| /* |
| * Alpha emulation cpu helpers for qemu. |
| * |
| * Copyright (c) 2007 Jocelyn Mayer |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <stdio.h> |
| |
| #include "cpu.h" |
| #include "fpu/softfloat.h" |
| #include "helper.h" |
| |
| uint64_t cpu_alpha_load_fpcr (CPUAlphaState *env) |
| { |
| uint64_t r = 0; |
| uint8_t t; |
| |
| t = env->fpcr_exc_status; |
| if (t) { |
| r = FPCR_SUM; |
| if (t & float_flag_invalid) { |
| r |= FPCR_INV; |
| } |
| if (t & float_flag_divbyzero) { |
| r |= FPCR_DZE; |
| } |
| if (t & float_flag_overflow) { |
| r |= FPCR_OVF; |
| } |
| if (t & float_flag_underflow) { |
| r |= FPCR_UNF; |
| } |
| if (t & float_flag_inexact) { |
| r |= FPCR_INE; |
| } |
| } |
| |
| t = env->fpcr_exc_mask; |
| if (t & float_flag_invalid) { |
| r |= FPCR_INVD; |
| } |
| if (t & float_flag_divbyzero) { |
| r |= FPCR_DZED; |
| } |
| if (t & float_flag_overflow) { |
| r |= FPCR_OVFD; |
| } |
| if (t & float_flag_underflow) { |
| r |= FPCR_UNFD; |
| } |
| if (t & float_flag_inexact) { |
| r |= FPCR_INED; |
| } |
| |
| switch (env->fpcr_dyn_round) { |
| case float_round_nearest_even: |
| r |= FPCR_DYN_NORMAL; |
| break; |
| case float_round_down: |
| r |= FPCR_DYN_MINUS; |
| break; |
| case float_round_up: |
| r |= FPCR_DYN_PLUS; |
| break; |
| case float_round_to_zero: |
| r |= FPCR_DYN_CHOPPED; |
| break; |
| } |
| |
| if (env->fp_status.flush_inputs_to_zero) { |
| r |= FPCR_DNZ; |
| } |
| if (env->fpcr_dnod) { |
| r |= FPCR_DNOD; |
| } |
| if (env->fpcr_undz) { |
| r |= FPCR_UNDZ; |
| } |
| |
| return r; |
| } |
| |
| void cpu_alpha_store_fpcr (CPUAlphaState *env, uint64_t val) |
| { |
| uint8_t t; |
| |
| t = 0; |
| if (val & FPCR_INV) { |
| t |= float_flag_invalid; |
| } |
| if (val & FPCR_DZE) { |
| t |= float_flag_divbyzero; |
| } |
| if (val & FPCR_OVF) { |
| t |= float_flag_overflow; |
| } |
| if (val & FPCR_UNF) { |
| t |= float_flag_underflow; |
| } |
| if (val & FPCR_INE) { |
| t |= float_flag_inexact; |
| } |
| env->fpcr_exc_status = t; |
| |
| t = 0; |
| if (val & FPCR_INVD) { |
| t |= float_flag_invalid; |
| } |
| if (val & FPCR_DZED) { |
| t |= float_flag_divbyzero; |
| } |
| if (val & FPCR_OVFD) { |
| t |= float_flag_overflow; |
| } |
| if (val & FPCR_UNFD) { |
| t |= float_flag_underflow; |
| } |
| if (val & FPCR_INED) { |
| t |= float_flag_inexact; |
| } |
| env->fpcr_exc_mask = t; |
| |
| switch (val & FPCR_DYN_MASK) { |
| case FPCR_DYN_CHOPPED: |
| t = float_round_to_zero; |
| break; |
| case FPCR_DYN_MINUS: |
| t = float_round_down; |
| break; |
| case FPCR_DYN_NORMAL: |
| t = float_round_nearest_even; |
| break; |
| case FPCR_DYN_PLUS: |
| t = float_round_up; |
| break; |
| } |
| env->fpcr_dyn_round = t; |
| |
| env->fpcr_dnod = (val & FPCR_DNOD) != 0; |
| env->fpcr_undz = (val & FPCR_UNDZ) != 0; |
| env->fpcr_flush_to_zero = env->fpcr_dnod & env->fpcr_undz; |
| env->fp_status.flush_inputs_to_zero = (val & FPCR_DNZ) != 0; |
| } |
| |
| uint64_t helper_load_fpcr(CPUAlphaState *env) |
| { |
| return cpu_alpha_load_fpcr(env); |
| } |
| |
| void helper_store_fpcr(CPUAlphaState *env, uint64_t val) |
| { |
| cpu_alpha_store_fpcr(env, val); |
| } |
| |
| #if defined(CONFIG_USER_ONLY) |
