| /* |
| * QEMU PowerPC PowerNV machine model |
| * |
| * Copyright (c) 2016, IBM Corporation. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qapi/error.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/numa.h" |
| #include "sysemu/cpus.h" |
| #include "hw/hw.h" |
| #include "target/ppc/cpu.h" |
| #include "qemu/log.h" |
| #include "hw/ppc/fdt.h" |
| #include "hw/ppc/ppc.h" |
| #include "hw/ppc/pnv.h" |
| #include "hw/ppc/pnv_core.h" |
| #include "hw/loader.h" |
| #include "exec/address-spaces.h" |
| #include "qemu/cutils.h" |
| #include "qapi/visitor.h" |
| #include "monitor/monitor.h" |
| #include "hw/intc/intc.h" |
| #include "hw/ipmi/ipmi.h" |
| |
| #include "hw/ppc/xics.h" |
| #include "hw/ppc/pnv_xscom.h" |
| |
| #include "hw/isa/isa.h" |
| #include "hw/char/serial.h" |
| #include "hw/timer/mc146818rtc.h" |
| |
| #include <libfdt.h> |
| |
| #define FDT_MAX_SIZE 0x00100000 |
| |
| #define FW_FILE_NAME "skiboot.lid" |
| #define FW_LOAD_ADDR 0x0 |
| #define FW_MAX_SIZE 0x00400000 |
| |
| #define KERNEL_LOAD_ADDR 0x20000000 |
| #define INITRD_LOAD_ADDR 0x40000000 |
| |
| /* |
| * On Power Systems E880 (POWER8), the max cpus (threads) should be : |
| * 4 * 4 sockets * 12 cores * 8 threads = 1536 |
| * Let's make it 2^11 |
| */ |
| #define MAX_CPUS 2048 |
| |
| /* |
| * Memory nodes are created by hostboot, one for each range of memory |
| * that has a different "affinity". In practice, it means one range |
| * per chip. |
| */ |
| static void powernv_populate_memory_node(void *fdt, int chip_id, hwaddr start, |
| hwaddr size) |
| { |
| char *mem_name; |
| uint64_t mem_reg_property[2]; |
| int off; |
| |
| mem_reg_property[0] = cpu_to_be64(start); |
| mem_reg_property[1] = cpu_to_be64(size); |
| |
| mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start); |
| off = fdt_add_subnode(fdt, 0, mem_name); |
| g_free(mem_name); |
| |
| _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); |
| _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, |
| sizeof(mem_reg_property)))); |
| _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id))); |
| } |
| |
| static int get_cpus_node(void *fdt) |
| { |
| int cpus_offset = fdt_path_offset(fdt, "/cpus"); |
| |
| if (cpus_offset < 0) { |
| cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), |
| "cpus"); |
| if (cpus_offset) { |
| _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); |
| _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); |
| } |
| } |
| _FDT(cpus_offset); |
| return cpus_offset; |
| } |
| |
| /* |
| * The PowerNV cores (and threads) need to use real HW ids and not an |
| * incremental index like it has been done on other platforms. This HW |
| * id is stored in the CPU PIR, it is used to create cpu nodes in the |
| * device tree, used in XSCOM to address cores and in interrupt |
| * servers. |
| */ |
| static void powernv_create_core_node(PnvChip *chip, PnvCore *pc, void *fdt) |
| { |
| CPUState *cs = CPU(DEVICE(pc->threads)); |
| DeviceClass *dc = DEVICE_GET_CLASS(cs); |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| int smt_threads = CPU_CORE(pc)->nr_threads; |
| CPUPPCState *env = &cpu->env; |
| PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); |
| uint32_t servers_prop[smt_threads]; |
| int i; |
| uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), |
| 0xffffffff, 0xffffffff}; |
| uint32_t tbfreq = PNV_TIMEBASE_FREQ; |
| uint32_t cpufreq = 1000000000; |
| uint32_t page_sizes_prop[64]; |
| size_t page_sizes_prop_size; |
| const uint8_t pa_features[] = { 24, 0, |
| 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0, |
| 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, |
| 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 }; |
| int offset; |
| char *nodename; |
| int cpus_offset = get_cpus_node(fdt); |
| |
| nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir); |
| offset = fdt_add_subnode(fdt, cpus_offset, nodename); |
| _FDT(offset); |
| g_free(nodename); |
| |
| _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id))); |
