| /* |
| * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * * Neither the name of the Open Source and Linux Lab nor the |
| * names of its contributors may be used to endorse or promote products |
| * derived from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "cpu.h" |
| #include "helper.h" |
| #include "qemu/host-utils.h" |
| #include "exec/softmmu_exec.h" |
| #include "exec/address-spaces.h" |
| |
| static void do_unaligned_access(CPUXtensaState *env, |
| target_ulong addr, int is_write, int is_user, uintptr_t retaddr); |
| |
| #define ALIGNED_ONLY |
| #define MMUSUFFIX _mmu |
| |
| #define SHIFT 0 |
| #include "exec/softmmu_template.h" |
| |
| #define SHIFT 1 |
| #include "exec/softmmu_template.h" |
| |
| #define SHIFT 2 |
| #include "exec/softmmu_template.h" |
| |
| #define SHIFT 3 |
| #include "exec/softmmu_template.h" |
| |
| static void do_unaligned_access(CPUXtensaState *env, |
| target_ulong addr, int is_write, int is_user, uintptr_t retaddr) |
| { |
| if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) && |
| !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) { |
| cpu_restore_state(env, retaddr); |
| HELPER(exception_cause_vaddr)(env, |
| env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr); |
| } |
| } |
| |
| void tlb_fill(CPUXtensaState *env, |
| target_ulong vaddr, int is_write, int mmu_idx, uintptr_t retaddr) |
| { |
| uint32_t paddr; |
| uint32_t page_size; |
| unsigned access; |
| int ret = xtensa_get_physical_addr(env, true, vaddr, is_write, mmu_idx, |
| &paddr, &page_size, &access); |
| |
| qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__, |
| vaddr, is_write, mmu_idx, paddr, ret); |
| |
| if (ret == 0) { |
| tlb_set_page(env, |
| vaddr & TARGET_PAGE_MASK, |
| paddr & TARGET_PAGE_MASK, |
| access, mmu_idx, page_size); |
| } else { |
| cpu_restore_state(env, retaddr); |
| HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr); |
| } |
| } |
| |
| static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr) |
| { |
| uint32_t paddr; |
| uint32_t page_size; |
| unsigned access; |
| int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0, |
| &paddr, &page_size, &access); |
| if (ret == 0) { |
| tb_invalidate_phys_addr(&address_space_memory, paddr); |
| } |
| } |
| |
| void HELPER(exception)(CPUXtensaState *env, uint32_t excp) |
| { |
| CPUState *cs = CPU(xtensa_env_get_cpu(env)); |
| |
| cs->exception_index = excp; |
| if (excp == EXCP_DEBUG) { |
| env->exception_taken = 0; |
| } |
| cpu_loop_exit(env); |
| } |
| |
| void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause) |
| { |
| uint32_t vector; |
| |
| env->pc = pc; |
| if (env->sregs[PS] & PS_EXCM) { |
| if (env->config->ndepc) { |
| env->sregs[DEPC] = pc; |
| } else { |
| env->sregs[EPC1] = pc; |
| } |
| vector = EXC_DOUBLE; |
| } else { |
| env->sregs[EPC1] = pc; |
| vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL; |
| } |
| |
| env->sregs[EXCCAUSE] = cause; |
| env->sregs[PS] |= PS_EXCM; |
| |
| HELPER(exception)(env, vector); |
| } |
| |
| void HELPER(exception_cause_vaddr)(CPUXtensaState *env, |
| uint32_t pc, uint32_t cause, uint32_t vaddr) |
| { |
| env->sregs[EXCVADDR] = vaddr; |
| HELPER(exception_cause)(env, pc, cause); |
| } |
| |
| void debug_exception_env(CPUXtensaState *env, uint32_t cause) |
| { |
| if (xtensa_get_cintlevel(env) < env->config->debug_level) { |
| HELPER(debug_exception)(env, env->pc, cause); |
| } |
| } |
| |
| void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause) |
| { |
| unsigned level = env->config->debug_level; |
| |
| env->pc = pc; |
| env->sregs[DEBUGCAUSE] = cause; |
| env->sregs[EPC1 + level - 1] = pc; |
| env->sregs[EPS2 + level - 2] = env->sregs[PS]; |
| env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM | |
| (level << PS_INTLEVEL_SHIFT); |
| HELPER(exception)(env, EXC_DEBUG); |
| } |
| |
| uint32_t HELPER(nsa)(uint32_t v) |
| { |
| if (v & 0x80000000) { |
| v = ~v; |
| } |
| return v ? clz32(v) - 1 : 31; |
| } |
| |
| uint32_t HELPER(nsau)(uint32_t v) |
| { |
| return v ? clz32(v) : 32; |
| } |
| |
| static void copy_window_from_phys(CPUXtensaState *env, |
| uint32_t window, uint32_t phys, uint32_t n) |
| { |
| assert(phys < env->config->nareg); |
| if (phys + n <= env->config->nareg) { |
| memcpy(env->regs + window, env->phys_regs + phys, |
| n * sizeof(uint32_t)); |