| int alpha_cpu_handle_mmu_fault(CPUState *cs, vaddr address, |
| int rw, int mmu_idx) |
| { |
| AlphaCPU *cpu = ALPHA_CPU(cs); |
| |
| cs->exception_index = EXCP_MMFAULT; |
| cpu->env.trap_arg0 = address; |
| return 1; |
| } |
| #else |
| void swap_shadow_regs(CPUAlphaState *env) |
| { |
| uint64_t i0, i1, i2, i3, i4, i5, i6, i7; |
| |
| i0 = env->ir[8]; |
| i1 = env->ir[9]; |
| i2 = env->ir[10]; |
| i3 = env->ir[11]; |
| i4 = env->ir[12]; |
| i5 = env->ir[13]; |
| i6 = env->ir[14]; |
| i7 = env->ir[25]; |
| |
| env->ir[8] = env->shadow[0]; |
| env->ir[9] = env->shadow[1]; |
| env->ir[10] = env->shadow[2]; |
| env->ir[11] = env->shadow[3]; |
| env->ir[12] = env->shadow[4]; |
| env->ir[13] = env->shadow[5]; |
| env->ir[14] = env->shadow[6]; |
| env->ir[25] = env->shadow[7]; |
| |
| env->shadow[0] = i0; |
| env->shadow[1] = i1; |
| env->shadow[2] = i2; |
| env->shadow[3] = i3; |
| env->shadow[4] = i4; |
| env->shadow[5] = i5; |
| env->shadow[6] = i6; |
| env->shadow[7] = i7; |
| } |
| |
| /* Returns the OSF/1 entMM failure indication, or -1 on success. */ |
| static int get_physical_address(CPUAlphaState *env, target_ulong addr, |
| int prot_need, int mmu_idx, |
| target_ulong *pphys, int *pprot) |
| { |
| CPUState *cs = CPU(alpha_env_get_cpu(env)); |
| target_long saddr = addr; |
| target_ulong phys = 0; |
| target_ulong L1pte, L2pte, L3pte; |
| target_ulong pt, index; |
| int prot = 0; |
| int ret = MM_K_ACV; |
| |
| /* Ensure that the virtual address is properly sign-extended from |
| the last implemented virtual address bit. */ |
| if (saddr >> TARGET_VIRT_ADDR_SPACE_BITS != saddr >> 63) { |
| goto exit; |
| } |
| |
| /* Translate the superpage. */ |
| /* ??? When we do more than emulate Unix PALcode, we'll need to |
| determine which KSEG is actually active. */ |
| if (saddr < 0 && ((saddr >> 41) & 3) == 2) { |
| /* User-space cannot access KSEG addresses. */ |
| if (mmu_idx != MMU_KERNEL_IDX) { |
| goto exit; |
| } |
| |
| /* For the benefit of the Typhoon chipset, move bit 40 to bit 43. |
| We would not do this if the 48-bit KSEG is enabled. */ |
| phys = saddr & ((1ull << 40) - 1); |
| phys |= (saddr & (1ull << 40)) << 3; |
| |
| prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| ret = -1; |
| goto exit; |
| } |
| |
| /* Interpret the page table exactly like PALcode does. */ |
| |
| pt = env->ptbr; |
| |
| /* L1 page table read. */ |
| index = (addr >> (TARGET_PAGE_BITS + 20)) & 0x3ff; |
| L1pte = ldq_phys(cs->as, pt + index*8); |
| |
| if (unlikely((L1pte & PTE_VALID) == 0)) { |
| ret = MM_K_TNV; |
| goto exit; |
| } |
| if (unlikely((L1pte & PTE_KRE) == 0)) { |
| goto exit; |
| } |
| pt = L1pte >> 32 << TARGET_PAGE_BITS; |
| |
| /* L2 page table read. */ |
| index = (addr >> (TARGET_PAGE_BITS + 10)) & 0x3ff; |
| L2pte = ldq_phys(cs->as, pt + index*8); |
| |
| if (unlikely((L2pte & PTE_VALID) == 0)) { |
| ret = MM_K_TNV; |
| goto exit; |
| } |
| if (unlikely((L2pte & PTE_KRE) == 0)) { |
| goto exit; |
| } |
| pt = L2pte >> 32 << TARGET_PAGE_BITS; |
| |
| /* L3 page table read. */ |
| index = (addr >> TARGET_PAGE_BITS) & 0x3ff; |
| L3pte = ldq_phys(cs->as, pt + index*8); |
| |
| phys = L3pte >> 32 << TARGET_PAGE_BITS; |
