blob: b285d7823b4fd09d7dea25d5adbc06dcfc24f0d2 [file] [log] [blame]
/*
* Software MMU support
*
* Generate helpers used by TCG for qemu_ld/st ops and code load
* functions.
*
* Included from target op helpers and exec.c.
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu-timer.h"
#include "memory.h"
#define DATA_SIZE (1 << SHIFT)
#if DATA_SIZE == 8
#define SUFFIX q
#define USUFFIX q
#define DATA_TYPE uint64_t
#elif DATA_SIZE == 4
#define SUFFIX l
#define USUFFIX l
#define DATA_TYPE uint32_t
#elif DATA_SIZE == 2
#define SUFFIX w
#define USUFFIX uw
#define DATA_TYPE uint16_t
#elif DATA_SIZE == 1
#define SUFFIX b
#define USUFFIX ub
#define DATA_TYPE uint8_t
#else
#error unsupported data size
#endif
#ifdef SOFTMMU_CODE_ACCESS
#define READ_ACCESS_TYPE 2
#define ADDR_READ addr_code
#else
#define READ_ACCESS_TYPE 0
#define ADDR_READ addr_read
#endif
#ifndef CONFIG_TCG_PASS_AREG0
#define ENV_PARAM
#define ENV_VAR
#define CPU_PREFIX
#define HELPER_PREFIX __
#else
#define ENV_PARAM CPUArchState *env,
#define ENV_VAR env,
#define CPU_PREFIX cpu_
#define HELPER_PREFIX helper_
#endif
static DATA_TYPE glue(glue(slow_ld, SUFFIX), MMUSUFFIX)(ENV_PARAM
target_ulong addr,
int mmu_idx,
uintptr_t retaddr);
static inline DATA_TYPE glue(io_read, SUFFIX)(ENV_PARAM
target_phys_addr_t physaddr,
target_ulong addr,
uintptr_t retaddr)
{
DATA_TYPE res;
MemoryRegion *mr = iotlb_to_region(physaddr);
physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
env->mem_io_pc = retaddr;
if (mr != &io_mem_ram && mr != &io_mem_rom
&& mr != &io_mem_unassigned
&& mr != &io_mem_notdirty
&& !can_do_io(env)) {
cpu_io_recompile(env, retaddr);
}
env->mem_io_vaddr = addr;
#if SHIFT <= 2
res = io_mem_read(mr, physaddr, 1 << SHIFT);
#else
#ifdef TARGET_WORDS_BIGENDIAN
res = io_mem_read(mr, physaddr, 4) << 32;
res |= io_mem_read(mr, physaddr + 4, 4);
#else
res = io_mem_read(mr, physaddr, 4);
res |= io_mem_read(mr, physaddr + 4, 4) << 32;
#endif
#endif /* SHIFT > 2 */
return res;
}
/* handle all cases except unaligned access which span two pages */
DATA_TYPE
glue(glue(glue(HELPER_PREFIX, ld), SUFFIX), MMUSUFFIX)(ENV_PARAM
target_ulong addr,
int mmu_idx)
{
DATA_TYPE res;
int index;
target_ulong tlb_addr;
target_phys_addr_t ioaddr;
unsigned long addend;
uintptr_t retaddr;
/* test if there is match for unaligned or IO access */
/* XXX: could done more in memory macro in a non portable way */
index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
redo:
tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
if ((addr & TARGET_PAGE_MASK) == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
if (tlb_addr & ~TARGET_PAGE_MASK) {
/* IO access */
if ((addr & (DATA_SIZE - 1)) != 0)
goto do_unaligned_access;
retaddr = GETPC();
ioaddr = env->iotlb[mmu_idx][index];
res = glue(io_read, SUFFIX)(ENV_VAR ioaddr, addr, retaddr);
} else if (((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1) >= TARGET_PAGE_SIZE) {
/* slow unaligned access (it spans two pages or IO) */
do_unaligned_access:
retaddr = GETPC();
#ifdef ALIGNED_ONLY
do_unaligned_access(ENV_VAR addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
#endif
res = glue(glue(slow_ld, SUFFIX), MMUSUFFIX)(ENV_VAR addr,
mmu_idx, retaddr);
} else {