| } else { |
| uint32_t n1 = env->config->nareg - phys; |
| memcpy(env->regs + window, env->phys_regs + phys, |
| n1 * sizeof(uint32_t)); |
| memcpy(env->regs + window + n1, env->phys_regs, |
| (n - n1) * sizeof(uint32_t)); |
| } |
| } |
| |
| static void copy_phys_from_window(CPUXtensaState *env, |
| uint32_t phys, uint32_t window, uint32_t n) |
| { |
| assert(phys < env->config->nareg); |
| if (phys + n <= env->config->nareg) { |
| memcpy(env->phys_regs + phys, env->regs + window, |
| n * sizeof(uint32_t)); |
| } else { |
| uint32_t n1 = env->config->nareg - phys; |
| memcpy(env->phys_regs + phys, env->regs + window, |
| n1 * sizeof(uint32_t)); |
| memcpy(env->phys_regs, env->regs + window + n1, |
| (n - n1) * sizeof(uint32_t)); |
| } |
| } |
| |
| |
| static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env) |
| { |
| return a & (env->config->nareg / 4 - 1); |
| } |
| |
| static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env) |
| { |
| return 1 << windowbase_bound(a, env); |
| } |
| |
| void xtensa_sync_window_from_phys(CPUXtensaState *env) |
| { |
| copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16); |
| } |
| |
| void xtensa_sync_phys_from_window(CPUXtensaState *env) |
| { |
| copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16); |
| } |
| |
| static void rotate_window_abs(CPUXtensaState *env, uint32_t position) |
| { |
| xtensa_sync_phys_from_window(env); |
| env->sregs[WINDOW_BASE] = windowbase_bound(position, env); |
| xtensa_sync_window_from_phys(env); |
| } |
| |
| static void rotate_window(CPUXtensaState *env, uint32_t delta) |
| { |
| rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta); |
| } |
| |
| void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v) |
| { |
| rotate_window_abs(env, v); |
| } |
| |
| void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm) |
| { |
| int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT; |
| if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) { |
| qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n", |
| pc, env->sregs[PS]); |
| HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE); |
| } else { |
| env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3); |
| rotate_window(env, callinc); |
| env->sregs[WINDOW_START] |= |
| windowstart_bit(env->sregs[WINDOW_BASE], env); |
| } |
| } |
| |
| void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w) |
| { |
| uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env); |
| uint32_t windowstart = env->sregs[WINDOW_START]; |
| uint32_t m, n; |
| |
| if ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) { |
| return; |
| } |
| |
| for (n = 1; ; ++n) { |
| if (n > w) { |
| return; |
| } |
| if (windowstart & windowstart_bit(windowbase + n, env)) { |
| break; |
| } |
| } |
| |
| m = windowbase_bound(windowbase + n, env); |
| rotate_window(env, n); |
| env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) | |
| (windowbase << PS_OWB_SHIFT) | PS_EXCM; |
| env->sregs[EPC1] = env->pc = pc; |
| |
| if (windowstart & windowstart_bit(m + 1, env)) { |
| HELPER(exception)(env, EXC_WINDOW_OVERFLOW4); |
| } else if (windowstart & windowstart_bit(m + 2, env)) { |
| HELPER(exception)(env, EXC_WINDOW_OVERFLOW8); |
| } else { |
| HELPER(exception)(env, EXC_WINDOW_OVERFLOW12); |
| } |
| } |
| |
| uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc) |
| { |
| int n = (env->regs[0] >> 30) & 0x3; |
| int m = 0; |
| uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env); |
| uint32_t windowstart = env->sregs[WINDOW_START]; |
| uint32_t ret_pc = 0; |
| |
| if (windowstart & windowstart_bit(windowbase - 1, env)) { |
| m = 1; |
| } else if (windowstart & windowstart_bit(windowbase - 2, env)) { |
| m = 2; |
| } else if (windowstart & windowstart_bit(windowbase - 3, env)) { |
| m = 3; |
| } |
| |
| if (n == 0 || (m != 0 && m != n) || |
| ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) { |
| qemu_log("Illegal retw instruction(pc = %08x), " |
| "PS = %08x, m = %d, n = %d\n", |
| pc, env->sregs[PS], m, n); |
| HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE); |
| } else { |
| int owb = windowbase; |
| |
| ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff); |
| |
| rotate_window(env, -n); |
| if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) { |
| env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env); |
