blob: 513b179872eacb32d42edc5ab05467a37aa40c59 [file] [log] [blame]
/*
* ARM translation
*
* Copyright (c) 2003 Fabrice Bellard
* Copyright (c) 2005-2007 CodeSourcery
* Copyright (c) 2007 OpenedHand, Ltd.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "cpu.h"
#include "exec-all.h"
#include "disas.h"
#define ENABLE_ARCH_5J 0
#define ENABLE_ARCH_6 arm_feature(env, ARM_FEATURE_V6)
#define ENABLE_ARCH_6K arm_feature(env, ARM_FEATURE_V6K)
#define ENABLE_ARCH_6T2 arm_feature(env, ARM_FEATURE_THUMB2)
#define ENABLE_ARCH_7 arm_feature(env, ARM_FEATURE_V7)
#define ARCH(x) if (!ENABLE_ARCH_##x) goto illegal_op;
/* internal defines */
typedef struct DisasContext {
target_ulong pc;
int is_jmp;
/* Nonzero if this instruction has been conditionally skipped. */
int condjmp;
/* The label that will be jumped to when the instruction is skipped. */
int condlabel;
/* Thumb-2 condtional execution bits. */
int condexec_mask;
int condexec_cond;
struct TranslationBlock *tb;
int singlestep_enabled;
int thumb;
int is_mem;
#if !defined(CONFIG_USER_ONLY)
int user;
#endif
} DisasContext;
#if defined(CONFIG_USER_ONLY)
#define IS_USER(s) 1
#else
#define IS_USER(s) (s->user)
#endif
/* These instructions trap after executing, so defer them until after the
conditional executions state has been updated. */
#define DISAS_WFI 4
#define DISAS_SWI 5
#ifdef USE_DIRECT_JUMP
#define TBPARAM(x)
#else
#define TBPARAM(x) (long)(x)
#endif
/* XXX: move that elsewhere */
static uint16_t *gen_opc_ptr;
static uint32_t *gen_opparam_ptr;
extern FILE *logfile;
extern int loglevel;
enum {
#define DEF(s, n, copy_size) INDEX_op_ ## s,
#include "opc.h"
#undef DEF
NB_OPS,
};
#include "gen-op.h"
#define PAS_OP(pfx) { \
gen_op_ ## pfx ## add16_T0_T1, \
gen_op_ ## pfx ## addsubx_T0_T1, \
gen_op_ ## pfx ## subaddx_T0_T1, \
gen_op_ ## pfx ## sub16_T0_T1, \
gen_op_ ## pfx ## add8_T0_T1, \
NULL, \
NULL, \
gen_op_ ## pfx ## sub8_T0_T1 }
static GenOpFunc *gen_arm_parallel_addsub[8][8] = {
{},
PAS_OP(s),
PAS_OP(q),
PAS_OP(sh),
{},
PAS_OP(u),
PAS_OP(uq),
PAS_OP(uh),
};
#undef PAS_OP
/* For unknown reasons Arm and Thumb-2 use arbitrarily diffenet encodings. */
#define PAS_OP(pfx) { \
gen_op_ ## pfx ## add8_T0_T1, \
gen_op_ ## pfx ## add16_T0_T1, \
gen_op_ ## pfx ## addsubx_T0_T1, \
NULL, \
gen_op_ ## pfx ## sub8_T0_T1, \
gen_op_ ## pfx ## sub16_T0_T1, \
gen_op_ ## pfx ## subaddx_T0_T1, \
NULL }
static GenOpFunc *gen_thumb2_parallel_addsub[8][8] = {
PAS_OP(s),
PAS_OP(q),
PAS_OP(sh),
{},
PAS_OP(u),
PAS_OP(uq),
PAS_OP(uh),
{}
};
#undef PAS_OP
static GenOpFunc1 *gen_test_cc[14] = {
gen_op_test_eq,
gen_op_test_ne,
gen_op_test_cs,
gen_op_test_cc,
gen_op_test_mi,
gen_op_test_pl,
gen_op_test_vs,
gen_op_test_vc,
gen_op_test_hi,
gen_op_test_ls,
gen_op_test_ge,
gen_op_test_lt,
gen_op_test_gt,
gen_op_test_le,
};
const uint8_t table_logic_cc[16] = {
1, /* and */
1, /* xor */
0, /* sub */
0, /* rsb */
0, /* add */
0, /* adc */
0, /* sbc */
0, /* rsc */
1, /* andl */
1, /* xorl */
0, /* cmp */
0, /* cmn */
1, /* orr */
1, /* mov */
1, /* bic */
1, /* mvn */
};
static GenOpFunc1 *gen_shift_T1_im[4] = {
gen_op_shll_T1_im,
gen_op_shrl_T1_im,
gen_op_sarl_T1_im,
gen_op_rorl_T1_im,
};
static GenOpFunc *gen_shift_T1_0[4] = {
NULL,
gen_op_shrl_T1_0,
gen_op_sarl_T1_0,
gen_op_rrxl_T1,
};
static GenOpFunc1 *gen_shift_T2_im[4] = {
gen_op_shll_T2_im,
gen_op_shrl_T2_im,
gen_op_sarl_T2_im,
gen_op_rorl_T2_im,
};
static GenOpFunc *gen_shift_T2_0[4] = {
NULL,
gen_op_shrl_T2_0,
gen_op_sarl_T2_0,
gen_op_rrxl_T2,
};
static GenOpFunc1 *gen_shift_T1_im_cc[4] = {
gen_op_shll_T1_im_cc,
gen_op_shrl_T1_im_cc,
gen_op_sarl_T1_im_cc,
gen_op_rorl_T1_im_cc,
};
static GenOpFunc *gen_shift_T1_0_cc[4] = {
NULL,
gen_op_shrl_T1_0_cc,
gen_op_sarl_T1_0_cc,
gen_op_rrxl_T1_cc,
};
static GenOpFunc *gen_shift_T1_T0[4] = {
gen_op_shll_T1_T0,
gen_op_shrl_T1_T0,
gen_op_sarl_T1_T0,
gen_op_rorl_T1_T0,
};
static GenOpFunc *gen_shift_T1_T0_cc[4] = {
gen_op_shll_T1_T0_cc,
gen_op_shrl_T1_T0_cc,
gen_op_sarl_T1_T0_cc,
gen_op_rorl_T1_T0_cc,
};
static GenOpFunc *gen_op_movl_TN_reg[3][16] = {
{
gen_op_movl_T0_r0,
gen_op_movl_T0_r1,
gen_op_movl_T0_r2,
gen_op_movl_T0_r3,
gen_op_movl_T0_r4,
gen_op_movl_T0_r5,
gen_op_movl_T0_r6,
gen_op_movl_T0_r7,
gen_op_movl_T0_r8,
gen_op_movl_T0_r9,
gen_op_movl_T0_r10,
gen_op_movl_T0_r11,
gen_op_movl_T0_r12,
gen_op_movl_T0_r13,
gen_op_movl_T0_r14,
gen_op_movl_T0_r15,
},
{
gen_op_movl_T1_r0,
gen_op_movl_T1_r1,
gen_op_movl_T1_r2,
gen_op_movl_T1_r3,
gen_op_movl_T1_r4,
gen_op_movl_T1_r5,
gen_op_movl_T1_r6,
gen_op_movl_T1_r7,
gen_op_movl_T1_r8,
gen_op_movl_T1_r9,
gen_op_movl_T1_r10,
gen_op_movl_T1_r11,
gen_op_movl_T1_r12,
gen_op_movl_T1_r13,
gen_op_movl_T1_r14,
gen_op_movl_T1_r15,
},
{
gen_op_movl_T2_r0,
gen_op_movl_T2_r1,
gen_op_movl_T2_r2,
gen_op_movl_T2_r3,
gen_op_movl_T2_r4,
gen_op_movl_T2_r5,
gen_op_movl_T2_r6,
gen_op_movl_T2_r7,
gen_op_movl_T2_r8,
gen_op_movl_T2_r9,
gen_op_movl_T2_r10,
gen_op_movl_T2_r11,
gen_op_movl_T2_r12,
gen_op_movl_T2_r13,
gen_op_movl_T2_r14,
gen_op_movl_T2_r15,
},
};
static GenOpFunc *gen_op_movl_reg_TN[2][16] = {
{
gen_op_movl_r0_T0,
gen_op_movl_r1_T0,
gen_op_movl_r2_T0,
gen_op_movl_r3_T0,
gen_op_movl_r4_T0,
gen_op_movl_r5_T0,
gen_op_movl_r6_T0,
gen_op_movl_r7_T0,
gen_op_movl_r8_T0,
gen_op_movl_r9_T0,
gen_op_movl_r10_T0,
gen_op_movl_r11_T0,
gen_op_movl_r12_T0,
gen_op_movl_r13_T0,
gen_op_movl_r14_T0,
gen_op_movl_r15_T0,
},
{
gen_op_movl_r0_T1,
gen_op_movl_r1_T1,
gen_op_movl_r2_T1,
gen_op_movl_r3_T1,
gen_op_movl_r4_T1,
gen_op_movl_r5_T1,
gen_op_movl_r6_T1,
gen_op_movl_r7_T1,
gen_op_movl_r8_T1,
gen_op_movl_r9_T1,
gen_op_movl_r10_T1,
gen_op_movl_r11_T1,
gen_op_movl_r12_T1,
gen_op_movl_r13_T1,
gen_op_movl_r14_T1,
gen_op_movl_r15_T1,
},
};
static GenOpFunc1 *gen_op_movl_TN_im[3] = {
gen_op_movl_T0_im,
gen_op_movl_T1_im,
gen_op_movl_T2_im,
};
static GenOpFunc1 *gen_shift_T0_im_thumb_cc[3] = {
gen_op_shll_T0_im_thumb_cc,
gen_op_shrl_T0_im_thumb_cc,
gen_op_sarl_T0_im_thumb_cc,
};
static GenOpFunc1 *gen_shift_T0_im_thumb[3] = {
gen_op_shll_T0_im_thumb,
gen_op_shrl_T0_im_thumb,
gen_op_sarl_T0_im_thumb,
};
static inline void gen_bx(DisasContext *s)
{
s->is_jmp = DISAS_UPDATE;
gen_op_bx_T0();
}
#if defined(CONFIG_USER_ONLY)
#define gen_ldst(name, s) gen_op_##name##_raw()
#else
#define gen_ldst(name, s) do { \
s->is_mem = 1; \
if (IS_USER(s)) \
gen_op_##name##_user(); \
else \
gen_op_##name##_kernel(); \
} while (0)
#endif
static inline void gen_movl_TN_reg(DisasContext *s, int reg, int t)
{
int val;
if (reg == 15) {
/* normaly, since we updated PC, we need only to add one insn */
if (s->thumb)
val = (long)s->pc + 2;
else
val = (long)s->pc + 4;
gen_op_movl_TN_im[t](val);
} else {
gen_op_movl_TN_reg[t][reg]();
}
}
static inline void gen_movl_T0_reg(DisasContext *s, int reg)
{
gen_movl_TN_reg(s, reg, 0);
}
static inline void gen_movl_T1_reg(DisasContext *s, int reg)
{
gen_movl_TN_reg(s, reg, 1);
}
static inline void gen_movl_T2_reg(DisasContext *s, int reg)
{
gen_movl_TN_reg(s, reg, 2);
}
static inline void gen_movl_reg_TN(DisasContext *s, int reg, int t)
{
gen_op_movl_reg_TN[t][reg]();
if (reg == 15) {
s->is_jmp = DISAS_JUMP;
}
}
static inline void gen_movl_reg_T0(DisasContext *s, int reg)
{
gen_movl_reg_TN(s, reg, 0);
}
static inline void gen_movl_reg_T1(DisasContext *s, int reg)
{
gen_movl_reg_TN(s, reg, 1);
}
/* Force a TB lookup after an instruction that changes the CPU state. */
static inline void gen_lookup_tb(DisasContext *s)
{
gen_op_movl_T0_im(s->pc);
gen_movl_reg_T0(s, 15);
s->is_jmp = DISAS_UPDATE;
}
static inline void gen_add_data_offset(DisasContext *s, unsigned int insn)
{
int val, rm, shift, shiftop;
if (!(insn & (1 << 25))) {
/* immediate */
val = insn & 0xfff;
if (!(insn & (1 << 23)))
val = -val;
if (val != 0)
gen_op_addl_T1_im(val);
} else {
/* shift/register */
rm = (insn) & 0xf;
shift = (insn >> 7) & 0x1f;
gen_movl_T2_reg(s, rm);
shiftop = (insn >> 5) & 3;
if (shift != 0) {
gen_shift_T2_im[shiftop](shift);
} else if (shiftop != 0) {
gen_shift_T2_0[shiftop]();
}
if (!(insn & (1 << 23)))
gen_op_subl_T1_T2();
else
gen_op_addl_T1_T2();
}
}
static inline void gen_add_datah_offset(DisasContext *s, unsigned int insn,
int extra)
{
int val, rm;
if (insn & (1 << 22)) {
/* immediate */
val = (insn & 0xf) | ((insn >> 4) & 0xf0);
if (!(insn & (1 << 23)))
val = -val;
val += extra;
if (val != 0)
gen_op_addl_T1_im(val);
} else {
/* register */
if (extra)
gen_op_addl_T1_im(extra);
rm = (insn) & 0xf;
gen_movl_T2_reg(s, rm);
if (!(insn & (1 << 23)))
gen_op_subl_T1_T2();
else
gen_op_addl_T1_T2();
}
}
#define VFP_OP(name) \
static inline void gen_vfp_##name(int dp) \
{ \
if (dp) \
gen_op_vfp_##name##d(); \
else \
gen_op_vfp_##name##s(); \
}
#define VFP_OP1(name) \
static inline void gen_vfp_##name(int dp, int arg) \
{ \
if (dp) \
gen_op_vfp_##name##d(arg); \
else \
gen_op_vfp_##name##s(arg); \
}
VFP_OP(add)
VFP_OP(sub)
VFP_OP(mul)
VFP_OP(div)
VFP_OP(neg)
VFP_OP(abs)
VFP_OP(sqrt)
VFP_OP(cmp)
VFP_OP(cmpe)
VFP_OP(F1_ld0)
VFP_OP(uito)
VFP_OP(sito)
VFP_OP(toui)
VFP_OP(touiz)
VFP_OP(tosi)
VFP_OP(tosiz)
VFP_OP1(tosh)
VFP_OP1(tosl)
VFP_OP1(touh)
VFP_OP1(toul)
VFP_OP1(shto)
VFP_OP1(slto)
VFP_OP1(uhto)
VFP_OP1(ulto)
#undef VFP_OP
static inline void gen_vfp_fconst(int dp, uint32_t val)
{
if (dp)
gen_op_vfp_fconstd(val);
else
gen_op_vfp_fconsts(val);
}
static inline void gen_vfp_ld(DisasContext *s, int dp)
{
if (dp)
gen_ldst(vfp_ldd, s);
else
gen_ldst(vfp_lds, s);
}
static inline void gen_vfp_st(DisasContext *s, int dp)
{
if (dp)
gen_ldst(vfp_std, s);
else
gen_ldst(vfp_sts, s);
}
static inline long
vfp_reg_offset (int dp, int reg)
{
if (dp)
return offsetof(CPUARMState, vfp.regs[reg]);
else if (reg & 1) {
return offsetof(CPUARMState, vfp.regs[reg >> 1])
+ offsetof(CPU_DoubleU, l.upper);
} else {
return offsetof(CPUARMState, vfp.regs[reg >> 1])
+ offsetof(CPU_DoubleU, l.lower);
}
}
/* Return the offset of a 32-bit piece of a NEON register.
zero is the least significant end of the register. */
static inline long
neon_reg_offset (int reg, int n)
{
int sreg;
sreg = reg * 2 + n;
return vfp_reg_offset(0, sreg);
}
#define NEON_GET_REG(T, reg, n) gen_op_neon_getreg_##T(neon_reg_offset(reg, n))
#define NEON_SET_REG(T, reg, n) gen_op_neon_setreg_##T(neon_reg_offset(reg, n))
static inline void gen_mov_F0_vreg(int dp, int reg)
{
if (dp)
gen_op_vfp_getreg_F0d(vfp_reg_offset(dp, reg));
else
gen_op_vfp_getreg_F0s(vfp_reg_offset(dp, reg));
}
static inline void gen_mov_F1_vreg(int dp, int reg)
{
if (dp)
gen_op_vfp_getreg_F1d(vfp_reg_offset(dp, reg));
else
gen_op_vfp_getreg_F1s(vfp_reg_offset(dp, reg));
}
static inline void gen_mov_vreg_F0(int dp, int reg)
{
if (dp)
gen_op_vfp_setreg_F0d(vfp_reg_offset(dp, reg));
else
gen_op_vfp_setreg_F0s(vfp_reg_offset(dp, reg));
}
#define ARM_CP_RW_BIT (1 << 20)
static inline int gen_iwmmxt_address(DisasContext *s, uint32_t insn)
{
int rd;
uint32_t offset;
rd = (insn >> 16) & 0xf;
gen_movl_T1_reg(s, rd);
offset = (insn & 0xff) << ((insn >> 7) & 2);
if (insn & (1 << 24)) {
/* Pre indexed */
if (insn & (1 << 23))
gen_op_addl_T1_im(offset);
else
gen_op_addl_T1_im(-offset);
if (insn & (1 << 21))
gen_movl_reg_T1(s, rd);
} else if (insn & (1 << 21)) {
/* Post indexed */
if (insn & (1 << 23))
gen_op_movl_T0_im(offset);
else
gen_op_movl_T0_im(- offset);
gen_op_addl_T0_T1();
gen_movl_reg_T0(s, rd);
} else if (!(insn & (1 << 23)))
return 1;
return 0;
}
static inline int gen_iwmmxt_shift(uint32_t insn, uint32_t mask)
{
int rd = (insn >> 0) & 0xf;
if (insn & (1 << 8))
if (rd < ARM_IWMMXT_wCGR0 || rd > ARM_IWMMXT_wCGR3)
return 1;
else
gen_op_iwmmxt_movl_T0_wCx(rd);
else
gen_op_iwmmxt_movl_T0_T1_wRn(rd);
gen_op_movl_T1_im(mask);
gen_op_andl_T0_T1();
return 0;
}
/* Disassemble an iwMMXt instruction. Returns nonzero if an error occured
(ie. an undefined instruction). */
static int disas_iwmmxt_insn(CPUState *env, DisasContext *s, uint32_t insn)
{
int rd, wrd;
int rdhi, rdlo, rd0, rd1, i;
if ((insn & 0x0e000e00) == 0x0c000000) {
if ((insn & 0x0fe00ff0) == 0x0c400000) {
wrd = insn & 0xf;
rdlo = (insn >> 12) & 0xf;
rdhi = (insn >> 16) & 0xf;
if (insn & ARM_CP_RW_BIT) { /* TMRRC */
gen_op_iwmmxt_movl_T0_T1_wRn(wrd);
gen_movl_reg_T0(s, rdlo);
gen_movl_reg_T1(s, rdhi);
} else { /* TMCRR */
gen_movl_T0_reg(s, rdlo);
gen_movl_T1_reg(s, rdhi);
gen_op_iwmmxt_movl_wRn_T0_T1(wrd);
gen_op_iwmmxt_set_mup();
}
return 0;
}
wrd = (insn >> 12) & 0xf;
if (gen_iwmmxt_address(s, insn))
return 1;
if (insn & ARM_CP_RW_BIT) {
if ((insn >> 28) == 0xf) { /* WLDRW wCx */
gen_ldst(ldl, s);
gen_op_iwmmxt_movl_wCx_T0(wrd);
} else {
if (insn & (1 << 8))
if (insn & (1 << 22)) /* WLDRD */
gen_ldst(iwmmxt_ldq, s);
else /* WLDRW wRd */
gen_ldst(iwmmxt_ldl, s);
else
if (insn & (1 << 22)) /* WLDRH */
gen_ldst(iwmmxt_ldw, s);
else /* WLDRB */
gen_ldst(iwmmxt_ldb, s);
gen_op_iwmmxt_movq_wRn_M0(wrd);
}
} else {
if ((insn >> 28) == 0xf) { /* WSTRW wCx */
gen_op_iwmmxt_movl_T0_wCx(wrd);
gen_ldst(stl, s);
} else {
gen_op_iwmmxt_movq_M0_wRn(wrd);
if (insn & (1 << 8))
if (insn & (1 << 22)) /* WSTRD */
gen_ldst(iwmmxt_stq, s);
else /* WSTRW wRd */
gen_ldst(iwmmxt_stl, s);
else
if (insn & (1 << 22)) /* WSTRH */
gen_ldst(iwmmxt_ldw, s);
else /* WSTRB */
gen_ldst(iwmmxt_stb, s);
}
}
return 0;
}
if ((insn & 0x0f000000) != 0x0e000000)
return 1;
switch (((insn >> 12) & 0xf00) | ((insn >> 4) & 0xff)) {
case 0x000: /* WOR */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 0) & 0xf;
rd1 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
gen_op_iwmmxt_orq_M0_wRn(rd1);
gen_op_iwmmxt_setpsr_nz();
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x011: /* TMCR */
if (insn & 0xf)
return 1;
rd = (insn >> 12) & 0xf;
wrd = (insn >> 16) & 0xf;
switch (wrd) {
case ARM_IWMMXT_wCID:
case ARM_IWMMXT_wCASF:
break;
case ARM_IWMMXT_wCon:
gen_op_iwmmxt_set_cup();
/* Fall through. */
case ARM_IWMMXT_wCSSF:
gen_op_iwmmxt_movl_T0_wCx(wrd);
gen_movl_T1_reg(s, rd);
gen_op_bicl_T0_T1();
gen_op_iwmmxt_movl_wCx_T0(wrd);
break;
case ARM_IWMMXT_wCGR0:
case ARM_IWMMXT_wCGR1:
case ARM_IWMMXT_wCGR2:
case ARM_IWMMXT_wCGR3:
gen_op_iwmmxt_set_cup();
gen_movl_reg_T0(s, rd);
gen_op_iwmmxt_movl_wCx_T0(wrd);
break;
default:
return 1;
}
break;
case 0x100: /* WXOR */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 0) & 0xf;
rd1 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
gen_op_iwmmxt_xorq_M0_wRn(rd1);
gen_op_iwmmxt_setpsr_nz();
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x111: /* TMRC */
if (insn & 0xf)
return 1;
rd = (insn >> 12) & 0xf;
wrd = (insn >> 16) & 0xf;
gen_op_iwmmxt_movl_T0_wCx(wrd);
gen_movl_reg_T0(s, rd);
break;
case 0x300: /* WANDN */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 0) & 0xf;
rd1 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
gen_op_iwmmxt_negq_M0();
gen_op_iwmmxt_andq_M0_wRn(rd1);
gen_op_iwmmxt_setpsr_nz();
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x200: /* WAND */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 0) & 0xf;
rd1 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
gen_op_iwmmxt_andq_M0_wRn(rd1);
gen_op_iwmmxt_setpsr_nz();
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x810: case 0xa10: /* WMADD */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 0) & 0xf;
rd1 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
if (insn & (1 << 21))
gen_op_iwmmxt_maddsq_M0_wRn(rd1);
else
gen_op_iwmmxt_madduq_M0_wRn(rd1);
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
break;
case 0x10e: case 0x50e: case 0x90e: case 0xd0e: /* WUNPCKIL */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 22) & 3) {
case 0:
gen_op_iwmmxt_unpacklb_M0_wRn(rd1);
break;
case 1:
gen_op_iwmmxt_unpacklw_M0_wRn(rd1);
break;
case 2:
gen_op_iwmmxt_unpackll_M0_wRn(rd1);
break;
case 3:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x10c: case 0x50c: case 0x90c: case 0xd0c: /* WUNPCKIH */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 22) & 3) {
case 0:
gen_op_iwmmxt_unpackhb_M0_wRn(rd1);
break;
case 1:
gen_op_iwmmxt_unpackhw_M0_wRn(rd1);
break;
case 2:
gen_op_iwmmxt_unpackhl_M0_wRn(rd1);
break;
case 3:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x012: case 0x112: case 0x412: case 0x512: /* WSAD */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
if (insn & (1 << 22))
gen_op_iwmmxt_sadw_M0_wRn(rd1);
else
gen_op_iwmmxt_sadb_M0_wRn(rd1);
if (!(insn & (1 << 20)))
gen_op_iwmmxt_addl_M0_wRn(wrd);
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
break;
case 0x010: case 0x110: case 0x210: case 0x310: /* WMUL */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
if (insn & (1 << 21))
gen_op_iwmmxt_mulsw_M0_wRn(rd1, (insn & (1 << 20)) ? 16 : 0);
else
gen_op_iwmmxt_muluw_M0_wRn(rd1, (insn & (1 << 20)) ? 16 : 0);
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
break;
case 0x410: case 0x510: case 0x610: case 0x710: /* WMAC */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
if (insn & (1 << 21))
gen_op_iwmmxt_macsw_M0_wRn(rd1);
else
gen_op_iwmmxt_macuw_M0_wRn(rd1);
if (!(insn & (1 << 20))) {
if (insn & (1 << 21))
gen_op_iwmmxt_addsq_M0_wRn(wrd);
else
gen_op_iwmmxt_adduq_M0_wRn(wrd);
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
break;
case 0x006: case 0x406: case 0x806: case 0xc06: /* WCMPEQ */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 22) & 3) {
case 0:
gen_op_iwmmxt_cmpeqb_M0_wRn(rd1);
break;
case 1:
gen_op_iwmmxt_cmpeqw_M0_wRn(rd1);
break;
case 2:
gen_op_iwmmxt_cmpeql_M0_wRn(rd1);
break;
case 3:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x800: case 0x900: case 0xc00: case 0xd00: /* WAVG2 */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
if (insn & (1 << 22))
gen_op_iwmmxt_avgw_M0_wRn(rd1, (insn >> 20) & 1);
else
gen_op_iwmmxt_avgb_M0_wRn(rd1, (insn >> 20) & 1);
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x802: case 0x902: case 0xa02: case 0xb02: /* WALIGNR */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
gen_op_iwmmxt_movl_T0_wCx(ARM_IWMMXT_wCGR0 + ((insn >> 20) & 3));
gen_op_movl_T1_im(7);
gen_op_andl_T0_T1();
gen_op_iwmmxt_align_M0_T0_wRn(rd1);
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
break;
case 0x601: case 0x605: case 0x609: case 0x60d: /* TINSR */
rd = (insn >> 12) & 0xf;
wrd = (insn >> 16) & 0xf;
gen_movl_T0_reg(s, rd);
gen_op_iwmmxt_movq_M0_wRn(wrd);
switch ((insn >> 6) & 3) {
case 0:
gen_op_movl_T1_im(0xff);
gen_op_iwmmxt_insr_M0_T0_T1((insn & 7) << 3);
break;
case 1:
gen_op_movl_T1_im(0xffff);
gen_op_iwmmxt_insr_M0_T0_T1((insn & 3) << 4);
break;
case 2:
gen_op_movl_T1_im(0xffffffff);
gen_op_iwmmxt_insr_M0_T0_T1((insn & 1) << 5);
break;
case 3:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
break;
case 0x107: case 0x507: case 0x907: case 0xd07: /* TEXTRM */
rd = (insn >> 12) & 0xf;
wrd = (insn >> 16) & 0xf;
if (rd == 15)
return 1;
gen_op_iwmmxt_movq_M0_wRn(wrd);
switch ((insn >> 22) & 3) {
case 0:
if (insn & 8)
gen_op_iwmmxt_extrsb_T0_M0((insn & 7) << 3);
else {
gen_op_movl_T1_im(0xff);
gen_op_iwmmxt_extru_T0_M0_T1((insn & 7) << 3);
