| /* | 
 |  * QEMU support -- ARM Power Control specific functions. | 
 |  * | 
 |  * Copyright (c) 2016 Jean-Christophe Dubois | 
 |  * | 
 |  * This work is licensed under the terms of the GNU GPL, version 2 or later. | 
 |  * See the COPYING file in the top-level directory. | 
 |  * | 
 |  */ | 
 |  | 
 | #include "qemu/osdep.h" | 
 | #include "cpu.h" | 
 | #include "cpu-qom.h" | 
 | #include "internals.h" | 
 | #include "arm-powerctl.h" | 
 | #include "qemu/log.h" | 
 | #include "qemu/main-loop.h" | 
 | #include "sysemu/tcg.h" | 
 |  | 
 | #ifndef DEBUG_ARM_POWERCTL | 
 | #define DEBUG_ARM_POWERCTL 0 | 
 | #endif | 
 |  | 
 | #define DPRINTF(fmt, args...) \ | 
 |     do { \ | 
 |         if (DEBUG_ARM_POWERCTL) { \ | 
 |             fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \ | 
 |         } \ | 
 |     } while (0) | 
 |  | 
 | CPUState *arm_get_cpu_by_id(uint64_t id) | 
 | { | 
 |     CPUState *cpu; | 
 |  | 
 |     DPRINTF("cpu %" PRId64 "\n", id); | 
 |  | 
 |     CPU_FOREACH(cpu) { | 
 |         ARMCPU *armcpu = ARM_CPU(cpu); | 
 |  | 
 |         if (armcpu->mp_affinity == id) { | 
 |             return cpu; | 
 |         } | 
 |     } | 
 |  | 
 |     qemu_log_mask(LOG_GUEST_ERROR, | 
 |                   "[ARM]%s: Requesting unknown CPU %" PRId64 "\n", | 
 |                   __func__, id); | 
 |  | 
 |     return NULL; | 
 | } | 
 |  | 
 | struct CpuOnInfo { | 
 |     uint64_t entry; | 
 |     uint64_t context_id; | 
 |     uint32_t target_el; | 
 |     bool target_aa64; | 
 | }; | 
 |  | 
 |  | 
 | static void arm_set_cpu_on_async_work(CPUState *target_cpu_state, | 
 |                                       run_on_cpu_data data) | 
 | { | 
 |     ARMCPU *target_cpu = ARM_CPU(target_cpu_state); | 
 |     struct CpuOnInfo *info = (struct CpuOnInfo *) data.host_ptr; | 
 |  | 
 |     /* Initialize the cpu we are turning on */ | 
 |     cpu_reset(target_cpu_state); | 
 |     target_cpu_state->halted = 0; | 
 |  | 
 |     if (info->target_aa64) { | 
 |         if ((info->target_el < 3) && arm_feature(&target_cpu->env, | 
 |                                                  ARM_FEATURE_EL3)) { | 
 |             /* | 
 |              * As target mode is AArch64, we need to set lower | 
 |              * exception level (the requested level 2) to AArch64 | 
 |              */ | 
 |             target_cpu->env.cp15.scr_el3 |= SCR_RW; | 
 |         } | 
 |  | 
 |         if ((info->target_el < 2) && arm_feature(&target_cpu->env, | 
 |                                                  ARM_FEATURE_EL2)) { | 
 |             /* | 
 |              * As target mode is AArch64, we need to set lower | 
 |              * exception level (the requested level 1) to AArch64 | 
 |              */ | 
 |             target_cpu->env.cp15.hcr_el2 |= HCR_RW; | 
 |         } | 
 |  | 
 |         target_cpu->env.pstate = aarch64_pstate_mode(info->target_el, true); | 
 |     } else { | 
 |         /* We are requested to boot in AArch32 mode */ | 
 |         static const uint32_t mode_for_el[] = { 0, | 
 |                                                 ARM_CPU_MODE_SVC, | 
 |                                                 ARM_CPU_MODE_HYP, | 
 |                                                 ARM_CPU_MODE_SVC }; | 
 |  | 
 |         cpsr_write(&target_cpu->env, mode_for_el[info->target_el], CPSR_M, | 
 |                    CPSRWriteRaw); | 