| } else { |
| /* window underflow */ |
| env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) | |
| (windowbase << PS_OWB_SHIFT) | PS_EXCM; |
| env->sregs[EPC1] = env->pc = pc; |
| |
| if (n == 1) { |
| HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4); |
| } else if (n == 2) { |
| HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8); |
| } else if (n == 3) { |
| HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12); |
| } |
| } |
| } |
| return ret_pc; |
| } |
| |
| void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4) |
| { |
| rotate_window(env, imm4); |
| } |
| |
| void HELPER(restore_owb)(CPUXtensaState *env) |
| { |
| rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT); |
| } |
| |
| void HELPER(movsp)(CPUXtensaState *env, uint32_t pc) |
| { |
| if ((env->sregs[WINDOW_START] & |
| (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) | |
| windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) | |
| windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) { |
| HELPER(exception_cause)(env, pc, ALLOCA_CAUSE); |
| } |
| } |
| |
| void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v) |
| { |
| if (env->sregs[LBEG] != v) { |
| tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1); |
| env->sregs[LBEG] = v; |
| } |
| } |
| |
| void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v) |
| { |
| if (env->sregs[LEND] != v) { |
| tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1); |
| env->sregs[LEND] = v; |
| tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1); |
| } |
| } |
| |
| void HELPER(dump_state)(CPUXtensaState *env) |
| { |
| XtensaCPU *cpu = xtensa_env_get_cpu(env); |
| |
| cpu_dump_state(CPU(cpu), stderr, fprintf, 0); |
| } |
| |
| void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel) |
| { |
| CPUState *cpu; |
| |
| env->pc = pc; |
| env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | |
| (intlevel << PS_INTLEVEL_SHIFT); |
| check_interrupts(env); |
| if (env->pending_irq_level) { |
| cpu_loop_exit(env); |
| return; |
| } |
| |
| cpu = CPU(xtensa_env_get_cpu(env)); |
| env->halt_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| cpu->halted = 1; |
| if (xtensa_option_enabled(env->config, XTENSA_OPTION_TIMER_INTERRUPT)) { |
| xtensa_rearm_ccompare_timer(env); |
| } |
| HELPER(exception)(env, EXCP_HLT); |
| } |
| |
| void HELPER(timer_irq)(CPUXtensaState *env, uint32_t id, uint32_t active) |
| { |
| xtensa_timer_irq(env, id, active); |
| } |
| |
| void HELPER(advance_ccount)(CPUXtensaState *env, uint32_t d) |
| { |
| xtensa_advance_ccount(env, d); |
| } |
| |
| void HELPER(check_interrupts)(CPUXtensaState *env) |
| { |
| check_interrupts(env); |
| } |
| |
| void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr) |
| { |
| get_page_addr_code(env, vaddr); |
| } |
| |
| /*! |
| * Check vaddr accessibility/cache attributes and raise an exception if |
| * specified by the ATOMCTL SR. |
| * |
| * Note: local memory exclusion is not implemented |
| */ |
| void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr) |
| { |
| uint32_t paddr, page_size, access; |
| uint32_t atomctl = env->sregs[ATOMCTL]; |
| int rc = xtensa_get_physical_addr(env, true, vaddr, 1, |
| xtensa_get_cring(env), &paddr, &page_size, &access); |
| |
| /* |
| * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions, |
| * see opcode description in the ISA |
| */ |
| if (rc == 0 && |
| (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) { |
| rc = STORE_PROHIBITED_CAUSE; |
| } |
| |
| if (rc) { |
| HELPER(exception_cause_vaddr)(env, pc, rc, vaddr); |
| } |
| |
| /* |
| * When data cache is not configured use ATOMCTL bypass field. |
| * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL) |
| * under the Conditional Store Option. |
| */ |
| if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) { |
| access = PAGE_CACHE_BYPASS; |
| } |
| |
| switch (access & PAGE_CACHE_MASK) { |
| case PAGE_CACHE_WB: |
| atomctl >>= 2; |
| /* fall through */ |
| case PAGE_CACHE_WT: |
| atomctl >>= 2; |
| /* fall through */ |
| case PAGE_CACHE_BYPASS: |
| if ((atomctl & 0x3) == 0) { |
| HELPER(exception_cause_vaddr)(env, pc, |
| LOAD_STORE_ERROR_CAUSE, vaddr); |
| } |
| break; |
| |
| case PAGE_CACHE_ISOLATE: |
| HELPER(exception_cause_vaddr)(env, pc, |
