blob: 582ad34ffe1f424eba1ef1a1604a668c109251e1 [file] [log] [blame]
/*
* x86 misc helpers
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "cpu.h"
#include "exec/ioport.h"
#include "helper.h"
#if !defined(CONFIG_USER_ONLY)
#include "exec/softmmu_exec.h"
#endif /* !defined(CONFIG_USER_ONLY) */
/* check if Port I/O is allowed in TSS */
static inline void check_io(CPUX86State *env, int addr, int size)
{
int io_offset, val, mask;
/* TSS must be a valid 32 bit one */
if (!(env->tr.flags & DESC_P_MASK) ||
((env->tr.flags >> DESC_TYPE_SHIFT) & 0xf) != 9 ||
env->tr.limit < 103) {
goto fail;
}
io_offset = cpu_lduw_kernel(env, env->tr.base + 0x66);
io_offset += (addr >> 3);
/* Note: the check needs two bytes */
if ((io_offset + 1) > env->tr.limit) {
goto fail;
}
val = cpu_lduw_kernel(env, env->tr.base + io_offset);
val >>= (addr & 7);
mask = (1 << size) - 1;
/* all bits must be zero to allow the I/O */
if ((val & mask) != 0) {
fail:
raise_exception_err(env, EXCP0D_GPF, 0);
}
}
void helper_check_iob(CPUX86State *env, uint32_t t0)
{
check_io(env, t0, 1);
}
void helper_check_iow(CPUX86State *env, uint32_t t0)
{
check_io(env, t0, 2);
}
void helper_check_iol(CPUX86State *env, uint32_t t0)
{
check_io(env, t0, 4);
}
void helper_outb(uint32_t port, uint32_t data)
{
cpu_outb(port, data & 0xff);
}
target_ulong helper_inb(uint32_t port)
{
return cpu_inb(port);
}
void helper_outw(uint32_t port, uint32_t data)
{
cpu_outw(port, data & 0xffff);
}
target_ulong helper_inw(uint32_t port)
{
return cpu_inw(port);
}
void helper_outl(uint32_t port, uint32_t data)
{
cpu_outl(port, data);
}
target_ulong helper_inl(uint32_t port)
{
return cpu_inl(port);
}
void helper_into(CPUX86State *env, int next_eip_addend)
{
int eflags;
eflags = cpu_cc_compute_all(env, CC_OP);
if (eflags & CC_O) {
raise_interrupt(env, EXCP04_INTO, 1, 0, next_eip_addend);
}
}
void helper_single_step(CPUX86State *env)
{
#ifndef CONFIG_USER_ONLY
check_hw_breakpoints(env, true);
env->dr[6] |= DR6_BS;
#endif
raise_exception(env, EXCP01_DB);
}
void helper_cpuid(CPUX86State *env)
{
uint32_t eax, ebx, ecx, edx;
cpu_svm_check_intercept_param(env, SVM_EXIT_CPUID, 0);
cpu_x86_cpuid(env, (uint32_t)env->regs[R_EAX], (uint32_t)env->regs[R_ECX],
&eax, &ebx, &ecx, &edx);
env->regs[R_EAX] = eax;
env->regs[R_EBX] = ebx;
env->regs[R_ECX] = ecx;
env->regs[R_EDX] = edx;
}
#if defined(CONFIG_USER_ONLY)
target_ulong helper_read_crN(CPUX86State *env, int reg)
{
return 0;
}
void helper_write_crN(CPUX86State *env, int reg, target_ulong t0)
{
}
void helper_movl_drN_T0(CPUX86State *env, int reg, target_ulong t0)
{
}
#else
target_ulong helper_read_crN(CPUX86State *env, int reg)
