| /* |
| * ARM kernel loader. |
| * |
| * Copyright (c) 2006-2007 CodeSourcery. |
| * Written by Paul Brook |
| * |
| * This code is licensed under the GPL. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/error-report.h" |
| #include "qapi/error.h" |
| #include <libfdt.h> |
| #include "hw/hw.h" |
| #include "hw/arm/arm.h" |
| #include "hw/arm/linux-boot-if.h" |
| #include "sysemu/kvm.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/numa.h" |
| #include "hw/boards.h" |
| #include "hw/loader.h" |
| #include "elf.h" |
| #include "sysemu/device_tree.h" |
| #include "qemu/config-file.h" |
| #include "qemu/option.h" |
| #include "exec/address-spaces.h" |
| |
| /* Kernel boot protocol is specified in the kernel docs |
| * Documentation/arm/Booting and Documentation/arm64/booting.txt |
| * They have different preferred image load offsets from system RAM base. |
| */ |
| #define KERNEL_ARGS_ADDR 0x100 |
| #define KERNEL_LOAD_ADDR 0x00010000 |
| #define KERNEL64_LOAD_ADDR 0x00080000 |
| |
| #define ARM64_TEXT_OFFSET_OFFSET 8 |
| #define ARM64_MAGIC_OFFSET 56 |
| |
| static AddressSpace *arm_boot_address_space(ARMCPU *cpu, |
| const struct arm_boot_info *info) |
| { |
| /* Return the address space to use for bootloader reads and writes. |
| * We prefer the secure address space if the CPU has it and we're |
| * going to boot the guest into it. |
| */ |
| int asidx; |
| CPUState *cs = CPU(cpu); |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) { |
| asidx = ARMASIdx_S; |
| } else { |
| asidx = ARMASIdx_NS; |
| } |
| |
| return cpu_get_address_space(cs, asidx); |
| } |
| |
| typedef enum { |
| FIXUP_NONE = 0, /* do nothing */ |
| FIXUP_TERMINATOR, /* end of insns */ |
| FIXUP_BOARDID, /* overwrite with board ID number */ |
| FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */ |
| FIXUP_ARGPTR, /* overwrite with pointer to kernel args */ |
| FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */ |
| FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */ |
| FIXUP_BOOTREG, /* overwrite with boot register address */ |
| FIXUP_DSB, /* overwrite with correct DSB insn for cpu */ |
| FIXUP_MAX, |
| } FixupType; |
| |
| typedef struct ARMInsnFixup { |
| uint32_t insn; |
| FixupType fixup; |
| } ARMInsnFixup; |
| |
| static const ARMInsnFixup bootloader_aarch64[] = { |
| { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */ |
| { 0xaa1f03e1 }, /* mov x1, xzr */ |
| { 0xaa1f03e2 }, /* mov x2, xzr */ |
| { 0xaa1f03e3 }, /* mov x3, xzr */ |
| { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */ |
| { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */ |
| { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */ |
| { 0 }, /* .word @DTB Higher 32-bits */ |
| { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */ |
| { 0 }, /* .word @Kernel Entry Higher 32-bits */ |
| { 0, FIXUP_TERMINATOR } |
| }; |
| |
| /* A very small bootloader: call the board-setup code (if needed), |
| * set r0-r2, then jump to the kernel. |
| * If we're not calling boot setup code then we don't copy across |
| * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array. |
| */ |
| |
| static const ARMInsnFixup bootloader[] = { |
| { 0xe28fe004 }, /* add lr, pc, #4 */ |
| { 0xe51ff004 }, /* ldr pc, [pc, #-4] */ |
| { 0, FIXUP_BOARD_SETUP }, |
| #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3 |
| { 0xe3a00000 }, /* mov r0, #0 */ |
| { 0xe59f1004 }, /* ldr r1, [pc, #4] */ |
| { 0xe59f2004 }, /* ldr r2, [pc, #4] */ |
| { 0xe59ff004 }, /* ldr pc, [pc, #4] */ |
| { 0, FIXUP_BOARDID }, |
| { 0, FIXUP_ARGPTR }, |
| { 0, FIXUP_ENTRYPOINT }, |
| { 0, FIXUP_TERMINATOR } |
| }; |
| |
| /* Handling for secondary CPU boot in a multicore system. |
| * Unlike the uniprocessor/primary CPU boot, this is platform |
| * dependent. The default code here is based on the secondary |
| * CPU boot protocol used on realview/vexpress boards, with |
| * some parameterisation to increase its flexibility. |
| * QEMU platform models for which this code is not appropriate |
| * should override write_secondary_boot and secondary_cpu_reset_hook |
| * instead. |
| * |
| * This code enables the interrupt controllers for the secondary |
| * CPUs and then puts all the secondary CPUs into a loop waiting |
| * for an interprocessor interrupt and polling a configurable |
| * location for the kernel secondary CPU entry point. |
| */ |
| #define DSB_INSN 0xf57ff04f |
| #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */ |
| |
| static const ARMInsnFixup smpboot[] = { |
| { 0xe59f2028 }, /* ldr r2, gic_cpu_if */ |