| LOAD_STORE_ERROR_CAUSE, vaddr); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v) |
| { |
| v = (v & 0xffffff00) | 0x1; |
| if (v != env->sregs[RASID]) { |
| env->sregs[RASID] = v; |
| tlb_flush(env, 1); |
| } |
| } |
| |
| static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way) |
| { |
| uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG]; |
| |
| switch (way) { |
| case 4: |
| return (tlbcfg >> 16) & 0x3; |
| |
| case 5: |
| return (tlbcfg >> 20) & 0x1; |
| |
| case 6: |
| return (tlbcfg >> 24) & 0x1; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| /*! |
| * Get bit mask for the virtual address bits translated by the TLB way |
| */ |
| uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way) |
| { |
| if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { |
| bool varway56 = dtlb ? |
| env->config->dtlb.varway56 : |
| env->config->itlb.varway56; |
| |
| switch (way) { |
| case 4: |
| return 0xfff00000 << get_page_size(env, dtlb, way) * 2; |
| |
| case 5: |
| if (varway56) { |
| return 0xf8000000 << get_page_size(env, dtlb, way); |
| } else { |
| return 0xf8000000; |
| } |
| |
| case 6: |
| if (varway56) { |
| return 0xf0000000 << (1 - get_page_size(env, dtlb, way)); |
| } else { |
| return 0xf0000000; |
| } |
| |
| default: |
| return 0xfffff000; |
| } |
| } else { |
| return REGION_PAGE_MASK; |
| } |
| } |
| |
| /*! |
| * Get bit mask for the 'VPN without index' field. |
| * See ISA, 4.6.5.6, data format for RxTLB0 |
| */ |
| static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way) |
| { |
| if (way < 4) { |
| bool is32 = (dtlb ? |
| env->config->dtlb.nrefillentries : |
| env->config->itlb.nrefillentries) == 32; |
| return is32 ? 0xffff8000 : 0xffffc000; |
| } else if (way == 4) { |
| return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2; |
| } else if (way <= 6) { |
| uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way); |
| bool varway56 = dtlb ? |
| env->config->dtlb.varway56 : |
| env->config->itlb.varway56; |
| |
| if (varway56) { |
| return mask << (way == 5 ? 2 : 3); |
| } else { |
| return mask << 1; |
| } |
| } else { |
| return 0xfffff000; |
| } |
| } |
| |
| /*! |
| * Split virtual address into VPN (with index) and entry index |
| * for the given TLB way |
| */ |
| void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb, |
| uint32_t *vpn, uint32_t wi, uint32_t *ei) |
| { |
| bool varway56 = dtlb ? |
| env->config->dtlb.varway56 : |
| env->config->itlb.varway56; |
| |
| if (!dtlb) { |
| wi &= 7; |
| } |
| |
| if (wi < 4) { |
| bool is32 = (dtlb ? |
| env->config->dtlb.nrefillentries : |
| env->config->itlb.nrefillentries) == 32; |
| *ei = (v >> 12) & (is32 ? 0x7 : 0x3); |
| } else { |
| switch (wi) { |
| case 4: |
| { |
| uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2; |
| *ei = (v >> eibase) & 0x3; |
| } |
| break; |
| |
| case 5: |
| if (varway56) { |
| uint32_t eibase = 27 + get_page_size(env, dtlb, wi); |
| *ei = (v >> eibase) & 0x3; |
| } else { |
| *ei = (v >> 27) & 0x1; |
| } |
| break; |
| |
| case 6: |
| if (varway56) { |
| uint32_t eibase = 29 - get_page_size(env, dtlb, wi); |
| *ei = (v >> eibase) & 0x7; |
| } else { |
| *ei = (v >> 28) & 0x1; |
| } |
| break; |
| |
| default: |
| *ei = 0; |
| break; |
| } |
| } |
| *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi); |
| } |
| |
| /*! |
| * Split TLB address into TLB way, entry index and VPN (with index). |
| * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format |
| */ |
| static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb, |
| uint32_t *vpn, uint32_t *wi, uint32_t *ei) |
| { |
| if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { |
| *wi = v & (dtlb ? 0xf : 0x7); |
| split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei); |
| } else { |
| *vpn = v & REGION_PAGE_MASK; |
| *wi = 0; |
| *ei = (v >> 29) & 0x7; |
| } |
| } |
| |
| static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env, |
| uint32_t v, bool dtlb, uint32_t *pwi) |
| { |
| uint32_t vpn; |
| uint32_t wi; |
| uint32_t ei; |
| |
| split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei); |
| if (pwi) { |
| *pwi = wi; |
| } |
| return xtensa_tlb_get_entry(env, dtlb, wi, ei); |
| } |
| |
| uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb) |
| { |
| if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { |
| uint32_t wi; |