{
target_ulong val;
cpu_svm_check_intercept_param(env, SVM_EXIT_READ_CR0 + reg, 0);
switch (reg) {
default:
val = env->cr[reg];
break;
case 8:
if (!(env->hflags2 & HF2_VINTR_MASK)) {
val = cpu_get_apic_tpr(x86_env_get_cpu(env)->apic_state);
} else {
val = env->v_tpr;
}
break;
}
return val;
}
void helper_write_crN(CPUX86State *env, int reg, target_ulong t0)
{
cpu_svm_check_intercept_param(env, SVM_EXIT_WRITE_CR0 + reg, 0);
switch (reg) {
case 0:
cpu_x86_update_cr0(env, t0);
break;
case 3:
cpu_x86_update_cr3(env, t0);
break;
case 4:
cpu_x86_update_cr4(env, t0);
break;
case 8:
if (!(env->hflags2 & HF2_VINTR_MASK)) {
cpu_set_apic_tpr(x86_env_get_cpu(env)->apic_state, t0);
}
env->v_tpr = t0 & 0x0f;
break;
default:
env->cr[reg] = t0;
break;
}
}
void helper_movl_drN_T0(CPUX86State *env, int reg, target_ulong t0)
{
int i;
if (reg < 4) {
hw_breakpoint_remove(env, reg);
env->dr[reg] = t0;
hw_breakpoint_insert(env, reg);
} else if (reg == 7) {
for (i = 0; i < DR7_MAX_BP; i++) {
hw_breakpoint_remove(env, i);
}
env->dr[7] = t0;
for (i = 0; i < DR7_MAX_BP; i++) {
hw_breakpoint_insert(env, i);
}
} else {
env->dr[reg] = t0;
}
}
#endif
void helper_lmsw(CPUX86State *env, target_ulong t0)
{
/* only 4 lower bits of CR0 are modified. PE cannot be set to zero
if already set to one. */
t0 = (env->cr[0] & ~0xe) | (t0 & 0xf);
helper_write_crN(env, 0, t0);
}
void helper_invlpg(CPUX86State *env, target_ulong addr)
{
cpu_svm_check_intercept_param(env, SVM_EXIT_INVLPG, 0);
tlb_flush_page(env, addr);
}
void helper_rdtsc(CPUX86State *env)
{
uint64_t val;
if ((env->cr[4] & CR4_TSD_MASK) && ((env->hflags & HF_CPL_MASK) != 0)) {
raise_exception(env, EXCP0D_GPF);
}
cpu_svm_check_intercept_param(env, SVM_EXIT_RDTSC, 0);
val = cpu_get_tsc(env) + env->tsc_offset;
env->regs[R_EAX] = (uint32_t)(val);
env->regs[R_EDX] = (uint32_t)(val >> 32);
}
void helper_rdtscp(CPUX86State *env)
{
helper_rdtsc(env);
env->regs[R_ECX] = (uint32_t)(env->tsc_aux);
}
void helper_rdpmc(CPUX86State *env)
{
if ((env->cr[4] & CR4_PCE_MASK) && ((env->hflags & HF_CPL_MASK) != 0)) {
raise_exception(env, EXCP0D_GPF);
}
cpu_svm_check_intercept_param(env, SVM_EXIT_RDPMC, 0);
/* currently unimplemented */
qemu_log_mask(LOG_UNIMP, "x86: unimplemented rdpmc\n");
raise_exception_err(env, EXCP06_ILLOP, 0);
}
#if defined(CONFIG_USER_ONLY)
void helper_wrmsr(CPUX86State *env)
{
}
void helper_rdmsr(CPUX86State *env)
{
}
#else
void helper_wrmsr(CPUX86State *env)
{
uint64_t val;
cpu_svm_check_intercept_param(env, SVM_EXIT_MSR, 1);
val = ((uint32_t)env->regs[R_EAX]) |
((uint64_t)((uint32_t)env->regs[R_EDX]) << 32);