| { 0xe59f0028 }, /* ldr r0, bootreg_addr */ |
| { 0xe3a01001 }, /* mov r1, #1 */ |
| { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */ |
| { 0xe3a010ff }, /* mov r1, #0xff */ |
| { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */ |
| { 0, FIXUP_DSB }, /* dsb */ |
| { 0xe320f003 }, /* wfi */ |
| { 0xe5901000 }, /* ldr r1, [r0] */ |
| { 0xe1110001 }, /* tst r1, r1 */ |
| { 0x0afffffb }, /* beq <wfi> */ |
| { 0xe12fff11 }, /* bx r1 */ |
| { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */ |
| { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */ |
| { 0, FIXUP_TERMINATOR } |
| }; |
| |
| static void write_bootloader(const char *name, hwaddr addr, |
| const ARMInsnFixup *insns, uint32_t *fixupcontext, |
| AddressSpace *as) |
| { |
| /* Fix up the specified bootloader fragment and write it into |
| * guest memory using rom_add_blob_fixed(). fixupcontext is |
| * an array giving the values to write in for the fixup types |
| * which write a value into the code array. |
| */ |
| int i, len; |
| uint32_t *code; |
| |
| len = 0; |
| while (insns[len].fixup != FIXUP_TERMINATOR) { |
| len++; |
| } |
| |
| code = g_new0(uint32_t, len); |
| |
| for (i = 0; i < len; i++) { |
| uint32_t insn = insns[i].insn; |
| FixupType fixup = insns[i].fixup; |
| |
| switch (fixup) { |
| case FIXUP_NONE: |
| break; |
| case FIXUP_BOARDID: |
| case FIXUP_BOARD_SETUP: |
| case FIXUP_ARGPTR: |
| case FIXUP_ENTRYPOINT: |
| case FIXUP_GIC_CPU_IF: |
| case FIXUP_BOOTREG: |
| case FIXUP_DSB: |
| insn = fixupcontext[fixup]; |
| break; |
| default: |
| abort(); |
| } |
| code[i] = tswap32(insn); |
| } |
| |
| rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as); |
| |
| g_free(code); |
| } |
| |
| static void default_write_secondary(ARMCPU *cpu, |
| const struct arm_boot_info *info) |
| { |
| uint32_t fixupcontext[FIXUP_MAX]; |
| AddressSpace *as = arm_boot_address_space(cpu, info); |
| |
| fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr; |
| fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr; |
| if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { |
| fixupcontext[FIXUP_DSB] = DSB_INSN; |
| } else { |
| fixupcontext[FIXUP_DSB] = CP15_DSB_INSN; |
| } |
| |
| write_bootloader("smpboot", info->smp_loader_start, |
| smpboot, fixupcontext, as); |
| } |
| |
| void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu, |
| const struct arm_boot_info *info, |
| hwaddr mvbar_addr) |
| { |
| AddressSpace *as = arm_boot_address_space(cpu, info); |
| int n; |
| uint32_t mvbar_blob[] = { |
| /* mvbar_addr: secure monitor vectors |
| * Default unimplemented and unused vectors to spin. Makes it |
| * easier to debug (as opposed to the CPU running away). |
| */ |
| 0xeafffffe, /* (spin) */ |
| 0xeafffffe, /* (spin) */ |
| 0xe1b0f00e, /* movs pc, lr ;SMC exception return */ |
| 0xeafffffe, /* (spin) */ |
| 0xeafffffe, /* (spin) */ |
| 0xeafffffe, /* (spin) */ |
| 0xeafffffe, /* (spin) */ |
| 0xeafffffe, /* (spin) */ |
| }; |
| uint32_t board_setup_blob[] = { |
| /* board setup addr */ |
| 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */ |
| 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */ |
| 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */ |
| 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */ |
| 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */ |
| 0xe1a0100e, /* mov r1, lr ;save LR across SMC */ |
| 0xe1600070, /* smc #0 ;call monitor to flush SCR */ |
| 0xe1a0f001, /* mov pc, r1 ;return */ |
| }; |
| |
| /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */ |
| assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100); |
| |
| /* check that these blobs don't overlap */ |
| assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr) |
| || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr)); |
| |
| for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) { |
| mvbar_blob[n] = tswap32(mvbar_blob[n]); |
| } |
| rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob), |
| mvbar_addr, as); |
| |
| for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) { |
| board_setup_blob[n] = tswap32(board_setup_blob[n]); |
| } |
| rom_add_blob_fixed_as("board-setup", board_setup_blob, |
| sizeof(board_setup_blob), info->board_setup_addr, as); |
| } |
| |
| static void default_reset_secondary(ARMCPU *cpu, |
| const struct arm_boot_info *info) |
| { |
| AddressSpace *as = arm_boot_address_space(cpu, info); |
| CPUState *cs = CPU(cpu); |
| |
| address_space_stl_notdirty(as, info->smp_bootreg_addr, |
| 0, MEMTXATTRS_UNSPECIFIED, NULL); |