| const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi); |
| return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid; |
| } else { |
| return v & REGION_PAGE_MASK; |
| } |
| } |
| |
| uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb) |
| { |
| const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL); |
| return entry->paddr | entry->attr; |
| } |
| |
| void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb) |
| { |
| if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { |
| uint32_t wi; |
| xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi); |
| if (entry->variable && entry->asid) { |
| tlb_flush_page(env, entry->vaddr); |
| entry->asid = 0; |
| } |
| } |
| } |
| |
| uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb) |
| { |
| if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { |
| uint32_t wi; |
| uint32_t ei; |
| uint8_t ring; |
| int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring); |
| |
| switch (res) { |
| case 0: |
| if (ring >= xtensa_get_ring(env)) { |
| return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8); |
| } |
| break; |
| |
| case INST_TLB_MULTI_HIT_CAUSE: |
| case LOAD_STORE_TLB_MULTI_HIT_CAUSE: |
| HELPER(exception_cause_vaddr)(env, env->pc, res, v); |
| break; |
| } |
| return 0; |
| } else { |
| return (v & REGION_PAGE_MASK) | 0x1; |
| } |
| } |
| |
| void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env, |
| xtensa_tlb_entry *entry, bool dtlb, |
| unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte) |
| { |
| entry->vaddr = vpn; |
| entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi); |
| entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff; |
| entry->attr = pte & 0xf; |
| } |
| |
| void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb, |
| unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte) |
| { |
| xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei); |
| |
| if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { |
| if (entry->variable) { |
| if (entry->asid) { |
| tlb_flush_page(env, entry->vaddr); |
| } |
| xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte); |
| tlb_flush_page(env, entry->vaddr); |
| } else { |
| qemu_log("%s %d, %d, %d trying to set immutable entry\n", |
| __func__, dtlb, wi, ei); |
| } |
| } else { |
| tlb_flush_page(env, entry->vaddr); |
| if (xtensa_option_enabled(env->config, |
| XTENSA_OPTION_REGION_TRANSLATION)) { |
| entry->paddr = pte & REGION_PAGE_MASK; |
| } |
| entry->attr = pte & 0xf; |
| } |
| } |
| |
| void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb) |
| { |
| uint32_t vpn; |
| uint32_t wi; |
| uint32_t ei; |
| split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei); |
| xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p); |
| } |
| |
| |
| void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v) |
| { |
| uint32_t change = v ^ env->sregs[IBREAKENABLE]; |
| unsigned i; |
| |
| for (i = 0; i < env->config->nibreak; ++i) { |
| if (change & (1 << i)) { |
| tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]); |
| } |
| } |
| env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1); |
| } |
| |
| void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v) |
| { |
| if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) { |
| tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]); |
| tb_invalidate_virtual_addr(env, v); |
| } |
| env->sregs[IBREAKA + i] = v; |
| } |
| |
| static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka, |
| uint32_t dbreakc) |
| { |
| int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; |
| uint32_t mask = dbreakc | ~DBREAKC_MASK; |
| |
| if (env->cpu_watchpoint[i]) { |
| cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]); |
| } |
| if (dbreakc & DBREAKC_SB) { |
| flags |= BP_MEM_WRITE; |
| } |
| if (dbreakc & DBREAKC_LB) { |
| flags |= BP_MEM_READ; |
| } |
| /* contiguous mask after inversion is one less than some power of 2 */ |
| if ((~mask + 1) & ~mask) { |
| qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc); |
| /* cut mask after the first zero bit */ |
| mask = 0xffffffff << (32 - clo32(mask)); |
| } |
| if (cpu_watchpoint_insert(env, dbreaka & mask, ~mask + 1, |
| flags, &env->cpu_watchpoint[i])) { |
| env->cpu_watchpoint[i] = NULL; |
| qemu_log("Failed to set data breakpoint at 0x%08x/%d\n", |