}
break;
case 1:
if (insn & 8)
gen_op_iwmmxt_extrsw_T0_M0((insn & 3) << 4);
else {
gen_op_movl_T1_im(0xffff);
gen_op_iwmmxt_extru_T0_M0_T1((insn & 3) << 4);
}
break;
case 2:
gen_op_movl_T1_im(0xffffffff);
gen_op_iwmmxt_extru_T0_M0_T1((insn & 1) << 5);
break;
case 3:
return 1;
}
gen_op_movl_reg_TN[0][rd]();
break;
case 0x117: case 0x517: case 0x917: case 0xd17: /* TEXTRC */
if ((insn & 0x000ff008) != 0x0003f000)
return 1;
gen_op_iwmmxt_movl_T1_wCx(ARM_IWMMXT_wCASF);
switch ((insn >> 22) & 3) {
case 0:
gen_op_shrl_T1_im(((insn & 7) << 2) + 0);
break;
case 1:
gen_op_shrl_T1_im(((insn & 3) << 3) + 4);
break;
case 2:
gen_op_shrl_T1_im(((insn & 1) << 4) + 12);
break;
case 3:
return 1;
}
gen_op_shll_T1_im(28);
gen_op_movl_T0_T1();
gen_op_movl_cpsr_T0(0xf0000000);
break;
case 0x401: case 0x405: case 0x409: case 0x40d: /* TBCST */
rd = (insn >> 12) & 0xf;
wrd = (insn >> 16) & 0xf;
gen_movl_T0_reg(s, rd);
switch ((insn >> 6) & 3) {
case 0:
gen_op_iwmmxt_bcstb_M0_T0();
break;
case 1:
gen_op_iwmmxt_bcstw_M0_T0();
break;
case 2:
gen_op_iwmmxt_bcstl_M0_T0();
break;
case 3:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
break;
case 0x113: case 0x513: case 0x913: case 0xd13: /* TANDC */
if ((insn & 0x000ff00f) != 0x0003f000)
return 1;
gen_op_iwmmxt_movl_T1_wCx(ARM_IWMMXT_wCASF);
switch ((insn >> 22) & 3) {
case 0:
for (i = 0; i < 7; i ++) {
gen_op_shll_T1_im(4);
gen_op_andl_T0_T1();
}
break;
case 1:
for (i = 0; i < 3; i ++) {
gen_op_shll_T1_im(8);
gen_op_andl_T0_T1();
}
break;
case 2:
gen_op_shll_T1_im(16);
gen_op_andl_T0_T1();
break;
case 3:
return 1;
}
gen_op_movl_cpsr_T0(0xf0000000);
break;
case 0x01c: case 0x41c: case 0x81c: case 0xc1c: /* WACC */
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 22) & 3) {
case 0:
gen_op_iwmmxt_addcb_M0();
break;
case 1:
gen_op_iwmmxt_addcw_M0();
break;
case 2:
gen_op_iwmmxt_addcl_M0();
break;
case 3:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
break;
case 0x115: case 0x515: case 0x915: case 0xd15: /* TORC */
if ((insn & 0x000ff00f) != 0x0003f000)
return 1;
gen_op_iwmmxt_movl_T1_wCx(ARM_IWMMXT_wCASF);
switch ((insn >> 22) & 3) {
case 0:
for (i = 0; i < 7; i ++) {
gen_op_shll_T1_im(4);
gen_op_orl_T0_T1();
}
break;
case 1:
for (i = 0; i < 3; i ++) {
gen_op_shll_T1_im(8);
gen_op_orl_T0_T1();
}
break;
case 2:
gen_op_shll_T1_im(16);
gen_op_orl_T0_T1();
break;
case 3:
return 1;
}
gen_op_movl_T1_im(0xf0000000);
gen_op_andl_T0_T1();
gen_op_movl_cpsr_T0(0xf0000000);
break;
case 0x103: case 0x503: case 0x903: case 0xd03: /* TMOVMSK */
rd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
if ((insn & 0xf) != 0)
return 1;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 22) & 3) {
case 0:
gen_op_iwmmxt_msbb_T0_M0();
break;
case 1:
gen_op_iwmmxt_msbw_T0_M0();
break;
case 2:
gen_op_iwmmxt_msbl_T0_M0();
break;
case 3:
return 1;
}
gen_movl_reg_T0(s, rd);
break;
case 0x106: case 0x306: case 0x506: case 0x706: /* WCMPGT */
case 0x906: case 0xb06: case 0xd06: case 0xf06:
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 22) & 3) {
case 0:
if (insn & (1 << 21))
gen_op_iwmmxt_cmpgtsb_M0_wRn(rd1);
else
gen_op_iwmmxt_cmpgtub_M0_wRn(rd1);
break;
case 1:
if (insn & (1 << 21))
gen_op_iwmmxt_cmpgtsw_M0_wRn(rd1);
else
gen_op_iwmmxt_cmpgtuw_M0_wRn(rd1);
break;
case 2:
if (insn & (1 << 21))
gen_op_iwmmxt_cmpgtsl_M0_wRn(rd1);
else
gen_op_iwmmxt_cmpgtul_M0_wRn(rd1);
break;
case 3:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x00e: case 0x20e: case 0x40e: case 0x60e: /* WUNPCKEL */
case 0x80e: case 0xa0e: case 0xc0e: case 0xe0e:
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 22) & 3) {
case 0:
if (insn & (1 << 21))
gen_op_iwmmxt_unpacklsb_M0();
else
gen_op_iwmmxt_unpacklub_M0();
break;
case 1:
if (insn & (1 << 21))
gen_op_iwmmxt_unpacklsw_M0();
else
gen_op_iwmmxt_unpackluw_M0();
break;
case 2:
if (insn & (1 << 21))
gen_op_iwmmxt_unpacklsl_M0();
else
gen_op_iwmmxt_unpacklul_M0();
break;
case 3:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x00c: case 0x20c: case 0x40c: case 0x60c: /* WUNPCKEH */
case 0x80c: case 0xa0c: case 0xc0c: case 0xe0c:
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 22) & 3) {
case 0:
if (insn & (1 << 21))
gen_op_iwmmxt_unpackhsb_M0();
else
gen_op_iwmmxt_unpackhub_M0();
break;
case 1:
if (insn & (1 << 21))
gen_op_iwmmxt_unpackhsw_M0();
else
gen_op_iwmmxt_unpackhuw_M0();
break;
case 2:
if (insn & (1 << 21))
gen_op_iwmmxt_unpackhsl_M0();
else
gen_op_iwmmxt_unpackhul_M0();
break;
case 3:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x204: case 0x604: case 0xa04: case 0xe04: /* WSRL */
case 0x214: case 0x614: case 0xa14: case 0xe14:
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
if (gen_iwmmxt_shift(insn, 0xff))
return 1;
switch ((insn >> 22) & 3) {
case 0:
return 1;
case 1:
gen_op_iwmmxt_srlw_M0_T0();
break;
case 2:
gen_op_iwmmxt_srll_M0_T0();
break;
case 3:
gen_op_iwmmxt_srlq_M0_T0();
break;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x004: case 0x404: case 0x804: case 0xc04: /* WSRA */
case 0x014: case 0x414: case 0x814: case 0xc14:
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
if (gen_iwmmxt_shift(insn, 0xff))
return 1;
switch ((insn >> 22) & 3) {
case 0:
return 1;
case 1:
gen_op_iwmmxt_sraw_M0_T0();
break;
case 2:
gen_op_iwmmxt_sral_M0_T0();
break;
case 3:
gen_op_iwmmxt_sraq_M0_T0();
break;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x104: case 0x504: case 0x904: case 0xd04: /* WSLL */
case 0x114: case 0x514: case 0x914: case 0xd14:
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
if (gen_iwmmxt_shift(insn, 0xff))
return 1;
switch ((insn >> 22) & 3) {
case 0:
return 1;
case 1:
gen_op_iwmmxt_sllw_M0_T0();
break;
case 2:
gen_op_iwmmxt_slll_M0_T0();
break;
case 3:
gen_op_iwmmxt_sllq_M0_T0();
break;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x304: case 0x704: case 0xb04: case 0xf04: /* WROR */
case 0x314: case 0x714: case 0xb14: case 0xf14:
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 22) & 3) {
case 0:
return 1;
case 1:
if (gen_iwmmxt_shift(insn, 0xf))
return 1;
gen_op_iwmmxt_rorw_M0_T0();
break;
case 2:
if (gen_iwmmxt_shift(insn, 0x1f))
return 1;
gen_op_iwmmxt_rorl_M0_T0();
break;
case 3:
if (gen_iwmmxt_shift(insn, 0x3f))
return 1;
gen_op_iwmmxt_rorq_M0_T0();
break;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x116: case 0x316: case 0x516: case 0x716: /* WMIN */
case 0x916: case 0xb16: case 0xd16: case 0xf16:
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 22) & 3) {
case 0:
if (insn & (1 << 21))
gen_op_iwmmxt_minsb_M0_wRn(rd1);
else
gen_op_iwmmxt_minub_M0_wRn(rd1);
break;
case 1:
if (insn & (1 << 21))
gen_op_iwmmxt_minsw_M0_wRn(rd1);
else
gen_op_iwmmxt_minuw_M0_wRn(rd1);
break;
case 2:
if (insn & (1 << 21))
gen_op_iwmmxt_minsl_M0_wRn(rd1);
else
gen_op_iwmmxt_minul_M0_wRn(rd1);
break;
case 3:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
break;
case 0x016: case 0x216: case 0x416: case 0x616: /* WMAX */
case 0x816: case 0xa16: case 0xc16: case 0xe16:
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 22) & 3) {
case 0:
if (insn & (1 << 21))
gen_op_iwmmxt_maxsb_M0_wRn(rd1);
else
gen_op_iwmmxt_maxub_M0_wRn(rd1);
break;
case 1:
if (insn & (1 << 21))
gen_op_iwmmxt_maxsw_M0_wRn(rd1);
else
gen_op_iwmmxt_maxuw_M0_wRn(rd1);
break;
case 2:
if (insn & (1 << 21))
gen_op_iwmmxt_maxsl_M0_wRn(rd1);
else
gen_op_iwmmxt_maxul_M0_wRn(rd1);
break;
case 3:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
break;
case 0x002: case 0x102: case 0x202: case 0x302: /* WALIGNI */
case 0x402: case 0x502: case 0x602: case 0x702:
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
gen_op_movl_T0_im((insn >> 20) & 3);
gen_op_iwmmxt_align_M0_T0_wRn(rd1);
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
break;
case 0x01a: case 0x11a: case 0x21a: case 0x31a: /* WSUB */
case 0x41a: case 0x51a: case 0x61a: case 0x71a:
case 0x81a: case 0x91a: case 0xa1a: case 0xb1a:
case 0xc1a: case 0xd1a: case 0xe1a: case 0xf1a:
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 20) & 0xf) {
case 0x0:
gen_op_iwmmxt_subnb_M0_wRn(rd1);
break;
case 0x1:
gen_op_iwmmxt_subub_M0_wRn(rd1);
break;
case 0x3:
gen_op_iwmmxt_subsb_M0_wRn(rd1);
break;
case 0x4:
gen_op_iwmmxt_subnw_M0_wRn(rd1);
break;
case 0x5:
gen_op_iwmmxt_subuw_M0_wRn(rd1);
break;
case 0x7:
gen_op_iwmmxt_subsw_M0_wRn(rd1);
break;
case 0x8:
gen_op_iwmmxt_subnl_M0_wRn(rd1);
break;
case 0x9:
gen_op_iwmmxt_subul_M0_wRn(rd1);
break;
case 0xb:
gen_op_iwmmxt_subsl_M0_wRn(rd1);
break;
default:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x01e: case 0x11e: case 0x21e: case 0x31e: /* WSHUFH */
case 0x41e: case 0x51e: case 0x61e: case 0x71e:
case 0x81e: case 0x91e: case 0xa1e: case 0xb1e:
case 0xc1e: case 0xd1e: case 0xe1e: case 0xf1e:
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
gen_op_movl_T0_im(((insn >> 16) & 0xf0) | (insn & 0x0f));
gen_op_iwmmxt_shufh_M0_T0();
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x018: case 0x118: case 0x218: case 0x318: /* WADD */
case 0x418: case 0x518: case 0x618: case 0x718:
case 0x818: case 0x918: case 0xa18: case 0xb18:
case 0xc18: case 0xd18: case 0xe18: case 0xf18:
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
switch ((insn >> 20) & 0xf) {
case 0x0:
gen_op_iwmmxt_addnb_M0_wRn(rd1);
break;
case 0x1:
gen_op_iwmmxt_addub_M0_wRn(rd1);
break;
case 0x3:
gen_op_iwmmxt_addsb_M0_wRn(rd1);
break;
case 0x4:
gen_op_iwmmxt_addnw_M0_wRn(rd1);
break;
case 0x5:
gen_op_iwmmxt_adduw_M0_wRn(rd1);
break;
case 0x7:
gen_op_iwmmxt_addsw_M0_wRn(rd1);
break;
case 0x8:
gen_op_iwmmxt_addnl_M0_wRn(rd1);
break;
case 0x9:
gen_op_iwmmxt_addul_M0_wRn(rd1);
break;
case 0xb:
gen_op_iwmmxt_addsl_M0_wRn(rd1);
break;
default:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x008: case 0x108: case 0x208: case 0x308: /* WPACK */
case 0x408: case 0x508: case 0x608: case 0x708:
case 0x808: case 0x908: case 0xa08: case 0xb08:
case 0xc08: case 0xd08: case 0xe08: case 0xf08:
wrd = (insn >> 12) & 0xf;
rd0 = (insn >> 16) & 0xf;
rd1 = (insn >> 0) & 0xf;
gen_op_iwmmxt_movq_M0_wRn(rd0);
if (!(insn & (1 << 20)))
return 1;
switch ((insn >> 22) & 3) {
case 0:
return 1;
case 1:
if (insn & (1 << 21))
gen_op_iwmmxt_packsw_M0_wRn(rd1);
else
gen_op_iwmmxt_packuw_M0_wRn(rd1);
break;
case 2:
if (insn & (1 << 21))
gen_op_iwmmxt_packsl_M0_wRn(rd1);
else
gen_op_iwmmxt_packul_M0_wRn(rd1);
break;
case 3:
if (insn & (1 << 21))
gen_op_iwmmxt_packsq_M0_wRn(rd1);
else
gen_op_iwmmxt_packuq_M0_wRn(rd1);
break;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
gen_op_iwmmxt_set_cup();
break;
case 0x201: case 0x203: case 0x205: case 0x207:
case 0x209: case 0x20b: case 0x20d: case 0x20f:
case 0x211: case 0x213: case 0x215: case 0x217:
case 0x219: case 0x21b: case 0x21d: case 0x21f:
wrd = (insn >> 5) & 0xf;
rd0 = (insn >> 12) & 0xf;
rd1 = (insn >> 0) & 0xf;
if (rd0 == 0xf || rd1 == 0xf)
return 1;
gen_op_iwmmxt_movq_M0_wRn(wrd);
switch ((insn >> 16) & 0xf) {
case 0x0: /* TMIA */
gen_op_movl_TN_reg[0][rd0]();
gen_op_movl_TN_reg[1][rd1]();
gen_op_iwmmxt_muladdsl_M0_T0_T1();
break;
case 0x8: /* TMIAPH */
gen_op_movl_TN_reg[0][rd0]();
gen_op_movl_TN_reg[1][rd1]();
gen_op_iwmmxt_muladdsw_M0_T0_T1();
break;
case 0xc: case 0xd: case 0xe: case 0xf: /* TMIAxy */
gen_op_movl_TN_reg[1][rd0]();
if (insn & (1 << 16))
gen_op_shrl_T1_im(16);
gen_op_movl_T0_T1();
gen_op_movl_TN_reg[1][rd1]();
if (insn & (1 << 17))
gen_op_shrl_T1_im(16);
gen_op_iwmmxt_muladdswl_M0_T0_T1();
break;
default:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(wrd);
gen_op_iwmmxt_set_mup();
break;
default:
return 1;
}
return 0;
}
/* Disassemble an XScale DSP instruction. Returns nonzero if an error occured
(ie. an undefined instruction). */
static int disas_dsp_insn(CPUState *env, DisasContext *s, uint32_t insn)
{
int acc, rd0, rd1, rdhi, rdlo;
if ((insn & 0x0ff00f10) == 0x0e200010) {
/* Multiply with Internal Accumulate Format */
rd0 = (insn >> 12) & 0xf;
rd1 = insn & 0xf;
acc = (insn >> 5) & 7;
if (acc != 0)
return 1;
switch ((insn >> 16) & 0xf) {
case 0x0: /* MIA */
gen_op_movl_TN_reg[0][rd0]();
gen_op_movl_TN_reg[1][rd1]();
gen_op_iwmmxt_muladdsl_M0_T0_T1();
break;
case 0x8: /* MIAPH */
gen_op_movl_TN_reg[0][rd0]();
gen_op_movl_TN_reg[1][rd1]();
gen_op_iwmmxt_muladdsw_M0_T0_T1();
break;
case 0xc: /* MIABB */
case 0xd: /* MIABT */
case 0xe: /* MIATB */
case 0xf: /* MIATT */
gen_op_movl_TN_reg[1][rd0]();
if (insn & (1 << 16))
gen_op_shrl_T1_im(16);
gen_op_movl_T0_T1();
gen_op_movl_TN_reg[1][rd1]();
if (insn & (1 << 17))
gen_op_shrl_T1_im(16);
gen_op_iwmmxt_muladdswl_M0_T0_T1();
break;
default:
return 1;
}
gen_op_iwmmxt_movq_wRn_M0(acc);
return 0;
}
if ((insn & 0x0fe00ff8) == 0x0c400000) {
/* Internal Accumulator Access Format */
rdhi = (insn >> 16) & 0xf;
rdlo = (insn >> 12) & 0xf;
acc = insn & 7;
if (acc != 0)
return 1;
if (insn & ARM_CP_RW_BIT) { /* MRA */
gen_op_iwmmxt_movl_T0_T1_wRn(acc);
gen_op_movl_reg_TN[0][rdlo]();
gen_op_movl_T0_im((1 << (40 - 32)) - 1);
gen_op_andl_T0_T1();
gen_op_movl_reg_TN[0][rdhi]();
} else { /* MAR */
gen_op_movl_TN_reg[0][rdlo]();
gen_op_movl_TN_reg[1][rdhi]();
gen_op_iwmmxt_movl_wRn_T0_T1(acc);
}
return 0;
}
return 1;
}
/* Disassemble system coprocessor instruction. Return nonzero if
instruction is not defined. */
static int disas_cp_insn(CPUState *env, DisasContext *s, uint32_t insn)
{
uint32_t rd = (insn >> 12) & 0xf;
uint32_t cp = (insn >> 8) & 0xf;
if (IS_USER(s)) {
return 1;
}
if (insn & ARM_CP_RW_BIT) {
if (!env->cp[cp].cp_read)
return 1;
gen_op_movl_T0_im((uint32_t) s->pc);
gen_op_movl_reg_TN[0][15]();
gen_op_movl_T0_cp(insn);
gen_movl_reg_T0(s, rd);
} else {
if (!env->cp[cp].cp_write)
return 1;
gen_op_movl_T0_im((uint32_t) s->pc);
gen_op_movl_reg_TN[0][15]();
gen_movl_T0_reg(s, rd);
gen_op_movl_cp_T0(insn);
}
return 0;
}
static int cp15_user_ok(uint32_t insn)
{
int cpn = (insn >> 16) & 0xf;
int cpm = insn & 0xf;
int op = ((insn >> 5) & 7) | ((insn >> 18) & 0x38);
if (cpn == 13 && cpm == 0) {
/* TLS register. */
if (op == 2 || (op == 3 && (insn & ARM_CP_RW_BIT)))
return 1;
}
if (cpn == 7) {
/* ISB, DSB, DMB. */
if ((cpm == 5 && op == 4)
|| (cpm == 10 && (op == 4 || op == 5)))
return 1;
}
return 0;
}
/* Disassemble system coprocessor (cp15) instruction. Return nonzero if
instruction is not defined. */
static int disas_cp15_insn(CPUState *env, DisasContext *s, uint32_t insn)
{
uint32_t rd;
/* M profile cores use memory mapped registers instead of cp15. */
if (arm_feature(env, ARM_FEATURE_M))
return 1;
if ((insn & (1 << 25)) == 0) {
if (insn & (1 << 20)) {
/* mrrc */
return 1;
}
/* mcrr. Used for block cache operations, so implement as no-op. */
return 0;
}
if ((insn & (1 << 4)) == 0) {
/* cdp */
return 1;
}
if (IS_USER(s) && !cp15_user_ok(insn)) {
return 1;
}
if ((insn & 0x0fff0fff) == 0x0e070f90
|| (insn & 0x0fff0fff) == 0x0e070f58) {
/* Wait for interrupt. */
gen_op_movl_T0_im((long)s->pc);
gen_op_movl_reg_TN[0][15]();
s->is_jmp = DISAS_WFI;
return 0;
}
rd = (insn >> 12) & 0xf;
if (insn & ARM_CP_RW_BIT) {
gen_op_movl_T0_cp15(insn);
/* If the destination register is r15 then sets condition codes. */
if (rd != 15)
gen_movl_reg_T0(s, rd);
} else {
gen_movl_T0_reg(s, rd);
gen_op_movl_cp15_T0(insn);
/* Normally we would always end the TB here, but Linux
* arch/arm/mach-pxa/sleep.S expects two instructions following
* an MMU enable to execute from cache. Imitate this behaviour. */
if (!arm_feature(env, ARM_FEATURE_XSCALE) ||
(insn & 0x0fff0fff) != 0x0e010f10)
gen_lookup_tb(s);
}
return 0;
}
#define VFP_REG_SHR(x, n) (((n) > 0) ? (x) >> (n) : (x) << -(n))
#define VFP_SREG(insn, bigbit, smallbit) \
((VFP_REG_SHR(insn, bigbit - 1) & 0x1e) | (((insn) >> (smallbit)) & 1))
#define VFP_DREG(reg, insn, bigbit, smallbit) do { \
if (arm_feature(env, ARM_FEATURE_VFP3)) { \
reg = (((insn) >> (bigbit)) & 0x0f) \
| (((insn) >> ((smallbit) - 4)) & 0x10); \
} else { \
if (insn & (1 << (smallbit))) \
return 1; \
reg = ((insn) >> (bigbit)) & 0x0f; \
}} while (0)
#define VFP_SREG_D(insn) VFP_SREG(insn, 12, 22)
#define VFP_DREG_D(reg, insn) VFP_DREG(reg, insn, 12, 22)
#define VFP_SREG_N(insn) VFP_SREG(insn, 16, 7)
#define VFP_DREG_N(reg, insn) VFP_DREG(reg, insn, 16, 7)
#define VFP_SREG_M(insn) VFP_SREG(insn, 0, 5)
#define VFP_DREG_M(reg, insn) VFP_DREG(reg, insn, 0, 5)
static inline int
vfp_enabled(CPUState * env)
{
return ((env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) != 0);
}
/* Disassemble a VFP instruction. Returns nonzero if an error occured
(ie. an undefined instruction). */
static int disas_vfp_insn(CPUState * env, DisasContext *s, uint32_t insn)
{
uint32_t rd, rn, rm, op, i, n, offset, delta_d, delta_m, bank_mask;
int dp, veclen;
if (!arm_feature(env, ARM_FEATURE_VFP))
return 1;
if (!vfp_enabled(env)) {
/* VFP disabled. Only allow fmxr/fmrx to/from some control regs. */
if ((insn & 0x0fe00fff) != 0x0ee00a10)
return 1;
rn = (insn >> 16) & 0xf;
if (rn != ARM_VFP_FPSID && rn != ARM_VFP_FPEXC
&& rn != ARM_VFP_MVFR1 && rn != ARM_VFP_MVFR0)
return 1;
}
dp = ((insn & 0xf00) == 0xb00);
switch ((insn >> 24) & 0xf) {
case 0xe:
if (insn & (1 << 4)) {
/* single register transfer */
rd = (insn >> 12) & 0xf;
if (dp) {
int size;
int pass;
VFP_DREG_N(rn, insn);
if (insn & 0xf)
return 1;
if (insn & 0x00c00060
&& !arm_feature(env, ARM_FEATURE_NEON))
return 1;
pass = (insn >> 21) & 1;
if (insn & (1 << 22)) {
size = 0;
offset = ((insn >> 5) & 3) * 8;
} else if (insn & (1 << 5)) {
size = 1;
offset = (insn & (1 << 6)) ? 16 : 0;
} else {
size = 2;
offset = 0;
}
if (insn & ARM_CP_RW_BIT) {
/* vfp->arm */
switch (size) {
case 0:
NEON_GET_REG(T1, rn, pass);
if (offset)
gen_op_shrl_T1_im(offset);
if (insn & (1 << 23))
gen_op_uxtb_T1();
else
gen_op_sxtb_T1();
break;
case 1:
NEON_GET_REG(T1, rn, pass);
if (insn & (1 << 23)) {
if (offset) {
gen_op_shrl_T1_im(16);
} else {
gen_op_uxth_T1();
}
} else {
if (offset) {
gen_op_sarl_T1_im(16);
} else {
gen_op_sxth_T1();
}
}
break;
case 2:
NEON_GET_REG(T1, rn, pass);
break;
}
gen_movl_reg_T1(s, rd);
} else {
/* arm->vfp */
gen_movl_T0_reg(s, rd);
if (insn & (1 << 23)) {
/* VDUP */
if (size == 0) {
gen_op_neon_dup_u8(0);
} else if (size == 1) {
gen_op_neon_dup_low16();
}
NEON_SET_REG(T0, rn, 0);
NEON_SET_REG(T0, rn, 1);
} else {
/* VMOV */
switch (size) {
case 0:
NEON_GET_REG(T2, rn, pass);
gen_op_movl_T1_im(0xff);
gen_op_andl_T0_T1();
gen_op_neon_insert_elt(offset, ~(0xff << offset));
NEON_SET_REG(T2, rn, pass);
break;
case 1:
NEON_GET_REG(T2, rn, pass);
gen_op_movl_T1_im(0xffff);
gen_op_andl_T0_T1();
bank_mask = offset ? 0xffff : 0xffff0000;
gen_op_neon_insert_elt(offset, bank_mask);
NEON_SET_REG(T2, rn, pass);
break;
case 2:
NEON_SET_REG(T0, rn, pass);
break;
}
}
}
} else { /* !dp */
if ((insn & 0x6f) != 0x00)
return 1;
rn = VFP_SREG_N(insn);
if (insn & ARM_CP_RW_BIT) {
/* vfp->arm */
if (insn & (1 << 21)) {
/* system register */
rn >>= 1;
switch (rn) {
case ARM_VFP_FPSID:
/* VFP2 allows access for FSID from userspace.