| if (unlikely((L3pte & PTE_VALID) == 0)) { |
| ret = MM_K_TNV; |
| goto exit; |
| } |
| |
| #if PAGE_READ != 1 || PAGE_WRITE != 2 || PAGE_EXEC != 4 |
| # error page bits out of date |
| #endif |
| |
| /* Check access violations. */ |
| if (L3pte & (PTE_KRE << mmu_idx)) { |
| prot |= PAGE_READ | PAGE_EXEC; |
| } |
| if (L3pte & (PTE_KWE << mmu_idx)) { |
| prot |= PAGE_WRITE; |
| } |
| if (unlikely((prot & prot_need) == 0 && prot_need)) { |
| goto exit; |
| } |
| |
| /* Check fault-on-operation violations. */ |
| prot &= ~(L3pte >> 1); |
| ret = -1; |
| if (unlikely((prot & prot_need) == 0)) { |
| ret = (prot_need & PAGE_EXEC ? MM_K_FOE : |
| prot_need & PAGE_WRITE ? MM_K_FOW : |
| prot_need & PAGE_READ ? MM_K_FOR : -1); |
| } |
| |
| exit: |
| *pphys = phys; |
| *pprot = prot; |
| return ret; |
| } |
| |
| hwaddr alpha_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) |
| { |
| AlphaCPU *cpu = ALPHA_CPU(cs); |
| target_ulong phys; |
| int prot, fail; |
| |
| fail = get_physical_address(&cpu->env, addr, 0, 0, &phys, &prot); |
| return (fail >= 0 ? -1 : phys); |
| } |
| |
| int alpha_cpu_handle_mmu_fault(CPUState *cs, vaddr addr, int rw, |
| int mmu_idx) |
| { |
| AlphaCPU *cpu = ALPHA_CPU(cs); |
| CPUAlphaState *env = &cpu->env; |
| target_ulong phys; |
| int prot, fail; |
| |
| fail = get_physical_address(env, addr, 1 << rw, mmu_idx, &phys, &prot); |
| if (unlikely(fail >= 0)) { |
| cs->exception_index = EXCP_MMFAULT; |
| env->trap_arg0 = addr; |
| env->trap_arg1 = fail; |
| env->trap_arg2 = (rw == 2 ? -1 : rw); |
| return 1; |
| } |
| |
| tlb_set_page(env, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK, |
| prot, mmu_idx, TARGET_PAGE_SIZE); |
| return 0; |
| } |
| #endif /* USER_ONLY */ |
| |
| void alpha_cpu_do_interrupt(CPUState *cs) |
| { |
| AlphaCPU *cpu = ALPHA_CPU(cs); |
| CPUAlphaState *env = &cpu->env; |
| int i = cs->exception_index; |
| |
| if (qemu_loglevel_mask(CPU_LOG_INT)) { |
| static int count; |
| const char *name = "<unknown>"; |
| |
| switch (i) { |
| case EXCP_RESET: |
| name = "reset"; |
| break; |
| case EXCP_MCHK: |
| name = "mchk"; |
| break; |
| case EXCP_SMP_INTERRUPT: |
| name = "smp_interrupt"; |
| break; |
| case EXCP_CLK_INTERRUPT: |
| name = "clk_interrupt"; |
| break; |
| case EXCP_DEV_INTERRUPT: |
| name = "dev_interrupt"; |
| break; |
| case EXCP_MMFAULT: |
| name = "mmfault"; |
| break; |
| case EXCP_UNALIGN: |
| name = "unalign"; |
| break; |
| case EXCP_OPCDEC: |
| name = "opcdec"; |
| break; |
| case EXCP_ARITH: |
| name = "arith"; |
| break; |
| case EXCP_FEN: |
| name = "fen"; |
| break; |
| case EXCP_CALL_PAL: |
| name = "call_pal"; |
| break; |
| case EXCP_STL_C: |
| name = "stl_c"; |
| break; |
| case EXCP_STQ_C: |
| name = "stq_c"; |
| break; |
| } |
| qemu_log("INT %6d: %s(%#x) pc=%016" PRIx64 " sp=%016" PRIx64 "\n", |
| ++count, name, env->error_code, env->pc, env->ir[IR_SP]); |
| } |
| |
| cs->exception_index = -1; |
| |
| #if !defined(CONFIG_USER_ONLY) |
| switch (i) { |
| case EXCP_RESET: |
| i = 0x0000; |
| break; |
| case EXCP_MCHK: |
| i = 0x0080; |
| break; |
| case EXCP_SMP_INTERRUPT: |
| i = 0x0100; |
| break; |
| case EXCP_CLK_INTERRUPT: |
| i = 0x0180; |