| cpu_set_pc(cs, info->smp_loader_start); |
| } |
| |
| static inline bool have_dtb(const struct arm_boot_info *info) |
| { |
| return info->dtb_filename || info->get_dtb; |
| } |
| |
| #define WRITE_WORD(p, value) do { \ |
| address_space_stl_notdirty(as, p, value, \ |
| MEMTXATTRS_UNSPECIFIED, NULL); \ |
| p += 4; \ |
| } while (0) |
| |
| static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as) |
| { |
| int initrd_size = info->initrd_size; |
| hwaddr base = info->loader_start; |
| hwaddr p; |
| |
| p = base + KERNEL_ARGS_ADDR; |
| /* ATAG_CORE */ |
| WRITE_WORD(p, 5); |
| WRITE_WORD(p, 0x54410001); |
| WRITE_WORD(p, 1); |
| WRITE_WORD(p, 0x1000); |
| WRITE_WORD(p, 0); |
| /* ATAG_MEM */ |
| /* TODO: handle multiple chips on one ATAG list */ |
| WRITE_WORD(p, 4); |
| WRITE_WORD(p, 0x54410002); |
| WRITE_WORD(p, info->ram_size); |
| WRITE_WORD(p, info->loader_start); |
| if (initrd_size) { |
| /* ATAG_INITRD2 */ |
| WRITE_WORD(p, 4); |
| WRITE_WORD(p, 0x54420005); |
| WRITE_WORD(p, info->initrd_start); |
| WRITE_WORD(p, initrd_size); |
| } |
| if (info->kernel_cmdline && *info->kernel_cmdline) { |
| /* ATAG_CMDLINE */ |
| int cmdline_size; |
| |
| cmdline_size = strlen(info->kernel_cmdline); |
| address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED, |
| (const uint8_t *)info->kernel_cmdline, |
| cmdline_size + 1); |
| cmdline_size = (cmdline_size >> 2) + 1; |
| WRITE_WORD(p, cmdline_size + 2); |
| WRITE_WORD(p, 0x54410009); |
| p += cmdline_size * 4; |
| } |
| if (info->atag_board) { |
| /* ATAG_BOARD */ |
| int atag_board_len; |
| uint8_t atag_board_buf[0x1000]; |
| |
| atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3; |
| WRITE_WORD(p, (atag_board_len + 8) >> 2); |
| WRITE_WORD(p, 0x414f4d50); |
| address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, |
| atag_board_buf, atag_board_len); |
| p += atag_board_len; |
| } |
| /* ATAG_END */ |
| WRITE_WORD(p, 0); |
| WRITE_WORD(p, 0); |
| } |
| |
| static void set_kernel_args_old(const struct arm_boot_info *info, |
| AddressSpace *as) |
| { |
| hwaddr p; |
| const char *s; |
| int initrd_size = info->initrd_size; |
| hwaddr base = info->loader_start; |
| |
| /* see linux/include/asm-arm/setup.h */ |
| p = base + KERNEL_ARGS_ADDR; |
| /* page_size */ |
| WRITE_WORD(p, 4096); |
| /* nr_pages */ |
| WRITE_WORD(p, info->ram_size / 4096); |
| /* ramdisk_size */ |
| WRITE_WORD(p, 0); |
| #define FLAG_READONLY 1 |
| #define FLAG_RDLOAD 4 |
| #define FLAG_RDPROMPT 8 |
| /* flags */ |
| WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT); |
| /* rootdev */ |
| WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */ |
| /* video_num_cols */ |
| WRITE_WORD(p, 0); |
| /* video_num_rows */ |
| WRITE_WORD(p, 0); |
| /* video_x */ |
| WRITE_WORD(p, 0); |
| /* video_y */ |
| WRITE_WORD(p, 0); |
| /* memc_control_reg */ |
| WRITE_WORD(p, 0); |
| /* unsigned char sounddefault */ |
| /* unsigned char adfsdrives */ |
| /* unsigned char bytes_per_char_h */ |
| /* unsigned char bytes_per_char_v */ |
| WRITE_WORD(p, 0); |
| /* pages_in_bank[4] */ |
| WRITE_WORD(p, 0); |
| WRITE_WORD(p, 0); |
| WRITE_WORD(p, 0); |
| WRITE_WORD(p, 0); |
| /* pages_in_vram */ |
| WRITE_WORD(p, 0); |
| /* initrd_start */ |
| if (initrd_size) { |
| WRITE_WORD(p, info->initrd_start); |
| } else { |
| WRITE_WORD(p, 0); |
| } |
| /* initrd_size */ |
| WRITE_WORD(p, initrd_size); |
| /* rd_start */ |
| WRITE_WORD(p, 0); |
| /* system_rev */ |
| WRITE_WORD(p, 0); |
| /* system_serial_low */ |
| WRITE_WORD(p, 0); |
| /* system_serial_high */ |
| WRITE_WORD(p, 0); |
| /* mem_fclk_21285 */ |
| WRITE_WORD(p, 0); |
| /* zero unused fields */ |
| while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) { |
| WRITE_WORD(p, 0); |
| } |
| s = info->kernel_cmdline; |
| if (s) { |
| address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, |
| (const uint8_t *)s, strlen(s) + 1); |
| } else { |
| WRITE_WORD(p, 0); |
| } |
| } |
| |
| static void fdt_add_psci_node(void *fdt) |
| { |
| uint32_t cpu_suspend_fn; |
| uint32_t cpu_off_fn; |
| uint32_t cpu_on_fn; |
| uint32_t migrate_fn; |
| ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); |
| const char *psci_method; |
| int64_t psci_conduit; |
| |
| psci_conduit = object_property_get_int(OBJECT(armcpu), |
| "psci-conduit", |
| &error_abort); |
| switch (psci_conduit) { |
| case QEMU_PSCI_CONDUIT_DISABLED: |
| return; |
| case QEMU_PSCI_CONDUIT_HVC: |
| psci_method = "hvc"; |
| break; |
| case QEMU_PSCI_CONDUIT_SMC: |
| psci_method = "smc"; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| qemu_fdt_add_subnode(fdt, "/psci"); |