VFP3 restricts all id registers to privileged
accesses. */
if (IS_USER(s)
&& arm_feature(env, ARM_FEATURE_VFP3))
return 1;
gen_op_vfp_movl_T0_xreg(rn);
break;
case ARM_VFP_FPEXC:
if (IS_USER(s))
return 1;
gen_op_vfp_movl_T0_xreg(rn);
break;
case ARM_VFP_FPINST:
case ARM_VFP_FPINST2:
/* Not present in VFP3. */
if (IS_USER(s)
|| arm_feature(env, ARM_FEATURE_VFP3))
return 1;
gen_op_vfp_movl_T0_xreg(rn);
break;
case ARM_VFP_FPSCR:
if (rd == 15)
gen_op_vfp_movl_T0_fpscr_flags();
else
gen_op_vfp_movl_T0_fpscr();
break;
case ARM_VFP_MVFR0:
case ARM_VFP_MVFR1:
if (IS_USER(s)
|| !arm_feature(env, ARM_FEATURE_VFP3))
return 1;
gen_op_vfp_movl_T0_xreg(rn);
break;
default:
return 1;
}
} else {
gen_mov_F0_vreg(0, rn);
gen_op_vfp_mrs();
}
if (rd == 15) {
/* Set the 4 flag bits in the CPSR. */
gen_op_movl_cpsr_T0(0xf0000000);
} else
gen_movl_reg_T0(s, rd);
} else {
/* arm->vfp */
gen_movl_T0_reg(s, rd);
if (insn & (1 << 21)) {
rn >>= 1;
/* system register */
switch (rn) {
case ARM_VFP_FPSID:
case ARM_VFP_MVFR0:
case ARM_VFP_MVFR1:
/* Writes are ignored. */
break;
case ARM_VFP_FPSCR:
gen_op_vfp_movl_fpscr_T0();
gen_lookup_tb(s);
break;
case ARM_VFP_FPEXC:
if (IS_USER(s))
return 1;
gen_op_vfp_movl_xreg_T0(rn);
gen_lookup_tb(s);
break;
case ARM_VFP_FPINST:
case ARM_VFP_FPINST2:
gen_op_vfp_movl_xreg_T0(rn);
break;
default:
return 1;
}
} else {
gen_op_vfp_msr();
gen_mov_vreg_F0(0, rn);
}
}
}
} else {
/* data processing */
/* The opcode is in bits 23, 21, 20 and 6. */
op = ((insn >> 20) & 8) | ((insn >> 19) & 6) | ((insn >> 6) & 1);
if (dp) {
if (op == 15) {
/* rn is opcode */
rn = ((insn >> 15) & 0x1e) | ((insn >> 7) & 1);
} else {
/* rn is register number */
VFP_DREG_N(rn, insn);
}
if (op == 15 && (rn == 15 || rn > 17)) {
/* Integer or single precision destination. */
rd = VFP_SREG_D(insn);
} else {
VFP_DREG_D(rd, insn);
}
if (op == 15 && (rn == 16 || rn == 17)) {
/* Integer source. */
rm = ((insn << 1) & 0x1e) | ((insn >> 5) & 1);
} else {
VFP_DREG_M(rm, insn);
}
} else {
rn = VFP_SREG_N(insn);
if (op == 15 && rn == 15) {
/* Double precision destination. */
VFP_DREG_D(rd, insn);
} else {
rd = VFP_SREG_D(insn);
}
rm = VFP_SREG_M(insn);
}
veclen = env->vfp.vec_len;
if (op == 15 && rn > 3)
veclen = 0;
/* Shut up compiler warnings. */
delta_m = 0;
delta_d = 0;
bank_mask = 0;
if (veclen > 0) {
if (dp)
bank_mask = 0xc;
else
bank_mask = 0x18;
/* Figure out what type of vector operation this is. */
if ((rd & bank_mask) == 0) {
/* scalar */
veclen = 0;
} else {
if (dp)
delta_d = (env->vfp.vec_stride >> 1) + 1;
else
delta_d = env->vfp.vec_stride + 1;
if ((rm & bank_mask) == 0) {
/* mixed scalar/vector */
delta_m = 0;
} else {
/* vector */
delta_m = delta_d;
}
}
}
/* Load the initial operands. */
if (op == 15) {
switch (rn) {
case 16:
case 17:
/* Integer source */
gen_mov_F0_vreg(0, rm);
break;
case 8:
case 9:
/* Compare */
gen_mov_F0_vreg(dp, rd);
gen_mov_F1_vreg(dp, rm);
break;
case 10:
case 11:
/* Compare with zero */
gen_mov_F0_vreg(dp, rd);
gen_vfp_F1_ld0(dp);
break;
case 20:
case 21:
case 22:
case 23:
/* Source and destination the same. */
gen_mov_F0_vreg(dp, rd);
break;
default:
/* One source operand. */
gen_mov_F0_vreg(dp, rm);
break;
}
} else {
/* Two source operands. */
gen_mov_F0_vreg(dp, rn);
gen_mov_F1_vreg(dp, rm);
}
for (;;) {
/* Perform the calculation. */
switch (op) {
case 0: /* mac: fd + (fn * fm) */
gen_vfp_mul(dp);
gen_mov_F1_vreg(dp, rd);
gen_vfp_add(dp);
break;
case 1: /* nmac: fd - (fn * fm) */
gen_vfp_mul(dp);
gen_vfp_neg(dp);
gen_mov_F1_vreg(dp, rd);
gen_vfp_add(dp);
break;
case 2: /* msc: -fd + (fn * fm) */
gen_vfp_mul(dp);
gen_mov_F1_vreg(dp, rd);
gen_vfp_sub(dp);
break;
case 3: /* nmsc: -fd - (fn * fm) */
gen_vfp_mul(dp);
gen_mov_F1_vreg(dp, rd);
gen_vfp_add(dp);
gen_vfp_neg(dp);
break;
case 4: /* mul: fn * fm */
gen_vfp_mul(dp);
break;
case 5: /* nmul: -(fn * fm) */
gen_vfp_mul(dp);
gen_vfp_neg(dp);
break;
case 6: /* add: fn + fm */
gen_vfp_add(dp);
break;
case 7: /* sub: fn - fm */
gen_vfp_sub(dp);
break;
case 8: /* div: fn / fm */
gen_vfp_div(dp);
break;
case 14: /* fconst */
if (!arm_feature(env, ARM_FEATURE_VFP3))
return 1;
n = (insn << 12) & 0x80000000;
i = ((insn >> 12) & 0x70) | (insn & 0xf);
if (dp) {
if (i & 0x40)
i |= 0x3f80;
else
i |= 0x4000;
n |= i << 16;
} else {
if (i & 0x40)
i |= 0x780;
else
i |= 0x800;
n |= i << 19;
}
gen_vfp_fconst(dp, n);
break;
case 15: /* extension space */
switch (rn) {
case 0: /* cpy */
/* no-op */
break;
case 1: /* abs */
gen_vfp_abs(dp);
break;
case 2: /* neg */
gen_vfp_neg(dp);
break;
case 3: /* sqrt */
gen_vfp_sqrt(dp);
break;
case 8: /* cmp */
gen_vfp_cmp(dp);
break;
case 9: /* cmpe */
gen_vfp_cmpe(dp);
break;
case 10: /* cmpz */
gen_vfp_cmp(dp);
break;
case 11: /* cmpez */
gen_vfp_F1_ld0(dp);
gen_vfp_cmpe(dp);
break;
case 15: /* single<->double conversion */
if (dp)
gen_op_vfp_fcvtsd();
else
gen_op_vfp_fcvtds();
break;
case 16: /* fuito */
gen_vfp_uito(dp);
break;
case 17: /* fsito */
gen_vfp_sito(dp);
break;
case 20: /* fshto */
if (!arm_feature(env, ARM_FEATURE_VFP3))
return 1;
gen_vfp_shto(dp, rm);
break;
case 21: /* fslto */
if (!arm_feature(env, ARM_FEATURE_VFP3))
return 1;
gen_vfp_slto(dp, rm);
break;
case 22: /* fuhto */
if (!arm_feature(env, ARM_FEATURE_VFP3))
return 1;
gen_vfp_uhto(dp, rm);
break;
case 23: /* fulto */
if (!arm_feature(env, ARM_FEATURE_VFP3))
return 1;
gen_vfp_ulto(dp, rm);
break;
case 24: /* ftoui */
gen_vfp_toui(dp);
break;
case 25: /* ftouiz */
gen_vfp_touiz(dp);
break;
case 26: /* ftosi */
gen_vfp_tosi(dp);
break;
case 27: /* ftosiz */
gen_vfp_tosiz(dp);
break;
case 28: /* ftosh */
if (!arm_feature(env, ARM_FEATURE_VFP3))
return 1;
gen_vfp_tosh(dp, rm);
break;
case 29: /* ftosl */
if (!arm_feature(env, ARM_FEATURE_VFP3))
return 1;
gen_vfp_tosl(dp, rm);
break;
case 30: /* ftouh */
if (!arm_feature(env, ARM_FEATURE_VFP3))
return 1;
gen_vfp_touh(dp, rm);
break;
case 31: /* ftoul */
if (!arm_feature(env, ARM_FEATURE_VFP3))
return 1;
gen_vfp_toul(dp, rm);
break;
default: /* undefined */
printf ("rn:%d\n", rn);
return 1;
}
break;
default: /* undefined */
printf ("op:%d\n", op);
return 1;
}
/* Write back the result. */
if (op == 15 && (rn >= 8 && rn <= 11))
; /* Comparison, do nothing. */
else if (op == 15 && rn > 17)
/* Integer result. */
gen_mov_vreg_F0(0, rd);
else if (op == 15 && rn == 15)
/* conversion */
gen_mov_vreg_F0(!dp, rd);
else
gen_mov_vreg_F0(dp, rd);
/* break out of the loop if we have finished */
if (veclen == 0)
break;
if (op == 15 && delta_m == 0) {
/* single source one-many */
while (veclen--) {
rd = ((rd + delta_d) & (bank_mask - 1))
| (rd & bank_mask);
gen_mov_vreg_F0(dp, rd);
}
break;
}
/* Setup the next operands. */
veclen--;
rd = ((rd + delta_d) & (bank_mask - 1))
| (rd & bank_mask);
if (op == 15) {
/* One source operand. */
rm = ((rm + delta_m) & (bank_mask - 1))
| (rm & bank_mask);
gen_mov_F0_vreg(dp, rm);
} else {
/* Two source operands. */
rn = ((rn + delta_d) & (bank_mask - 1))
| (rn & bank_mask);
gen_mov_F0_vreg(dp, rn);
if (delta_m) {
rm = ((rm + delta_m) & (bank_mask - 1))
| (rm & bank_mask);
gen_mov_F1_vreg(dp, rm);
}
}
}
}
break;
case 0xc:
case 0xd:
if (dp && (insn & 0x03e00000) == 0x00400000) {
/* two-register transfer */
rn = (insn >> 16) & 0xf;
rd = (insn >> 12) & 0xf;
if (dp) {
VFP_DREG_M(rm, insn);
} else {
rm = VFP_SREG_M(insn);
}
if (insn & ARM_CP_RW_BIT) {
/* vfp->arm */
if (dp) {
gen_mov_F0_vreg(1, rm);
gen_op_vfp_mrrd();
gen_movl_reg_T0(s, rd);
gen_movl_reg_T1(s, rn);
} else {
gen_mov_F0_vreg(0, rm);
gen_op_vfp_mrs();
gen_movl_reg_T0(s, rn);
gen_mov_F0_vreg(0, rm + 1);
gen_op_vfp_mrs();
gen_movl_reg_T0(s, rd);
}
} else {
/* arm->vfp */
if (dp) {
gen_movl_T0_reg(s, rd);
gen_movl_T1_reg(s, rn);
gen_op_vfp_mdrr();
gen_mov_vreg_F0(1, rm);
} else {
gen_movl_T0_reg(s, rn);
gen_op_vfp_msr();
gen_mov_vreg_F0(0, rm);
gen_movl_T0_reg(s, rd);
gen_op_vfp_msr();
gen_mov_vreg_F0(0, rm + 1);
}
}
} else {
/* Load/store */
rn = (insn >> 16) & 0xf;
if (dp)
VFP_DREG_D(rd, insn);
else
rd = VFP_SREG_D(insn);
if (s->thumb && rn == 15) {
gen_op_movl_T1_im(s->pc & ~2);
} else {
gen_movl_T1_reg(s, rn);
}
if ((insn & 0x01200000) == 0x01000000) {
/* Single load/store */
offset = (insn & 0xff) << 2;
if ((insn & (1 << 23)) == 0)
offset = -offset;
gen_op_addl_T1_im(offset);
if (insn & (1 << 20)) {
gen_vfp_ld(s, dp);
gen_mov_vreg_F0(dp, rd);
} else {
gen_mov_F0_vreg(dp, rd);
gen_vfp_st(s, dp);
}
} else {
/* load/store multiple */
if (dp)
n = (insn >> 1) & 0x7f;
else
n = insn & 0xff;
if (insn & (1 << 24)) /* pre-decrement */
gen_op_addl_T1_im(-((insn & 0xff) << 2));
if (dp)
offset = 8;
else
offset = 4;
for (i = 0; i < n; i++) {
if (insn & ARM_CP_RW_BIT) {
/* load */
gen_vfp_ld(s, dp);
gen_mov_vreg_F0(dp, rd + i);
} else {
/* store */
gen_mov_F0_vreg(dp, rd + i);
gen_vfp_st(s, dp);
}
gen_op_addl_T1_im(offset);
}
if (insn & (1 << 21)) {
/* writeback */
if (insn & (1 << 24))
offset = -offset * n;
else if (dp && (insn & 1))
offset = 4;
else
offset = 0;
if (offset != 0)
gen_op_addl_T1_im(offset);
gen_movl_reg_T1(s, rn);
}
}
}
break;
default:
/* Should never happen. */
return 1;
}
return 0;
}
static inline void gen_goto_tb(DisasContext *s, int n, uint32_t dest)
{
TranslationBlock *tb;
tb = s->tb;
if ((tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK)) {
if (n == 0)
gen_op_goto_tb0(TBPARAM(tb));
else
gen_op_goto_tb1(TBPARAM(tb));
gen_op_movl_T0_im(dest);
gen_op_movl_r15_T0();
gen_op_movl_T0_im((long)tb + n);
gen_op_exit_tb();
} else {
gen_op_movl_T0_im(dest);
gen_op_movl_r15_T0();
gen_op_movl_T0_0();
gen_op_exit_tb();
}
}
static inline void gen_jmp (DisasContext *s, uint32_t dest)
{
if (__builtin_expect(s->singlestep_enabled, 0)) {
/* An indirect jump so that we still trigger the debug exception. */
if (s->thumb)
dest |= 1;
gen_op_movl_T0_im(dest);
gen_bx(s);
} else {
gen_goto_tb(s, 0, dest);
s->is_jmp = DISAS_TB_JUMP;
}
}
static inline void gen_mulxy(int x, int y)
{
if (x)
gen_op_sarl_T0_im(16);
else
gen_op_sxth_T0();
if (y)
gen_op_sarl_T1_im(16);
else
gen_op_sxth_T1();
gen_op_mul_T0_T1();
}
/* Return the mask of PSR bits set by a MSR instruction. */
static uint32_t msr_mask(CPUState *env, DisasContext *s, int flags, int spsr) {
uint32_t mask;
mask = 0;
if (flags & (1 << 0))
mask |= 0xff;
if (flags & (1 << 1))
mask |= 0xff00;
if (flags & (1 << 2))
mask |= 0xff0000;
if (flags & (1 << 3))
mask |= 0xff000000;
/* Mask out undefined bits. */
mask &= ~CPSR_RESERVED;
if (!arm_feature(env, ARM_FEATURE_V6))
mask &= ~(CPSR_E | CPSR_GE);
if (!arm_feature(env, ARM_FEATURE_THUMB2))
mask &= ~CPSR_IT;
/* Mask out execution state bits. */
if (!spsr)
mask &= ~CPSR_EXEC;
/* Mask out privileged bits. */
if (IS_USER(s))
mask &= CPSR_USER;
return mask;
}
/* Returns nonzero if access to the PSR is not permitted. */
static int gen_set_psr_T0(DisasContext *s, uint32_t mask, int spsr)
{
if (spsr) {
/* ??? This is also undefined in system mode. */
if (IS_USER(s))
return 1;
gen_op_movl_spsr_T0(mask);
} else {
gen_op_movl_cpsr_T0(mask);
}
gen_lookup_tb(s);
return 0;
}
/* Generate an old-style exception return. */
static void gen_exception_return(DisasContext *s)
{
gen_op_movl_reg_TN[0][15]();
gen_op_movl_T0_spsr();
gen_op_movl_cpsr_T0(0xffffffff);
s->is_jmp = DISAS_UPDATE;
}
/* Generate a v6 exception return. */
static void gen_rfe(DisasContext *s)
{
gen_op_movl_cpsr_T0(0xffffffff);
gen_op_movl_T0_T2();
gen_op_movl_reg_TN[0][15]();
s->is_jmp = DISAS_UPDATE;
}
static inline void
gen_set_condexec (DisasContext *s)
{
if (s->condexec_mask) {
gen_op_set_condexec((s->condexec_cond << 4) | (s->condexec_mask >> 1));
}
}
static void gen_nop_hint(DisasContext *s, int val)
{
switch (val) {
case 3: /* wfi */
gen_op_movl_T0_im((long)s->pc);
gen_op_movl_reg_TN[0][15]();
s->is_jmp = DISAS_WFI;
break;
case 2: /* wfe */
case 4: /* sev */
/* TODO: Implement SEV and WFE. May help SMP performance. */
default: /* nop */
break;
}
}
/* Neon shift by constant. The actual ops are the same as used for variable
shifts. [OP][U][SIZE] */
static GenOpFunc *gen_neon_shift_im[8][2][4] = {
{ /* 0 */ /* VSHR */
{
gen_op_neon_shl_u8,
gen_op_neon_shl_u16,
gen_op_neon_shl_u32,
gen_op_neon_shl_u64
}, {
gen_op_neon_shl_s8,
gen_op_neon_shl_s16,
gen_op_neon_shl_s32,
gen_op_neon_shl_s64
}
}, { /* 1 */ /* VSRA */
{
gen_op_neon_shl_u8,
gen_op_neon_shl_u16,
gen_op_neon_shl_u32,
gen_op_neon_shl_u64
}, {
gen_op_neon_shl_s8,
gen_op_neon_shl_s16,
gen_op_neon_shl_s32,
gen_op_neon_shl_s64
}
}, { /* 2 */ /* VRSHR */
{
gen_op_neon_rshl_u8,
gen_op_neon_rshl_u16,
gen_op_neon_rshl_u32,
gen_op_neon_rshl_u64
}, {
gen_op_neon_rshl_s8,
gen_op_neon_rshl_s16,
gen_op_neon_rshl_s32,
gen_op_neon_rshl_s64
}
}, { /* 3 */ /* VRSRA */
{
gen_op_neon_rshl_u8,
gen_op_neon_rshl_u16,
gen_op_neon_rshl_u32,
gen_op_neon_rshl_u64
}, {
gen_op_neon_rshl_s8,
gen_op_neon_rshl_s16,
gen_op_neon_rshl_s32,
gen_op_neon_rshl_s64
}
}, { /* 4 */
{
NULL, NULL, NULL, NULL
}, { /* VSRI */
gen_op_neon_shl_u8,
gen_op_neon_shl_u16,
gen_op_neon_shl_u32,
gen_op_neon_shl_u64,
}
}, { /* 5 */
{ /* VSHL */
gen_op_neon_shl_u8,
gen_op_neon_shl_u16,
gen_op_neon_shl_u32,
gen_op_neon_shl_u64,
}, { /* VSLI */
gen_op_neon_shl_u8,
gen_op_neon_shl_u16,
gen_op_neon_shl_u32,
gen_op_neon_shl_u64,
}
}, { /* 6 */ /* VQSHL */
{
gen_op_neon_qshl_u8,
gen_op_neon_qshl_u16,
gen_op_neon_qshl_u32,
gen_op_neon_qshl_u64
}, {
gen_op_neon_qshl_s8,
gen_op_neon_qshl_s16,
gen_op_neon_qshl_s32,
gen_op_neon_qshl_s64
}
}, { /* 7 */ /* VQSHLU */
{
gen_op_neon_qshl_u8,
gen_op_neon_qshl_u16,
gen_op_neon_qshl_u32,
gen_op_neon_qshl_u64
}, {
gen_op_neon_qshl_u8,
gen_op_neon_qshl_u16,
gen_op_neon_qshl_u32,
gen_op_neon_qshl_u64
}
}
};
/* [R][U][size - 1] */
static GenOpFunc *gen_neon_shift_im_narrow[2][2][3] = {
{
{
gen_op_neon_shl_u16,
gen_op_neon_shl_u32,
gen_op_neon_shl_u64
}, {
gen_op_neon_shl_s16,
gen_op_neon_shl_s32,
gen_op_neon_shl_s64
}
}, {
{
gen_op_neon_rshl_u16,
gen_op_neon_rshl_u32,
gen_op_neon_rshl_u64
}, {
gen_op_neon_rshl_s16,
gen_op_neon_rshl_s32,
gen_op_neon_rshl_s64
}
}
};
static inline void
gen_op_neon_narrow_u32 ()
{
/* No-op. */
}
static GenOpFunc *gen_neon_narrow[3] = {
gen_op_neon_narrow_u8,
gen_op_neon_narrow_u16,
gen_op_neon_narrow_u32
};
static GenOpFunc *gen_neon_narrow_satu[3] = {
gen_op_neon_narrow_sat_u8,
gen_op_neon_narrow_sat_u16,
gen_op_neon_narrow_sat_u32
};
static GenOpFunc *gen_neon_narrow_sats[3] = {
gen_op_neon_narrow_sat_s8,
gen_op_neon_narrow_sat_s16,
gen_op_neon_narrow_sat_s32
};
static inline int gen_neon_add(int size)
{
switch (size) {
case 0: gen_op_neon_add_u8(); break;
case 1: gen_op_neon_add_u16(); break;
case 2: gen_op_addl_T0_T1(); break;
default: return 1;
}
return 0;
}
/* 32-bit pairwise ops end up the same as the elementsise versions. */
#define gen_op_neon_pmax_s32 gen_op_neon_max_s32
#define gen_op_neon_pmax_u32 gen_op_neon_max_u32
#define gen_op_neon_pmin_s32 gen_op_neon_min_s32
#define gen_op_neon_pmin_u32 gen_op_neon_min_u32
#define GEN_NEON_INTEGER_OP(name) do { \
switch ((size << 1) | u) { \
case 0: gen_op_neon_##name##_s8(); break; \
case 1: gen_op_neon_##name##_u8(); break; \
case 2: gen_op_neon_##name##_s16(); break; \
case 3: gen_op_neon_##name##_u16(); break; \
case 4: gen_op_neon_##name##_s32(); break; \
case 5: gen_op_neon_##name##_u32(); break; \
default: return 1; \
}} while (0)
static inline void
gen_neon_movl_scratch_T0(int scratch)
{
uint32_t offset;
offset = offsetof(CPUARMState, vfp.scratch[scratch]);
gen_op_neon_setreg_T0(offset);
}
static inline void
gen_neon_movl_scratch_T1(int scratch)
{
uint32_t offset;
offset = offsetof(CPUARMState, vfp.scratch[scratch]);
gen_op_neon_setreg_T1(offset);
}
static inline void
gen_neon_movl_T0_scratch(int scratch)
{
uint32_t offset;
offset = offsetof(CPUARMState, vfp.scratch[scratch]);
gen_op_neon_getreg_T0(offset);
}
static inline void
gen_neon_movl_T1_scratch(int scratch)
{
uint32_t offset;
offset = offsetof(CPUARMState, vfp.scratch[scratch]);
gen_op_neon_getreg_T1(offset);
}
static inline void gen_op_neon_widen_u32(void)
{
gen_op_movl_T1_im(0);
}
static inline void gen_neon_get_scalar(int size, int reg)
{
if (size == 1) {
NEON_GET_REG(T0, reg >> 1, reg & 1);
} else {
NEON_GET_REG(T0, reg >> 2, (reg >> 1) & 1);
if (reg & 1)
gen_op_neon_dup_low16();
else
gen_op_neon_dup_high16();
}
}
static void gen_neon_unzip(int reg, int q, int tmp, int size)
{
int n;
for (n = 0; n < q + 1; n += 2) {
NEON_GET_REG(T0, reg, n);
NEON_GET_REG(T0, reg, n + n);
switch (size) {
case 0: gen_op_neon_unzip_u8(); break;
case 1: gen_op_neon_zip_u16(); break; /* zip and unzip are the same. */
case 2: /* no-op */; break;
default: abort();
}
gen_neon_movl_scratch_T0(tmp + n);
gen_neon_movl_scratch_T1(tmp + n + 1);
}
}
static struct {
int nregs;
int interleave;
int spacing;
} neon_ls_element_type[11] = {
{4, 4, 1},
{4, 4, 2},
{4, 1, 1},
{4, 2, 1},
{3, 3, 1},
{3, 3, 2},
{3, 1, 1},
{1, 1, 1},
{2, 2, 1},
{2, 2, 2},
{2, 1, 1}
};
/* Translate a NEON load/store element instruction. Return nonzero if the
instruction is invalid. */
static int disas_neon_ls_insn(CPUState * env, DisasContext *s, uint32_t insn)
{
int rd, rn, rm;
int op;
int nregs;
int interleave;
int stride;
int size;
int reg;
int pass;
int load;
int shift;
uint32_t mask;
int n;
if (!vfp_enabled(env))
return 1;
VFP_DREG_D(rd, insn);
rn = (insn >> 16) & 0xf;
rm = insn & 0xf;
load = (insn & (1 << 21)) != 0;
if ((insn & (1 << 23)) == 0) {
/* Load store all elements. */
op = (insn >> 8) & 0xf;
size = (insn >> 6) & 3;
if (op > 10 || size == 3)
return 1;
nregs = neon_ls_element_type[op].nregs;
interleave = neon_ls_element_type[op].interleave;
gen_movl_T1_reg(s, rn);
stride = (1 << size) * interleave;
for (reg = 0; reg < nregs; reg++) {
if (interleave > 2 || (interleave == 2 && nregs == 2)) {
gen_movl_T1_reg(s, rn);
gen_op_addl_T1_im((1 << size) * reg);
} else if (interleave == 2 && nregs == 4 && reg == 2) {
gen_movl_T1_reg(s, rn);
gen_op_addl_T1_im(1 << size);
}
for (pass = 0; pass < 2; pass++) {
if (size == 2) {
if (load) {
gen_ldst(ldl, s);
NEON_SET_REG(T0, rd, pass);
} else {
NEON_GET_REG(T0, rd, pass);
gen_ldst(stl, s);
}
gen_op_addl_T1_im(stride);
} else if (size == 1) {
if (load) {
gen_ldst(lduw, s);
gen_op_addl_T1_im(stride);
gen_op_movl_T2_T0();
gen_ldst(lduw, s);
gen_op_addl_T1_im(stride);
gen_op_neon_insert_elt(16, 0xffff);
NEON_SET_REG(T2, rd, pass);
} else {
NEON_GET_REG(T2, rd, pass);
gen_op_movl_T0_T2();
gen_ldst(stw, s);
gen_op_addl_T1_im(stride);
gen_op_neon_extract_elt(16, 0xffff0000);
gen_ldst(stw, s);
gen_op_addl_T1_im(stride);
}
} else /* size == 0 */ {
if (load) {
mask = 0xff;
for (n = 0; n < 4; n++) {
gen_ldst(ldub, s);
gen_op_addl_T1_im(stride);
if (n == 0) {
gen_op_movl_T2_T0();
} else {
gen_op_neon_insert_elt(n * 8, ~mask);
}
mask <<= 8;
}
NEON_SET_REG(T2, rd, pass);
} else {
NEON_GET_REG(T2, rd, pass);
mask = 0xff;
for (n = 0; n < 4; n++) {
if (n == 0) {
gen_op_movl_T0_T2();
} else {
gen_op_neon_extract_elt(n * 8, mask);
}
gen_ldst(stb, s);
gen_op_addl_T1_im(stride);
mask <<= 8;
}
}
}
}
rd += neon_ls_element_type[op].spacing;
}
stride = nregs * 8;
} else {
size = (insn >> 10) & 3;
if (size == 3) {
/* Load single element to all lanes. */
if (!load)
return 1;
size = (insn >> 6) & 3;
nregs = ((insn >> 8) & 3) + 1;
stride = (insn & (1 << 5)) ? 2 : 1;
gen_movl_T1_reg(s, rn);
for (reg = 0; reg < nregs; reg++) {
switch (size) {
case 0:
gen_ldst(ldub, s);
gen_op_neon_dup_u8(0);
break;
case 1:
gen_ldst(lduw, s);
gen_op_neon_dup_low16();
break;
case 2:
gen_ldst(ldl, s);
break;
case 3:
return 1;
}
gen_op_addl_T1_im(1 << size);
NEON_SET_REG(T0, rd, 0);
NEON_SET_REG(T0, rd, 1);
rd += stride;
}
stride = (1 << size) * nregs;
} else {
/* Single element. */
pass = (insn >> 7) & 1;
switch (size) {
case 0:
shift = ((insn >> 5) & 3) * 8;
mask = 0xff << shift;
stride = 1;
break;
case 1:
shift = ((insn >> 6) & 1) * 16;
mask = shift ? 0xffff0000 : 0xffff;
stride = (insn & (1 << 5)) ? 2 : 1;
break;
case 2:
shift = 0;
mask = 0xffffffff;
stride = (insn & (1 << 6)) ? 2 : 1;
break;
default:
abort();
}
nregs = ((insn >> 8) & 3) + 1;
gen_movl_T1_reg(s, rn);
for (reg = 0; reg < nregs; reg++) {
if (load) {
if (size != 2) {
NEON_GET_REG(T2, rd, pass);
}
switch (size) {
case 0:
gen_ldst(ldub, s);
break;
case 1:
gen_ldst(lduw, s);
break;
case 2:
gen_ldst(ldl, s);
NEON_SET_REG(T0, rd, pass);
break;
}
if (size != 2) {
gen_op_neon_insert_elt(shift, ~mask);
NEON_SET_REG(T0, rd, pass);
}
} else { /* Store */
if (size == 2) {
NEON_GET_REG(T0, rd, pass);
} else {
NEON_GET_REG(T2, rd, pass);
gen_op_neon_extract_elt(shift, mask);
}
switch (size) {
case 0:
gen_ldst(stb, s);
break;
case 1:
gen_ldst(stw, s);
break;
case 2:
gen_ldst(stl, s);
break;
}
}
rd += stride;
gen_op_addl_T1_im(1 << size);
}
stride = nregs * (1 << size);
}
}
if (rm != 15) {
gen_movl_T1_reg(s, rn);
if (rm == 13) {
gen_op_addl_T1_im(stride);
} else {
gen_movl_T2_reg(s, rm);
gen_op_addl_T1_T2();
}
gen_movl_reg_T1(s, rn);
}
return 0;
}
/* Translate a NEON data processing instruction. Return nonzero if the
instruction is invalid.
