_init(ObjectClass *klass, |
| void *data) |
| { |
| IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass); |
| |
| imrc->translate = vtd_iommu_translate; |
| imrc->notify_flag_changed = vtd_iommu_notify_flag_changed; |
| imrc->replay = vtd_iommu_replay; |
| } |
| |
| static const TypeInfo vtd_iommu_memory_region_info = { |
| .parent = TYPE_IOMMU_MEMORY_REGION, |
| .name = TYPE_INTEL_IOMMU_MEMORY_REGION, |
| .class_init = vtd_iommu_memory_region_class_init, |
| }; |
| |
| static void vtd_register_types(void) |
| { |
| type_register_static(&vtd_info); |
| type_register_static(&vtd_iommu_memory_region_info); |
| } |
| |
| type_init(vtd_register_types) |