| if (armcpu->psci_version == 2) { |
| const char comp[] = "arm,psci-0.2\0arm,psci"; |
| qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); |
| |
| cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; |
| if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { |
| cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; |
| cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; |
| migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; |
| } else { |
| cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; |
| cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; |
| migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; |
| } |
| } else { |
| qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); |
| |
| cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; |
| cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; |
| cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; |
| migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; |
| } |
| |
| /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer |
| * to the instruction that should be used to invoke PSCI functions. |
| * However, the device tree binding uses 'method' instead, so that is |
| * what we should use here. |
| */ |
| qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method); |
| |
| qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); |
| qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); |
| qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); |
| qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); |
| } |
| |
| /** |
| * load_dtb() - load a device tree binary image into memory |
| * @addr: the address to load the image at |
| * @binfo: struct describing the boot environment |
| * @addr_limit: upper limit of the available memory area at @addr |
| * @as: address space to load image to |
| * |
| * Load a device tree supplied by the machine or by the user with the |
| * '-dtb' command line option, and put it at offset @addr in target |
| * memory. |
| * |
| * If @addr_limit contains a meaningful value (i.e., it is strictly greater |
| * than @addr), the device tree is only loaded if its size does not exceed |
| * the limit. |
| * |
| * Returns: the size of the device tree image on success, |
| * 0 if the image size exceeds the limit, |
| * -1 on errors. |
| * |
| * Note: Must not be called unless have_dtb(binfo) is true. |
| */ |
| static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo, |
| hwaddr addr_limit, AddressSpace *as) |
| { |
| void *fdt = NULL; |
| int size, rc; |
| uint32_t acells, scells; |
| char *nodename; |
| unsigned int i; |
| hwaddr mem_base, mem_len; |
| |
| if (binfo->dtb_filename) { |
| char *filename; |
| filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename); |
| if (!filename) { |
| fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename); |
| goto fail; |
| } |
| |
| fdt = load_device_tree(filename, &size); |
| if (!fdt) { |
| fprintf(stderr, "Couldn't open dtb file %s\n", filename); |
| g_free(filename); |
| goto fail; |
| } |
| g_free(filename); |
| } else { |
| fdt = binfo->get_dtb(binfo, &size); |
| if (!fdt) { |
| fprintf(stderr, "Board was unable to create a dtb blob\n"); |
| goto fail; |
| } |
| } |
| |
| if (addr_limit > addr && size > (addr_limit - addr)) { |
| /* Installing the device tree blob at addr would exceed addr_limit. |
| * Whether this constitutes failure is up to the caller to decide, |
| * so just return 0 as size, i.e., no error. |
| */ |
| g_free(fdt); |
| return 0; |
| } |
| |
| acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells", |
| NULL, &error_fatal); |
| scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells", |
| NULL, &error_fatal); |
| if (acells == 0 || scells == 0) { |
| fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n"); |
| goto fail; |
| } |
| |
| if (scells < 2 && binfo->ram_size >= (1ULL << 32)) { |
| /* This is user error so deserves a friendlier error message |
| * than the failure of setprop_sized_cells would provide |
| */ |
| fprintf(stderr, "qemu: dtb file not compatible with " |
| "RAM size > 4GB\n"); |
| goto fail; |
| } |
| |
| if (nb_numa_nodes > 0) { |
| /* |
| * Turn the /memory node created before into a NOP node, then create |
| * /memory@addr nodes for all numa nodes respectively. |
| */ |
| qemu_fdt_nop_node(fdt, "/memory"); |
| mem_base = binfo->loader_start; |
| for (i = 0; i < nb_numa_nodes; i++) { |
| mem_len = numa_info[i].node_mem; |
| nodename = g_strdup_printf("/memory@%" PRIx64, mem_base); |
| qemu_fdt_add_subnode(fdt, nodename); |
| qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory"); |
| rc = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", |
| acells, mem_base, |
| scells, mem_len); |
| if (rc < 0) { |
| fprintf(stderr, "couldn't set %s/reg for node %d\n", nodename, |
| i); |
| goto fail; |
| } |
| |
| qemu_fdt_setprop_cell(fdt, nodename, "numa-node-id", i); |
| mem_base += mem_len; |
| g_free(nodename); |
| } |
| } else { |
| Error *err = NULL; |
| |
| rc = fdt_path_offset(fdt, "/memory"); |
| if (rc < 0) { |
| qemu_fdt_add_subnode(fdt, "/memory"); |
| } |
| |
| if (!qemu_fdt_getprop(fdt, "/memory", "device_type", NULL, &err)) { |
| qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); |
| } |
| |
| rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg", |
| acells, binfo->loader_start, |
| scells, binfo->ram_size); |
| if (rc < 0) { |
| fprintf(stderr, "couldn't set /memory/reg\n"); |
| goto fail; |
| } |
| } |
| |
| rc = fdt_path_offset(fdt, "/chosen"); |
| if (rc < 0) { |
| qemu_fdt_add_subnode(fdt, "/chosen"); |
| } |
| |
| if (binfo->kernel_cmdline && *binfo->kernel_cmdline) { |
| rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", |
| binfo->kernel_cmdline); |
| if (rc < 0) { |
| fprintf(stderr, "couldn't set /chosen/bootargs\n"); |
| goto fail; |
| } |
| } |
| |
| if (binfo->initrd_size) { |
| rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start", |
| binfo->initrd_start); |
| if (rc < 0) { |
| fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n"); |
| goto fail; |
| } |
| |
| rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end", |
| binfo->initrd_start + binfo->initrd_size); |
| if (rc < 0) { |
| fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n"); |
| goto fail; |
| } |
| } |
| |
| fdt_add_psci_node(fdt); |
| |
| if (binfo->modify_dtb) { |
| binfo->modify_dtb(binfo, fdt); |
| } |
| |
| qemu_fdt_dumpdtb(fdt, size); |
| |
| /* Put the DTB into the memory map as a ROM image: this will ensure |
| * the DTB is copied again upon reset, even if addr points into RAM. |
| */ |
| rom_add_blob_fixed_as("dtb", fdt, size, addr, as); |
| |
| g_free(fdt); |
| |
| return size; |
| |
| fail: |
| g_free(fdt); |
| return -1; |
| } |
| |
| static void do_cpu_reset(void *opaque) |
| { |
| ARMCPU *cpu = opaque; |
| CPUState *cs = CPU(cpu); |
| CPUARMState *env = &cpu->env; |
| const struct arm_boot_info *info = env->boot_info; |
| |
| cpu_reset(cs); |
| if (info) { |
| if (!info->is_linux) { |
| int i; |
| /* Jump to the entry point. */ |
| uint64_t entry = info->entry; |
| |
| switch (info->endianness) { |
| case ARM_ENDIANNESS_LE: |
| env->cp15.sctlr_el[1] &= ~SCTLR_E0E; |
| for (i = 1; i < 4; ++i) { |
| env->cp15.sctlr_el[i] &= ~SCTLR_EE; |
| } |
| env->uncached_cpsr &= ~CPSR_E; |
| break; |
| case ARM_ENDIANNESS_BE8: |
| env->cp15.sctlr_el[1] |= SCTLR_E0E; |
| for (i = 1; i < 4; ++i) { |
| env->cp15.sctlr_el[i] |= SCTLR_EE; |
| } |
| env->uncached_cpsr |= CPSR_E; |
| break; |
| case ARM_ENDIANNESS_BE32: |
| env->cp15.sctlr_el[1] |= SCTLR_B; |
| break; |
| case ARM_ENDIANNESS_UNKNOWN: |
| break; /* Board's decision */ |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (!env->aarch64) { |
| env->thumb = info->entry & 1; |
| entry &= 0xfffffffe; |
| } |
| cpu_set_pc(cs, entry); |
| } else { |
| /* If we are booting Linux then we need to check whether we are |
| * booting into secure or non-secure state and adjust the state |
| * accordingly. Out of reset, ARM is defined to be in secure state |
| * (SCR.NS = 0), we change that here if non-secure boot has been |
| * requested. |
| */ |
| if (arm_feature(env, ARM_FEATURE_EL3)) { |
| /* AArch64 is defined to come out of reset into EL3 if enabled. |
| * If we are booting Linux then we need to adjust our EL as |
| * Linux expects us to be in EL2 or EL1. AArch32 resets into |
| * SVC, which Linux expects, so no privilege/exception level to |
| * adjust. |
| */ |
| if (env->aarch64) { |
| env->cp15.scr_el3 |= SCR_RW; |
| if (arm_feature(env, ARM_FEATURE_EL2)) { |
| env->cp15.hcr_el2 |= HCR_RW; |
| env->pstate = PSTATE_MODE_EL2h; |
| } else { |
| env->pstate = PSTATE_MODE_EL1h; |
| } |
| } |
| |
| /* Set to non-secure if not a secure boot */ |
| if (!info->secure_boot && |
| (cs != first_cpu || !info->secure_board_setup)) { |
| /* Linux expects non-secure state */ |
| env->cp15.scr_el3 |= SCR_NS; |
| } |
| } |
| |
| if (cs == first_cpu) { |
| AddressSpace *as = arm_boot_address_space(cpu, info); |
| |
| cpu_set_pc(cs, info->loader_start); |
| |
| if (!have_dtb(info)) { |
| if (old_param) { |