In general we process vectors in 32-bit chunks. This means we can reuse
some of the scalar ops, and hopefully the code generated for 32-bit
hosts won't be too awful. The downside is that the few 64-bit operations
(mainly shifts) get complicated. */
static int disas_neon_data_insn(CPUState * env, DisasContext *s, uint32_t insn)
{
int op;
int q;
int rd, rn, rm;
int size;
int shift;
int pass;
int count;
int pairwise;
int u;
int n;
uint32_t imm;
if (!vfp_enabled(env))
return 1;
q = (insn & (1 << 6)) != 0;
u = (insn >> 24) & 1;
VFP_DREG_D(rd, insn);
VFP_DREG_N(rn, insn);
VFP_DREG_M(rm, insn);
size = (insn >> 20) & 3;
if ((insn & (1 << 23)) == 0) {
/* Three register same length. */
op = ((insn >> 7) & 0x1e) | ((insn >> 4) & 1);
if (size == 3 && (op == 1 || op == 5 || op == 16)) {
for (pass = 0; pass < (q ? 2 : 1); pass++) {
NEON_GET_REG(T0, rm, pass * 2);
NEON_GET_REG(T1, rm, pass * 2 + 1);
gen_neon_movl_scratch_T0(0);
gen_neon_movl_scratch_T1(1);
NEON_GET_REG(T0, rn, pass * 2);
NEON_GET_REG(T1, rn, pass * 2 + 1);
switch (op) {
case 1: /* VQADD */
if (u) {
gen_op_neon_addl_saturate_u64();
} else {
gen_op_neon_addl_saturate_s64();
}
break;
case 5: /* VQSUB */
if (u) {
gen_op_neon_subl_saturate_u64();
} else {
gen_op_neon_subl_saturate_s64();
}
break;
case 16:
if (u) {
gen_op_neon_subl_u64();
} else {
gen_op_neon_addl_u64();
}
break;
default:
abort();
}
NEON_SET_REG(T0, rd, pass * 2);
NEON_SET_REG(T1, rd, pass * 2 + 1);
}
return 0;
}
switch (op) {
case 8: /* VSHL */
case 9: /* VQSHL */
case 10: /* VRSHL */
case 11: /* VQSHL */
/* Shift operations have Rn and Rm reversed. */
{
int tmp;
tmp = rn;
rn = rm;
rm = tmp;
pairwise = 0;
}
break;
case 20: /* VPMAX */
case 21: /* VPMIN */
case 23: /* VPADD */
pairwise = 1;
break;
case 26: /* VPADD (float) */
pairwise = (u && size < 2);
break;
case 30: /* VPMIN/VPMAX (float) */
pairwise = u;
break;
default:
pairwise = 0;
break;
}
for (pass = 0; pass < (q ? 4 : 2); pass++) {
if (pairwise) {
/* Pairwise. */
if (q)
n = (pass & 1) * 2;
else
n = 0;
if (pass < q + 1) {
NEON_GET_REG(T0, rn, n);
NEON_GET_REG(T1, rn, n + 1);
} else {
NEON_GET_REG(T0, rm, n);
NEON_GET_REG(T1, rm, n + 1);
}
} else {
/* Elementwise. */
NEON_GET_REG(T0, rn, pass);
NEON_GET_REG(T1, rm, pass);
}
switch (op) {
case 0: /* VHADD */
GEN_NEON_INTEGER_OP(hadd);
break;
case 1: /* VQADD */
switch (size << 1| u) {
case 0: gen_op_neon_qadd_s8(); break;
case 1: gen_op_neon_qadd_u8(); break;
case 2: gen_op_neon_qadd_s16(); break;
case 3: gen_op_neon_qadd_u16(); break;
case 4: gen_op_addl_T0_T1_saturate(); break;
case 5: gen_op_addl_T0_T1_usaturate(); break;
default: abort();
}
break;
case 2: /* VRHADD */
GEN_NEON_INTEGER_OP(rhadd);
break;
case 3: /* Logic ops. */
switch ((u << 2) | size) {
case 0: /* VAND */
gen_op_andl_T0_T1();
break;
case 1: /* BIC */
gen_op_bicl_T0_T1();
break;
case 2: /* VORR */
gen_op_orl_T0_T1();
break;
case 3: /* VORN */
gen_op_notl_T1();
gen_op_orl_T0_T1();
break;
case 4: /* VEOR */
gen_op_xorl_T0_T1();
break;
case 5: /* VBSL */
NEON_GET_REG(T2, rd, pass);
gen_op_neon_bsl();
break;
case 6: /* VBIT */
NEON_GET_REG(T2, rd, pass);
gen_op_neon_bit();
break;
case 7: /* VBIF */
NEON_GET_REG(T2, rd, pass);
gen_op_neon_bif();
break;
}
break;
case 4: /* VHSUB */
GEN_NEON_INTEGER_OP(hsub);
break;
case 5: /* VQSUB */
switch ((size << 1) | u) {
case 0: gen_op_neon_qsub_s8(); break;
case 1: gen_op_neon_qsub_u8(); break;
case 2: gen_op_neon_qsub_s16(); break;
case 3: gen_op_neon_qsub_u16(); break;
case 4: gen_op_subl_T0_T1_saturate(); break;
case 5: gen_op_subl_T0_T1_usaturate(); break;
default: abort();
}
break;
case 6: /* VCGT */
GEN_NEON_INTEGER_OP(cgt);
break;
case 7: /* VCGE */
GEN_NEON_INTEGER_OP(cge);
break;
case 8: /* VSHL */
switch ((size << 1) | u) {
case 0: gen_op_neon_shl_s8(); break;
case 1: gen_op_neon_shl_u8(); break;
case 2: gen_op_neon_shl_s16(); break;
case 3: gen_op_neon_shl_u16(); break;
case 4: gen_op_neon_shl_s32(); break;
case 5: gen_op_neon_shl_u32(); break;
#if 0
/* ??? Implementing these is tricky because the vector ops work
on 32-bit pieces. */
case 6: gen_op_neon_shl_s64(); break;
case 7: gen_op_neon_shl_u64(); break;
#else
case 6: case 7: cpu_abort(env, "VSHL.64 not implemented");
#endif
}
break;
case 9: /* VQSHL */
switch ((size << 1) | u) {
case 0: gen_op_neon_qshl_s8(); break;
case 1: gen_op_neon_qshl_u8(); break;
case 2: gen_op_neon_qshl_s16(); break;
case 3: gen_op_neon_qshl_u16(); break;
case 4: gen_op_neon_qshl_s32(); break;
case 5: gen_op_neon_qshl_u32(); break;
#if 0
/* ??? Implementing these is tricky because the vector ops work
on 32-bit pieces. */
case 6: gen_op_neon_qshl_s64(); break;
case 7: gen_op_neon_qshl_u64(); break;
#else
case 6: case 7: cpu_abort(env, "VQSHL.64 not implemented");
#endif
}
break;
case 10: /* VRSHL */
switch ((size << 1) | u) {
case 0: gen_op_neon_rshl_s8(); break;
case 1: gen_op_neon_rshl_u8(); break;
case 2: gen_op_neon_rshl_s16(); break;
case 3: gen_op_neon_rshl_u16(); break;
case 4: gen_op_neon_rshl_s32(); break;
case 5: gen_op_neon_rshl_u32(); break;
#if 0
/* ??? Implementing these is tricky because the vector ops work
on 32-bit pieces. */
case 6: gen_op_neon_rshl_s64(); break;
case 7: gen_op_neon_rshl_u64(); break;
#else
case 6: case 7: cpu_abort(env, "VRSHL.64 not implemented");
#endif
}
break;
case 11: /* VQRSHL */
switch ((size << 1) | u) {
case 0: gen_op_neon_qrshl_s8(); break;
case 1: gen_op_neon_qrshl_u8(); break;
case 2: gen_op_neon_qrshl_s16(); break;
case 3: gen_op_neon_qrshl_u16(); break;
case 4: gen_op_neon_qrshl_s32(); break;
case 5: gen_op_neon_qrshl_u32(); break;
#if 0
/* ??? Implementing these is tricky because the vector ops work
on 32-bit pieces. */
case 6: gen_op_neon_qrshl_s64(); break;
case 7: gen_op_neon_qrshl_u64(); break;
#else
case 6: case 7: cpu_abort(env, "VQRSHL.64 not implemented");
#endif
}
break;
case 12: /* VMAX */
GEN_NEON_INTEGER_OP(max);
break;
case 13: /* VMIN */
GEN_NEON_INTEGER_OP(min);
break;
case 14: /* VABD */
GEN_NEON_INTEGER_OP(abd);
break;
case 15: /* VABA */
GEN_NEON_INTEGER_OP(abd);
NEON_GET_REG(T1, rd, pass);
gen_neon_add(size);
break;
case 16:
if (!u) { /* VADD */
if (gen_neon_add(size))
return 1;
} else { /* VSUB */
switch (size) {
case 0: gen_op_neon_sub_u8(); break;
case 1: gen_op_neon_sub_u16(); break;
case 2: gen_op_subl_T0_T1(); break;
default: return 1;
}
}
break;
case 17:
if (!u) { /* VTST */
switch (size) {
case 0: gen_op_neon_tst_u8(); break;
case 1: gen_op_neon_tst_u16(); break;
case 2: gen_op_neon_tst_u32(); break;
default: return 1;
}
} else { /* VCEQ */
switch (size) {
case 0: gen_op_neon_ceq_u8(); break;
case 1: gen_op_neon_ceq_u16(); break;
case 2: gen_op_neon_ceq_u32(); break;
default: return 1;
}
}
break;
case 18: /* Multiply. */
switch (size) {
case 0: gen_op_neon_mul_u8(); break;
case 1: gen_op_neon_mul_u16(); break;
case 2: gen_op_mul_T0_T1(); break;
default: return 1;
}
NEON_GET_REG(T1, rd, pass);
if (u) { /* VMLS */
switch (size) {
case 0: gen_op_neon_rsb_u8(); break;
case 1: gen_op_neon_rsb_u16(); break;
case 2: gen_op_rsbl_T0_T1(); break;
default: return 1;
}
} else { /* VMLA */
gen_neon_add(size);
}
break;
case 19: /* VMUL */
if (u) { /* polynomial */
gen_op_neon_mul_p8();
} else { /* Integer */
switch (size) {
case 0: gen_op_neon_mul_u8(); break;
case 1: gen_op_neon_mul_u16(); break;
case 2: gen_op_mul_T0_T1(); break;
default: return 1;
}
}
break;
case 20: /* VPMAX */
GEN_NEON_INTEGER_OP(pmax);
break;
case 21: /* VPMIN */
GEN_NEON_INTEGER_OP(pmin);
break;
case 22: /* Hultiply high. */
if (!u) { /* VQDMULH */
switch (size) {
case 1: gen_op_neon_qdmulh_s16(); break;
case 2: gen_op_neon_qdmulh_s32(); break;
default: return 1;
}
} else { /* VQRDHMUL */
switch (size) {
case 1: gen_op_neon_qrdmulh_s16(); break;
case 2: gen_op_neon_qrdmulh_s32(); break;
default: return 1;
}
}
break;
case 23: /* VPADD */
if (u)
return 1;
switch (size) {
case 0: gen_op_neon_padd_u8(); break;
case 1: gen_op_neon_padd_u16(); break;
case 2: gen_op_addl_T0_T1(); break;
default: return 1;
}
break;
case 26: /* Floating point arithnetic. */
switch ((u << 2) | size) {
case 0: /* VADD */
gen_op_neon_add_f32();
break;
case 2: /* VSUB */
gen_op_neon_sub_f32();
break;
case 4: /* VPADD */
gen_op_neon_add_f32();
break;
case 6: /* VABD */
gen_op_neon_abd_f32();
break;
default:
return 1;
}
break;
case 27: /* Float multiply. */
gen_op_neon_mul_f32();
if (!u) {
NEON_GET_REG(T1, rd, pass);
if (size == 0) {
gen_op_neon_add_f32();
} else {
gen_op_neon_rsb_f32();
}
}
break;
case 28: /* Float compare. */
if (!u) {
gen_op_neon_ceq_f32();
} else {
if (size == 0)
gen_op_neon_cge_f32();
else
gen_op_neon_cgt_f32();
}
break;
case 29: /* Float compare absolute. */
if (!u)
return 1;
if (size == 0)
gen_op_neon_acge_f32();
else
gen_op_neon_acgt_f32();
break;
case 30: /* Float min/max. */
if (size == 0)
gen_op_neon_max_f32();
else
gen_op_neon_min_f32();
break;
case 31:
if (size == 0)
gen_op_neon_recps_f32();
else
gen_op_neon_rsqrts_f32();
break;
default:
abort();
}
/* Save the result. For elementwise operations we can put it
straight into the destination register. For pairwise operations
we have to be careful to avoid clobbering the source operands. */
if (pairwise && rd == rm) {
gen_neon_movl_scratch_T0(pass);
} else {
NEON_SET_REG(T0, rd, pass);
}
} /* for pass */
if (pairwise && rd == rm) {
for (pass = 0; pass < (q ? 4 : 2); pass++) {
gen_neon_movl_T0_scratch(pass);
NEON_SET_REG(T0, rd, pass);
}
}
} else if (insn & (1 << 4)) {
if ((insn & 0x00380080) != 0) {
/* Two registers and shift. */
op = (insn >> 8) & 0xf;
if (insn & (1 << 7)) {
/* 64-bit shift. */
size = 3;
} else {
size = 2;
while ((insn & (1 << (size + 19))) == 0)
size--;
}
shift = (insn >> 16) & ((1 << (3 + size)) - 1);
/* To avoid excessive dumplication of ops we implement shift
by immediate using the variable shift operations. */
if (op < 8) {
/* Shift by immediate:
VSHR, VSRA, VRSHR, VRSRA, VSRI, VSHL, VQSHL, VQSHLU. */
/* Right shifts are encoded as N - shift, where N is the
element size in bits. */
if (op <= 4)
shift = shift - (1 << (size + 3));
else
shift++;
if (size == 3) {
count = q + 1;
} else {
count = q ? 4: 2;
}
switch (size) {
case 0:
imm = (uint8_t) shift;
imm |= imm << 8;
imm |= imm << 16;
break;
case 1:
imm = (uint16_t) shift;
imm |= imm << 16;
break;
case 2:
case 3:
imm = shift;
break;
default:
abort();
}
for (pass = 0; pass < count; pass++) {
if (size < 3) {
/* Operands in T0 and T1. */
gen_op_movl_T1_im(imm);
NEON_GET_REG(T0, rm, pass);
} else {
/* Operands in {T0, T1} and env->vfp.scratch. */
gen_op_movl_T0_im(imm);
gen_neon_movl_scratch_T0(0);
gen_op_movl_T0_im((int32_t)imm >> 31);
gen_neon_movl_scratch_T0(1);
NEON_GET_REG(T0, rm, pass * 2);
NEON_GET_REG(T1, rm, pass * 2 + 1);
}
if (gen_neon_shift_im[op][u][size] == NULL)
return 1;
gen_neon_shift_im[op][u][size]();
if (op == 1 || op == 3) {
/* Accumulate. */
if (size == 3) {
gen_neon_movl_scratch_T0(0);
gen_neon_movl_scratch_T1(1);
NEON_GET_REG(T0, rd, pass * 2);
NEON_GET_REG(T1, rd, pass * 2 + 1);
gen_op_neon_addl_u64();
} else {
NEON_GET_REG(T1, rd, pass);
gen_neon_add(size);
}
} else if (op == 4 || (op == 5 && u)) {
/* Insert */
if (size == 3) {
cpu_abort(env, "VS[LR]I.64 not implemented");
}
switch (size) {
case 0:
if (op == 4)
imm = 0xff >> -shift;
else
imm = (uint8_t)(0xff << shift);
imm |= imm << 8;
imm |= imm << 16;
break;
case 1:
if (op == 4)
imm = 0xffff >> -shift;
else
imm = (uint16_t)(0xffff << shift);
imm |= imm << 16;
break;
case 2:
if (op == 4)
imm = 0xffffffffu >> -shift;
else
imm = 0xffffffffu << shift;
break;
default:
abort();
}
NEON_GET_REG(T1, rd, pass);
gen_op_movl_T2_im(imm);
gen_op_neon_bsl();
}
if (size == 3) {
NEON_SET_REG(T0, rd, pass * 2);
NEON_SET_REG(T1, rd, pass * 2 + 1);
} else {
NEON_SET_REG(T0, rd, pass);
}
} /* for pass */
} else if (op < 10) {
/* Shift by immedaiate and narrow:
VSHRN, VRSHRN, VQSHRN, VQRSHRN. */
shift = shift - (1 << (size + 3));
size++;
if (size == 3) {
count = q + 1;
} else {
count = q ? 4: 2;
}
switch (size) {
case 1:
imm = (uint16_t) shift;
imm |= imm << 16;
break;
case 2:
case 3:
imm = shift;
break;
default:
abort();
}
/* Processing MSB first means we need to do less shuffling at
the end. */
for (pass = count - 1; pass >= 0; pass--) {
/* Avoid clobbering the second operand before it has been
written. */
n = pass;
if (rd == rm)
n ^= (count - 1);
else
n = pass;
if (size < 3) {
/* Operands in T0 and T1. */
gen_op_movl_T1_im(imm);
NEON_GET_REG(T0, rm, n);
} else {
/* Operands in {T0, T1} and env->vfp.scratch. */
gen_op_movl_T0_im(imm);
gen_neon_movl_scratch_T0(0);
gen_op_movl_T0_im((int32_t)imm >> 31);
gen_neon_movl_scratch_T0(1);
NEON_GET_REG(T0, rm, n * 2);
NEON_GET_REG(T0, rm, n * 2 + 1);
}
gen_neon_shift_im_narrow[q][u][size - 1]();
if (size < 3 && (pass & 1) == 0) {
gen_neon_movl_scratch_T0(0);
} else {
uint32_t offset;
if (size < 3)
gen_neon_movl_T1_scratch(0);
if (op == 8 && !u) {
gen_neon_narrow[size - 1]();
} else {
if (op == 8)
gen_neon_narrow_sats[size - 2]();
else
gen_neon_narrow_satu[size - 1]();
}
if (size == 3)
offset = neon_reg_offset(rd, n);
else
offset = neon_reg_offset(rd, n >> 1);
gen_op_neon_setreg_T0(offset);
}
} /* for pass */
} else if (op == 10) {
/* VSHLL */
if (q)
return 1;
for (pass = 0; pass < 2; pass++) {
/* Avoid clobbering the input operand. */
if (rd == rm)
n = 1 - pass;
else
n = pass;
NEON_GET_REG(T0, rm, n);
GEN_NEON_INTEGER_OP(widen);
if (shift != 0) {
/* The shift is less than the width of the source
type, so in some cases we can just
shift the whole register. */
if (size == 1 || (size == 0 && u)) {
gen_op_shll_T0_im(shift);
gen_op_shll_T1_im(shift);
} else {
switch (size) {
case 0: gen_op_neon_shll_u16(shift); break;
case 2: gen_op_neon_shll_u64(shift); break;
default: abort();
}
}
}
NEON_SET_REG(T0, rd, n * 2);
NEON_SET_REG(T1, rd, n * 2 + 1);
}
} else if (op == 15 || op == 16) {
/* VCVT fixed-point. */
for (pass = 0; pass < (q ? 4 : 2); pass++) {
gen_op_vfp_getreg_F0s(neon_reg_offset(rm, pass));
if (op & 1) {
if (u)
gen_op_vfp_ultos(shift);
else
gen_op_vfp_sltos(shift);
} else {
if (u)
gen_op_vfp_touls(shift);
else
gen_op_vfp_tosls(shift);
}
gen_op_vfp_setreg_F0s(neon_reg_offset(rd, pass));
}
} else {
return 1;
}
} else { /* (insn & 0x00380080) == 0 */
int invert;
op = (insn >> 8) & 0xf;
/* One register and immediate. */
imm = (u << 7) | ((insn >> 12) & 0x70) | (insn & 0xf);
invert = (insn & (1 << 5)) != 0;
switch (op) {
case 0: case 1:
/* no-op */
break;
case 2: case 3:
imm <<= 8;
break;
case 4: case 5:
imm <<= 16;
break;
case 6: case 7:
imm <<= 24;
break;
case 8: case 9:
imm |= imm << 16;
break;
case 10: case 11:
imm = (imm << 8) | (imm << 24);
break;
case 12:
imm = (imm < 8) | 0xff;
break;
case 13:
imm = (imm << 16) | 0xffff;
break;
case 14:
imm |= (imm << 8) | (imm << 16) | (imm << 24);
if (invert)
imm = ~imm;
break;
case 15:
imm = ((imm & 0x80) << 24) | ((imm & 0x3f) << 19)
| ((imm & 0x40) ? (0x1f << 25) : (1 << 30));
break;
}
if (invert)
imm = ~imm;
if (op != 14 || !invert)
gen_op_movl_T1_im(imm);
for (pass = 0; pass < (q ? 4 : 2); pass++) {
if (op & 1 && op < 12) {
NEON_GET_REG(T0, rd, pass);
if (invert) {
/* The immediate value has already been inverted, so
BIC becomes AND. */
gen_op_andl_T0_T1();
} else {
gen_op_orl_T0_T1();
}
NEON_SET_REG(T0, rd, pass);
} else {
if (op == 14 && invert) {
uint32_t tmp;
tmp = 0;
for (n = 0; n < 4; n++) {
if (imm & (1 << (n + (pass & 1) * 4)))
tmp |= 0xff << (n * 8);
}
gen_op_movl_T1_im(tmp);
}
/* VMOV, VMVN. */
NEON_SET_REG(T1, rd, pass);
}
}
}
} else { /* (insn & 0x00800010 == 0x00800010) */
if (size != 3) {
op = (insn >> 8) & 0xf;
if ((insn & (1 << 6)) == 0) {
/* Three registers of different lengths. */
int src1_wide;
int src2_wide;
int prewiden;
/* prewiden, src1_wide, src2_wide */
static const int neon_3reg_wide[16][3] = {
{1, 0, 0}, /* VADDL */
{1, 1, 0}, /* VADDW */
{1, 0, 0}, /* VSUBL */
{1, 1, 0}, /* VSUBW */
{0, 1, 1}, /* VADDHN */
{0, 0, 0}, /* VABAL */
{0, 1, 1}, /* VSUBHN */
{0, 0, 0}, /* VABDL */
{0, 0, 0}, /* VMLAL */
{0, 0, 0}, /* VQDMLAL */
{0, 0, 0}, /* VMLSL */
{0, 0, 0}, /* VQDMLSL */
{0, 0, 0}, /* Integer VMULL */
{0, 0, 0}, /* VQDMULL */
{0, 0, 0} /* Polynomial VMULL */
};
prewiden = neon_3reg_wide[op][0];
src1_wide = neon_3reg_wide[op][1];
src2_wide = neon_3reg_wide[op][2];
/* Avoid overlapping operands. Wide source operands are
always aligned so will never overlap with wide
destinations in problematic ways. */
if (rd == rm) {
NEON_GET_REG(T2, rm, 1);
} else if (rd == rn) {
NEON_GET_REG(T2, rn, 1);
}
for (pass = 0; pass < 2; pass++) {
/* Load the second operand into env->vfp.scratch.