switch ((uint32_t)env->regs[R_ECX]) {
case MSR_IA32_SYSENTER_CS:
env->sysenter_cs = val & 0xffff;
break;
case MSR_IA32_SYSENTER_ESP:
env->sysenter_esp = val;
break;
case MSR_IA32_SYSENTER_EIP:
env->sysenter_eip = val;
break;
case MSR_IA32_APICBASE:
cpu_set_apic_base(x86_env_get_cpu(env)->apic_state, val);
break;
case MSR_EFER:
{
uint64_t update_mask;
update_mask = 0;
if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_SYSCALL) {
update_mask |= MSR_EFER_SCE;
}
if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM) {
update_mask |= MSR_EFER_LME;
}
if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_FFXSR) {
update_mask |= MSR_EFER_FFXSR;
}
if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_NX) {
update_mask |= MSR_EFER_NXE;
}
if (env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_SVM) {
update_mask |= MSR_EFER_SVME;
}
if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_FFXSR) {
update_mask |= MSR_EFER_FFXSR;
}
cpu_load_efer(env, (env->efer & ~update_mask) |
(val & update_mask));
}
break;
case MSR_STAR:
env->star = val;
break;
case MSR_PAT:
env->pat = val;
break;
case MSR_VM_HSAVE_PA:
env->vm_hsave = val;
break;
#ifdef TARGET_X86_64
case MSR_LSTAR:
env->lstar = val;
break;
case MSR_CSTAR:
env->cstar = val;
break;
case MSR_FMASK:
env->fmask = val;
break;
case MSR_FSBASE:
env->segs[R_FS].base = val;
break;
case MSR_GSBASE:
env->segs[R_GS].base = val;
break;
case MSR_KERNELGSBASE:
env->kernelgsbase = val;
break;
#endif
case MSR_MTRRphysBase(0):
case MSR_MTRRphysBase(1):
case MSR_MTRRphysBase(2):
case MSR_MTRRphysBase(3):
case MSR_MTRRphysBase(4):
case MSR_MTRRphysBase(5):
case MSR_MTRRphysBase(6):
case MSR_MTRRphysBase(7):
env->mtrr_var[((uint32_t)env->regs[R_ECX] -
MSR_MTRRphysBase(0)) / 2].base = val;
break;
case MSR_MTRRphysMask(0):
case MSR_MTRRphysMask(1):
case MSR_MTRRphysMask(2):
case MSR_MTRRphysMask(3):
case MSR_MTRRphysMask(4):
case MSR_MTRRphysMask(5):
case MSR_MTRRphysMask(6):
case MSR_MTRRphysMask(7):
env->mtrr_var[((uint32_t)env->regs[R_ECX] -
MSR_MTRRphysMask(0)) / 2].mask = val;
break;
case MSR_MTRRfix64K_00000:
env->mtrr_fixed[(uint32_t)env->regs[R_ECX] -
MSR_MTRRfix64K_00000] = val;
break;
case MSR_MTRRfix16K_80000:
case MSR_MTRRfix16K_A0000:
env->mtrr_fixed[(uint32_t)env->regs[R_ECX] -
MSR_MTRRfix16K_80000 + 1] = val;
break;
case MSR_MTRRfix4K_C0000:
case MSR_MTRRfix4K_C8000:
case MSR_MTRRfix4K_D0000:
case MSR_MTRRfix4K_D8000:
case MSR_MTRRfix4K_E0000:
case MSR_MTRRfix4K_E8000:
case MSR_MTRRfix4K_F0000:
case MSR_MTRRfix4K_F8000:
env->mtrr_fixed[(uint32_t)env->regs[R_ECX] -
MSR_MTRRfix4K_C0000 + 3] = val;
break;
case MSR_MTRRdefType:
env->mtrr_deftype = val;