 |     } | 
 |  | 
 |     if (info->target_el == 3) { | 
 |         /* Processor is in secure mode */ | 
 |         target_cpu->env.cp15.scr_el3 &= ~SCR_NS; | 
 |     } else { | 
 |         /* Processor is not in secure mode */ | 
 |         target_cpu->env.cp15.scr_el3 |= SCR_NS; | 
 |  | 
 |         /* Set NSACR.{CP11,CP10} so NS can access the FPU */ | 
 |         target_cpu->env.cp15.nsacr |= 3 << 10; | 
 |  | 
 |         /* | 
 |          * If QEMU is providing the equivalent of EL3 firmware, then we need | 
 |          * to make sure a CPU targeting EL2 comes out of reset with a | 
 |          * functional HVC insn. | 
 |          */ | 
 |         if (arm_feature(&target_cpu->env, ARM_FEATURE_EL3) | 
 |             && info->target_el == 2) { | 
 |             target_cpu->env.cp15.scr_el3 |= SCR_HCE; | 
 |         } | 
 |     } | 
 |  | 
 |     /* We check if the started CPU is now at the correct level */ | 
 |     assert(info->target_el == arm_current_el(&target_cpu->env)); | 
 |  | 
 |     if (info->target_aa64) { | 
 |         target_cpu->env.xregs[0] = info->context_id; | 
 |     } else { | 
 |         target_cpu->env.regs[0] = info->context_id; | 
 |     } | 
 |  | 
 |     if (tcg_enabled()) { | 
 |         /* CP15 update requires rebuilding hflags */ | 
 |         arm_rebuild_hflags(&target_cpu->env); | 
 |     } | 
 |  | 
 |     /* Start the new CPU at the requested address */ | 
 |     cpu_set_pc(target_cpu_state, info->entry); | 
 |  | 
 |     g_free(info); | 
 |  | 
 |     /* Finally set the power status */ | 
 |     assert(qemu_mutex_iothread_locked()); | 
 |     target_cpu->power_state = PSCI_ON; | 
 | } | 
 |  | 
 | int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id, | 
 |                    uint32_t target_el, bool target_aa64) | 
 | { | 
 |     CPUState *target_cpu_state; | 
 |     ARMCPU *target_cpu; | 
 |     struct CpuOnInfo *info; | 
 |  | 
 |     assert(qemu_mutex_iothread_locked()); | 
 |  | 
 |     DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64 | 
 |             "\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry, | 
 |             context_id); | 
 |  | 
 |     /* requested EL level need to be in the 1 to 3 range */ | 
 |     assert((target_el > 0) && (target_el < 4)); | 
 |  | 
 |     if (target_aa64 && (entry & 3)) { | 
 |         /* | 
 |          * if we are booting in AArch64 mode then "entry" needs to be 4 bytes | 
 |          * aligned. | 
 |          */ | 
 |         return QEMU_ARM_POWERCTL_INVALID_PARAM; | 
 |     } | 
 |  | 
 |     /* Retrieve the cpu we are powering up */ | 
 |     target_cpu_state = arm_get_cpu_by_id(cpuid); | 
 |     if (!target_cpu_state) { | 
 |         /* The cpu was not found */ | 
 |         return QEMU_ARM_POWERCTL_INVALID_PARAM; | 
 |     } | 
 |  | 
 |     target_cpu = ARM_CPU(target_cpu_state); | 
 |     if (target_cpu->power_state == PSCI_ON) { | 
 |         qemu_log_mask(LOG_GUEST_ERROR, | 
 |                       "[ARM]%s: CPU %" PRId64 " is already on\n", | 
 |                       __func__, cpuid); | 
 |         return QEMU_ARM_POWERCTL_ALREADY_ON; | 
 |     } | 
 |  | 
 |     /* | 
 |      * The newly brought CPU is requested to enter the exception level | 
 |      * "target_el" and be in the requested mode (AArch64 or AArch32). | 
 |      */ | 
 |  | 
 |     if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) || | 