Also widen narrow operands. */
if (pass == 1 && rd == rm) {
if (prewiden) {
gen_op_movl_T0_T2();
} else {
gen_op_movl_T1_T2();
}
} else {
if (src2_wide) {
NEON_GET_REG(T0, rm, pass * 2);
NEON_GET_REG(T1, rm, pass * 2 + 1);
} else {
if (prewiden) {
NEON_GET_REG(T0, rm, pass);
} else {
NEON_GET_REG(T1, rm, pass);
}
}
}
if (prewiden && !src2_wide) {
GEN_NEON_INTEGER_OP(widen);
}
if (prewiden || src2_wide) {
gen_neon_movl_scratch_T0(0);
gen_neon_movl_scratch_T1(1);
}
/* Load the first operand. */
if (pass == 1 && rd == rn) {
gen_op_movl_T0_T2();
} else {
if (src1_wide) {
NEON_GET_REG(T0, rn, pass * 2);
NEON_GET_REG(T1, rn, pass * 2 + 1);
} else {
NEON_GET_REG(T0, rn, pass);
}
}
if (prewiden && !src1_wide) {
GEN_NEON_INTEGER_OP(widen);
}
switch (op) {
case 0: case 1: case 4: /* VADDL, VADDW, VADDHN, VRADDHN */
switch (size) {
case 0: gen_op_neon_addl_u16(); break;
case 1: gen_op_neon_addl_u32(); break;
case 2: gen_op_neon_addl_u64(); break;
default: abort();
}
break;
case 2: case 3: case 6: /* VSUBL, VSUBW, VSUBHL, VRSUBHL */
switch (size) {
case 0: gen_op_neon_subl_u16(); break;
case 1: gen_op_neon_subl_u32(); break;
case 2: gen_op_neon_subl_u64(); break;
default: abort();
}
break;
case 5: case 7: /* VABAL, VABDL */
switch ((size << 1) | u) {
case 0: gen_op_neon_abdl_s16(); break;
case 1: gen_op_neon_abdl_u16(); break;
case 2: gen_op_neon_abdl_s32(); break;
case 3: gen_op_neon_abdl_u32(); break;
case 4: gen_op_neon_abdl_s64(); break;
case 5: gen_op_neon_abdl_u64(); break;
default: abort();
}
break;
case 8: case 9: case 10: case 11: case 12: case 13:
/* VMLAL, VQDMLAL, VMLSL, VQDMLSL, VMULL, VQDMULL */
switch ((size << 1) | u) {
case 0: gen_op_neon_mull_s8(); break;
case 1: gen_op_neon_mull_u8(); break;
case 2: gen_op_neon_mull_s16(); break;
case 3: gen_op_neon_mull_u16(); break;
case 4: gen_op_imull_T0_T1(); break;
case 5: gen_op_mull_T0_T1(); break;
default: abort();
}
break;
case 14: /* Polynomial VMULL */
cpu_abort(env, "Polynomial VMULL not implemented");
default: /* 15 is RESERVED. */
return 1;
}
if (op == 5 || op == 13 || (op >= 8 && op <= 11)) {
/* Accumulate. */
if (op == 10 || op == 11) {
switch (size) {
case 0: gen_op_neon_negl_u16(); break;
case 1: gen_op_neon_negl_u32(); break;
case 2: gen_op_neon_negl_u64(); break;
default: abort();
}
}
gen_neon_movl_scratch_T0(0);
gen_neon_movl_scratch_T1(1);
if (op != 13) {
NEON_GET_REG(T0, rd, pass * 2);
NEON_GET_REG(T1, rd, pass * 2 + 1);
}
switch (op) {
case 5: case 8: case 10: /* VABAL, VMLAL, VMLSL */
switch (size) {
case 0: gen_op_neon_addl_u16(); break;
case 1: gen_op_neon_addl_u32(); break;
case 2: gen_op_neon_addl_u64(); break;
default: abort();
}
break;
case 9: case 11: /* VQDMLAL, VQDMLSL */
switch (size) {
case 1: gen_op_neon_addl_saturate_s32(); break;
case 2: gen_op_neon_addl_saturate_s64(); break;
default: abort();
}
/* Fall through. */
case 13: /* VQDMULL */
switch (size) {
case 1: gen_op_neon_addl_saturate_s32(); break;
case 2: gen_op_neon_addl_saturate_s64(); break;
default: abort();
}
break;
default:
abort();
}
NEON_SET_REG(T0, rd, pass * 2);
NEON_SET_REG(T1, rd, pass * 2 + 1);
} else if (op == 4 || op == 6) {
/* Narrowing operation. */
if (u) {
switch (size) {
case 0: gen_op_neon_narrow_high_u8(); break;
case 1: gen_op_neon_narrow_high_u16(); break;
case 2: gen_op_movl_T0_T1(); break;
default: abort();
}
} else {
switch (size) {
case 0: gen_op_neon_narrow_high_round_u8(); break;
case 1: gen_op_neon_narrow_high_round_u16(); break;
case 2: gen_op_neon_narrow_high_round_u32(); break;
default: abort();
}
}
NEON_SET_REG(T0, rd, pass);
} else {
/* Write back the result. */
NEON_SET_REG(T0, rd, pass * 2);
NEON_SET_REG(T1, rd, pass * 2 + 1);
}
}
} else {
/* Two registers and a scalar. */
switch (op) {
case 0: /* Integer VMLA scalar */
case 1: /* Float VMLA scalar */
case 4: /* Integer VMLS scalar */
case 5: /* Floating point VMLS scalar */
case 8: /* Integer VMUL scalar */
case 9: /* Floating point VMUL scalar */
case 12: /* VQDMULH scalar */
case 13: /* VQRDMULH scalar */
gen_neon_get_scalar(size, rm);
gen_op_movl_T2_T0();
for (pass = 0; pass < (u ? 4 : 2); pass++) {
if (pass != 0)
gen_op_movl_T0_T2();
NEON_GET_REG(T1, rn, pass);
if (op == 12) {
if (size == 1) {
gen_op_neon_qdmulh_s16();
} else {
gen_op_neon_qdmulh_s32();
}
} else if (op == 13) {
if (size == 1) {
gen_op_neon_qrdmulh_s16();
} else {
gen_op_neon_qrdmulh_s32();
}
} else if (op & 1) {
gen_op_neon_mul_f32();
} else {
switch (size) {
case 0: gen_op_neon_mul_u8(); break;
case 1: gen_op_neon_mul_u16(); break;
case 2: gen_op_mul_T0_T1(); break;
default: return 1;
}
}
if (op < 8) {
/* Accumulate. */
NEON_GET_REG(T1, rd, pass);
switch (op) {
case 0:
gen_neon_add(size);
break;
case 1:
gen_op_neon_add_f32();
break;
case 4:
switch (size) {
case 0: gen_op_neon_rsb_u8(); break;
case 1: gen_op_neon_rsb_u16(); break;
case 2: gen_op_rsbl_T0_T1(); break;
default: return 1;
}
break;
case 5:
gen_op_neon_rsb_f32();
break;
default:
abort();
}
}
NEON_SET_REG(T0, rd, pass);
}
break;
case 2: /* VMLAL sclar */
case 3: /* VQDMLAL scalar */
case 6: /* VMLSL scalar */
case 7: /* VQDMLSL scalar */
case 10: /* VMULL scalar */
case 11: /* VQDMULL scalar */
if (rd == rn) {
/* Save overlapping operands before they are
clobbered. */
NEON_GET_REG(T0, rn, 1);
gen_neon_movl_scratch_T0(2);
}
gen_neon_get_scalar(size, rm);
gen_op_movl_T2_T0();
for (pass = 0; pass < 2; pass++) {
if (pass != 0) {
gen_op_movl_T0_T2();
}
if (pass != 0 && rd == rn) {
gen_neon_movl_T1_scratch(2);
} else {
NEON_GET_REG(T1, rn, pass);
}
switch ((size << 1) | u) {
case 0: gen_op_neon_mull_s8(); break;
case 1: gen_op_neon_mull_u8(); break;
case 2: gen_op_neon_mull_s16(); break;
case 3: gen_op_neon_mull_u16(); break;
case 4: gen_op_imull_T0_T1(); break;
case 5: gen_op_mull_T0_T1(); break;
default: abort();
}
if (op == 6 || op == 7) {
switch (size) {
case 0: gen_op_neon_negl_u16(); break;
case 1: gen_op_neon_negl_u32(); break;
case 2: gen_op_neon_negl_u64(); break;
default: abort();
}
}
gen_neon_movl_scratch_T0(0);
gen_neon_movl_scratch_T1(1);
NEON_GET_REG(T0, rd, pass * 2);
NEON_GET_REG(T1, rd, pass * 2 + 1);
switch (op) {
case 2: case 6:
switch (size) {
case 0: gen_op_neon_addl_u16(); break;
case 1: gen_op_neon_addl_u32(); break;
case 2: gen_op_neon_addl_u64(); break;
default: abort();
}
break;
case 3: case 7:
switch (size) {
case 1:
gen_op_neon_addl_saturate_s32();
gen_op_neon_addl_saturate_s32();
break;
case 2:
gen_op_neon_addl_saturate_s64();
gen_op_neon_addl_saturate_s64();
break;
default: abort();
}
break;
case 10:
/* no-op */
break;
case 11:
switch (size) {
case 1: gen_op_neon_addl_saturate_s32(); break;
case 2: gen_op_neon_addl_saturate_s64(); break;
default: abort();
}
break;
default:
abort();
}
NEON_SET_REG(T0, rd, pass * 2);
NEON_SET_REG(T1, rd, pass * 2 + 1);
}
break;
default: /* 14 and 15 are RESERVED */
return 1;
}
}
} else { /* size == 3 */
if (!u) {
/* Extract. */
int reg;
imm = (insn >> 8) & 0xf;
reg = rn;
count = q ? 4 : 2;
n = imm >> 2;
NEON_GET_REG(T0, reg, n);
for (pass = 0; pass < count; pass++) {
n++;
if (n > count) {
reg = rm;
n -= count;
}
if (imm & 3) {
NEON_GET_REG(T1, reg, n);
gen_op_neon_extract((insn << 3) & 0x1f);
}
/* ??? This is broken if rd and rm overlap */
NEON_SET_REG(T0, rd, pass);
if (imm & 3) {
gen_op_movl_T0_T1();
} else {
NEON_GET_REG(T0, reg, n);
}
}
} else if ((insn & (1 << 11)) == 0) {
/* Two register misc. */
op = ((insn >> 12) & 0x30) | ((insn >> 7) & 0xf);
size = (insn >> 18) & 3;
switch (op) {
case 0: /* VREV64 */
if (size == 3)
return 1;
for (pass = 0; pass < (q ? 2 : 1); pass++) {
NEON_GET_REG(T0, rm, pass * 2);
NEON_GET_REG(T1, rm, pass * 2 + 1);
switch (size) {
case 0: gen_op_rev_T0(); break;
case 1: gen_op_revh_T0(); break;
case 2: /* no-op */ break;
default: abort();
}
NEON_SET_REG(T0, rd, pass * 2 + 1);
if (size == 2) {
NEON_SET_REG(T1, rd, pass * 2);
} else {
gen_op_movl_T0_T1();
switch (size) {
case 0: gen_op_rev_T0(); break;
case 1: gen_op_revh_T0(); break;
default: abort();
}
NEON_SET_REG(T0, rd, pass * 2);
}
}
break;
case 4: case 5: /* VPADDL */
case 12: case 13: /* VPADAL */
if (size < 2)
goto elementwise;
if (size == 3)
return 1;
for (pass = 0; pass < (q ? 2 : 1); pass++) {
NEON_GET_REG(T0, rm, pass * 2);
NEON_GET_REG(T1, rm, pass * 2 + 1);
if (op & 1)
gen_op_neon_paddl_u32();
else
gen_op_neon_paddl_s32();
if (op >= 12) {
/* Accumulate. */
gen_neon_movl_scratch_T0(0);
gen_neon_movl_scratch_T1(1);
NEON_GET_REG(T0, rd, pass * 2);
NEON_GET_REG(T1, rd, pass * 2 + 1);
gen_op_neon_addl_u64();
}
NEON_SET_REG(T0, rd, pass * 2);
NEON_SET_REG(T1, rd, pass * 2 + 1);
}
break;
case 33: /* VTRN */
if (size == 2) {
for (n = 0; n < (q ? 4 : 2); n += 2) {
NEON_GET_REG(T0, rm, n);
NEON_GET_REG(T1, rd, n + 1);
NEON_SET_REG(T1, rm, n);
NEON_SET_REG(T0, rd, n + 1);
}
} else {
goto elementwise;
}
break;
case 34: /* VUZP */
/* Reg Before After
Rd A3 A2 A1 A0 B2 B0 A2 A0
Rm B3 B2 B1 B0 B3 B1 A3 A1
*/
if (size == 3)
return 1;
gen_neon_unzip(rd, q, 0, size);
gen_neon_unzip(rm, q, 4, size);
if (q) {
static int unzip_order_q[8] =
{0, 2, 4, 6, 1, 3, 5, 7};
for (n = 0; n < 8; n++) {
int reg = (n < 4) ? rd : rm;
gen_neon_movl_T0_scratch(unzip_order_q[n]);
NEON_SET_REG(T0, reg, n % 4);
}
} else {
static int unzip_order[4] =
{0, 4, 1, 5};
for (n = 0; n < 4; n++) {
int reg = (n < 2) ? rd : rm;
gen_neon_movl_T0_scratch(unzip_order[n]);
NEON_SET_REG(T0, reg, n % 2);
}
}
break;
case 35: /* VZIP */
/* Reg Before After
Rd A3 A2 A1 A0 B1 A1 B0 A0
Rm B3 B2 B1 B0 B3 A3 B2 A2
*/
if (size == 3)
return 1;
count = (q ? 4 : 2);
for (n = 0; n < count; n++) {
NEON_GET_REG(T0, rd, n);
NEON_GET_REG(T1, rd, n);
switch (size) {
case 0: gen_op_neon_zip_u8(); break;
case 1: gen_op_neon_zip_u16(); break;
case 2: /* no-op */; break;
default: abort();
}
gen_neon_movl_scratch_T0(n * 2);
gen_neon_movl_scratch_T1(n * 2 + 1);
}
for (n = 0; n < count * 2; n++) {
int reg = (n < count) ? rd : rm;
gen_neon_movl_T0_scratch(n);
NEON_SET_REG(T0, reg, n % count);
}
break;
case 36: case 37: /* VMOVN, VQMOVUN, VQMOVN */
for (pass = 0; pass < 2; pass++) {
if (rd == rm + 1) {
n = 1 - pass;
} else {
n = pass;
}
NEON_GET_REG(T0, rm, n * 2);
NEON_GET_REG(T1, rm, n * 2 + 1);
if (op == 36 && q == 0) {
switch (size) {
case 0: gen_op_neon_narrow_u8(); break;
case 1: gen_op_neon_narrow_u16(); break;
case 2: /* no-op */ break;
default: return 1;
}
} else if (q) {
switch (size) {
case 0: gen_op_neon_narrow_sat_u8(); break;
case 1: gen_op_neon_narrow_sat_u16(); break;
case 2: gen_op_neon_narrow_sat_u32(); break;
default: return 1;
}
} else {
switch (size) {
case 0: gen_op_neon_narrow_sat_s8(); break;
case 1: gen_op_neon_narrow_sat_s16(); break;
case 2: gen_op_neon_narrow_sat_s32(); break;
default: return 1;
}
}
NEON_SET_REG(T0, rd, n);
}
break;
case 38: /* VSHLL */
if (q)
return 1;
if (rm == rd) {
NEON_GET_REG(T2, rm, 1);
}
for (pass = 0; pass < 2; pass++) {
if (pass == 1 && rm == rd) {
gen_op_movl_T0_T2();
} else {
NEON_GET_REG(T0, rm, pass);
}
switch (size) {
case 0: gen_op_neon_widen_high_u8(); break;
case 1: gen_op_neon_widen_high_u16(); break;
case 2:
gen_op_movl_T1_T0();
gen_op_movl_T0_im(0);
break;
default: return 1;
}
NEON_SET_REG(T0, rd, pass * 2);
NEON_SET_REG(T1, rd, pass * 2 + 1);
}
break;
default:
elementwise:
for (pass = 0; pass < (q ? 4 : 2); pass++) {
if (op == 30 || op == 31 || op >= 58) {
gen_op_vfp_getreg_F0s(neon_reg_offset(rm, pass));
} else {
NEON_GET_REG(T0, rm, pass);
}
switch (op) {
case 1: /* VREV32 */
switch (size) {
case 0: gen_op_rev_T0(); break;
case 1: gen_op_revh_T0(); break;
default: return 1;
}
break;
case 2: /* VREV16 */
if (size != 0)
return 1;
gen_op_rev16_T0();
break;
case 4: case 5: /* VPADDL */
case 12: case 13: /* VPADAL */
switch ((size << 1) | (op & 1)) {
case 0: gen_op_neon_paddl_s8(); break;
case 1: gen_op_neon_paddl_u8(); break;
case 2: gen_op_neon_paddl_s16(); break;
case 3: gen_op_neon_paddl_u16(); break;
default: abort();
}
if (op >= 12) {
/* Accumulate */
NEON_GET_REG(T1, rd, pass);
switch (size) {
case 0: gen_op_neon_add_u16(); break;
case 1: gen_op_addl_T0_T1(); break;
default: abort();
}
}
break;
case 8: /* CLS */
switch (size) {
case 0: gen_op_neon_cls_s8(); break;
case 1: gen_op_neon_cls_s16(); break;
case 2: gen_op_neon_cls_s32(); break;
default: return 1;
}
break;
case 9: /* CLZ */
switch (size) {
case 0: gen_op_neon_clz_u8(); break;
case 1: gen_op_neon_clz_u16(); break;
case 2: gen_op_clz_T0(); break;
default: return 1;
}
break;
case 10: /* CNT */
if (size != 0)
return 1;
gen_op_neon_cnt_u8();
break;
case 11: /* VNOT */
if (size != 0)
return 1;
gen_op_notl_T0();
break;
case 14: /* VQABS */
switch (size) {
case 0: gen_op_neon_qabs_s8(); break;
case 1: gen_op_neon_qabs_s16(); break;
case 2: gen_op_neon_qabs_s32(); break;
default: return 1;
}
break;
case 15: /* VQNEG */
switch (size) {
case 0: gen_op_neon_qneg_s8(); break;
case 1: gen_op_neon_qneg_s16(); break;
case 2: gen_op_neon_qneg_s32(); break;
default: return 1;
}
break;
case 16: case 19: /* VCGT #0, VCLE #0 */
gen_op_movl_T1_im(0);
switch(size) {
case 0: gen_op_neon_cgt_s8(); break;
case 1: gen_op_neon_cgt_s16(); break;
case 2: gen_op_neon_cgt_s32(); break;
default: return 1;
}
if (op == 19)
gen_op_notl_T0();
break;
case 17: case 20: /* VCGE #0, VCLT #0 */
gen_op_movl_T1_im(0);
switch(size) {
case 0: gen_op_neon_cge_s8(); break;
case 1: gen_op_neon_cge_s16(); break;
case 2: gen_op_neon_cge_s32(); break;
default: return 1;
}
if (op == 20)
gen_op_notl_T0();
break;
case 18: /* VCEQ #0 */
gen_op_movl_T1_im(0);
switch(size) {
case 0: gen_op_neon_ceq_u8(); break;
case 1: gen_op_neon_ceq_u16(); break;
case 2: gen_op_neon_ceq_u32(); break;
default: return 1;
}
break;
case 22: /* VABS */
switch(size) {
case 0: gen_op_neon_abs_s8(); break;
case 1: gen_op_neon_abs_s16(); break;
case 2: gen_op_neon_abs_s32(); break;
default: return 1;
}
break;
case 23: /* VNEG */
gen_op_movl_T1_im(0);
switch(size) {
case 0: gen_op_neon_rsb_u8(); break;
case 1: gen_op_neon_rsb_u16(); break;
case 2: gen_op_rsbl_T0_T1(); break;
default: return 1;
}
break;
case 24: case 27: /* Float VCGT #0, Float VCLE #0 */
gen_op_movl_T1_im(0);
gen_op_neon_cgt_f32();
if (op == 27)
gen_op_notl_T0();
break;
case 25: case 28: /* Float VCGE #0, Float VCLT #0 */
gen_op_movl_T1_im(0);
gen_op_neon_cge_f32();
if (op == 28)
gen_op_notl_T0();
break;
case 26: /* Float VCEQ #0 */
gen_op_movl_T1_im(0);
gen_op_neon_ceq_f32();
break;
case 30: /* Float VABS */
gen_op_vfp_abss();
break;
case 31: /* Float VNEG */
gen_op_vfp_negs();
break;
case 32: /* VSWP */
NEON_GET_REG(T1, rd, pass);
NEON_SET_REG(T1, rm, pass);
break;
case 33: /* VTRN */
NEON_GET_REG(T1, rd, pass);
switch (size) {
case 0: gen_op_neon_trn_u8(); break;
case 1: gen_op_neon_trn_u16(); break;
case 2: abort();
default: return 1;
}
NEON_SET_REG(T1, rm, pass);
break;
case 56: /* Integer VRECPE */
gen_op_neon_recpe_u32();
break;
case 57: /* Integer VRSQRTE */
gen_op_neon_rsqrte_u32();
break;
case 58: /* Float VRECPE */
gen_op_neon_recpe_f32();
break;
case 59: /* Float VRSQRTE */
gen_op_neon_rsqrte_f32();
break;
case 60: /* VCVT.F32.S32 */
gen_op_vfp_tosizs();
break;
case 61: /* VCVT.F32.U32 */
gen_op_vfp_touizs();
break;
case 62: /* VCVT.S32.F32 */
gen_op_vfp_sitos();
break;
case 63: /* VCVT.U32.F32 */
gen_op_vfp_uitos();
break;
default:
/* Reserved: 21, 29, 39-56 */
return 1;
}
if (op == 30 || op == 31 || op >= 58) {
gen_op_vfp_setreg_F0s(neon_reg_offset(rm, pass));
} else {
NEON_SET_REG(T0, rd, pass);
}
}
break;
}
} else if ((insn & (1 << 10)) == 0) {
/* VTBL, VTBX. */
n = (insn >> 5) & 0x18;
NEON_GET_REG(T1, rm, 0);
if (insn & (1 << 6)) {
NEON_GET_REG(T0, rd, 0);
} else {
gen_op_movl_T0_im(0);
}
gen_op_neon_tbl(rn, n);
gen_op_movl_T2_T0();
NEON_GET_REG(T1, rm, 1);
if (insn & (1 << 6)) {
NEON_GET_REG(T0, rd, 0);
} else {
gen_op_movl_T0_im(0);
}
gen_op_neon_tbl(rn, n);
NEON_SET_REG(T2, rd, 0);
NEON_SET_REG(T0, rd, 1);
} else if ((insn & 0x380) == 0) {
/* VDUP */
if (insn & (1 << 19)) {
NEON_SET_REG(T0, rm, 1);
} else {
NEON_SET_REG(T0, rm, 0);
}
if (insn & (1 << 16)) {
gen_op_neon_dup_u8(((insn >> 17) & 3) * 8);
} else if (insn & (1 << 17)) {
if ((insn >> 18) & 1)
gen_op_neon_dup_high16();
else
gen_op_neon_dup_low16();
}
for (pass = 0; pass < (q ? 4 : 2); pass++) {
NEON_SET_REG(T0, rd, pass);
}
} else {
return 1;
}
}
}
return 0;
}
static int disas_coproc_insn(CPUState * env, DisasContext *s, uint32_t insn)
{
int cpnum;
cpnum = (insn >> 8) & 0xf;
if (arm_feature(env, ARM_FEATURE_XSCALE)
&& ((env->cp15.c15_cpar ^ 0x3fff) & (1 << cpnum)))
return 1;
switch (cpnum) {
case 0:
case 1:
if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
return disas_iwmmxt_insn(env, s, insn);
} else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
return disas_dsp_insn(env, s, insn);
}
return 1;
case 10:
case 11:
return disas_vfp_insn (env, s, insn);
case 15:
return disas_cp15_insn (env, s, insn);
default:
/* Unknown coprocessor. See if the board has hooked it. */
return disas_cp_insn (env, s, insn);
}
}
static void disas_arm_insn(CPUState * env, DisasContext *s)
{
unsigned int cond, insn, val, op1, i, shift, rm, rs, rn, rd, sh;
insn = ldl_code(s->pc);
s->pc += 4;
/* M variants do not implement ARM mode. */
if (IS_M(env))
goto illegal_op;
cond = insn >> 28;
if (cond == 0xf){
/* Unconditional instructions. */
if (((insn >> 25) & 7) == 1) {
/* NEON Data processing. */
if (!arm_feature(env, ARM_FEATURE_NEON))
goto illegal_op;
if (disas_neon_data_insn(env, s, insn))
goto illegal_op;
return;
}
if ((insn & 0x0f100000) == 0x04000000) {
/* NEON load/store. */
if (!arm_feature(env, ARM_FEATURE_NEON))
goto illegal_op;
if (disas_neon_ls_insn(env, s, insn))
goto illegal_op;
return;
}
if ((insn & 0x0d70f000) == 0x0550f000)
return; /* PLD */
else if ((insn & 0x0ffffdff) == 0x01010000) {
ARCH(6);
/* setend */
if (insn & (1 << 9)) {
/* BE8 mode not implemented. */
goto illegal_op;
}
return;
} else if ((insn & 0x0fffff00) == 0x057ff000) {
switch ((insn >> 4) & 0xf) {
case 1: /* clrex */
ARCH(6K);
gen_op_clrex();
return;
case 4: /* dsb */
case 5: /* dmb */
case 6: /* isb */
ARCH(7);
/* We don't emulate caches so these are a no-op. */
return;
default:
goto illegal_op;
}
} else if ((insn & 0x0e5fffe0) == 0x084d0500) {
/* srs */
uint32_t offset;
if (IS_USER(s))
goto illegal_op;
ARCH(6);
op1 = (insn & 0x1f);
if (op1 == (env->uncached_cpsr & CPSR_M)) {
gen_movl_T1_reg(s, 13);
} else {
gen_op_movl_T1_r13_banked(op1);
}
i = (insn >> 23) & 3;
switch (i) {
case 0: offset = -4; break; /* DA */
case 1: offset = -8; break; /* DB */
case 2: offset = 0; break; /* IA */
case 3: offset = 4; break; /* IB */
default: abort();
}
if (offset)
gen_op_addl_T1_im(offset);
gen_movl_T0_reg(s, 14);
gen_ldst(stl, s);
gen_op_movl_T0_cpsr();
gen_op_addl_T1_im(4);
gen_ldst(stl, s);
if (insn & (1 << 21)) {
/* Base writeback. */
switch (i) {
case 0: offset = -8; break;
case 1: offset = -4; break;
case 2: offset = 4; break;
case 3: offset = 0; break;
default: abort();
}
if (offset)
gen_op_addl_T1_im(offset);
if (op1 == (env->uncached_cpsr & CPSR_M)) {
gen_movl_reg_T1(s, 13);
} else {
gen_op_movl_r13_T1_banked(op1);
}
}
} else if ((insn & 0x0e5fffe0) == 0x081d0a00) {
/* rfe */
uint32_t offset;
if (IS_USER(s))
goto illegal_op;
ARCH(6);
rn = (insn >> 16) & 0xf;
gen_movl_T1_reg(s, rn);
i = (insn >> 23) & 3;
switch (i) {
case 0: offset = 0; break; /* DA */
case 1: offset = -4; break; /* DB */
case 2: offset = 4; break; /* IA */
case 3: offset = 8; break; /* IB */
default: abort();
}
if (offset)
gen_op_addl_T1_im(offset);
/* Load CPSR into T2 and PC into T0. */