break;
case MSR_MCG_STATUS:
env->mcg_status = val;
break;
case MSR_MCG_CTL:
if ((env->mcg_cap & MCG_CTL_P)
&& (val == 0 || val == ~(uint64_t)0)) {
env->mcg_ctl = val;
}
break;
case MSR_TSC_AUX:
env->tsc_aux = val;
break;
case MSR_IA32_MISC_ENABLE:
env->msr_ia32_misc_enable = val;
break;
default:
if ((uint32_t)env->regs[R_ECX] >= MSR_MC0_CTL
&& (uint32_t)env->regs[R_ECX] < MSR_MC0_CTL +
(4 * env->mcg_cap & 0xff)) {
uint32_t offset = (uint32_t)env->regs[R_ECX] - MSR_MC0_CTL;
if ((offset & 0x3) != 0
|| (val == 0 || val == ~(uint64_t)0)) {
env->mce_banks[offset] = val;
}
break;
}
/* XXX: exception? */
break;
}
}
void helper_rdmsr(CPUX86State *env)
{
uint64_t val;
cpu_svm_check_intercept_param(env, SVM_EXIT_MSR, 0);
switch ((uint32_t)env->regs[R_ECX]) {
case MSR_IA32_SYSENTER_CS:
val = env->sysenter_cs;
break;
case MSR_IA32_SYSENTER_ESP:
val = env->sysenter_esp;
break;
case MSR_IA32_SYSENTER_EIP:
val = env->sysenter_eip;
break;
case MSR_IA32_APICBASE:
val = cpu_get_apic_base(x86_env_get_cpu(env)->apic_state);
break;
case MSR_EFER:
val = env->efer;
break;
case MSR_STAR:
val = env->star;
break;
case MSR_PAT:
val = env->pat;
break;
case MSR_VM_HSAVE_PA:
val = env->vm_hsave;
break;
case MSR_IA32_PERF_STATUS:
/* tsc_increment_by_tick */
val = 1000ULL;
/* CPU multiplier */
val |= (((uint64_t)4ULL) << 40);
break;
#ifdef TARGET_X86_64
case MSR_LSTAR:
val = env->lstar;
break;
case MSR_CSTAR:
val = env->cstar;
break;
case MSR_FMASK:
val = env->fmask;
break;
case MSR_FSBASE:
val = env->segs[R_FS].base;
break;
case MSR_GSBASE:
val = env->segs[R_GS].base;
break;
case MSR_KERNELGSBASE:
val = env->kernelgsbase;
break;
case MSR_TSC_AUX:
val = env->tsc_aux;
break;
#endif
case MSR_MTRRphysBase(0):
case MSR_MTRRphysBase(1):
case MSR_MTRRphysBase(2):
case MSR_MTRRphysBase(3):
case MSR_MTRRphysBase(4):
case MSR_MTRRphysBase(5):
case MSR_MTRRphysBase(6):
case MSR_MTRRphysBase(7):
val = env->mtrr_var[((uint32_t)env->regs[R_ECX] -
MSR_MTRRphysBase(0)) / 2].base;
break;
case MSR_MTRRphysMask(0):
case MSR_MTRRphysMask(1):
case MSR_MTRRphysMask(2):
case MSR_MTRRphysMask(3):
case MSR_MTRRphysMask(4):
case MSR_MTRRphysMask(5):
case MSR_MTRRphysMask(6):
case MSR_MTRRphysMask(7):
val = env->mtrr_var[((uint32_t)env->regs[R_ECX] -
MSR_MTRRphysMask(0)) / 2].mask;
break;
case MSR_MTRRfix64K_00000:
val = env->mtrr_fixed[0];
break;
case MSR_MTRRfix16K_80000:
case MSR_MTRRfix16K_A0000:
val = env->mtrr_fixed[(uint32_t)env->regs[R_ECX] -
MSR_MTRRfix16K_80000 + 1];
break;
case MSR_MTRRfix4K_C0000:
case MSR_MTRRfix4K_C8000:
case MSR_MTRRfix4K_D0000:
case MSR_MTRRfix4K_D8000:
case MSR_MTRRfix4K_E0000:
case MSR_MTRRfix4K_E8000:
case MSR_MTRRfix4K_F0000:
case MSR_MTRRfix4K_F8000:
val = env->mtrr_fixed[(uint32_t)env->regs[R_ECX] -
MSR_MTRRfix4K_C0000 + 3];
break;
case MSR_MTRRdefType:
val = env->mtrr_deftype;
break;
case MSR_MTRRcap:
if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
val = MSR_MTRRcap_VCNT | MSR_MTRRcap_FIXRANGE_SUPPORT |
MSR_MTRRcap_WC_SUPPORTED;
} else {
/* XXX: exception? */
val = 0;
}
break;
case MSR_MCG_CAP:
val = env->mcg_cap;
break;
case MSR_MCG_CTL:
if (env->mcg_cap & MCG_CTL_P) {
val = env->mcg_ctl;
} else {
val = 0;
}
break;
case MSR_MCG_STATUS:
val = env->mcg_status;
break;
case MSR_IA32_MISC_ENABLE:
val = env->msr_ia32_misc_enable;
break;
default:
if ((uint32_t)env->regs[R_ECX] >= MSR_MC0_CTL
&& (uint32_t)env->regs[R_ECX] < MSR_MC0_CTL +
(4 * env->mcg_cap & 0xff)) {
uint32_t offset = (uint32_t)env->regs[R_ECX] - MSR_MC0_CTL;
val = env->mce_banks[offset];
break;
}
/* XXX: exception? */
val = 0;
break;
}
env->regs[R_EAX] = (uint32_t)(val);
env->regs[R_EDX] = (uint32_t)(val >> 32);
}
#endif
static void do_pause(X86CPU *cpu)
{
CPUState *cs = CPU(cpu);
CPUX86State *env = &cpu->env;
/* Just let another CPU run. */
cs->exception_index = EXCP_INTERRUPT;
cpu_loop_exit(env);
}
static void do_hlt(X86CPU *cpu)
{
CPUState *cs = CPU(cpu);
CPUX86State *env = &cpu->env;
env->hflags &= ~HF_INHIBIT_IRQ_MASK; /* needed if sti is just before */
cs->halted = 1;
cs->exception_index = EXCP_HLT;
cpu_loop_exit(env);
}
void helper_hlt(CPUX86State *env, int next_eip_addend)
{
X86CPU *cpu = x86_env_get_cpu(env);
cpu_svm_check_intercept_param(env, SVM_EXIT_HLT, 0);
env->eip += next_eip_addend;
do_hlt(cpu);
}
void helper_monitor(CPUX86State *env, target_ulong ptr)
{
if ((uint32_t)env->regs[R_ECX] != 0) {
raise_exception(env, EXCP0D_GPF);
}
/* XXX: store address? */
cpu_svm_check_intercept_param(env, SVM_EXIT_MONITOR, 0);
}
void helper_mwait(CPUX86State *env, int next_eip_addend)
{
CPUState *cs;
X86CPU *cpu;
if ((uint32_t)env->regs[R_ECX] != 0) {
raise_exception(env, EXCP0D_GPF);
}
cpu_svm_check_intercept_param(env, SVM_EXIT_MWAIT, 0);
env->eip += next_eip_addend;
cpu = x86_env_get_cpu(env);
cs = CPU(cpu);
/* XXX: not complete but not completely erroneous */
if (cs->cpu_index != 0 || CPU_NEXT(cs) != NULL) {
do_pause(cpu);
} else {
do_hlt(cpu);
}
}
void helper_pause(CPUX86State *env, int next_eip_addend)
{
X86CPU *cpu = x86_env_get_cpu(env);
cpu_svm_check_intercept_param(env, SVM_EXIT_PAUSE, 0);
env->eip += next_eip_addend;
do_pause(cpu);
}
void helper_debug(CPUX86State *env)
{
CPUState *cs = CPU(x86_env_get_cpu(env));
cs->exception_index = EXCP_DEBUG;
cpu_loop_exit(env);
}