/* unaligned/aligned access in the same page */
#ifdef ALIGNED_ONLY
if ((addr & (DATA_SIZE - 1)) != 0) {
retaddr = GETPC();
do_unaligned_access(ENV_VAR addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
}
#endif
addend = env->tlb_table[mmu_idx][index].addend;
res = glue(glue(ld, USUFFIX), _raw)((uint8_t *)(long)(addr+addend));
}
} else {
/* the page is not in the TLB : fill it */
retaddr = GETPC();
#ifdef ALIGNED_ONLY
if ((addr & (DATA_SIZE - 1)) != 0)
do_unaligned_access(ENV_VAR addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
#endif
tlb_fill(env, addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
goto redo;
}
return res;
}
/* handle all unaligned cases */
static DATA_TYPE
glue(glue(slow_ld, SUFFIX), MMUSUFFIX)(ENV_PARAM
target_ulong addr,
int mmu_idx,
uintptr_t retaddr)
{
DATA_TYPE res, res1, res2;
int index, shift;
target_phys_addr_t ioaddr;
unsigned long addend;
target_ulong tlb_addr, addr1, addr2;
index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
redo:
tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
if ((addr & TARGET_PAGE_MASK) == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
if (tlb_addr & ~TARGET_PAGE_MASK) {
/* IO access */
if ((addr & (DATA_SIZE - 1)) != 0)
goto do_unaligned_access;
ioaddr = env->iotlb[mmu_idx][index];
res = glue(io_read, SUFFIX)(ENV_VAR ioaddr, addr, retaddr);
} else if (((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1) >= TARGET_PAGE_SIZE) {
do_unaligned_access:
/* slow unaligned access (it spans two pages) */
addr1 = addr & ~(DATA_SIZE - 1);
addr2 = addr1 + DATA_SIZE;
res1 = glue(glue(slow_ld, SUFFIX), MMUSUFFIX)(ENV_VAR addr1,
mmu_idx, retaddr);
res2 = glue(glue(slow_ld, SUFFIX), MMUSUFFIX)(ENV_VAR addr2,
mmu_idx, retaddr);
shift = (addr & (DATA_SIZE - 1)) * 8;
#ifdef TARGET_WORDS_BIGENDIAN
res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
#else
res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
#endif
res = (DATA_TYPE)res;
} else {
/* unaligned/aligned access in the same page */
addend = env->tlb_table[mmu_idx][index].addend;
res = glue(glue(ld, USUFFIX), _raw)((uint8_t *)(long)(addr+addend));
}
} else {
/* the page is not in the TLB : fill it */
tlb_fill(env, addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
goto redo;
}
return res;
}
#ifndef SOFTMMU_CODE_ACCESS
static void glue(glue(slow_st, SUFFIX), MMUSUFFIX)(ENV_PARAM
target_ulong addr,
DATA_TYPE val,
int mmu_idx,
uintptr_t retaddr);
static inline void glue(io_write, SUFFIX)(ENV_PARAM
target_phys_addr_t physaddr,
DATA_TYPE val,
target_ulong addr,
uintptr_t retaddr)
{
MemoryRegion *mr = iotlb_to_region(physaddr);
physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
if (mr != &io_mem_ram && mr != &io_mem_rom
&& mr != &io_mem_unassigned
&& mr != &io_mem_notdirty
&& !can_do_io(env)) {
cpu_io_recompile(env, retaddr);
}
env->mem_io_vaddr = addr;
env->mem_io_pc = retaddr;
#if SHIFT <= 2
io_mem_write(mr, physaddr, val, 1 << SHIFT);
#else
#ifdef TARGET_WORDS_BIGENDIAN
io_mem_write(mr, physaddr, (val >> 32), 4);
io_mem_write(mr, physaddr + 4, (uint32_t)val, 4);
#else
io_mem_write(mr, physaddr, (uint32_t)val, 4);
io_mem_write(mr, physaddr + 4, val >> 32, 4);
#endif
#endif /* SHIFT > 2 */
}