 |         ((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) { | 
 |         /* | 
 |          * The CPU does not support requested level | 
 |          */ | 
 |         return QEMU_ARM_POWERCTL_INVALID_PARAM; | 
 |     } | 
 |  | 
 |     if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) { | 
 |         /* | 
 |          * For now we don't support booting an AArch64 CPU in AArch32 mode | 
 |          * TODO: We should add this support later | 
 |          */ | 
 |         qemu_log_mask(LOG_UNIMP, | 
 |                       "[ARM]%s: Starting AArch64 CPU %" PRId64 | 
 |                       " in AArch32 mode is not supported yet\n", | 
 |                       __func__, cpuid); | 
 |         return QEMU_ARM_POWERCTL_INVALID_PARAM; | 
 |     } | 
 |  | 
 |     /* | 
 |      * If another CPU has powered the target on we are in the state | 
 |      * ON_PENDING and additional attempts to power on the CPU should | 
 |      * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI | 
 |      * spec) | 
 |      */ | 
 |     if (target_cpu->power_state == PSCI_ON_PENDING) { | 
 |         qemu_log_mask(LOG_GUEST_ERROR, | 
 |                       "[ARM]%s: CPU %" PRId64 " is already powering on\n", | 
 |                       __func__, cpuid); | 
 |         return QEMU_ARM_POWERCTL_ON_PENDING; | 
 |     } | 
 |  | 
 |     /* To avoid racing with a CPU we are just kicking off we do the | 
 |      * final bit of preparation for the work in the target CPUs | 
 |      * context. | 
 |      */ | 
 |     info = g_new(struct CpuOnInfo, 1); | 
 |     info->entry = entry; | 
 |     info->context_id = context_id; | 
 |     info->target_el = target_el; | 
 |     info->target_aa64 = target_aa64; | 
 |  | 
 |     async_run_on_cpu(target_cpu_state, arm_set_cpu_on_async_work, | 
 |                      RUN_ON_CPU_HOST_PTR(info)); | 
 |  | 
 |     /* We are good to go */ | 
 |     return QEMU_ARM_POWERCTL_RET_SUCCESS; | 
 | } | 
 |  | 
 | static void arm_set_cpu_on_and_reset_async_work(CPUState *target_cpu_state, | 
 |                                                 run_on_cpu_data data) | 
 | { | 
 |     ARMCPU *target_cpu = ARM_CPU(target_cpu_state); | 
 |  | 
 |     /* Initialize the cpu we are turning on */ | 
 |     cpu_reset(target_cpu_state); | 
 |     target_cpu_state->halted = 0; | 
 |  | 
 |     /* Finally set the power status */ | 
 |     assert(qemu_mutex_iothread_locked()); | 
 |     target_cpu->power_state = PSCI_ON; | 
 | } | 
 |  | 
 | int arm_set_cpu_on_and_reset(uint64_t cpuid) | 
 | { | 
 |     CPUState *target_cpu_state; | 
 |     ARMCPU *target_cpu; | 
 |  | 
 |     assert(qemu_mutex_iothread_locked()); | 
 |  | 
 |     /* Retrieve the cpu we are powering up */ | 
 |     target_cpu_state = arm_get_cpu_by_id(cpuid); | 
 |     if (!target_cpu_state) { | 
 |         /* The cpu was not found */ | 
 |         return QEMU_ARM_POWERCTL_INVALID_PARAM; | 
 |     } | 
 |  | 
 |     target_cpu = ARM_CPU(target_cpu_state); | 
 |     if (target_cpu->power_state == PSCI_ON) { | 
 |         qemu_log_mask(LOG_GUEST_ERROR, | 
 |                       "[ARM]%s: CPU %" PRId64 " is already on\n", | 
 |                       __func__, cpuid); | 
 |         return QEMU_ARM_POWERCTL_ALREADY_ON; | 
 |     } | 
 |  | 
 |     /* | 
 |      * If another CPU has powered the target on we are in the state | 