| set_kernel_args_old(info, as); |
| } else { |
| set_kernel_args(info, as); |
| } |
| } |
| } else { |
| info->secondary_cpu_reset_hook(cpu, info); |
| } |
| } |
| } |
| } |
| |
| /** |
| * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified |
| * by key. |
| * @fw_cfg: The firmware config instance to store the data in. |
| * @size_key: The firmware config key to store the size of the loaded |
| * data under, with fw_cfg_add_i32(). |
| * @data_key: The firmware config key to store the loaded data under, |
| * with fw_cfg_add_bytes(). |
| * @image_name: The name of the image file to load. If it is NULL, the |
| * function returns without doing anything. |
| * @try_decompress: Whether the image should be decompressed (gunzipped) before |
| * adding it to fw_cfg. If decompression fails, the image is |
| * loaded as-is. |
| * |
| * In case of failure, the function prints an error message to stderr and the |
| * process exits with status 1. |
| */ |
| static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key, |
| uint16_t data_key, const char *image_name, |
| bool try_decompress) |
| { |
| size_t size = -1; |
| uint8_t *data; |
| |
| if (image_name == NULL) { |
| return; |
| } |
| |
| if (try_decompress) { |
| size = load_image_gzipped_buffer(image_name, |
| LOAD_IMAGE_MAX_GUNZIP_BYTES, &data); |
| } |
| |
| if (size == (size_t)-1) { |
| gchar *contents; |
| gsize length; |
| |
| if (!g_file_get_contents(image_name, &contents, &length, NULL)) { |
| error_report("failed to load \"%s\"", image_name); |
| exit(1); |
| } |
| size = length; |
| data = (uint8_t *)contents; |
| } |
| |
| fw_cfg_add_i32(fw_cfg, size_key, size); |
| fw_cfg_add_bytes(fw_cfg, data_key, data, size); |
| } |
| |
| static int do_arm_linux_init(Object *obj, void *opaque) |
| { |
| if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) { |
| ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj); |
| ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj); |
| struct arm_boot_info *info = opaque; |
| |
| if (albifc->arm_linux_init) { |
| albifc->arm_linux_init(albif, info->secure_boot); |
| } |
| } |
| return 0; |
| } |
| |
| static uint64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry, |
| uint64_t *lowaddr, uint64_t *highaddr, |
| int elf_machine, AddressSpace *as) |
| { |
| bool elf_is64; |
| union { |
| Elf32_Ehdr h32; |
| Elf64_Ehdr h64; |
| } elf_header; |
| int data_swab = 0; |
| bool big_endian; |
| uint64_t ret = -1; |
| Error *err = NULL; |
| |
| |
| load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err); |
| if (err) { |
| error_free(err); |
| return ret; |
| } |
| |
| if (elf_is64) { |
| big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB; |
| info->endianness = big_endian ? ARM_ENDIANNESS_BE8 |
| : ARM_ENDIANNESS_LE; |
| } else { |
| big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB; |
| if (big_endian) { |
| if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) { |
| info->endianness = ARM_ENDIANNESS_BE8; |
| } else { |
| info->endianness = ARM_ENDIANNESS_BE32; |
| /* In BE32, the CPU has a different view of the per-byte |
| * address map than the rest of the system. BE32 ELF files |
| * are organised such that they can be programmed through |
| * the CPU's per-word byte-reversed view of the world. QEMU |
| * however loads ELF files independently of the CPU. So |
| * tell the ELF loader to byte reverse the data for us. |
| */ |
| data_swab = 2; |
| } |
| } else { |
| info->endianness = ARM_ENDIANNESS_LE; |
| } |
| } |
| |
| ret = load_elf_as(info->kernel_filename, NULL, NULL, |
| pentry, lowaddr, highaddr, big_endian, elf_machine, |
| 1, data_swab, as); |
| if (ret <= 0) { |
| /* The header loaded but the image didn't */ |
| exit(1); |
| } |
| |
| return ret; |
| } |
| |
| static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base, |
| hwaddr *entry, AddressSpace *as) |
| { |
| hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR; |
| uint8_t *buffer; |
| int size; |
| |
| /* On aarch64, it's the bootloader's job to uncompress the kernel. */ |
| size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES, |
| &buffer); |
| |
| if (size < 0) { |
| gsize len; |
| |
| /* Load as raw file otherwise */ |
| if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) { |
| return -1; |
| } |
| size = len; |
| } |
| |
| /* check the arm64 magic header value -- very old kernels may not have it */ |
| if (size > ARM64_MAGIC_OFFSET + 4 && |
| memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) { |
| uint64_t hdrvals[2]; |
| |