| |
| _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir))); |
| _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir))); |
| _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); |
| |
| _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); |
| _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", |
| env->dcache_line_size))); |
| _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", |
| env->dcache_line_size))); |
| _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", |
| env->icache_line_size))); |
| _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", |
| env->icache_line_size))); |
| |
| if (pcc->l1_dcache_size) { |
| _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", |
| pcc->l1_dcache_size))); |
| } else { |
| error_report("Warning: Unknown L1 dcache size for cpu"); |
| } |
| if (pcc->l1_icache_size) { |
| _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", |
| pcc->l1_icache_size))); |
| } else { |
| error_report("Warning: Unknown L1 icache size for cpu"); |
| } |
| |
| _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); |
| _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); |
| _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr))); |
| _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); |
| _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); |
| |
| if (env->spr_cb[SPR_PURR].oea_read) { |
| _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); |
| } |
| |
| if (env->mmu_model & POWERPC_MMU_1TSEG) { |
| _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", |
| segs, sizeof(segs)))); |
| } |
| |
| /* Advertise VMX/VSX (vector extensions) if available |
| * 0 / no property == no vector extensions |
| * 1 == VMX / Altivec available |
| * 2 == VSX available */ |
| if (env->insns_flags & PPC_ALTIVEC) { |
| uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; |
| |
| _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); |
| } |
| |
| /* Advertise DFP (Decimal Floating Point) if available |
| * 0 / no property == no DFP |
| * 1 == DFP available */ |
| if (env->insns_flags2 & PPC2_DFP) { |
| _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); |
| } |
| |
| page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop, |
| sizeof(page_sizes_prop)); |
| if (page_sizes_prop_size) { |
| _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", |
| page_sizes_prop, page_sizes_prop_size))); |
| } |
| |
| _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", |
| pa_features, sizeof(pa_features)))); |
| |
| /* Build interrupt servers properties */ |
| for (i = 0; i < smt_threads; i++) { |
| servers_prop[i] = cpu_to_be32(pc->pir + i); |
| } |
| _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", |
| servers_prop, sizeof(servers_prop)))); |
| } |
| |
| static void powernv_populate_icp(PnvChip *chip, void *fdt, uint32_t pir, |
| uint32_t nr_threads) |
| { |
| uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12); |
| char *name; |
| const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp"; |
| uint32_t irange[2], i, rsize; |
| uint64_t *reg; |
| int offset; |
| |
| irange[0] = cpu_to_be32(pir); |
| irange[1] = cpu_to_be32(nr_threads); |
| |
| rsize = sizeof(uint64_t) * 2 * nr_threads; |
| reg = g_malloc(rsize); |
| for (i = 0; i < nr_threads; i++) { |
| reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000)); |
| reg[i * 2 + 1] = cpu_to_be64(0x1000); |
| } |
| |
| name = g_strdup_printf("interrupt-controller@%"PRIX64, addr); |
| offset = fdt_add_subnode(fdt, 0, name); |
| _FDT(offset); |
| g_free(name); |
| |
| _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat)))); |
| _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize))); |
| _FDT((fdt_setprop_string(fdt, offset, "device_type", |
| "PowerPC-External-Interrupt-Presentation"))); |
| _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0))); |
| _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges", |
| irange, sizeof(irange)))); |
| _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1))); |