 |      * ON_PENDING and additional attempts to power on the CPU should | 
 |      * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI | 
 |      * spec) | 
 |      */ | 
 |     if (target_cpu->power_state == PSCI_ON_PENDING) { | 
 |         qemu_log_mask(LOG_GUEST_ERROR, | 
 |                       "[ARM]%s: CPU %" PRId64 " is already powering on\n", | 
 |                       __func__, cpuid); | 
 |         return QEMU_ARM_POWERCTL_ON_PENDING; | 
 |     } | 
 |  | 
 |     async_run_on_cpu(target_cpu_state, arm_set_cpu_on_and_reset_async_work, | 
 |                      RUN_ON_CPU_NULL); | 
 |  | 
 |     /* We are good to go */ | 
 |     return QEMU_ARM_POWERCTL_RET_SUCCESS; | 
 | } | 
 |  | 
 | static void arm_set_cpu_off_async_work(CPUState *target_cpu_state, | 
 |                                        run_on_cpu_data data) | 
 | { | 
 |     ARMCPU *target_cpu = ARM_CPU(target_cpu_state); | 
 |  | 
 |     assert(qemu_mutex_iothread_locked()); | 
 |     target_cpu->power_state = PSCI_OFF; | 
 |     target_cpu_state->halted = 1; | 
 |     target_cpu_state->exception_index = EXCP_HLT; | 
 | } | 
 |  | 
 | int arm_set_cpu_off(uint64_t cpuid) | 
 | { | 
 |     CPUState *target_cpu_state; | 
 |     ARMCPU *target_cpu; | 
 |  | 
 |     assert(qemu_mutex_iothread_locked()); | 
 |  | 
 |     DPRINTF("cpu %" PRId64 "\n", cpuid); | 
 |  | 
 |     /* change to the cpu we are powering up */ | 
 |     target_cpu_state = arm_get_cpu_by_id(cpuid); | 
 |     if (!target_cpu_state) { | 
 |         return QEMU_ARM_POWERCTL_INVALID_PARAM; | 
 |     } | 
 |     target_cpu = ARM_CPU(target_cpu_state); | 
 |     if (target_cpu->power_state == PSCI_OFF) { | 
 |         qemu_log_mask(LOG_GUEST_ERROR, | 
 |                       "[ARM]%s: CPU %" PRId64 " is already off\n", | 
 |                       __func__, cpuid); | 
 |         return QEMU_ARM_POWERCTL_IS_OFF; | 
 |     } | 
 |  | 
 |     /* Queue work to run under the target vCPUs context */ | 
 |     async_run_on_cpu(target_cpu_state, arm_set_cpu_off_async_work, | 
 |                      RUN_ON_CPU_NULL); | 
 |  | 
 |     return QEMU_ARM_POWERCTL_RET_SUCCESS; | 
 | } | 
 |  | 
 | static void arm_reset_cpu_async_work(CPUState *target_cpu_state, | 
 |                                      run_on_cpu_data data) | 
 | { | 
 |     /* Reset the cpu */ | 
 |     cpu_reset(target_cpu_state); | 
 | } | 
 |  | 
 | int arm_reset_cpu(uint64_t cpuid) | 
 | { | 
 |     CPUState *target_cpu_state; | 
 |     ARMCPU *target_cpu; | 
 |  | 
 |     assert(qemu_mutex_iothread_locked()); | 
 |  | 
 |     DPRINTF("cpu %" PRId64 "\n", cpuid); | 
 |  | 
 |     /* change to the cpu we are resetting */ | 
 |     target_cpu_state = arm_get_cpu_by_id(cpuid); | 
 |     if (!target_cpu_state) { | 
 |         return QEMU_ARM_POWERCTL_INVALID_PARAM; | 
 |     } | 
 |     target_cpu = ARM_CPU(target_cpu_state); | 
 |  | 
 |     if (target_cpu->power_state == PSCI_OFF) { | 
 |         qemu_log_mask(LOG_GUEST_ERROR, | 
 |                       "[ARM]%s: CPU %" PRId64 " is off\n", | 
 |                       __func__, cpuid); | 
 |         return QEMU_ARM_POWERCTL_IS_OFF; | 
 |     } | 
 |  | 
 |     /* Queue work to run under the target vCPUs context */ | 
 |     async_run_on_cpu(target_cpu_state, arm_reset_cpu_async_work, | 
 |                      RUN_ON_CPU_NULL); | 
 |  | 
 |     return QEMU_ARM_POWERCTL_RET_SUCCESS; | 
 | } |