gen_ldst(ldl, s);
gen_op_movl_T2_T0();
gen_op_addl_T1_im(-4);
gen_ldst(ldl, s);
if (insn & (1 << 21)) {
/* Base writeback. */
switch (i) {
case 0: offset = -4; break;
case 1: offset = 0; break;
case 2: offset = 8; break;
case 3: offset = 4; break;
default: abort();
}
if (offset)
gen_op_addl_T1_im(offset);
gen_movl_reg_T1(s, rn);
}
gen_rfe(s);
} else if ((insn & 0x0e000000) == 0x0a000000) {
/* branch link and change to thumb (blx <offset>) */
int32_t offset;
val = (uint32_t)s->pc;
gen_op_movl_T0_im(val);
gen_movl_reg_T0(s, 14);
/* Sign-extend the 24-bit offset */
offset = (((int32_t)insn) << 8) >> 8;
/* offset * 4 + bit24 * 2 + (thumb bit) */
val += (offset << 2) | ((insn >> 23) & 2) | 1;
/* pipeline offset */
val += 4;
gen_op_movl_T0_im(val);
gen_bx(s);
return;
} else if ((insn & 0x0e000f00) == 0x0c000100) {
if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
/* iWMMXt register transfer. */
if (env->cp15.c15_cpar & (1 << 1))
if (!disas_iwmmxt_insn(env, s, insn))
return;
}
} else if ((insn & 0x0fe00000) == 0x0c400000) {
/* Coprocessor double register transfer. */
} else if ((insn & 0x0f000010) == 0x0e000010) {
/* Additional coprocessor register transfer. */
} else if ((insn & 0x0ff10010) == 0x01000000) {
uint32_t mask;
uint32_t val;
/* cps (privileged) */
if (IS_USER(s))
return;
mask = val = 0;
if (insn & (1 << 19)) {
if (insn & (1 << 8))
mask |= CPSR_A;
if (insn & (1 << 7))
mask |= CPSR_I;
if (insn & (1 << 6))
mask |= CPSR_F;
if (insn & (1 << 18))
val |= mask;
}
if (insn & (1 << 14)) {
mask |= CPSR_M;
val |= (insn & 0x1f);
}
if (mask) {
gen_op_movl_T0_im(val);
gen_set_psr_T0(s, mask, 0);
}
return;
}
goto illegal_op;
}
if (cond != 0xe) {
/* if not always execute, we generate a conditional jump to
next instruction */
s->condlabel = gen_new_label();
gen_test_cc[cond ^ 1](s->condlabel);
s->condjmp = 1;
}
if ((insn & 0x0f900000) == 0x03000000) {
if ((insn & (1 << 21)) == 0) {
ARCH(6T2);
rd = (insn >> 12) & 0xf;
val = ((insn >> 4) & 0xf000) | (insn & 0xfff);
if ((insn & (1 << 22)) == 0) {
/* MOVW */
gen_op_movl_T0_im(val);
} else {
/* MOVT */
gen_movl_T0_reg(s, rd);
gen_op_movl_T1_im(0xffff);
gen_op_andl_T0_T1();
gen_op_movl_T1_im(val << 16);
gen_op_orl_T0_T1();
}
gen_movl_reg_T0(s, rd);
} else {
if (((insn >> 12) & 0xf) != 0xf)
goto illegal_op;
if (((insn >> 16) & 0xf) == 0) {
gen_nop_hint(s, insn & 0xff);
} else {
/* CPSR = immediate */
val = insn & 0xff;
shift = ((insn >> 8) & 0xf) * 2;
if (shift)
val = (val >> shift) | (val << (32 - shift));
gen_op_movl_T0_im(val);
i = ((insn & (1 << 22)) != 0);
if (gen_set_psr_T0(s, msr_mask(env, s, (insn >> 16) & 0xf, i), i))
goto illegal_op;
}
}
} else if ((insn & 0x0f900000) == 0x01000000
&& (insn & 0x00000090) != 0x00000090) {
/* miscellaneous instructions */
op1 = (insn >> 21) & 3;
sh = (insn >> 4) & 0xf;
rm = insn & 0xf;
switch (sh) {
case 0x0: /* move program status register */
if (op1 & 1) {
/* PSR = reg */
gen_movl_T0_reg(s, rm);
i = ((op1 & 2) != 0);
if (gen_set_psr_T0(s, msr_mask(env, s, (insn >> 16) & 0xf, i), i))
goto illegal_op;
} else {
/* reg = PSR */
rd = (insn >> 12) & 0xf;
if (op1 & 2) {
if (IS_USER(s))
goto illegal_op;
gen_op_movl_T0_spsr();
} else {
gen_op_movl_T0_cpsr();
}
gen_movl_reg_T0(s, rd);
}
break;
case 0x1:
if (op1 == 1) {
/* branch/exchange thumb (bx). */
gen_movl_T0_reg(s, rm);
gen_bx(s);
} else if (op1 == 3) {
/* clz */
rd = (insn >> 12) & 0xf;
gen_movl_T0_reg(s, rm);
gen_op_clz_T0();
gen_movl_reg_T0(s, rd);
} else {
goto illegal_op;
}
break;
case 0x2:
if (op1 == 1) {
ARCH(5J); /* bxj */
/* Trivial implementation equivalent to bx. */
gen_movl_T0_reg(s, rm);
gen_bx(s);
} else {
goto illegal_op;
}
break;
case 0x3:
if (op1 != 1)
goto illegal_op;
/* branch link/exchange thumb (blx) */
val = (uint32_t)s->pc;
gen_op_movl_T1_im(val);
gen_movl_T0_reg(s, rm);
gen_movl_reg_T1(s, 14);
gen_bx(s);
break;
case 0x5: /* saturating add/subtract */
rd = (insn >> 12) & 0xf;
rn = (insn >> 16) & 0xf;
gen_movl_T0_reg(s, rm);
gen_movl_T1_reg(s, rn);
if (op1 & 2)
gen_op_double_T1_saturate();
if (op1 & 1)
gen_op_subl_T0_T1_saturate();
else
gen_op_addl_T0_T1_saturate();
gen_movl_reg_T0(s, rd);
break;
case 7: /* bkpt */
gen_set_condexec(s);
gen_op_movl_T0_im((long)s->pc - 4);
gen_op_movl_reg_TN[0][15]();
gen_op_bkpt();
s->is_jmp = DISAS_JUMP;
break;
case 0x8: /* signed multiply */
case 0xa:
case 0xc:
case 0xe:
rs = (insn >> 8) & 0xf;
rn = (insn >> 12) & 0xf;
rd = (insn >> 16) & 0xf;
if (op1 == 1) {
/* (32 * 16) >> 16 */
gen_movl_T0_reg(s, rm);
gen_movl_T1_reg(s, rs);
if (sh & 4)
gen_op_sarl_T1_im(16);
else
gen_op_sxth_T1();
gen_op_imulw_T0_T1();
if ((sh & 2) == 0) {
gen_movl_T1_reg(s, rn);
gen_op_addl_T0_T1_setq();
}
gen_movl_reg_T0(s, rd);
} else {
/* 16 * 16 */
gen_movl_T0_reg(s, rm);
gen_movl_T1_reg(s, rs);
gen_mulxy(sh & 2, sh & 4);
if (op1 == 2) {
gen_op_signbit_T1_T0();
gen_op_addq_T0_T1(rn, rd);
gen_movl_reg_T0(s, rn);
gen_movl_reg_T1(s, rd);
} else {
if (op1 == 0) {
gen_movl_T1_reg(s, rn);
gen_op_addl_T0_T1_setq();
}
gen_movl_reg_T0(s, rd);
}
}
break;
default:
goto illegal_op;
}
} else if (((insn & 0x0e000000) == 0 &&
(insn & 0x00000090) != 0x90) ||
((insn & 0x0e000000) == (1 << 25))) {
int set_cc, logic_cc, shiftop;
op1 = (insn >> 21) & 0xf;
set_cc = (insn >> 20) & 1;
logic_cc = table_logic_cc[op1] & set_cc;
/* data processing instruction */
if (insn & (1 << 25)) {
/* immediate operand */
val = insn & 0xff;
shift = ((insn >> 8) & 0xf) * 2;
if (shift)
val = (val >> shift) | (val << (32 - shift));
gen_op_movl_T1_im(val);
if (logic_cc && shift)
gen_op_mov_CF_T1();
} else {
/* register */
rm = (insn) & 0xf;
gen_movl_T1_reg(s, rm);
shiftop = (insn >> 5) & 3;
if (!(insn & (1 << 4))) {
shift = (insn >> 7) & 0x1f;
if (shift != 0) {
if (logic_cc) {
gen_shift_T1_im_cc[shiftop](shift);
} else {
gen_shift_T1_im[shiftop](shift);
}
} else if (shiftop != 0) {
if (logic_cc) {
gen_shift_T1_0_cc[shiftop]();
} else {
gen_shift_T1_0[shiftop]();
}
}
} else {
rs = (insn >> 8) & 0xf;
gen_movl_T0_reg(s, rs);
if (logic_cc) {
gen_shift_T1_T0_cc[shiftop]();
} else {
gen_shift_T1_T0[shiftop]();
}
}
}
if (op1 != 0x0f && op1 != 0x0d) {
rn = (insn >> 16) & 0xf;
gen_movl_T0_reg(s, rn);
}
rd = (insn >> 12) & 0xf;
switch(op1) {
case 0x00:
gen_op_andl_T0_T1();
gen_movl_reg_T0(s, rd);
if (logic_cc)
gen_op_logic_T0_cc();
break;
case 0x01:
gen_op_xorl_T0_T1();
gen_movl_reg_T0(s, rd);
if (logic_cc)
gen_op_logic_T0_cc();
break;
case 0x02:
if (set_cc && rd == 15) {
/* SUBS r15, ... is used for exception return. */
if (IS_USER(s))
goto illegal_op;
gen_op_subl_T0_T1_cc();
gen_exception_return(s);
} else {
if (set_cc)
gen_op_subl_T0_T1_cc();
else
gen_op_subl_T0_T1();
gen_movl_reg_T0(s, rd);
}
break;
case 0x03:
if (set_cc)
gen_op_rsbl_T0_T1_cc();
else
gen_op_rsbl_T0_T1();
gen_movl_reg_T0(s, rd);
break;
case 0x04:
if (set_cc)
gen_op_addl_T0_T1_cc();
else
gen_op_addl_T0_T1();
gen_movl_reg_T0(s, rd);
break;
case 0x05:
if (set_cc)
gen_op_adcl_T0_T1_cc();
else
gen_op_adcl_T0_T1();
gen_movl_reg_T0(s, rd);
break;
case 0x06:
if (set_cc)
gen_op_sbcl_T0_T1_cc();
else
gen_op_sbcl_T0_T1();
gen_movl_reg_T0(s, rd);
break;
case 0x07:
if (set_cc)
gen_op_rscl_T0_T1_cc();
else
gen_op_rscl_T0_T1();
gen_movl_reg_T0(s, rd);
break;
case 0x08:
if (set_cc) {
gen_op_andl_T0_T1();
gen_op_logic_T0_cc();
}
break;
case 0x09:
if (set_cc) {
gen_op_xorl_T0_T1();
gen_op_logic_T0_cc();
}
break;
case 0x0a:
if (set_cc) {
gen_op_subl_T0_T1_cc();
}
break;
case 0x0b:
if (set_cc) {
gen_op_addl_T0_T1_cc();
}
break;
case 0x0c:
gen_op_orl_T0_T1();
gen_movl_reg_T0(s, rd);
if (logic_cc)
gen_op_logic_T0_cc();
break;
case 0x0d:
if (logic_cc && rd == 15) {
/* MOVS r15, ... is used for exception return. */
if (IS_USER(s))
goto illegal_op;
gen_op_movl_T0_T1();
gen_exception_return(s);
} else {
gen_movl_reg_T1(s, rd);
if (logic_cc)
gen_op_logic_T1_cc();
}
break;
case 0x0e:
gen_op_bicl_T0_T1();
gen_movl_reg_T0(s, rd);
if (logic_cc)
gen_op_logic_T0_cc();
break;
default:
case 0x0f:
gen_op_notl_T1();
gen_movl_reg_T1(s, rd);
if (logic_cc)
gen_op_logic_T1_cc();
break;
}
} else {
/* other instructions */
op1 = (insn >> 24) & 0xf;
switch(op1) {
case 0x0:
case 0x1:
/* multiplies, extra load/stores */
sh = (insn >> 5) & 3;
if (sh == 0) {
if (op1 == 0x0) {
rd = (insn >> 16) & 0xf;
rn = (insn >> 12) & 0xf;
rs = (insn >> 8) & 0xf;
rm = (insn) & 0xf;
op1 = (insn >> 20) & 0xf;
switch (op1) {
case 0: case 1: case 2: case 3: case 6:
/* 32 bit mul */
gen_movl_T0_reg(s, rs);
gen_movl_T1_reg(s, rm);
gen_op_mul_T0_T1();
if (insn & (1 << 22)) {
/* Subtract (mls) */
ARCH(6T2);
gen_movl_T1_reg(s, rn);
gen_op_rsbl_T0_T1();
} else if (insn & (1 << 21)) {
/* Add */
gen_movl_T1_reg(s, rn);
gen_op_addl_T0_T1();
}
if (insn & (1 << 20))
gen_op_logic_T0_cc();
gen_movl_reg_T0(s, rd);
break;
default:
/* 64 bit mul */
gen_movl_T0_reg(s, rs);
gen_movl_T1_reg(s, rm);
if (insn & (1 << 22))
gen_op_imull_T0_T1();
else
gen_op_mull_T0_T1();
if (insn & (1 << 21)) /* mult accumulate */
gen_op_addq_T0_T1(rn, rd);
if (!(insn & (1 << 23))) { /* double accumulate */
ARCH(6);
gen_op_addq_lo_T0_T1(rn);
gen_op_addq_lo_T0_T1(rd);
}
if (insn & (1 << 20))
gen_op_logicq_cc();
gen_movl_reg_T0(s, rn);
gen_movl_reg_T1(s, rd);
break;
}
} else {
rn = (insn >> 16) & 0xf;
rd = (insn >> 12) & 0xf;
if (insn & (1 << 23)) {
/* load/store exclusive */
gen_movl_T1_reg(s, rn);
if (insn & (1 << 20)) {
gen_ldst(ldlex, s);
} else {
rm = insn & 0xf;
gen_movl_T0_reg(s, rm);
gen_ldst(stlex, s);
}
gen_movl_reg_T0(s, rd);
} else {
/* SWP instruction */
rm = (insn) & 0xf;
gen_movl_T0_reg(s, rm);
gen_movl_T1_reg(s, rn);
if (insn & (1 << 22)) {
gen_ldst(swpb, s);
} else {
gen_ldst(swpl, s);
}
gen_movl_reg_T0(s, rd);
}
}
} else {
int address_offset;
int load;
/* Misc load/store */
rn = (insn >> 16) & 0xf;
rd = (insn >> 12) & 0xf;
gen_movl_T1_reg(s, rn);
if (insn & (1 << 24))
gen_add_datah_offset(s, insn, 0);
address_offset = 0;
if (insn & (1 << 20)) {
/* load */
switch(sh) {
case 1:
gen_ldst(lduw, s);
break;
case 2:
gen_ldst(ldsb, s);
break;
default:
case 3:
gen_ldst(ldsw, s);
break;
}
load = 1;
} else if (sh & 2) {
/* doubleword */
if (sh & 1) {
/* store */
gen_movl_T0_reg(s, rd);
gen_ldst(stl, s);
gen_op_addl_T1_im(4);
gen_movl_T0_reg(s, rd + 1);
gen_ldst(stl, s);
load = 0;
} else {
/* load */
gen_ldst(ldl, s);
gen_movl_reg_T0(s, rd);
gen_op_addl_T1_im(4);
gen_ldst(ldl, s);
rd++;
load = 1;
}
address_offset = -4;
} else {
/* store */
gen_movl_T0_reg(s, rd);
gen_ldst(stw, s);
load = 0;
}
/* Perform base writeback before the loaded value to
ensure correct behavior with overlapping index registers.
ldrd with base writeback is is undefined if the
destination and index registers overlap. */
if (!(insn & (1 << 24))) {
gen_add_datah_offset(s, insn, address_offset);
gen_movl_reg_T1(s, rn);
} else if (insn & (1 << 21)) {
if (address_offset)
gen_op_addl_T1_im(address_offset);
gen_movl_reg_T1(s, rn);
}
if (load) {
/* Complete the load. */
gen_movl_reg_T0(s, rd);
}
}
break;
case 0x4:
case 0x5:
goto do_ldst;
case 0x6:
case 0x7:
if (insn & (1 << 4)) {
ARCH(6);
/* Armv6 Media instructions. */
rm = insn & 0xf;
rn = (insn >> 16) & 0xf;
rd = (insn >> 12) & 0xf;
rs = (insn >> 8) & 0xf;
switch ((insn >> 23) & 3) {
case 0: /* Parallel add/subtract. */
op1 = (insn >> 20) & 7;
gen_movl_T0_reg(s, rn);
gen_movl_T1_reg(s, rm);
sh = (insn >> 5) & 7;
if ((op1 & 3) == 0 || sh == 5 || sh == 6)
goto illegal_op;
gen_arm_parallel_addsub[op1][sh]();
gen_movl_reg_T0(s, rd);
break;
case 1:
if ((insn & 0x00700020) == 0) {
/* Hafword pack. */
gen_movl_T0_reg(s, rn);
gen_movl_T1_reg(s, rm);
shift = (insn >> 7) & 0x1f;
if (shift)
gen_op_shll_T1_im(shift);
if (insn & (1 << 6))
gen_op_pkhtb_T0_T1();
else
gen_op_pkhbt_T0_T1();
gen_movl_reg_T0(s, rd);
} else if ((insn & 0x00200020) == 0x00200000) {
/* [us]sat */
gen_movl_T1_reg(s, rm);
shift = (insn >> 7) & 0x1f;
if (insn & (1 << 6)) {
if (shift == 0)
shift = 31;
gen_op_sarl_T1_im(shift);
} else {
gen_op_shll_T1_im(shift);
}
sh = (insn >> 16) & 0x1f;
if (sh != 0) {
if (insn & (1 << 22))
gen_op_usat_T1(sh);
else
gen_op_ssat_T1(sh);
}
gen_movl_T1_reg(s, rd);
} else if ((insn & 0x00300fe0) == 0x00200f20) {
/* [us]sat16 */
gen_movl_T1_reg(s, rm);
sh = (insn >> 16) & 0x1f;
if (sh != 0) {
if (insn & (1 << 22))
gen_op_usat16_T1(sh);
else
gen_op_ssat16_T1(sh);
}
gen_movl_T1_reg(s, rd);
} else if ((insn & 0x00700fe0) == 0x00000fa0) {
/* Select bytes. */
gen_movl_T0_reg(s, rn);
gen_movl_T1_reg(s, rm);
gen_op_sel_T0_T1();
gen_movl_reg_T0(s, rd);
} else if ((insn & 0x000003e0) == 0x00000060) {
gen_movl_T1_reg(s, rm);
shift = (insn >> 10) & 3;
/* ??? In many cases it's not neccessary to do a
rotate, a shift is sufficient. */
if (shift != 0)
gen_op_rorl_T1_im(shift * 8);
op1 = (insn >> 20) & 7;
switch (op1) {
case 0: gen_op_sxtb16_T1(); break;
case 2: gen_op_sxtb_T1(); break;
case 3: gen_op_sxth_T1(); break;
case 4: gen_op_uxtb16_T1(); break;
case 6: gen_op_uxtb_T1(); break;
case 7: gen_op_uxth_T1(); break;
default: goto illegal_op;
}
if (rn != 15) {
gen_movl_T2_reg(s, rn);
if ((op1 & 3) == 0) {
gen_op_add16_T1_T2();
} else {
gen_op_addl_T1_T2();
}
}
gen_movl_reg_T1(s, rd);
} else if ((insn & 0x003f0f60) == 0x003f0f20) {
/* rev */
gen_movl_T0_reg(s, rm);
if (insn & (1 << 22)) {
if (insn & (1 << 7)) {
gen_op_revsh_T0();
} else {
ARCH(6T2);
gen_op_rbit_T0();
}
} else {
if (insn & (1 << 7))
gen_op_rev16_T0();
else
gen_op_rev_T0();
}
gen_movl_reg_T0(s, rd);
} else {
goto illegal_op;
}
break;
case 2: /* Multiplies (Type 3). */
gen_movl_T0_reg(s, rm);
gen_movl_T1_reg(s, rs);
if (insn & (1 << 20)) {
/* Signed multiply most significant [accumulate]. */
gen_op_imull_T0_T1();
if (insn & (1 << 5))
gen_op_roundqd_T0_T1();
else
gen_op_movl_T0_T1();
if (rn != 15) {
gen_movl_T1_reg(s, rn);
if (insn & (1 << 6)) {
gen_op_addl_T0_T1();
} else {
gen_op_rsbl_T0_T1();
}
}
gen_movl_reg_T0(s, rd);
} else {
if (insn & (1 << 5))
gen_op_swap_half_T1();
gen_op_mul_dual_T0_T1();
if (insn & (1 << 22)) {
if (insn & (1 << 6)) {
/* smlald */
gen_op_addq_T0_T1_dual(rn, rd);
} else {
/* smlsld */
gen_op_subq_T0_T1_dual(rn, rd);
}
} else {
/* This addition cannot overflow. */
if (insn & (1 << 6)) {
/* sm[ul]sd */
gen_op_subl_T0_T1();
} else {
/* sm[ul]ad */
gen_op_addl_T0_T1();
}
if (rn != 15)
{
gen_movl_T1_reg(s, rn);
gen_op_addl_T0_T1_setq();
}
gen_movl_reg_T0(s, rd);
}
}
break;
case 3:
op1 = ((insn >> 17) & 0x38) | ((insn >> 5) & 7);
switch (op1) {
case 0: /* Unsigned sum of absolute differences. */
goto illegal_op;
gen_movl_T0_reg(s, rm);
gen_movl_T1_reg(s, rs);
gen_op_usad8_T0_T1();
if (rn != 15) {
gen_movl_T1_reg(s, rn);
gen_op_addl_T0_T1();
}
gen_movl_reg_T0(s, rd);
break;
case 0x20: case 0x24: case 0x28: case 0x2c:
/* Bitfield insert/clear. */
ARCH(6T2);
shift = (insn >> 7) & 0x1f;
i = (insn >> 16) & 0x1f;
i = i + 1 - shift;
if (rm == 15) {
gen_op_movl_T1_im(0);
} else {
gen_movl_T1_reg(s, rm);
}
if (i != 32) {
gen_movl_T0_reg(s, rd);
gen_op_bfi_T1_T0(shift, ((1u << i) - 1) << shift);
}
gen_movl_reg_T1(s, rd);
break;
case 0x12: case 0x16: case 0x1a: case 0x1e: /* sbfx */
case 0x32: case 0x36: case 0x3a: case 0x3e: /* ubfx */
gen_movl_T1_reg(s, rm);
shift = (insn >> 7) & 0x1f;
i = ((insn >> 16) & 0x1f) + 1;
if (shift + i > 32)
goto illegal_op;
if (i < 32) {
if (op1 & 0x20) {
gen_op_ubfx_T1(shift, (1u << i) - 1);
} else {
gen_op_sbfx_T1(shift, i);
}
}
gen_movl_reg_T1(s, rd);
break;
default:
goto illegal_op;
}
break;
}
break;
}
do_ldst:
/* Check for undefined extension instructions
* per the ARM Bible IE:
* xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
*/
sh = (0xf << 20) | (0xf << 4);
if (op1 == 0x7 && ((insn & sh) == sh))
{
goto illegal_op;
}
/* load/store byte/word */
rn = (insn >> 16) & 0xf;
rd = (insn >> 12) & 0xf;
gen_movl_T1_reg(s, rn);
i = (IS_USER(s) || (insn & 0x01200000) == 0x00200000);
if (insn & (1 << 24))
gen_add_data_offset(s, insn);
if (insn & (1 << 20)) {
/* load */
s->is_mem = 1;
#if defined(CONFIG_USER_ONLY)
if (insn & (1 << 22))
gen_op_ldub_raw();
else
gen_op_ldl_raw();
#else
if (insn & (1 << 22)) {
if (i)
gen_op_ldub_user();
else
gen_op_ldub_kernel();
} else {
if (i)
gen_op_ldl_user();
else
gen_op_ldl_kernel();
}
#endif
} else {
/* store */
gen_movl_T0_reg(s, rd);
#if defined(CONFIG_USER_ONLY)
if (insn & (1 << 22))
gen_op_stb_raw();
else
gen_op_stl_raw();
#else
if (insn & (1 << 22)) {
if (i)
gen_op_stb_user();
else
gen_op_stb_kernel();
} else {
if (i)
gen_op_stl_user();
else
gen_op_stl_kernel();
}
#endif
}
if (!(insn & (1 << 24))) {
gen_add_data_offset(s, insn);
gen_movl_reg_T1(s, rn);
} else if (insn & (1 << 21))
gen_movl_reg_T1(s, rn); {
}
if (insn & (1 << 20)) {
/* Complete the load. */
if (rd == 15)
gen_bx(s);
else
gen_movl_reg_T0(s, rd);
}
break;
case 0x08:
case 0x09:
{
int j, n, user, loaded_base;
/* load/store multiple words */
/* XXX: store correct base if write back */
user = 0;
if (insn & (1 << 22)) {
if (IS_USER(s))
goto illegal_op; /* only usable in supervisor mode */
if ((insn & (1 << 15)) == 0)
user = 1;
}
rn = (insn >> 16) & 0xf;
gen_movl_T1_reg(s, rn);
/* compute total size */
loaded_base = 0;
n = 0;
for(i=0;i<16;i++) {
if (insn & (1 << i))
n++;
}
/* XXX: test invalid n == 0 case ? */
if (insn & (1 << 23)) {
if (insn & (1 << 24)) {
/* pre increment */
gen_op_addl_T1_im(4);
} else {
/* post increment */
}
} else {
if (insn & (1 << 24)) {
/* pre decrement */
gen_op_addl_T1_im(-(n * 4));
} else {
/* post decrement */
if (n != 1)
gen_op_addl_T1_im(-((n - 1) * 4));
}
}
j = 0;
for(i=0;i<16;i++) {
if (insn & (1 << i)) {
if (insn & (1 << 20)) {
/* load */
gen_ldst(ldl, s);
if (i == 15) {
gen_bx(s);
} else if (user) {
gen_op_movl_user_T0(i);
} else if (i == rn) {
gen_op_movl_T2_T0();
loaded_base = 1;
} else {
gen_movl_reg_T0(s, i);
}
} else {
/* store */
if (i == 15) {
/* special case: r15 = PC + 8 */
val = (long)s->pc + 4;
gen_op_movl_TN_im[0](val);
} else if (user) {
gen_op_movl_T0_user(i);
} else {
gen_movl_T0_reg(s, i);
}
gen_ldst(stl, s);
}
j++;
/* no need to add after the last transfer */
if (j != n)
gen_op_addl_T1_im(4);
}
}
if (insn & (1 << 21)) {
/* write back */
if (insn & (1 << 23)) {
if (insn & (1 << 24)) {
/* pre increment */
} else {
/* post increment */
gen_op_addl_T1_im(4);
}
} else {
if (insn & (1 << 24)) {
/* pre decrement */
if (n != 1)
gen_op_addl_T1_im(-((n - 1) * 4));
} else {
/* post decrement */
gen_op_addl_T1_im(-(n * 4));
}
}
gen_movl_reg_T1(s, rn);
}
if (loaded_base) {
gen_op_movl_T0_T2();
gen_movl_reg_T0(s, rn);
}
if ((insn & (1 << 22)) && !user) {
/* Restore CPSR from SPSR. */
gen_op_movl_T0_spsr();
gen_op_movl_cpsr_T0(0xffffffff);
s->is_jmp = DISAS_UPDATE;
}
}
break;
case 0xa:
case 0xb:
{
int32_t offset;
/* branch (and link) */
val = (int32_t)s->pc;
if (insn & (1 << 24)) {
gen_op_movl_T0_im(val);
gen_op_movl_reg_TN[0][14]();
}
offset = (((int32_t)insn << 8) >> 8);
val += (offset << 2) + 4;
gen_jmp(s, val);
}
break;
case 0xc:
case 0xd:
case 0xe:
/* Coprocessor. */
if (disas_coproc_insn(env, s, insn))
goto illegal_op;
break;
case 0xf:
/* swi */
gen_op_movl_T0_im((long)s->pc);
gen_op_movl_reg_TN[0][15]();
s->is_jmp = DISAS_SWI;
break;
default:
illegal_op:
gen_set_condexec(s);
gen_op_movl_T0_im((long)s->pc - 4);
gen_op_movl_reg_TN[0][15]();
gen_op_undef_insn();
s->is_jmp = DISAS_JUMP;
break;
}
}
}
/* Return true if this is a Thumb-2 logical op. */
static int
thumb2_logic_op(int op)
{
return (op < 8);
}
/* Generate code for a Thumb-2 data processing operation. If CONDS is nonzero
then set condition code flags based on the result of the operation.
If SHIFTER_OUT is nonzero then set the carry flag for logical operations
to the high bit of T1.