| _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0))); |
| g_free(reg); |
| } |
| |
| static int pnv_chip_lpc_offset(PnvChip *chip, void *fdt) |
| { |
| char *name; |
| int offset; |
| |
| name = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x", |
| (uint64_t) PNV_XSCOM_BASE(chip), PNV_XSCOM_LPC_BASE); |
| offset = fdt_path_offset(fdt, name); |
| g_free(name); |
| return offset; |
| } |
| |
| static void powernv_populate_chip(PnvChip *chip, void *fdt) |
| { |
| PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); |
| char *typename = pnv_core_typename(pcc->cpu_model); |
| size_t typesize = object_type_get_instance_size(typename); |
| int i; |
| |
| pnv_xscom_populate(chip, fdt, 0); |
| |
| /* The default LPC bus of a multichip system is on chip 0. It's |
| * recognized by the firmware (skiboot) using a "primary" |
| * property. |
| */ |
| if (chip->chip_id == 0x0) { |
| int lpc_offset = pnv_chip_lpc_offset(chip, fdt); |
| |
| _FDT((fdt_setprop(fdt, lpc_offset, "primary", NULL, 0))); |
| } |
| |
| for (i = 0; i < chip->nr_cores; i++) { |
| PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize); |
| |
| powernv_create_core_node(chip, pnv_core, fdt); |
| |
| /* Interrupt Control Presenters (ICP). One per core. */ |
| powernv_populate_icp(chip, fdt, pnv_core->pir, |
| CPU_CORE(pnv_core)->nr_threads); |
| } |
| |
| if (chip->ram_size) { |
| powernv_populate_memory_node(fdt, chip->chip_id, chip->ram_start, |
| chip->ram_size); |
| } |
| g_free(typename); |
| } |
| |
| static void powernv_populate_rtc(ISADevice *d, void *fdt, int lpc_off) |
| { |
| uint32_t io_base = d->ioport_id; |
| uint32_t io_regs[] = { |
| cpu_to_be32(1), |
| cpu_to_be32(io_base), |
| cpu_to_be32(2) |
| }; |
| char *name; |
| int node; |
| |
| name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); |
| node = fdt_add_subnode(fdt, lpc_off, name); |
| _FDT(node); |
| g_free(name); |
| |
| _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); |
| _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00"))); |
| } |
| |
| static void powernv_populate_serial(ISADevice *d, void *fdt, int lpc_off) |
| { |
| const char compatible[] = "ns16550\0pnpPNP,501"; |
| uint32_t io_base = d->ioport_id; |
| uint32_t io_regs[] = { |
| cpu_to_be32(1), |
| cpu_to_be32(io_base), |
| cpu_to_be32(8) |
| }; |
| char *name; |
| int node; |
| |
| name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); |
| node = fdt_add_subnode(fdt, lpc_off, name); |
| _FDT(node); |
| g_free(name); |
| |
| _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); |
| _FDT((fdt_setprop(fdt, node, "compatible", compatible, |
| sizeof(compatible)))); |
| |
| _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200))); |
| _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200))); |
| _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0]))); |
| _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", |
| fdt_get_phandle(fdt, lpc_off)))); |
| |
| /* This is needed by Linux */ |
| _FDT((fdt_setprop_string(fdt, node, "device_type", "serial"))); |
| } |
| |
| static void powernv_populate_ipmi_bt(ISADevice *d, void *fdt, int lpc_off) |
| { |
| const char compatible[] = "bt\0ipmi-bt"; |
| uint32_t io_base; |
| uint32_t io_regs[] = { |
| cpu_to_be32(1), |
| 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */ |
| cpu_to_be32(3) |
| }; |
| uint32_t irq; |
| char *name; |
| int node; |
| |
| io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal); |
| io_regs[1] = cpu_to_be32(io_base); |
| |
| irq = object_property_get_int(OBJECT(d), "irq", &error_fatal); |
| |
| name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); |
| node = fdt_add_subnode(fdt, lpc_off, name); |
| _FDT(node); |
| g_free(name); |
| |
| _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); |
| _FDT((fdt_setprop(fdt, node, "compatible", compatible, |
| sizeof(compatible)))); |
| |
| /* Mark it as reserved to avoid Linux trying to claim it */ |
| _FDT((fdt_setprop_string(fdt, node, "status", "reserved"))); |