| break; |
| case EXCP_DEV_INTERRUPT: |
| i = 0x0200; |
| break; |
| case EXCP_MMFAULT: |
| i = 0x0280; |
| break; |
| case EXCP_UNALIGN: |
| i = 0x0300; |
| break; |
| case EXCP_OPCDEC: |
| i = 0x0380; |
| break; |
| case EXCP_ARITH: |
| i = 0x0400; |
| break; |
| case EXCP_FEN: |
| i = 0x0480; |
| break; |
| case EXCP_CALL_PAL: |
| i = env->error_code; |
| /* There are 64 entry points for both privileged and unprivileged, |
| with bit 0x80 indicating unprivileged. Each entry point gets |
| 64 bytes to do its job. */ |
| if (i & 0x80) { |
| i = 0x2000 + (i - 0x80) * 64; |
| } else { |
| i = 0x1000 + i * 64; |
| } |
| break; |
| default: |
| cpu_abort(env, "Unhandled CPU exception"); |
| } |
| |
| /* Remember where the exception happened. Emulate real hardware in |
| that the low bit of the PC indicates PALmode. */ |
| env->exc_addr = env->pc | env->pal_mode; |
| |
| /* Continue execution at the PALcode entry point. */ |
| env->pc = env->palbr + i; |
| |
| /* Switch to PALmode. */ |
| if (!env->pal_mode) { |
| env->pal_mode = 1; |
| swap_shadow_regs(env); |
| } |
| #endif /* !USER_ONLY */ |
| } |
| |
| void alpha_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf, |
| int flags) |
| { |
| static const char *linux_reg_names[] = { |
| "v0 ", "t0 ", "t1 ", "t2 ", "t3 ", "t4 ", "t5 ", "t6 ", |
| "t7 ", "s0 ", "s1 ", "s2 ", "s3 ", "s4 ", "s5 ", "fp ", |
| "a0 ", "a1 ", "a2 ", "a3 ", "a4 ", "a5 ", "t8 ", "t9 ", |
| "t10", "t11", "ra ", "t12", "at ", "gp ", "sp ", "zero", |
| }; |
| AlphaCPU *cpu = ALPHA_CPU(cs); |
| CPUAlphaState *env = &cpu->env; |
| int i; |
| |
| cpu_fprintf(f, " PC " TARGET_FMT_lx " PS %02x\n", |
| env->pc, env->ps); |
| for (i = 0; i < 31; i++) { |
| cpu_fprintf(f, "IR%02d %s " TARGET_FMT_lx " ", i, |
| linux_reg_names[i], env->ir[i]); |
| if ((i % 3) == 2) |
| cpu_fprintf(f, "\n"); |
| } |
| |
| cpu_fprintf(f, "lock_a " TARGET_FMT_lx " lock_v " TARGET_FMT_lx "\n", |
| env->lock_addr, env->lock_value); |
| |
| for (i = 0; i < 31; i++) { |
| cpu_fprintf(f, "FIR%02d " TARGET_FMT_lx " ", i, |
| *((uint64_t *)(&env->fir[i]))); |
| if ((i % 3) == 2) |
| cpu_fprintf(f, "\n"); |
| } |
| cpu_fprintf(f, "\n"); |
| } |
| |
| /* This should only be called from translate, via gen_excp. |
| We expect that ENV->PC has already been updated. */ |
| void QEMU_NORETURN helper_excp(CPUAlphaState *env, int excp, int error) |
| { |
| AlphaCPU *cpu = alpha_env_get_cpu(env); |
| CPUState *cs = CPU(cpu); |
| |
| cs->exception_index = excp; |
| env->error_code = error; |
| cpu_loop_exit(env); |
| } |
| |
| /* This may be called from any of the helpers to set up EXCEPTION_INDEX. */ |
| void QEMU_NORETURN dynamic_excp(CPUAlphaState *env, uintptr_t retaddr, |
| int excp, int error) |
| { |
| AlphaCPU *cpu = alpha_env_get_cpu(env); |
| CPUState *cs = CPU(cpu); |
| |
| cs->exception_index = excp; |
| env->error_code = error; |
| if (retaddr) { |
| cpu_restore_state(env, retaddr); |
| } |
| cpu_loop_exit(env); |
| } |
| |
| void QEMU_NORETURN arith_excp(CPUAlphaState *env, uintptr_t retaddr, |
| int exc, uint64_t mask) |
| { |
| env->trap_arg0 = exc; |
| env->trap_arg1 = mask; |
| dynamic_excp(env, retaddr, EXCP_ARITH, 0); |
| } |