Returns zero if the opcode is valid. */
static int
gen_thumb2_data_op(DisasContext *s, int op, int conds, uint32_t shifter_out)
{
int logic_cc;
logic_cc = 0;
switch (op) {
case 0: /* and */
gen_op_andl_T0_T1();
logic_cc = conds;
break;
case 1: /* bic */
gen_op_bicl_T0_T1();
logic_cc = conds;
break;
case 2: /* orr */
gen_op_orl_T0_T1();
logic_cc = conds;
break;
case 3: /* orn */
gen_op_notl_T1();
gen_op_orl_T0_T1();
logic_cc = conds;
break;
case 4: /* eor */
gen_op_xorl_T0_T1();
logic_cc = conds;
break;
case 8: /* add */
if (conds)
gen_op_addl_T0_T1_cc();
else
gen_op_addl_T0_T1();
break;
case 10: /* adc */
if (conds)
gen_op_adcl_T0_T1_cc();
else
gen_op_adcl_T0_T1();
break;
case 11: /* sbc */
if (conds)
gen_op_sbcl_T0_T1_cc();
else
gen_op_sbcl_T0_T1();
break;
case 13: /* sub */
if (conds)
gen_op_subl_T0_T1_cc();
else
gen_op_subl_T0_T1();
break;
case 14: /* rsb */
if (conds)
gen_op_rsbl_T0_T1_cc();
else
gen_op_rsbl_T0_T1();
break;
default: /* 5, 6, 7, 9, 12, 15. */
return 1;
}
if (logic_cc) {
gen_op_logic_T0_cc();
if (shifter_out)
gen_op_mov_CF_T1();
}
return 0;
}
/* Translate a 32-bit thumb instruction. Returns nonzero if the instruction
is not legal. */
static int disas_thumb2_insn(CPUState *env, DisasContext *s, uint16_t insn_hw1)
{
uint32_t insn, imm, shift, offset, addr;
uint32_t rd, rn, rm, rs;
int op;
int shiftop;
int conds;
int logic_cc;
if (!(arm_feature(env, ARM_FEATURE_THUMB2)
|| arm_feature (env, ARM_FEATURE_M))) {
/* Thumb-1 cores may need to tread bl and blx as a pair of
16-bit instructions to get correct prefetch abort behavior. */
insn = insn_hw1;
if ((insn & (1 << 12)) == 0) {
/* Second half of blx. */
offset = ((insn & 0x7ff) << 1);
gen_movl_T0_reg(s, 14);
gen_op_movl_T1_im(offset);
gen_op_addl_T0_T1();
gen_op_movl_T1_im(0xfffffffc);
gen_op_andl_T0_T1();
addr = (uint32_t)s->pc;
gen_op_movl_T1_im(addr | 1);
gen_movl_reg_T1(s, 14);
gen_bx(s);
return 0;
}
if (insn & (1 << 11)) {
/* Second half of bl. */
offset = ((insn & 0x7ff) << 1) | 1;
gen_movl_T0_reg(s, 14);
gen_op_movl_T1_im(offset);
gen_op_addl_T0_T1();
addr = (uint32_t)s->pc;
gen_op_movl_T1_im(addr | 1);
gen_movl_reg_T1(s, 14);
gen_bx(s);
return 0;
}
if ((s->pc & ~TARGET_PAGE_MASK) == 0) {
/* Instruction spans a page boundary. Implement it as two
16-bit instructions in case the second half causes an
prefetch abort. */
offset = ((int32_t)insn << 21) >> 9;
addr = s->pc + 2 + offset;
gen_op_movl_T0_im(addr);
gen_movl_reg_T0(s, 14);
return 0;
}
/* Fall through to 32-bit decode. */
}
insn = lduw_code(s->pc);
s->pc += 2;
insn |= (uint32_t)insn_hw1 << 16;
if ((insn & 0xf800e800) != 0xf000e800) {
ARCH(6T2);
}
rn = (insn >> 16) & 0xf;
rs = (insn >> 12) & 0xf;
rd = (insn >> 8) & 0xf;
rm = insn & 0xf;
switch ((insn >> 25) & 0xf) {
case 0: case 1: case 2: case 3:
/* 16-bit instructions. Should never happen. */
abort();
case 4:
if (insn & (1 << 22)) {
/* Other load/store, table branch. */
if (insn & 0x01200000) {
/* Load/store doubleword. */
if (rn == 15) {
gen_op_movl_T1_im(s->pc & ~3);
} else {
gen_movl_T1_reg(s, rn);
}
offset = (insn & 0xff) * 4;
if ((insn & (1 << 23)) == 0)
offset = -offset;
if (insn & (1 << 24)) {
gen_op_addl_T1_im(offset);
offset = 0;
}
if (insn & (1 << 20)) {
/* ldrd */
gen_ldst(ldl, s);
gen_movl_reg_T0(s, rs);
gen_op_addl_T1_im(4);
gen_ldst(ldl, s);
gen_movl_reg_T0(s, rd);
} else {
/* strd */
gen_movl_T0_reg(s, rs);
gen_ldst(stl, s);
gen_op_addl_T1_im(4);
gen_movl_T0_reg(s, rd);
gen_ldst(stl, s);
}
if (insn & (1 << 21)) {
/* Base writeback. */
if (rn == 15)
goto illegal_op;
gen_op_addl_T1_im(offset - 4);
gen_movl_reg_T1(s, rn);
}
} else if ((insn & (1 << 23)) == 0) {
/* Load/store exclusive word. */
gen_movl_T0_reg(s, rd);
gen_movl_T1_reg(s, rn);
if (insn & (1 << 20)) {
gen_ldst(ldlex, s);
} else {
gen_ldst(stlex, s);
}
gen_movl_reg_T0(s, rd);
} else if ((insn & (1 << 6)) == 0) {
/* Table Branch. */
if (rn == 15) {
gen_op_movl_T1_im(s->pc);
} else {
gen_movl_T1_reg(s, rn);
}
gen_movl_T2_reg(s, rm);
gen_op_addl_T1_T2();
if (insn & (1 << 4)) {
/* tbh */
gen_op_addl_T1_T2();
gen_ldst(lduw, s);
} else { /* tbb */
gen_ldst(ldub, s);
}
gen_op_jmp_T0_im(s->pc);
s->is_jmp = DISAS_JUMP;
} else {
/* Load/store exclusive byte/halfword/doubleword. */
op = (insn >> 4) & 0x3;
gen_movl_T1_reg(s, rn);
if (insn & (1 << 20)) {
switch (op) {
case 0:
gen_ldst(ldbex, s);
break;
case 1:
gen_ldst(ldwex, s);
break;
case 3:
gen_ldst(ldqex, s);
gen_movl_reg_T1(s, rd);
break;
default:
goto illegal_op;
}
gen_movl_reg_T0(s, rs);
} else {
gen_movl_T0_reg(s, rs);
switch (op) {
case 0:
gen_ldst(stbex, s);
break;
case 1:
gen_ldst(stwex, s);
break;
case 3:
gen_movl_T2_reg(s, rd);
gen_ldst(stqex, s);
break;
default:
goto illegal_op;
}
gen_movl_reg_T0(s, rm);
}
}
} else {
/* Load/store multiple, RFE, SRS. */
if (((insn >> 23) & 1) == ((insn >> 24) & 1)) {
/* Not available in user mode. */
if (!IS_USER(s))
goto illegal_op;
if (insn & (1 << 20)) {
/* rfe */
gen_movl_T1_reg(s, rn);
if (insn & (1 << 24)) {
gen_op_addl_T1_im(4);
} else {
gen_op_addl_T1_im(-4);
}
/* Load CPSR into T2 and PC into T0. */
gen_ldst(ldl, s);
gen_op_movl_T2_T0();
gen_op_addl_T1_im(-4);
gen_ldst(ldl, s);
if (insn & (1 << 21)) {
/* Base writeback. */
if (insn & (1 << 24))
gen_op_addl_T1_im(8);
gen_movl_reg_T1(s, rn);
}
gen_rfe(s);
} else {
/* srs */
op = (insn & 0x1f);
if (op == (env->uncached_cpsr & CPSR_M)) {
gen_movl_T1_reg(s, 13);
} else {
gen_op_movl_T1_r13_banked(op);
}
if ((insn & (1 << 24)) == 0) {
gen_op_addl_T1_im(-8);
}
gen_movl_T0_reg(s, 14);
gen_ldst(stl, s);
gen_op_movl_T0_cpsr();
gen_op_addl_T1_im(4);
gen_ldst(stl, s);
if (insn & (1 << 21)) {
if ((insn & (1 << 24)) == 0) {
gen_op_addl_T1_im(-4);
} else {
gen_op_addl_T1_im(4);
}
if (op == (env->uncached_cpsr & CPSR_M)) {
gen_movl_reg_T1(s, 13);
} else {
gen_op_movl_r13_T1_banked(op);
}
}
}
} else {
int i;
/* Load/store multiple. */
gen_movl_T1_reg(s, rn);
offset = 0;
for (i = 0; i < 16; i++) {
if (insn & (1 << i))
offset += 4;
}
if (insn & (1 << 24)) {
gen_op_addl_T1_im(-offset);
}
for (i = 0; i < 16; i++) {
if ((insn & (1 << i)) == 0)
continue;
if (insn & (1 << 20)) {
/* Load. */
gen_ldst(ldl, s);
if (i == 15) {
gen_bx(s);
} else {
gen_movl_reg_T0(s, i);
}
} else {
/* Store. */
gen_movl_T0_reg(s, i);
gen_ldst(stl, s);
}
gen_op_addl_T1_im(4);
}
if (insn & (1 << 21)) {
/* Base register writeback. */
if (insn & (1 << 24)) {
gen_op_addl_T1_im(-offset);
}
/* Fault if writeback register is in register list. */
if (insn & (1 << rn))
goto illegal_op;
gen_movl_reg_T1(s, rn);
}
}
}
break;
case 5: /* Data processing register constant shift. */
if (rn == 15)
gen_op_movl_T0_im(0);
else
gen_movl_T0_reg(s, rn);
gen_movl_T1_reg(s, rm);
op = (insn >> 21) & 0xf;
shiftop = (insn >> 4) & 3;
shift = ((insn >> 6) & 3) | ((insn >> 10) & 0x1c);
conds = (insn & (1 << 20)) != 0;
logic_cc = (conds && thumb2_logic_op(op));
if (shift != 0) {
if (logic_cc) {
gen_shift_T1_im_cc[shiftop](shift);
} else {
gen_shift_T1_im[shiftop](shift);
}
} else if (shiftop != 0) {
if (logic_cc) {
gen_shift_T1_0_cc[shiftop]();
} else {
gen_shift_T1_0[shiftop]();
}
}
if (gen_thumb2_data_op(s, op, conds, 0))
goto illegal_op;
if (rd != 15)
gen_movl_reg_T0(s, rd);
break;
case 13: /* Misc data processing. */
op = ((insn >> 22) & 6) | ((insn >> 7) & 1);
if (op < 4 && (insn & 0xf000) != 0xf000)
goto illegal_op;
switch (op) {
case 0: /* Register controlled shift. */
gen_movl_T0_reg(s, rm);
gen_movl_T1_reg(s, rn);
if ((insn & 0x70) != 0)
goto illegal_op;
op = (insn >> 21) & 3;
if (insn & (1 << 20)) {
gen_shift_T1_T0_cc[op]();
gen_op_logic_T1_cc();
} else {
gen_shift_T1_T0[op]();
}
gen_movl_reg_T1(s, rd);
break;
case 1: /* Sign/zero extend. */
gen_movl_T1_reg(s, rm);
shift = (insn >> 4) & 3;
/* ??? In many cases it's not neccessary to do a
rotate, a shift is sufficient. */
if (shift != 0)
gen_op_rorl_T1_im(shift * 8);
op = (insn >> 20) & 7;
switch (op) {
case 0: gen_op_sxth_T1(); break;
case 1: gen_op_uxth_T1(); break;
case 2: gen_op_sxtb16_T1(); break;
case 3: gen_op_uxtb16_T1(); break;
case 4: gen_op_sxtb_T1(); break;
case 5: gen_op_uxtb_T1(); break;
default: goto illegal_op;
}
if (rn != 15) {
gen_movl_T2_reg(s, rn);
if ((op >> 1) == 1) {
gen_op_add16_T1_T2();
} else {
gen_op_addl_T1_T2();
}
}
gen_movl_reg_T1(s, rd);
break;
case 2: /* SIMD add/subtract. */
op = (insn >> 20) & 7;
shift = (insn >> 4) & 7;
if ((op & 3) == 3 || (shift & 3) == 3)
goto illegal_op;
gen_movl_T0_reg(s, rn);
gen_movl_T1_reg(s, rm);
gen_thumb2_parallel_addsub[op][shift]();
gen_movl_reg_T0(s, rd);
break;
case 3: /* Other data processing. */
op = ((insn >> 17) & 0x38) | ((insn >> 4) & 7);
if (op < 4) {
/* Saturating add/subtract. */
gen_movl_T0_reg(s, rm);
gen_movl_T1_reg(s, rn);
if (op & 2)
gen_op_double_T1_saturate();
if (op & 1)
gen_op_subl_T0_T1_saturate();
else
gen_op_addl_T0_T1_saturate();
} else {
gen_movl_T0_reg(s, rn);
switch (op) {
case 0x0a: /* rbit */
gen_op_rbit_T0();
break;
case 0x08: /* rev */
gen_op_rev_T0();
break;
case 0x09: /* rev16 */
gen_op_rev16_T0();
break;
case 0x0b: /* revsh */
gen_op_revsh_T0();
break;
case 0x10: /* sel */
gen_movl_T1_reg(s, rm);
gen_op_sel_T0_T1();
break;
case 0x18: /* clz */
gen_op_clz_T0();
break;
default:
goto illegal_op;
}
}
gen_movl_reg_T0(s, rd);
break;
case 4: case 5: /* 32-bit multiply. Sum of absolute differences. */
op = (insn >> 4) & 0xf;
gen_movl_T0_reg(s, rn);
gen_movl_T1_reg(s, rm);
switch ((insn >> 20) & 7) {
case 0: /* 32 x 32 -> 32 */
gen_op_mul_T0_T1();
if (rs != 15) {
gen_movl_T1_reg(s, rs);
if (op)
gen_op_rsbl_T0_T1();
else
gen_op_addl_T0_T1();
}
gen_movl_reg_T0(s, rd);
break;
case 1: /* 16 x 16 -> 32 */
gen_mulxy(op & 2, op & 1);
if (rs != 15) {
gen_movl_T1_reg(s, rs);
gen_op_addl_T0_T1_setq();
}
gen_movl_reg_T0(s, rd);
break;
case 2: /* Dual multiply add. */
case 4: /* Dual multiply subtract. */
if (op)
gen_op_swap_half_T1();
gen_op_mul_dual_T0_T1();
/* This addition cannot overflow. */
if (insn & (1 << 22)) {
gen_op_subl_T0_T1();
} else {
gen_op_addl_T0_T1();
}
if (rs != 15)
{
gen_movl_T1_reg(s, rs);
gen_op_addl_T0_T1_setq();
}
gen_movl_reg_T0(s, rd);
break;
case 3: /* 32 * 16 -> 32msb */
if (op)
gen_op_sarl_T1_im(16);
else
gen_op_sxth_T1();
gen_op_imulw_T0_T1();
if (rs != 15)
{
gen_movl_T1_reg(s, rs);
gen_op_addl_T0_T1_setq();
}
gen_movl_reg_T0(s, rd);
break;
case 5: case 6: /* 32 * 32 -> 32msb */
gen_op_imull_T0_T1();
if (insn & (1 << 5))
gen_op_roundqd_T0_T1();
else
gen_op_movl_T0_T1();
if (rs != 15) {
gen_movl_T1_reg(s, rs);
if (insn & (1 << 21)) {
gen_op_addl_T0_T1();
} else {
gen_op_rsbl_T0_T1();
}
}
gen_movl_reg_T0(s, rd);
break;
case 7: /* Unsigned sum of absolute differences. */
gen_op_usad8_T0_T1();
if (rs != 15) {
gen_movl_T1_reg(s, rs);
gen_op_addl_T0_T1();
}
gen_movl_reg_T0(s, rd);
break;
}
break;
case 6: case 7: /* 64-bit multiply, Divide. */
op = ((insn >> 4) & 0xf) | ((insn >> 16) & 0x70);
gen_movl_T0_reg(s, rn);
gen_movl_T1_reg(s, rm);
if ((op & 0x50) == 0x10) {
/* sdiv, udiv */
if (!arm_feature(env, ARM_FEATURE_DIV))
goto illegal_op;
if (op & 0x20)
gen_op_udivl_T0_T1();
else
gen_op_sdivl_T0_T1();
gen_movl_reg_T0(s, rd);
} else if ((op & 0xe) == 0xc) {
/* Dual multiply accumulate long. */
if (op & 1)
gen_op_swap_half_T1();
gen_op_mul_dual_T0_T1();
if (op & 0x10) {
gen_op_subl_T0_T1();
} else {
gen_op_addl_T0_T1();
}
gen_op_signbit_T1_T0();
gen_op_addq_T0_T1(rs, rd);
gen_movl_reg_T0(s, rs);
gen_movl_reg_T1(s, rd);
} else {
if (op & 0x20) {
/* Unsigned 64-bit multiply */
gen_op_mull_T0_T1();
} else {
if (op & 8) {
/* smlalxy */
gen_mulxy(op & 2, op & 1);
gen_op_signbit_T1_T0();
} else {
/* Signed 64-bit multiply */
gen_op_imull_T0_T1();
}
}
if (op & 4) {
/* umaal */
gen_op_addq_lo_T0_T1(rs);
gen_op_addq_lo_T0_T1(rd);
} else if (op & 0x40) {
/* 64-bit accumulate. */
gen_op_addq_T0_T1(rs, rd);
}
gen_movl_reg_T0(s, rs);
gen_movl_reg_T1(s, rd);
}
break;
}
break;
case 6: case 7: case 14: case 15:
/* Coprocessor. */
if (((insn >> 24) & 3) == 3) {
/* Translate into the equivalent ARM encoding. */
insn = (insn & 0xe2ffffff) | ((insn & (1 << 28)) >> 4);
if (disas_neon_data_insn(env, s, insn))
goto illegal_op;
} else {
if (insn & (1 << 28))
goto illegal_op;
if (disas_coproc_insn (env, s, insn))
goto illegal_op;
}
break;
case 8: case 9: case 10: case 11:
if (insn & (1 << 15)) {
/* Branches, misc control. */
if (insn & 0x5000) {
/* Unconditional branch. */
/* signextend(hw1[10:0]) -> offset[:12]. */
offset = ((int32_t)insn << 5) >> 9 & ~(int32_t)0xfff;
/* hw1[10:0] -> offset[11:1]. */
offset |= (insn & 0x7ff) << 1;
/* (~hw2[13, 11] ^ offset[24]) -> offset[23,22]
offset[24:22] already have the same value because of the
sign extension above. */
offset ^= ((~insn) & (1 << 13)) << 10;
offset ^= ((~insn) & (1 << 11)) << 11;
addr = s->pc;
if (insn & (1 << 14)) {
/* Branch and link. */
gen_op_movl_T1_im(addr | 1);
gen_movl_reg_T1(s, 14);
}
addr += offset;
if (insn & (1 << 12)) {
/* b/bl */
gen_jmp(s, addr);
} else {
/* blx */
addr &= ~(uint32_t)2;
gen_op_movl_T0_im(addr);
gen_bx(s);
}
} else if (((insn >> 23) & 7) == 7) {
/* Misc control */
if (insn & (1 << 13))
goto illegal_op;
if (insn & (1 << 26)) {
/* Secure monitor call (v6Z) */
goto illegal_op; /* not implemented. */
} else {
op = (insn >> 20) & 7;
switch (op) {
case 0: /* msr cpsr. */
if (IS_M(env)) {
gen_op_v7m_msr_T0(insn & 0xff);
gen_movl_reg_T0(s, rn);
gen_lookup_tb(s);
break;
}
/* fall through */
case 1: /* msr spsr. */
if (IS_M(env))
goto illegal_op;
gen_movl_T0_reg(s, rn);
if (gen_set_psr_T0(s,
msr_mask(env, s, (insn >> 8) & 0xf, op == 1),
op == 1))
goto illegal_op;
break;
case 2: /* cps, nop-hint. */
if (((insn >> 8) & 7) == 0) {
gen_nop_hint(s, insn & 0xff);
}
/* Implemented as NOP in user mode. */
if (IS_USER(s))
break;
offset = 0;
imm = 0;
if (insn & (1 << 10)) {
if (insn & (1 << 7))
offset |= CPSR_A;
if (insn & (1 << 6))
offset |= CPSR_I;
if (insn & (1 << 5))
offset |= CPSR_F;
if (insn & (1 << 9))
imm = CPSR_A | CPSR_I | CPSR_F;
}
if (insn & (1 << 8)) {
offset |= 0x1f;
imm |= (insn & 0x1f);
}
if (offset) {
gen_op_movl_T0_im(imm);
gen_set_psr_T0(s, offset, 0);
}
break;
case 3: /* Special control operations. */
op = (insn >> 4) & 0xf;
switch (op) {
case 2: /* clrex */
gen_op_clrex();
break;
case 4: /* dsb */
case 5: /* dmb */
case 6: /* isb */
/* These execute as NOPs. */
ARCH(7);
break;
default:
goto illegal_op;
}
break;
case 4: /* bxj */
/* Trivial implementation equivalent to bx. */
gen_movl_T0_reg(s, rn);
gen_bx(s);
break;
case 5: /* Exception return. */
/* Unpredictable in user mode. */
goto illegal_op;
case 6: /* mrs cpsr. */
if (IS_M(env)) {
gen_op_v7m_mrs_T0(insn & 0xff);
} else {
gen_op_movl_T0_cpsr();
}
gen_movl_reg_T0(s, rd);
break;
case 7: /* mrs spsr. */
/* Not accessible in user mode. */
if (IS_USER(s) || IS_M(env))
goto illegal_op;
gen_op_movl_T0_spsr();
gen_movl_reg_T0(s, rd);
break;
}
}
} else {
/* Conditional branch. */
op = (insn >> 22) & 0xf;
/* Generate a conditional jump to next instruction. */
s->condlabel = gen_new_label();
gen_test_cc[op ^ 1](s->condlabel);
s->condjmp = 1;
/* offset[11:1] = insn[10:0] */
offset = (insn & 0x7ff) << 1;
/* offset[17:12] = insn[21:16]. */
offset |= (insn & 0x003f0000) >> 4;
/* offset[31:20] = insn[26]. */
offset |= ((int32_t)((insn << 5) & 0x80000000)) >> 11;
/* offset[18] = insn[13]. */
offset |= (insn & (1 << 13)) << 5;
/* offset[19] = insn[11]. */
offset |= (insn & (1 << 11)) << 8;
/* jump to the offset */
addr = s->pc + offset;
gen_jmp(s, addr);
}
} else {
/* Data processing immediate. */
if (insn & (1 << 25)) {
if (insn & (1 << 24)) {
if (insn & (1 << 20))
goto illegal_op;
/* Bitfield/Saturate. */
op = (insn >> 21) & 7;
imm = insn & 0x1f;
shift = ((insn >> 6) & 3) | ((insn >> 10) & 0x1c);
if (rn == 15)
gen_op_movl_T1_im(0);
else
gen_movl_T1_reg(s, rn);
switch (op) {
case 2: /* Signed bitfield extract. */
imm++;
if (shift + imm > 32)
goto illegal_op;
if (imm < 32)
gen_op_sbfx_T1(shift, imm);
break;
case 6: /* Unsigned bitfield extract. */
imm++;
if (shift + imm > 32)
goto illegal_op;
if (imm < 32)
gen_op_ubfx_T1(shift, (1u << imm) - 1);
break;
case 3: /* Bitfield insert/clear. */
if (imm < shift)
goto illegal_op;
imm = imm + 1 - shift;
if (imm != 32) {
gen_movl_T0_reg(s, rd);
gen_op_bfi_T1_T0(shift, ((1u << imm) - 1) << shift);
}
break;
case 7:
goto illegal_op;
default: /* Saturate. */
gen_movl_T1_reg(s, rn);
if (shift) {
if (op & 1)
gen_op_sarl_T1_im(shift);
else
gen_op_shll_T1_im(shift);
}
if (op & 4) {
/* Unsigned. */
gen_op_ssat_T1(imm);
if ((op & 1) && shift == 0)
gen_op_usat16_T1(imm);
else
gen_op_usat_T1(imm);
} else {
/* Signed. */
gen_op_ssat_T1(imm);
if ((op & 1) && shift == 0)
gen_op_ssat16_T1(imm);
else
gen_op_ssat_T1(imm);
}
break;
}
gen_movl_reg_T1(s, rd);
} else {
imm = ((insn & 0x04000000) >> 15)
| ((insn & 0x7000) >> 4) | (insn & 0xff);
if (insn & (1 << 22)) {
/* 16-bit immediate. */
imm |= (insn >> 4) & 0xf000;
if (insn & (1 << 23)) {
/* movt */
gen_movl_T0_reg(s, rd);
gen_op_movtop_T0_im(imm << 16);
} else {
/* movw */
gen_op_movl_T0_im(imm);
}
} else {
/* Add/sub 12-bit immediate. */
if (rn == 15) {
addr = s->pc & ~(uint32_t)3;
if (insn & (1 << 23))
addr -= imm;
else
addr += imm;
gen_op_movl_T0_im(addr);
} else {
gen_movl_T0_reg(s, rn);
gen_op_movl_T1_im(imm);
if (insn & (1 << 23))
gen_op_subl_T0_T1();
else
gen_op_addl_T0_T1();
}
}
gen_movl_reg_T0(s, rd);
}
} else {
int shifter_out = 0;
/* modified 12-bit immediate. */
shift = ((insn & 0x04000000) >> 23) | ((insn & 0x7000) >> 12);
imm = (insn & 0xff);
switch (shift) {
case 0: /* XY */
/* Nothing to do. */
break;
case 1: /* 00XY00XY */
imm |= imm << 16;
break;
case 2: /* XY00XY00 */
imm |= imm << 16;
imm <<= 8;
break;
case 3: /* XYXYXYXY */
imm |= imm << 16;
imm |= imm << 8;
break;
default: /* Rotated constant. */
shift = (shift << 1) | (imm >> 7);
imm |= 0x80;
imm = imm << (32 - shift);
shifter_out = 1;
break;
}
gen_op_movl_T1_im(imm);
rn = (insn >> 16) & 0xf;
if (rn == 15)
gen_op_movl_T0_im(0);
else
gen_movl_T0_reg(s, rn);
op = (insn >> 21) & 0xf;
if (gen_thumb2_data_op(s, op, (insn & (1 << 20)) != 0,
shifter_out))
goto illegal_op;
rd = (insn >> 8) & 0xf;
if (rd != 15) {
gen_movl_reg_T0(s, rd);
}
}
}
break;
case 12: /* Load/store single data item. */
{
int postinc = 0;
int writeback = 0;
if ((insn & 0x01100000) == 0x01000000) {
if (disas_neon_ls_insn(env, s, insn))
goto illegal_op;
break;
}
if (rn == 15) {
/* PC relative. */
/* s->pc has already been incremented by 4. */
imm = s->pc & 0xfffffffc;
if (insn & (1 << 23))
imm += insn & 0xfff;
else
imm -= insn & 0xfff;
gen_op_movl_T1_im(imm);
} else {
gen_movl_T1_reg(s, rn);
if (insn & (1 << 23)) {
/* Positive offset. */
imm = insn & 0xfff;
gen_op_addl_T1_im(imm);
} else {
op = (insn >> 8) & 7;
imm = insn & 0xff;
switch (op) {
case 0: case 8: /* Shifted Register. */
shift = (insn >> 4) & 0xf;
if (shift > 3)
goto illegal_op;
gen_movl_T2_reg(s, rm);
if (shift)
gen_op_shll_T2_im(shift);
gen_op_addl_T1_T2();
break;
case 4: /* Negative offset. */
gen_op_addl_T1_im(-imm);
break;
case 6: /* User privilege. */
gen_op_addl_T1_im(imm);
break;
case 1: /* Post-decrement. */
imm = -imm;
/* Fall through. */
case 3: /* Post-increment. */
gen_op_movl_T2_im(imm);
postinc = 1;
writeback = 1;
break;