| _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq))); |
| _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", |
| fdt_get_phandle(fdt, lpc_off)))); |
| } |
| |
| typedef struct ForeachPopulateArgs { |
| void *fdt; |
| int offset; |
| } ForeachPopulateArgs; |
| |
| static int powernv_populate_isa_device(DeviceState *dev, void *opaque) |
| { |
| ForeachPopulateArgs *args = opaque; |
| ISADevice *d = ISA_DEVICE(dev); |
| |
| if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) { |
| powernv_populate_rtc(d, args->fdt, args->offset); |
| } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) { |
| powernv_populate_serial(d, args->fdt, args->offset); |
| } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) { |
| powernv_populate_ipmi_bt(d, args->fdt, args->offset); |
| } else { |
| error_report("unknown isa device %s@i%x", qdev_fw_name(dev), |
| d->ioport_id); |
| } |
| |
| return 0; |
| } |
| |
| static void powernv_populate_isa(ISABus *bus, void *fdt, int lpc_offset) |
| { |
| ForeachPopulateArgs args = { |
| .fdt = fdt, |
| .offset = lpc_offset, |
| }; |
| |
| /* ISA devices are not necessarily parented to the ISA bus so we |
| * can not use object_child_foreach() */ |
| qbus_walk_children(BUS(bus), powernv_populate_isa_device, |
| NULL, NULL, NULL, &args); |
| } |
| |
| static void *powernv_create_fdt(MachineState *machine) |
| { |
| const char plat_compat[] = "qemu,powernv\0ibm,powernv"; |
| PnvMachineState *pnv = POWERNV_MACHINE(machine); |
| void *fdt; |
| char *buf; |
| int off; |
| int i; |
| int lpc_offset; |
| |
| fdt = g_malloc0(FDT_MAX_SIZE); |
| _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); |
| |
| /* Root node */ |
| _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2))); |
| _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2))); |
| _FDT((fdt_setprop_string(fdt, 0, "model", |
| "IBM PowerNV (emulated by qemu)"))); |
| _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat, |
| sizeof(plat_compat)))); |
| |
| buf = qemu_uuid_unparse_strdup(&qemu_uuid); |
| _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf))); |
| if (qemu_uuid_set) { |
| _FDT((fdt_property_string(fdt, "system-id", buf))); |
| } |
| g_free(buf); |
| |
| off = fdt_add_subnode(fdt, 0, "chosen"); |
| if (machine->kernel_cmdline) { |
| _FDT((fdt_setprop_string(fdt, off, "bootargs", |
| machine->kernel_cmdline))); |
| } |
| |
| if (pnv->initrd_size) { |
| uint32_t start_prop = cpu_to_be32(pnv->initrd_base); |
| uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size); |
| |
| _FDT((fdt_setprop(fdt, off, "linux,initrd-start", |
| &start_prop, sizeof(start_prop)))); |
| _FDT((fdt_setprop(fdt, off, "linux,initrd-end", |
| &end_prop, sizeof(end_prop)))); |
| } |
| |
| /* Populate device tree for each chip */ |
| for (i = 0; i < pnv->num_chips; i++) { |
| powernv_populate_chip(pnv->chips[i], fdt); |
| } |
| |
| /* Populate ISA devices on chip 0 */ |
| lpc_offset = pnv_chip_lpc_offset(pnv->chips[0], fdt); |
| powernv_populate_isa(pnv->isa_bus, fdt, lpc_offset); |
| |
| if (pnv->bmc) { |
| pnv_bmc_populate_sensors(pnv->bmc, fdt); |
| } |
| |
| return fdt; |
| } |
| |
| static void pnv_powerdown_notify(Notifier *n, void *opaque) |
| { |
| PnvMachineState *pnv = POWERNV_MACHINE(qdev_get_machine()); |
| |
| if (pnv->bmc) { |
| pnv_bmc_powerdown(pnv->bmc); |
| } |
| } |
| |
| static void ppc_powernv_reset(void) |
| { |
| MachineState *machine = MACHINE(qdev_get_machine()); |
| PnvMachineState *pnv = POWERNV_MACHINE(machine); |
| void *fdt; |
| Object *obj; |
| |
| qemu_devices_reset(); |
| |
| /* OpenPOWER systems have a BMC, which can be defined on the |
| * command line with: |
| * |
| * -device ipmi-bmc-sim,id=bmc0 |
| * |
| * This is the internal simulator but it could also be an external |
| * BMC. |
| */ |
| obj = object_resolve_path_type("", "ipmi-bmc-sim", NULL); |
| if (obj) { |
| pnv->bmc = IPMI_BMC(obj); |
| } |
| |
| fdt = powernv_create_fdt(machine); |
| |
| /* Pack resulting tree */ |
| _FDT((fdt_pack(fdt))); |
| |
| cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt)); |
| } |
| |
| static ISABus *pnv_isa_create(PnvChip *chip) |
| { |
| PnvLpcController *lpc = &chip->lpc; |
| ISABus *isa_bus; |
| qemu_irq *irqs; |
| PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); |
| |
| /* let isa_bus_new() create its own bridge on SysBus otherwise |
| * devices speficied on the command line won't find the bus and |
| * will fail to create. |
| */ |
| isa_bus = isa_bus_new(NULL, &lpc->isa_mem, &lpc->isa_io, |
| &error_fatal); |
| |
| irqs = pnv_lpc_isa_irq_create(lpc, pcc->chip_type, ISA_NUM_IRQS); |
| |
| isa_bus_irqs(isa_bus, irqs); |
| return isa_bus; |
| } |
| |
| static void ppc_powernv_init(MachineState *machine) |
| { |
| PnvMachineState *pnv = POWERNV_MACHINE(machine); |
| MemoryRegion *ram; |
| char *fw_filename; |
| long fw_size; |
| int i; |
| char *chip_typename; |
| |
| /* allocate RAM */ |
| if (machine->ram_size < (1 * G_BYTE)) { |
| error_report("Warning: skiboot may not work with < 1GB of RAM"); |
| } |
| |
| ram = g_new(MemoryRegion, 1); |
| memory_region_allocate_system_memory(ram, NULL, "ppc_powernv.ram", |
| machine->ram_size); |
| memory_region_add_subregion(get_system_memory(), 0, ram); |
| |
| /* load skiboot firmware */ |
| if (bios_name == NULL) { |
| bios_name = FW_FILE_NAME; |
| } |
| |
| fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); |
| |
| fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE); |
| if (fw_size < 0) { |
| error_report("Could not load OPAL '%s'", fw_filename); |
| exit(1); |
| } |
| g_free(fw_filename); |
| |
| /* load kernel */ |
| if (machine->kernel_filename) { |
| long kernel_size; |
| |
| kernel_size = load_image_targphys(machine->kernel_filename, |
| KERNEL_LOAD_ADDR, 0x2000000); |
| if (kernel_size < 0) { |
| error_report("Could not load kernel '%s'", |
| machine->kernel_filename); |
| exit(1); |
| } |
| } |
| |
| /* load initrd */ |
| if (machine->initrd_filename) { |
| pnv->initrd_base = INITRD_LOAD_ADDR; |
| pnv->initrd_size = load_image_targphys(machine->initrd_filename, |
| pnv->initrd_base, 0x10000000); /* 128MB max */ |
| if (pnv->initrd_size < 0) { |
| error_report("Could not load initial ram disk '%s'", |
| machine->initrd_filename); |
| exit(1); |
| } |
| } |
| |
| /* We need some cpu model to instantiate the PnvChip class */ |
| if (machine->cpu_model == NULL) { |
| machine->cpu_model = "POWER8"; |
| } |
| |
| /* Create the processor chips */ |
| chip_typename = g_strdup_printf(TYPE_PNV_CHIP "-%s", machine->cpu_model); |
| if (!object_class_by_name(chip_typename)) { |
| error_report("invalid CPU model '%s' for %s machine", |
| machine->cpu_model, MACHINE_GET_CLASS(machine)->name); |
| exit(1); |
| } |
| |
| pnv->chips = g_new0(PnvChip *, pnv->num_chips); |
| for (i = 0; i < pnv->num_chips; i++) { |
| char chip_name[32]; |
| Object *chip = object_new(chip_typename); |
| |
| pnv->chips[i] = PNV_CHIP(chip); |
| |
| /* TODO: put all the memory in one node on chip 0 until we find a |
| * way to specify different ranges for each chip |
| */ |
| if (i == 0) { |
| object_property_set_int(chip, machine->ram_size, "ram-size", |
| &error_fatal); |
| } |
| |
| snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i)); |
| object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal); |
| object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id", |
| &error_fatal); |
| object_property_set_int(chip, smp_cores, "nr-cores", &error_fatal); |
| object_property_set_bool(chip, true, "realized", &error_fatal); |
| } |
| g_free(chip_typename); |
| |
| /* Instantiate ISA bus on chip 0 */ |
| pnv->isa_bus = pnv_isa_create(pnv->chips[0]); |
| |
| /* Create serial port */ |
| serial_hds_isa_init(pnv->isa_bus, 0, MAX_SERIAL_PORTS); |
| |
| /* Create an RTC ISA device too */ |
| rtc_init(pnv->isa_bus, 2000, NULL); |
| |
| /* OpenPOWER systems use a IPMI SEL Event message to notify the |
| * host to powerdown */ |
| pnv->powerdown_notifier.notify = pnv_powerdown_notify; |
| qemu_register_powerdown_notifier(&pnv->powerdown_notifier); |
| } |