| /* The arm64 Image header has text_offset and image_size fields at 8 and |
| * 16 bytes into the Image header, respectively. The text_offset field |
| * is only valid if the image_size is non-zero. |
| */ |
| memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals)); |
| if (hdrvals[1] != 0) { |
| kernel_load_offset = le64_to_cpu(hdrvals[0]); |
| } |
| } |
| |
| *entry = mem_base + kernel_load_offset; |
| rom_add_blob_fixed_as(filename, buffer, size, *entry, as); |
| |
| g_free(buffer); |
| |
| return size; |
| } |
| |
| static void arm_load_kernel_notify(Notifier *notifier, void *data) |
| { |
| CPUState *cs; |
| int kernel_size; |
| int initrd_size; |
| int is_linux = 0; |
| uint64_t elf_entry, elf_low_addr, elf_high_addr; |
| int elf_machine; |
| hwaddr entry; |
| static const ARMInsnFixup *primary_loader; |
| ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier, |
| notifier, notifier); |
| ARMCPU *cpu = n->cpu; |
| struct arm_boot_info *info = |
| container_of(n, struct arm_boot_info, load_kernel_notifier); |
| AddressSpace *as = arm_boot_address_space(cpu, info); |
| |
| /* The board code is not supposed to set secure_board_setup unless |
| * running its code in secure mode is actually possible, and KVM |
| * doesn't support secure. |
| */ |
| assert(!(info->secure_board_setup && kvm_enabled())); |
| |
| info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb"); |
| |
| /* Load the kernel. */ |
| if (!info->kernel_filename || info->firmware_loaded) { |
| |
| if (have_dtb(info)) { |
| /* If we have a device tree blob, but no kernel to supply it to (or |
| * the kernel is supposed to be loaded by the bootloader), copy the |
| * DTB to the base of RAM for the bootloader to pick up. |
| */ |
| if (load_dtb(info->loader_start, info, 0, as) < 0) { |
| exit(1); |
| } |
| } |
| |
| if (info->kernel_filename) { |
| FWCfgState *fw_cfg; |
| bool try_decompressing_kernel; |
| |
| fw_cfg = fw_cfg_find(); |
| try_decompressing_kernel = arm_feature(&cpu->env, |
| ARM_FEATURE_AARCH64); |
| |
| /* Expose the kernel, the command line, and the initrd in fw_cfg. |
| * We don't process them here at all, it's all left to the |
| * firmware. |
| */ |
| load_image_to_fw_cfg(fw_cfg, |
| FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA, |
| info->kernel_filename, |
| try_decompressing_kernel); |
| load_image_to_fw_cfg(fw_cfg, |
| FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA, |
| info->initrd_filename, false); |
| |
| if (info->kernel_cmdline) { |
| fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, |
| strlen(info->kernel_cmdline) + 1); |
| fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, |
| info->kernel_cmdline); |
| } |
| } |
| |
| /* We will start from address 0 (typically a boot ROM image) in the |
| * same way as hardware. |
| */ |
| return; |
| } |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { |
| primary_loader = bootloader_aarch64; |
| elf_machine = EM_AARCH64; |
| } else { |
| primary_loader = bootloader; |
| if (!info->write_board_setup) { |
| primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET; |
| } |
| elf_machine = EM_ARM; |
| } |
| |
| if (!info->secondary_cpu_reset_hook) { |
| info->secondary_cpu_reset_hook = default_reset_secondary; |
| } |
| if (!info->write_secondary_boot) { |
| info->write_secondary_boot = default_write_secondary; |
| } |
| |
| if (info->nb_cpus == 0) |
| info->nb_cpus = 1; |
| |
| /* We want to put the initrd far enough into RAM that when the |
| * kernel is uncompressed it will not clobber the initrd. However |
| * on boards without much RAM we must ensure that we still leave |
| * enough room for a decent sized initrd, and on boards with large |
| * amounts of RAM we must avoid the initrd being so far up in RAM |
| * that it is outside lowmem and inaccessible to the kernel. |
| * So for boards with less than 256MB of RAM we put the initrd |
| * halfway into RAM, and for boards with 256MB of RAM or more we put |
| * the initrd at 128MB. |
| */ |
| info->initrd_start = info->loader_start + |
| MIN(info->ram_size / 2, 128 * 1024 * 1024); |
| |
| /* Assume that raw images are linux kernels, and ELF images are not. */ |
| kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr, |
| &elf_high_addr, elf_machine, as); |
| if (kernel_size > 0 && have_dtb(info)) { |
| /* If there is still some room left at the base of RAM, try and put |
| * the DTB there like we do for images loaded with -bios or -pflash. |
| */ |
| if (elf_low_addr > info->loader_start |
| || elf_high_addr < info->loader_start) { |
| /* Pass elf_low_addr as address limit to load_dtb if it may be |