case 5: /* Pre-decrement. */
imm = -imm;
/* Fall through. */
case 7: /* Pre-increment. */
gen_op_addl_T1_im(imm);
writeback = 1;
break;
default:
goto illegal_op;
}
}
}
op = ((insn >> 21) & 3) | ((insn >> 22) & 4);
if (insn & (1 << 20)) {
/* Load. */
if (rs == 15 && op != 2) {
if (op & 2)
goto illegal_op;
/* Memory hint. Implemented as NOP. */
} else {
switch (op) {
case 0: gen_ldst(ldub, s); break;
case 4: gen_ldst(ldsb, s); break;
case 1: gen_ldst(lduw, s); break;
case 5: gen_ldst(ldsw, s); break;
case 2: gen_ldst(ldl, s); break;
default: goto illegal_op;
}
if (rs == 15) {
gen_bx(s);
} else {
gen_movl_reg_T0(s, rs);
}
}
} else {
/* Store. */
if (rs == 15)
goto illegal_op;
gen_movl_T0_reg(s, rs);
switch (op) {
case 0: gen_ldst(stb, s); break;
case 1: gen_ldst(stw, s); break;
case 2: gen_ldst(stl, s); break;
default: goto illegal_op;
}
}
if (postinc)
gen_op_addl_T1_im(imm);
if (writeback)
gen_movl_reg_T1(s, rn);
}
break;
default:
goto illegal_op;
}
return 0;
illegal_op:
return 1;
}
static void disas_thumb_insn(CPUState *env, DisasContext *s)
{
uint32_t val, insn, op, rm, rn, rd, shift, cond;
int32_t offset;
int i;
if (s->condexec_mask) {
cond = s->condexec_cond;
s->condlabel = gen_new_label();
gen_test_cc[cond ^ 1](s->condlabel);
s->condjmp = 1;
}
insn = lduw_code(s->pc);
s->pc += 2;
switch (insn >> 12) {
case 0: case 1:
rd = insn & 7;
op = (insn >> 11) & 3;
if (op == 3) {
/* add/subtract */
rn = (insn >> 3) & 7;
gen_movl_T0_reg(s, rn);
if (insn & (1 << 10)) {
/* immediate */
gen_op_movl_T1_im((insn >> 6) & 7);
} else {
/* reg */
rm = (insn >> 6) & 7;
gen_movl_T1_reg(s, rm);
}
if (insn & (1 << 9)) {
if (s->condexec_mask)
gen_op_subl_T0_T1();
else
gen_op_subl_T0_T1_cc();
} else {
if (s->condexec_mask)
gen_op_addl_T0_T1();
else
gen_op_addl_T0_T1_cc();
}
gen_movl_reg_T0(s, rd);
} else {
/* shift immediate */
rm = (insn >> 3) & 7;
shift = (insn >> 6) & 0x1f;
gen_movl_T0_reg(s, rm);
if (s->condexec_mask)
gen_shift_T0_im_thumb[op](shift);
else
gen_shift_T0_im_thumb_cc[op](shift);
gen_movl_reg_T0(s, rd);
}
break;
case 2: case 3:
/* arithmetic large immediate */
op = (insn >> 11) & 3;
rd = (insn >> 8) & 0x7;
if (op == 0) {
gen_op_movl_T0_im(insn & 0xff);
} else {
gen_movl_T0_reg(s, rd);
gen_op_movl_T1_im(insn & 0xff);
}
switch (op) {
case 0: /* mov */
if (!s->condexec_mask)
gen_op_logic_T0_cc();
break;
case 1: /* cmp */
gen_op_subl_T0_T1_cc();
break;
case 2: /* add */
if (s->condexec_mask)
gen_op_addl_T0_T1();
else
gen_op_addl_T0_T1_cc();
break;
case 3: /* sub */
if (s->condexec_mask)
gen_op_subl_T0_T1();
else
gen_op_subl_T0_T1_cc();
break;
}
if (op != 1)
gen_movl_reg_T0(s, rd);
break;
case 4:
if (insn & (1 << 11)) {
rd = (insn >> 8) & 7;
/* load pc-relative. Bit 1 of PC is ignored. */
val = s->pc + 2 + ((insn & 0xff) * 4);
val &= ~(uint32_t)2;
gen_op_movl_T1_im(val);
gen_ldst(ldl, s);
gen_movl_reg_T0(s, rd);
break;
}
if (insn & (1 << 10)) {
/* data processing extended or blx */
rd = (insn & 7) | ((insn >> 4) & 8);
rm = (insn >> 3) & 0xf;
op = (insn >> 8) & 3;
switch (op) {
case 0: /* add */
gen_movl_T0_reg(s, rd);
gen_movl_T1_reg(s, rm);
gen_op_addl_T0_T1();
gen_movl_reg_T0(s, rd);
break;
case 1: /* cmp */
gen_movl_T0_reg(s, rd);
gen_movl_T1_reg(s, rm);
gen_op_subl_T0_T1_cc();
break;
case 2: /* mov/cpy */
gen_movl_T0_reg(s, rm);
gen_movl_reg_T0(s, rd);
break;
case 3:/* branch [and link] exchange thumb register */
if (insn & (1 << 7)) {
val = (uint32_t)s->pc | 1;
gen_op_movl_T1_im(val);
gen_movl_reg_T1(s, 14);
}
gen_movl_T0_reg(s, rm);
gen_bx(s);
break;
}
break;
}
/* data processing register */
rd = insn & 7;
rm = (insn >> 3) & 7;
op = (insn >> 6) & 0xf;
if (op == 2 || op == 3 || op == 4 || op == 7) {
/* the shift/rotate ops want the operands backwards */
val = rm;
rm = rd;
rd = val;
val = 1;
} else {
val = 0;
}
if (op == 9) /* neg */
gen_op_movl_T0_im(0);
else if (op != 0xf) /* mvn doesn't read its first operand */
gen_movl_T0_reg(s, rd);
gen_movl_T1_reg(s, rm);
switch (op) {
case 0x0: /* and */
gen_op_andl_T0_T1();
if (!s->condexec_mask)
gen_op_logic_T0_cc();
break;
case 0x1: /* eor */
gen_op_xorl_T0_T1();
if (!s->condexec_mask)
gen_op_logic_T0_cc();
break;
case 0x2: /* lsl */
if (s->condexec_mask) {
gen_op_shll_T1_T0();
} else {
gen_op_shll_T1_T0_cc();
gen_op_logic_T1_cc();
}
break;
case 0x3: /* lsr */
if (s->condexec_mask) {
gen_op_shrl_T1_T0();
} else {
gen_op_shrl_T1_T0_cc();
gen_op_logic_T1_cc();
}
break;
case 0x4: /* asr */
if (s->condexec_mask) {
gen_op_sarl_T1_T0();
} else {
gen_op_sarl_T1_T0_cc();
gen_op_logic_T1_cc();
}
break;
case 0x5: /* adc */
if (s->condexec_mask)
gen_op_adcl_T0_T1();
else
gen_op_adcl_T0_T1_cc();
break;
case 0x6: /* sbc */
if (s->condexec_mask)
gen_op_sbcl_T0_T1();
else
gen_op_sbcl_T0_T1_cc();
break;
case 0x7: /* ror */
if (s->condexec_mask) {
gen_op_rorl_T1_T0();
} else {
gen_op_rorl_T1_T0_cc();
gen_op_logic_T1_cc();
}
break;
case 0x8: /* tst */
gen_op_andl_T0_T1();
gen_op_logic_T0_cc();
rd = 16;
break;
case 0x9: /* neg */
if (s->condexec_mask)
gen_op_subl_T0_T1();
else
gen_op_subl_T0_T1_cc();
break;
case 0xa: /* cmp */
gen_op_subl_T0_T1_cc();
rd = 16;
break;
case 0xb: /* cmn */
gen_op_addl_T0_T1_cc();
rd = 16;
break;
case 0xc: /* orr */
gen_op_orl_T0_T1();
if (!s->condexec_mask)
gen_op_logic_T0_cc();
break;
case 0xd: /* mul */
gen_op_mull_T0_T1();
if (!s->condexec_mask)
gen_op_logic_T0_cc();
break;
case 0xe: /* bic */
gen_op_bicl_T0_T1();
if (!s->condexec_mask)
gen_op_logic_T0_cc();
break;
case 0xf: /* mvn */
gen_op_notl_T1();
if (!s->condexec_mask)
gen_op_logic_T1_cc();
val = 1;
rm = rd;
break;
}
if (rd != 16) {
if (val)
gen_movl_reg_T1(s, rm);
else
gen_movl_reg_T0(s, rd);
}
break;
case 5:
/* load/store register offset. */
rd = insn & 7;
rn = (insn >> 3) & 7;
rm = (insn >> 6) & 7;
op = (insn >> 9) & 7;
gen_movl_T1_reg(s, rn);
gen_movl_T2_reg(s, rm);
gen_op_addl_T1_T2();
if (op < 3) /* store */
gen_movl_T0_reg(s, rd);
switch (op) {
case 0: /* str */
gen_ldst(stl, s);
break;
case 1: /* strh */
gen_ldst(stw, s);
break;
case 2: /* strb */
gen_ldst(stb, s);
break;
case 3: /* ldrsb */
gen_ldst(ldsb, s);
break;
case 4: /* ldr */
gen_ldst(ldl, s);
break;
case 5: /* ldrh */
gen_ldst(lduw, s);
break;
case 6: /* ldrb */
gen_ldst(ldub, s);
break;
case 7: /* ldrsh */
gen_ldst(ldsw, s);
break;
}
if (op >= 3) /* load */
gen_movl_reg_T0(s, rd);
break;
case 6:
/* load/store word immediate offset */
rd = insn & 7;
rn = (insn >> 3) & 7;
gen_movl_T1_reg(s, rn);
val = (insn >> 4) & 0x7c;
gen_op_movl_T2_im(val);
gen_op_addl_T1_T2();
if (insn & (1 << 11)) {
/* load */
gen_ldst(ldl, s);
gen_movl_reg_T0(s, rd);
} else {
/* store */
gen_movl_T0_reg(s, rd);
gen_ldst(stl, s);
}
break;
case 7:
/* load/store byte immediate offset */
rd = insn & 7;
rn = (insn >> 3) & 7;
gen_movl_T1_reg(s, rn);
val = (insn >> 6) & 0x1f;
gen_op_movl_T2_im(val);
gen_op_addl_T1_T2();
if (insn & (1 << 11)) {
/* load */
gen_ldst(ldub, s);
gen_movl_reg_T0(s, rd);
} else {
/* store */
gen_movl_T0_reg(s, rd);
gen_ldst(stb, s);
}
break;
case 8:
/* load/store halfword immediate offset */
rd = insn & 7;
rn = (insn >> 3) & 7;
gen_movl_T1_reg(s, rn);
val = (insn >> 5) & 0x3e;
gen_op_movl_T2_im(val);
gen_op_addl_T1_T2();
if (insn & (1 << 11)) {
/* load */
gen_ldst(lduw, s);
gen_movl_reg_T0(s, rd);
} else {
/* store */
gen_movl_T0_reg(s, rd);
gen_ldst(stw, s);
}
break;
case 9:
/* load/store from stack */
rd = (insn >> 8) & 7;
gen_movl_T1_reg(s, 13);
val = (insn & 0xff) * 4;
gen_op_movl_T2_im(val);
gen_op_addl_T1_T2();
if (insn & (1 << 11)) {
/* load */
gen_ldst(ldl, s);
gen_movl_reg_T0(s, rd);
} else {
/* store */
gen_movl_T0_reg(s, rd);
gen_ldst(stl, s);
}
break;
case 10:
/* add to high reg */
rd = (insn >> 8) & 7;
if (insn & (1 << 11)) {
/* SP */
gen_movl_T0_reg(s, 13);
} else {
/* PC. bit 1 is ignored. */
gen_op_movl_T0_im((s->pc + 2) & ~(uint32_t)2);
}
val = (insn & 0xff) * 4;
gen_op_movl_T1_im(val);
gen_op_addl_T0_T1();
gen_movl_reg_T0(s, rd);
break;
case 11:
/* misc */
op = (insn >> 8) & 0xf;
switch (op) {
case 0:
/* adjust stack pointer */
gen_movl_T1_reg(s, 13);
val = (insn & 0x7f) * 4;
if (insn & (1 << 7))
val = -(int32_t)val;
gen_op_movl_T2_im(val);
gen_op_addl_T1_T2();
gen_movl_reg_T1(s, 13);
break;
case 2: /* sign/zero extend. */
ARCH(6);
rd = insn & 7;
rm = (insn >> 3) & 7;
gen_movl_T1_reg(s, rm);
switch ((insn >> 6) & 3) {
case 0: gen_op_sxth_T1(); break;
case 1: gen_op_sxtb_T1(); break;
case 2: gen_op_uxth_T1(); break;
case 3: gen_op_uxtb_T1(); break;
}
gen_movl_reg_T1(s, rd);
break;
case 4: case 5: case 0xc: case 0xd:
/* push/pop */
gen_movl_T1_reg(s, 13);
if (insn & (1 << 8))
offset = 4;
else
offset = 0;
for (i = 0; i < 8; i++) {
if (insn & (1 << i))
offset += 4;
}
if ((insn & (1 << 11)) == 0) {
gen_op_movl_T2_im(-offset);
gen_op_addl_T1_T2();
}
gen_op_movl_T2_im(4);
for (i = 0; i < 8; i++) {
if (insn & (1 << i)) {
if (insn & (1 << 11)) {
/* pop */
gen_ldst(ldl, s);
gen_movl_reg_T0(s, i);
} else {
/* push */
gen_movl_T0_reg(s, i);
gen_ldst(stl, s);
}
/* advance to the next address. */
gen_op_addl_T1_T2();
}
}
if (insn & (1 << 8)) {
if (insn & (1 << 11)) {
/* pop pc */
gen_ldst(ldl, s);
/* don't set the pc until the rest of the instruction
has completed */
} else {
/* push lr */
gen_movl_T0_reg(s, 14);
gen_ldst(stl, s);
}
gen_op_addl_T1_T2();
}
if ((insn & (1 << 11)) == 0) {
gen_op_movl_T2_im(-offset);
gen_op_addl_T1_T2();
}
/* write back the new stack pointer */
gen_movl_reg_T1(s, 13);
/* set the new PC value */
if ((insn & 0x0900) == 0x0900)
gen_bx(s);
break;
case 1: case 3: case 9: case 11: /* czb */
rm = insn & 7;
gen_movl_T0_reg(s, rm);
s->condlabel = gen_new_label();
s->condjmp = 1;
if (insn & (1 << 11))
gen_op_testn_T0(s->condlabel);
else
gen_op_test_T0(s->condlabel);
offset = ((insn & 0xf8) >> 2) | (insn & 0x200) >> 3;
val = (uint32_t)s->pc + 2;
val += offset;
gen_jmp(s, val);
break;
case 15: /* IT, nop-hint. */
if ((insn & 0xf) == 0) {
gen_nop_hint(s, (insn >> 4) & 0xf);
break;
}
/* If Then. */
s->condexec_cond = (insn >> 4) & 0xe;
s->condexec_mask = insn & 0x1f;
/* No actual code generated for this insn, just setup state. */
break;
case 0xe: /* bkpt */
gen_set_condexec(s);
gen_op_movl_T0_im((long)s->pc - 2);
gen_op_movl_reg_TN[0][15]();
gen_op_bkpt();
s->is_jmp = DISAS_JUMP;
break;
case 0xa: /* rev */
ARCH(6);
rn = (insn >> 3) & 0x7;
rd = insn & 0x7;
gen_movl_T0_reg(s, rn);
switch ((insn >> 6) & 3) {
case 0: gen_op_rev_T0(); break;
case 1: gen_op_rev16_T0(); break;
case 3: gen_op_revsh_T0(); break;
default: goto illegal_op;
}
gen_movl_reg_T0(s, rd);
break;
case 6: /* cps */
ARCH(6);
if (IS_USER(s))
break;
if (IS_M(env)) {
val = (insn & (1 << 4)) != 0;
gen_op_movl_T0_im(val);
/* PRIMASK */
if (insn & 1)
gen_op_v7m_msr_T0(16);
/* FAULTMASK */
if (insn & 2)
gen_op_v7m_msr_T0(17);
gen_lookup_tb(s);
} else {
if (insn & (1 << 4))
shift = CPSR_A | CPSR_I | CPSR_F;
else
shift = 0;
val = ((insn & 7) << 6) & shift;
gen_op_movl_T0_im(val);
gen_set_psr_T0(s, shift, 0);
}
break;
default:
goto undef;
}
break;
case 12:
/* load/store multiple */
rn = (insn >> 8) & 0x7;
gen_movl_T1_reg(s, rn);
gen_op_movl_T2_im(4);
for (i = 0; i < 8; i++) {
if (insn & (1 << i)) {
if (insn & (1 << 11)) {
/* load */
gen_ldst(ldl, s);
gen_movl_reg_T0(s, i);
} else {
/* store */
gen_movl_T0_reg(s, i);
gen_ldst(stl, s);
}
/* advance to the next address */
gen_op_addl_T1_T2();
}
}
/* Base register writeback. */
if ((insn & (1 << rn)) == 0)
gen_movl_reg_T1(s, rn);
break;
case 13:
/* conditional branch or swi */
cond = (insn >> 8) & 0xf;
if (cond == 0xe)
goto undef;
if (cond == 0xf) {
/* swi */
gen_set_condexec(s);
gen_op_movl_T0_im((long)s->pc | 1);
/* Don't set r15. */
gen_op_movl_reg_TN[0][15]();
s->is_jmp = DISAS_SWI;
break;
}
/* generate a conditional jump to next instruction */
s->condlabel = gen_new_label();
gen_test_cc[cond ^ 1](s->condlabel);
s->condjmp = 1;
gen_movl_T1_reg(s, 15);
/* jump to the offset */
val = (uint32_t)s->pc + 2;
offset = ((int32_t)insn << 24) >> 24;
val += offset << 1;
gen_jmp(s, val);
break;
case 14:
if (insn & (1 << 11)) {
if (disas_thumb2_insn(env, s, insn))
goto undef32;
break;
}
/* unconditional branch */
val = (uint32_t)s->pc;
offset = ((int32_t)insn << 21) >> 21;
val += (offset << 1) + 2;
gen_jmp(s, val);
break;
case 15:
if (disas_thumb2_insn(env, s, insn))
goto undef32;
break;
}
return;
undef32:
gen_set_condexec(s);
gen_op_movl_T0_im((long)s->pc - 4);
gen_op_movl_reg_TN[0][15]();
gen_op_undef_insn();
s->is_jmp = DISAS_JUMP;
return;
illegal_op:
undef:
gen_set_condexec(s);
gen_op_movl_T0_im((long)s->pc - 2);
gen_op_movl_reg_TN[0][15]();
gen_op_undef_insn();
s->is_jmp = DISAS_JUMP;
}
/* generate intermediate code in gen_opc_buf and gen_opparam_buf for
basic block 'tb'. If search_pc is TRUE, also generate PC
information for each intermediate instruction. */
static inline int gen_intermediate_code_internal(CPUState *env,
TranslationBlock *tb,
int search_pc)
{
DisasContext dc1, *dc = &dc1;
uint16_t *gen_opc_end;
int j, lj;
target_ulong pc_start;
uint32_t next_page_start;
/* generate intermediate code */
pc_start = tb->pc;
dc->tb = tb;
gen_opc_ptr = gen_opc_buf;
gen_opc_end = gen_opc_buf + OPC_MAX_SIZE;
gen_opparam_ptr = gen_opparam_buf;
dc->is_jmp = DISAS_NEXT;
dc->pc = pc_start;
dc->singlestep_enabled = env->singlestep_enabled;
dc->condjmp = 0;
dc->thumb = env->thumb;
dc->condexec_mask = (env->condexec_bits & 0xf) << 1;
dc->condexec_cond = env->condexec_bits >> 4;
dc->is_mem = 0;
#if !defined(CONFIG_USER_ONLY)
if (IS_M(env)) {
dc->user = ((env->v7m.exception == 0) && (env->v7m.control & 1));
} else {
dc->user = (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR;
}
#endif
next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
nb_gen_labels = 0;
lj = -1;
/* Reset the conditional execution bits immediately. This avoids
complications trying to do it at the end of the block. */
if (env->condexec_bits)
gen_op_set_condexec(0);
do {
#ifndef CONFIG_USER_ONLY
if (dc->pc >= 0xfffffff0 && IS_M(env)) {
/* We always get here via a jump, so know we are not in a
conditional execution block. */
gen_op_exception_exit();
}
#endif
if (env->nb_breakpoints > 0) {
for(j = 0; j < env->nb_breakpoints; j++) {
if (env->breakpoints[j] == dc->pc) {
gen_set_condexec(dc);
gen_op_movl_T0_im((long)dc->pc);
gen_op_movl_reg_TN[0][15]();
gen_op_debug();
dc->is_jmp = DISAS_JUMP;
/* Advance PC so that clearing the breakpoint will
invalidate this TB. */
dc->pc += 2;
goto done_generating;
break;
}
}
}
if (search_pc) {
j = gen_opc_ptr - gen_opc_buf;
if (lj < j) {
lj++;
while (lj < j)
gen_opc_instr_start[lj++] = 0;
}
gen_opc_pc[lj] = dc->pc;
gen_opc_instr_start[lj] = 1;
}
if (env->thumb) {
disas_thumb_insn(env, dc);
if (dc->condexec_mask) {
dc->condexec_cond = (dc->condexec_cond & 0xe)
| ((dc->condexec_mask >> 4) & 1);
dc->condexec_mask = (dc->condexec_mask << 1) & 0x1f;
if (dc->condexec_mask == 0) {
dc->condexec_cond = 0;
}
}
} else {
disas_arm_insn(env, dc);
}
if (dc->condjmp && !dc->is_jmp) {
gen_set_label(dc->condlabel);
dc->condjmp = 0;
}
/* Terminate the TB on memory ops if watchpoints are present. */
/* FIXME: This should be replacd by the deterministic execution
* IRQ raising bits. */
if (dc->is_mem && env->nb_watchpoints)
break;
/* Translation stops when a conditional branch is enoutered.
* Otherwise the subsequent code could get translated several times.
* Also stop translation when a page boundary is reached. This
* ensures prefech aborts occur at the right place. */
} while (!dc->is_jmp && gen_opc_ptr < gen_opc_end &&
!env->singlestep_enabled &&
dc->pc < next_page_start);
/* At this stage dc->condjmp will only be set when the skipped
instruction was a conditional branch or trap, and the PC has
already been written. */
if (__builtin_expect(env->singlestep_enabled, 0)) {
/* Make sure the pc is updated, and raise a debug exception. */
if (dc->condjmp) {
gen_set_condexec(dc);
if (dc->is_jmp == DISAS_SWI) {
gen_op_swi();
} else {
gen_op_debug();
}
gen_set_label(dc->condlabel);
}
if (dc->condjmp || !dc->is_jmp) {
gen_op_movl_T0_im((long)dc->pc);
gen_op_movl_reg_TN[0][15]();
dc->condjmp = 0;
}
gen_set_condexec(dc);
if (dc->is_jmp == DISAS_SWI && !dc->condjmp) {
gen_op_swi();
} else {
/* FIXME: Single stepping a WFI insn will not halt
the CPU. */
gen_op_debug();
}
} else {
/* While branches must always occur at the end of an IT block,
there are a few other things that can cause us to terminate
the TB in the middel of an IT block:
- Exception generating instructions (bkpt, swi, undefined).
- Page boundaries.
- Hardware watchpoints.
Hardware breakpoints have already been handled and skip this code.
*/
gen_set_condexec(dc);
switch(dc->is_jmp) {
case DISAS_NEXT:
gen_goto_tb(dc, 1, dc->pc);
break;
default:
case DISAS_JUMP:
case DISAS_UPDATE:
/* indicate that the hash table must be used to find the next TB */
gen_op_movl_T0_0();
gen_op_exit_tb();
break;
case DISAS_TB_JUMP:
/* nothing more to generate */
break;
case DISAS_WFI:
gen_op_wfi();
break;
case DISAS_SWI:
gen_op_swi();
break;
}
if (dc->condjmp) {
gen_set_label(dc->condlabel);
gen_set_condexec(dc);
gen_goto_tb(dc, 1, dc->pc);
dc->condjmp = 0;
}
}
done_generating:
*gen_opc_ptr = INDEX_op_end;
#ifdef DEBUG_DISAS
if (loglevel & CPU_LOG_TB_IN_ASM) {
fprintf(logfile, "----------------\n");
fprintf(logfile, "IN: %s\n", lookup_symbol(pc_start));
target_disas(logfile, pc_start, dc->pc - pc_start, env->thumb);
fprintf(logfile, "\n");
if (loglevel & (CPU_LOG_TB_OP)) {
fprintf(logfile, "OP:\n");
dump_ops(gen_opc_buf, gen_opparam_buf);
fprintf(logfile, "\n");
}
}
#endif
if (search_pc) {
j = gen_opc_ptr - gen_opc_buf;
lj++;
while (lj <= j)
gen_opc_instr_start[lj++] = 0;
} else {
tb->size = dc->pc - pc_start;
}
return 0;
}
int gen_intermediate_code(CPUState *env, TranslationBlock *tb)
{
return gen_intermediate_code_internal(env, tb, 0);
}
int gen_intermediate_code_pc(CPUState *env, TranslationBlock *tb)
{
return gen_intermediate_code_internal(env, tb, 1);
}
static const char *cpu_mode_names[16] = {
"usr", "fiq", "irq", "svc", "???", "???", "???", "abt",
"???", "???", "???", "und", "???", "???", "???", "sys"
};
void cpu_dump_state(CPUState *env, FILE *f,
int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
int flags)
{
int i;
union {
uint32_t i;
float s;
} s0, s1;
CPU_DoubleU d;
/* ??? This assumes float64 and double have the same layout.
Oh well, it's only debug dumps. */
union {
float64 f64;
double d;
} d0;
uint32_t psr;
for(i=0;i<16;i++) {
cpu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
if ((i % 4) == 3)
cpu_fprintf(f, "\n");
else
cpu_fprintf(f, " ");
}
psr = cpsr_read(env);
cpu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%d\n",
psr,
psr & (1 << 31) ? 'N' : '-',
psr & (1 << 30) ? 'Z' : '-',
psr & (1 << 29) ? 'C' : '-',
psr & (1 << 28) ? 'V' : '-',
psr & CPSR_T ? 'T' : 'A',
cpu_mode_names[psr & 0xf], (psr & 0x10) ? 32 : 26);
for (i = 0; i < 16; i++) {
d.d = env->vfp.regs[i];
s0.i = d.l.lower;
s1.i = d.l.upper;
d0.f64 = d.d;
cpu_fprintf(f, "s%02d=%08x(%8g) s%02d=%08x(%8g) d%02d=%08x%08x(%8g)\n",
i * 2, (int)s0.i, s0.s,
i * 2 + 1, (int)s1.i, s1.s,
i, (int)(uint32_t)d.l.upper, (int)(uint32_t)d.l.lower,
d0.d);
}
cpu_fprintf(f, "FPSCR: %08x\n", (int)env->vfp.xregs[ARM_VFP_FPSCR]);
}