| |
| /* |
| * 0:21 Reserved - Read as zeros |
| * 22:24 Chip ID |
| * 25:28 Core number |
| * 29:31 Thread ID |
| */ |
| static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id) |
| { |
| return (chip->chip_id << 7) | (core_id << 3); |
| } |
| |
| /* |
| * 0:48 Reserved - Read as zeroes |
| * 49:52 Node ID |
| * 53:55 Chip ID |
| * 56 Reserved - Read as zero |
| * 57:61 Core number |
| * 62:63 Thread ID |
| * |
| * We only care about the lower bits. uint32_t is fine for the moment. |
| */ |
| static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id) |
| { |
| return (chip->chip_id << 8) | (core_id << 2); |
| } |
| |
| /* Allowed core identifiers on a POWER8 Processor Chip : |
| * |
| * <EX0 reserved> |
| * EX1 - Venice only |
| * EX2 - Venice only |
| * EX3 - Venice only |
| * EX4 |
| * EX5 |
| * EX6 |
| * <EX7,8 reserved> <reserved> |
| * EX9 - Venice only |
| * EX10 - Venice only |
| * EX11 - Venice only |
| * EX12 |
| * EX13 |
| * EX14 |
| * <EX15 reserved> |
| */ |
| #define POWER8E_CORE_MASK (0x7070ull) |
| #define POWER8_CORE_MASK (0x7e7eull) |
| |
| /* |
| * POWER9 has 24 cores, ids starting at 0x20 |
| */ |
| #define POWER9_CORE_MASK (0xffffff00000000ull) |
| |
| static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| PnvChipClass *k = PNV_CHIP_CLASS(klass); |
| |
| k->cpu_model = "POWER8E"; |
| k->chip_type = PNV_CHIP_POWER8E; |
| k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */ |
| k->cores_mask = POWER8E_CORE_MASK; |
| k->core_pir = pnv_chip_core_pir_p8; |
| k->xscom_base = 0x003fc0000000000ull; |
| k->xscom_core_base = 0x10000000ull; |
| dc->desc = "PowerNV Chip POWER8E"; |
| } |
| |
| static const TypeInfo pnv_chip_power8e_info = { |
| .name = TYPE_PNV_CHIP_POWER8E, |
| .parent = TYPE_PNV_CHIP, |
| .instance_size = sizeof(PnvChip), |
| .class_init = pnv_chip_power8e_class_init, |
| }; |
| |
| static void pnv_chip_power8_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| PnvChipClass *k = PNV_CHIP_CLASS(klass); |
| |
| k->cpu_model = "POWER8"; |
| k->chip_type = PNV_CHIP_POWER8; |
| k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */ |
| k->cores_mask = POWER8_CORE_MASK; |
| k->core_pir = pnv_chip_core_pir_p8; |
| k->xscom_base = 0x003fc0000000000ull; |
| k->xscom_core_base = 0x10000000ull; |
| dc->desc = "PowerNV Chip POWER8"; |
| } |
| |
| static const TypeInfo pnv_chip_power8_info = { |
| .name = TYPE_PNV_CHIP_POWER8, |
| .parent = TYPE_PNV_CHIP, |
| .instance_size = sizeof(PnvChip), |
| .class_init = pnv_chip_power8_class_init, |
| }; |
| |
| static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| PnvChipClass *k = PNV_CHIP_CLASS(klass); |
| |
| k->cpu_model = "POWER8NVL"; |
| k->chip_type = PNV_CHIP_POWER8NVL; |
| k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */ |
| k->cores_mask = POWER8_CORE_MASK; |
| k->core_pir = pnv_chip_core_pir_p8; |
| k->xscom_base = 0x003fc0000000000ull; |
| k->xscom_core_base = 0x10000000ull; |
| dc->desc = "PowerNV Chip POWER8NVL"; |
| } |
| |
| static const TypeInfo pnv_chip_power8nvl_info = { |
| .name = TYPE_PNV_CHIP_POWER8NVL, |
| .parent = TYPE_PNV_CHIP, |
| .instance_size = sizeof(PnvChip), |
| .class_init = pnv_chip_power8nvl_class_init, |
| }; |
| |
| static void pnv_chip_power9_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| PnvChipClass *k = PNV_CHIP_CLASS(klass); |
| |
| k->cpu_model = "POWER9"; |
| k->chip_type = PNV_CHIP_POWER9; |
| k->chip_cfam_id = 0x100d104980000000ull; /* P9 Nimbus DD1.0 */ |
| k->cores_mask = POWER9_CORE_MASK; |
| k->core_pir = pnv_chip_core_pir_p9; |
| k->xscom_base = 0x00603fc00000000ull; |
| k->xscom_core_base = 0x0ull; |
| dc->desc = "PowerNV Chip POWER9"; |
| } |
| |
| static const TypeInfo pnv_chip_power9_info = { |
| .name = TYPE_PNV_CHIP_POWER9, |
| .parent = TYPE_PNV_CHIP, |
| .instance_size = sizeof(PnvChip), |
| .class_init = pnv_chip_power9_class_init, |
| }; |
| |
| static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp) |
| { |
| PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); |
| int cores_max; |