| dbreaka & mask, ~mask + 1); |
| } |
| } |
| |
| void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v) |
| { |
| uint32_t dbreakc = env->sregs[DBREAKC + i]; |
| |
| if ((dbreakc & DBREAKC_SB_LB) && |
| env->sregs[DBREAKA + i] != v) { |
| set_dbreak(env, i, v, dbreakc); |
| } |
| env->sregs[DBREAKA + i] = v; |
| } |
| |
| void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v) |
| { |
| if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) { |
| if (v & DBREAKC_SB_LB) { |
| set_dbreak(env, i, env->sregs[DBREAKA + i], v); |
| } else { |
| if (env->cpu_watchpoint[i]) { |
| cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]); |
| env->cpu_watchpoint[i] = NULL; |
| } |
| } |
| } |
| env->sregs[DBREAKC + i] = v; |
| } |
| |
| void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v) |
| { |
| static const int rounding_mode[] = { |
| float_round_nearest_even, |
| float_round_to_zero, |
| float_round_up, |
| float_round_down, |
| }; |
| |
| env->uregs[FCR] = v & 0xfffff07f; |
| set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status); |
| } |
| |
| float32 HELPER(abs_s)(float32 v) |
| { |
| return float32_abs(v); |
| } |
| |
| float32 HELPER(neg_s)(float32 v) |
| { |
| return float32_chs(v); |
| } |
| |
| float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b) |
| { |
| return float32_add(a, b, &env->fp_status); |
| } |
| |
| float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b) |
| { |
| return float32_sub(a, b, &env->fp_status); |
| } |
| |
| float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b) |
| { |
| return float32_mul(a, b, &env->fp_status); |
| } |
| |
| float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c) |
| { |
| return float32_muladd(b, c, a, 0, |
| &env->fp_status); |
| } |
| |
| float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c) |
| { |
| return float32_muladd(b, c, a, float_muladd_negate_product, |
| &env->fp_status); |
| } |
| |
| uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale) |
| { |
| float_status fp_status = {0}; |
| |
| set_float_rounding_mode(rounding_mode, &fp_status); |
| return float32_to_int32( |
| float32_scalbn(v, scale, &fp_status), &fp_status); |
| } |
| |
| uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale) |
| { |
| float_status fp_status = {0}; |
| float32 res; |
| |
| set_float_rounding_mode(rounding_mode, &fp_status); |
| |
| res = float32_scalbn(v, scale, &fp_status); |
| |
| if (float32_is_neg(v) && !float32_is_any_nan(v)) { |
| return float32_to_int32(res, &fp_status); |
| } else { |
| return float32_to_uint32(res, &fp_status); |
| } |
| } |
| |
| float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale) |
| { |
| return float32_scalbn(int32_to_float32(v, &env->fp_status), |
| (int32_t)scale, &env->fp_status); |
| } |
| |
| float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale) |
| { |
| return float32_scalbn(uint32_to_float32(v, &env->fp_status), |
| (int32_t)scale, &env->fp_status); |
| } |
| |
| static inline void set_br(CPUXtensaState *env, bool v, uint32_t br) |
| { |
| if (v) { |
| env->sregs[BR] |= br; |
| } else { |
| env->sregs[BR] &= ~br; |
| } |
| } |
| |
| void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b) |
| { |
| set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br); |
| } |
| |
| void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b) |
| { |
| set_br(env, float32_eq_quiet(a, b, &env->fp_status), br); |
| } |
| |
| void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b) |
| { |
| int v = float32_compare_quiet(a, b, &env->fp_status); |
| set_br(env, v == float_relation_equal || v == float_relation_unordered, br); |
| } |
| |
| void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b) |
| { |
| set_br(env, float32_lt_quiet(a, b, &env->fp_status), br); |
| } |
| |
| void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b) |
| { |
| int v = float32_compare_quiet(a, b, &env->fp_status); |
| set_br(env, v == float_relation_less || v == float_relation_unordered, br); |
| } |
| |
| void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b) |
| { |
| set_br(env, float32_le_quiet(a, b, &env->fp_status), br); |
| } |
| |
| void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b) |
| { |
| int v = float32_compare_quiet(a, b, &env->fp_status); |
| set_br(env, v != float_relation_greater, br); |
| } |