| * pointing into RAM, otherwise pass '0' (no limit) |
| */ |
| if (elf_low_addr < info->loader_start) { |
| elf_low_addr = 0; |
| } |
| if (load_dtb(info->loader_start, info, elf_low_addr, as) < 0) { |
| exit(1); |
| } |
| } |
| } |
| entry = elf_entry; |
| if (kernel_size < 0) { |
| kernel_size = load_uimage_as(info->kernel_filename, &entry, NULL, |
| &is_linux, NULL, NULL, as); |
| } |
| if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) { |
| kernel_size = load_aarch64_image(info->kernel_filename, |
| info->loader_start, &entry, as); |
| is_linux = 1; |
| } else if (kernel_size < 0) { |
| /* 32-bit ARM */ |
| entry = info->loader_start + KERNEL_LOAD_ADDR; |
| kernel_size = load_image_targphys_as(info->kernel_filename, entry, |
| info->ram_size - KERNEL_LOAD_ADDR, |
| as); |
| is_linux = 1; |
| } |
| if (kernel_size < 0) { |
| error_report("could not load kernel '%s'", info->kernel_filename); |
| exit(1); |
| } |
| info->entry = entry; |
| if (is_linux) { |
| uint32_t fixupcontext[FIXUP_MAX]; |
| |
| if (info->initrd_filename) { |
| initrd_size = load_ramdisk_as(info->initrd_filename, |
| info->initrd_start, |
| info->ram_size - info->initrd_start, |
| as); |
| if (initrd_size < 0) { |
| initrd_size = load_image_targphys_as(info->initrd_filename, |
| info->initrd_start, |
| info->ram_size - |
| info->initrd_start, |
| as); |
| } |
| if (initrd_size < 0) { |
| error_report("could not load initrd '%s'", |
| info->initrd_filename); |
| exit(1); |
| } |
| } else { |
| initrd_size = 0; |
| } |
| info->initrd_size = initrd_size; |
| |
| fixupcontext[FIXUP_BOARDID] = info->board_id; |
| fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr; |
| |
| /* for device tree boot, we pass the DTB directly in r2. Otherwise |
| * we point to the kernel args. |
| */ |
| if (have_dtb(info)) { |
| hwaddr align; |
| hwaddr dtb_start; |
| |
| if (elf_machine == EM_AARCH64) { |
| /* |
| * Some AArch64 kernels on early bootup map the fdt region as |
| * |
| * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ] |
| * |
| * Let's play safe and prealign it to 2MB to give us some space. |
| */ |
| align = 2 * 1024 * 1024; |
| } else { |
| /* |
| * Some 32bit kernels will trash anything in the 4K page the |
| * initrd ends in, so make sure the DTB isn't caught up in that. |
| */ |
| align = 4096; |
| } |
| |
| /* Place the DTB after the initrd in memory with alignment. */ |
| dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align); |
| if (load_dtb(dtb_start, info, 0, as) < 0) { |
| exit(1); |
| } |
| fixupcontext[FIXUP_ARGPTR] = dtb_start; |
| } else { |
| fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR; |
| if (info->ram_size >= (1ULL << 32)) { |
| error_report("RAM size must be less than 4GB to boot" |
| " Linux kernel using ATAGS (try passing a device tree" |
| " using -dtb)"); |
| exit(1); |
| } |
| } |
| fixupcontext[FIXUP_ENTRYPOINT] = entry; |
| |
| write_bootloader("bootloader", info->loader_start, |
| primary_loader, fixupcontext, as); |
| |
| if (info->nb_cpus > 1) { |
| info->write_secondary_boot(cpu, info); |
| } |
| if (info->write_board_setup) { |
| info->write_board_setup(cpu, info); |
| } |
| |
| /* Notify devices which need to fake up firmware initialization |
| * that we're doing a direct kernel boot. |
| */ |
| object_child_foreach_recursive(object_get_root(), |
| do_arm_linux_init, info); |
| } |
| info->is_linux = is_linux; |
| |
| for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) { |
| ARM_CPU(cs)->env.boot_info = info; |
| } |
| } |
| |
| void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info) |
| { |
| CPUState *cs; |
| |
| info->load_kernel_notifier.cpu = cpu; |
| info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify; |
| qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier); |
| |
| /* CPU objects (unlike devices) are not automatically reset on system |
| * reset, so we must always register a handler to do so. If we're |
| * actually loading a kernel, the handler is also responsible for |
| * arranging that we start it correctly. |
| */ |
| for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) { |
| qemu_register_reset(do_cpu_reset, ARM_CPU(cs)); |
| } |
| } |
| |
| static const TypeInfo arm_linux_boot_if_info = { |
| .name = TYPE_ARM_LINUX_BOOT_IF, |
| .parent = TYPE_INTERFACE, |
| .class_size = sizeof(ARMLinuxBootIfClass), |
| }; |
| |
| static void arm_linux_boot_register_types(void) |
| { |
| type_register_static(&arm_linux_boot_if_info); |
| } |
| |
| type_init(arm_linux_boot_register_types) |