| |
| /* |
| * No custom mask for this chip, let's use the default one from * |
| * the chip class |
| */ |
| if (!chip->cores_mask) { |
| chip->cores_mask = pcc->cores_mask; |
| } |
| |
| /* filter alien core ids ! some are reserved */ |
| if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) { |
| error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !", |
| chip->cores_mask); |
| return; |
| } |
| chip->cores_mask &= pcc->cores_mask; |
| |
| /* now that we have a sane layout, let check the number of cores */ |
| cores_max = ctpop64(chip->cores_mask); |
| if (chip->nr_cores > cores_max) { |
| error_setg(errp, "warning: too many cores for chip ! Limit is %d", |
| cores_max); |
| return; |
| } |
| } |
| |
| static void pnv_chip_init(Object *obj) |
| { |
| PnvChip *chip = PNV_CHIP(obj); |
| PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); |
| |
| chip->xscom_base = pcc->xscom_base; |
| |
| object_initialize(&chip->lpc, sizeof(chip->lpc), TYPE_PNV_LPC); |
| object_property_add_child(obj, "lpc", OBJECT(&chip->lpc), NULL); |
| |
| object_initialize(&chip->psi, sizeof(chip->psi), TYPE_PNV_PSI); |
| object_property_add_child(obj, "psi", OBJECT(&chip->psi), NULL); |
| object_property_add_const_link(OBJECT(&chip->psi), "xics", |
| OBJECT(qdev_get_machine()), &error_abort); |
| |
| object_initialize(&chip->occ, sizeof(chip->occ), TYPE_PNV_OCC); |
| object_property_add_child(obj, "occ", OBJECT(&chip->occ), NULL); |
| object_property_add_const_link(OBJECT(&chip->occ), "psi", |
| OBJECT(&chip->psi), &error_abort); |
| |
| /* The LPC controller needs PSI to generate interrupts */ |
| object_property_add_const_link(OBJECT(&chip->lpc), "psi", |
| OBJECT(&chip->psi), &error_abort); |
| } |
| |
| static void pnv_chip_icp_realize(PnvChip *chip, Error **errp) |
| { |
| PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); |
| char *typename = pnv_core_typename(pcc->cpu_model); |
| size_t typesize = object_type_get_instance_size(typename); |
| int i, j; |
| char *name; |
| XICSFabric *xi = XICS_FABRIC(qdev_get_machine()); |
| |
| name = g_strdup_printf("icp-%x", chip->chip_id); |
| memory_region_init(&chip->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE); |
| sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip->icp_mmio); |
| g_free(name); |
| |
| sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip)); |
| |
| /* Map the ICP registers for each thread */ |
| for (i = 0; i < chip->nr_cores; i++) { |
| PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize); |
| int core_hwid = CPU_CORE(pnv_core)->core_id; |
| |
| for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) { |
| uint32_t pir = pcc->core_pir(chip, core_hwid) + j; |
| PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir)); |
| |
| memory_region_add_subregion(&chip->icp_mmio, pir << 12, &icp->mmio); |
| } |
| } |
| |
| g_free(typename); |
| } |
| |
| static void pnv_chip_realize(DeviceState *dev, Error **errp) |
| { |
| PnvChip *chip = PNV_CHIP(dev); |
| Error *error = NULL; |
| PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); |
| char *typename = pnv_core_typename(pcc->cpu_model); |
| size_t typesize = object_type_get_instance_size(typename); |
| int i, core_hwid; |
| |
| if (!object_class_by_name(typename)) { |
| error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename); |
| return; |
| } |
| |
| /* XSCOM bridge */ |
| pnv_xscom_realize(chip, &error); |
| if (error) { |
| error_propagate(errp, error); |
| return; |
| } |
| sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip)); |
| |
| /* Cores */ |
| pnv_chip_core_sanitize(chip, &error); |
| if (error) { |
| error_propagate(errp, error); |
| return; |
| } |
| |
| chip->cores = g_malloc0(typesize * chip->nr_cores); |
| |
| for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8) |
| && (i < chip->nr_cores); core_hwid++) { |
| char core_name[32]; |
| void *pnv_core = chip->cores + i * typesize; |
| |
| if (!(chip->cores_mask & (1ull << core_hwid))) { |
| continue; |
| } |
| |