void glue(glue(glue(HELPER_PREFIX, st), SUFFIX), MMUSUFFIX)(ENV_PARAM
target_ulong addr,
DATA_TYPE val,
int mmu_idx)
{
target_phys_addr_t ioaddr;
unsigned long addend;
target_ulong tlb_addr;
uintptr_t retaddr;
int index;
index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
redo:
tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
if ((addr & TARGET_PAGE_MASK) == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
if (tlb_addr & ~TARGET_PAGE_MASK) {
/* IO access */
if ((addr & (DATA_SIZE - 1)) != 0)
goto do_unaligned_access;
retaddr = GETPC();
ioaddr = env->iotlb[mmu_idx][index];
glue(io_write, SUFFIX)(ENV_VAR ioaddr, val, addr, retaddr);
} else if (((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1) >= TARGET_PAGE_SIZE) {
do_unaligned_access:
retaddr = GETPC();
#ifdef ALIGNED_ONLY
do_unaligned_access(ENV_VAR addr, 1, mmu_idx, retaddr);
#endif
glue(glue(slow_st, SUFFIX), MMUSUFFIX)(ENV_VAR addr, val,
mmu_idx, retaddr);
} else {
/* aligned/unaligned access in the same page */
#ifdef ALIGNED_ONLY
if ((addr & (DATA_SIZE - 1)) != 0) {
retaddr = GETPC();
do_unaligned_access(ENV_VAR addr, 1, mmu_idx, retaddr);
}
#endif
addend = env->tlb_table[mmu_idx][index].addend;
glue(glue(st, SUFFIX), _raw)((uint8_t *)(long)(addr+addend), val);
}
} else {
/* the page is not in the TLB : fill it */
retaddr = GETPC();
#ifdef ALIGNED_ONLY
if ((addr & (DATA_SIZE - 1)) != 0)
do_unaligned_access(ENV_VAR addr, 1, mmu_idx, retaddr);
#endif
tlb_fill(env, addr, 1, mmu_idx, retaddr);
goto redo;
}
}
/* handles all unaligned cases */
static void glue(glue(slow_st, SUFFIX), MMUSUFFIX)(ENV_PARAM
target_ulong addr,
DATA_TYPE val,
int mmu_idx,
uintptr_t retaddr)
{
target_phys_addr_t ioaddr;
unsigned long addend;
target_ulong tlb_addr;
int index, i;
index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
redo:
tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
if ((addr & TARGET_PAGE_MASK) == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
if (tlb_addr & ~TARGET_PAGE_MASK) {
/* IO access */
if ((addr & (DATA_SIZE - 1)) != 0)
goto do_unaligned_access;
ioaddr = env->iotlb[mmu_idx][index];
glue(io_write, SUFFIX)(ENV_VAR ioaddr, val, addr, retaddr);
} else if (((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1) >= TARGET_PAGE_SIZE) {
do_unaligned_access:
/* XXX: not efficient, but simple */
/* Note: relies on the fact that tlb_fill() does not remove the
* previous page from the TLB cache. */
for(i = DATA_SIZE - 1; i >= 0; i--) {
#ifdef TARGET_WORDS_BIGENDIAN
glue(slow_stb, MMUSUFFIX)(ENV_VAR addr + i,
val >> (((DATA_SIZE - 1) * 8) - (i * 8)),
mmu_idx, retaddr);
#else
glue(slow_stb, MMUSUFFIX)(ENV_VAR addr + i,
val >> (i * 8),
mmu_idx, retaddr);
#endif
}
} else {
/* aligned/unaligned access in the same page */
addend = env->tlb_table[mmu_idx][index].addend;
glue(glue(st, SUFFIX), _raw)((uint8_t *)(long)(addr+addend), val);
}
} else {
/* the page is not in the TLB : fill it */
tlb_fill(env, addr, 1, mmu_idx, retaddr);
goto redo;
}
}
#endif /* !defined(SOFTMMU_CODE_ACCESS) */
#undef READ_ACCESS_TYPE
#undef SHIFT
#undef DATA_TYPE
#undef SUFFIX
#undef USUFFIX
#undef DATA_SIZE
#undef ADDR_READ
#undef ENV_PARAM
#undef ENV_VAR
#undef CPU_PREFIX
#undef HELPER_PREFIX