| object_initialize(pnv_core, typesize, typename); |
| snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid); |
| object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core), |
| &error_fatal); |
| object_property_set_int(OBJECT(pnv_core), smp_threads, "nr-threads", |
| &error_fatal); |
| object_property_set_int(OBJECT(pnv_core), core_hwid, |
| CPU_CORE_PROP_CORE_ID, &error_fatal); |
| object_property_set_int(OBJECT(pnv_core), |
| pcc->core_pir(chip, core_hwid), |
| "pir", &error_fatal); |
| object_property_add_const_link(OBJECT(pnv_core), "xics", |
| qdev_get_machine(), &error_fatal); |
| object_property_set_bool(OBJECT(pnv_core), true, "realized", |
| &error_fatal); |
| object_unref(OBJECT(pnv_core)); |
| |
| /* Each core has an XSCOM MMIO region */ |
| pnv_xscom_add_subregion(chip, |
| PNV_XSCOM_EX_CORE_BASE(pcc->xscom_core_base, |
| core_hwid), |
| &PNV_CORE(pnv_core)->xscom_regs); |
| i++; |
| } |
| g_free(typename); |
| |
| /* Create LPC controller */ |
| object_property_set_bool(OBJECT(&chip->lpc), true, "realized", |
| &error_fatal); |
| pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip->lpc.xscom_regs); |
| |
| /* Interrupt Management Area. This is the memory region holding |
| * all the Interrupt Control Presenter (ICP) registers */ |
| pnv_chip_icp_realize(chip, &error); |
| if (error) { |
| error_propagate(errp, error); |
| return; |
| } |
| |
| /* Processor Service Interface (PSI) Host Bridge */ |
| object_property_set_int(OBJECT(&chip->psi), PNV_PSIHB_BASE(chip), |
| "bar", &error_fatal); |
| object_property_set_bool(OBJECT(&chip->psi), true, "realized", &error); |
| if (error) { |
| error_propagate(errp, error); |
| return; |
| } |
| pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE, &chip->psi.xscom_regs); |
| |
| /* Create the simplified OCC model */ |
| object_property_set_bool(OBJECT(&chip->occ), true, "realized", &error); |
| if (error) { |
| error_propagate(errp, error); |
| return; |
| } |
| pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip->occ.xscom_regs); |
| } |
| |
| static Property pnv_chip_properties[] = { |
| DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0), |
| DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0), |
| DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0), |
| DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1), |
| DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void pnv_chip_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| set_bit(DEVICE_CATEGORY_CPU, dc->categories); |
| dc->realize = pnv_chip_realize; |
| dc->props = pnv_chip_properties; |
| dc->desc = "PowerNV Chip"; |
| } |
| |
| static const TypeInfo pnv_chip_info = { |
| .name = TYPE_PNV_CHIP, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .class_init = pnv_chip_class_init, |
| .instance_init = pnv_chip_init, |
| .class_size = sizeof(PnvChipClass), |
| .abstract = true, |
| }; |
| |
| static ICSState *pnv_ics_get(XICSFabric *xi, int irq) |
| { |
| PnvMachineState *pnv = POWERNV_MACHINE(xi); |
| int i; |
| |
| for (i = 0; i < pnv->num_chips; i++) { |
| if (ics_valid_irq(&pnv->chips[i]->psi.ics, irq)) { |
| return &pnv->chips[i]->psi.ics; |
| } |
| } |
| return NULL; |
| } |
| |
| static void pnv_ics_resend(XICSFabric *xi) |
| { |
| PnvMachineState *pnv = POWERNV_MACHINE(xi); |
| int i; |
| |
| for (i = 0; i < pnv->num_chips; i++) { |
| ics_resend(&pnv->chips[i]->psi.ics); |
| } |
| } |
| |
| static PowerPCCPU *ppc_get_vcpu_by_pir(int pir) |
| { |
| CPUState *cs; |
| |
| CPU_FOREACH(cs) { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| CPUPPCState *env = &cpu->env; |
| |
| if (env->spr_cb[SPR_PIR].default_value == pir) { |
| return cpu; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static ICPState *pnv_icp_get(XICSFabric *xi, int pir) |
| { |
| PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir); |
| |
| return cpu ? ICP(cpu->intc) : NULL; |
| } |
| |
| static void pnv_pic_print_info(InterruptStatsProvider *obj, |
| Monitor *mon) |
| { |
| PnvMachineState *pnv = POWERNV_MACHINE(obj); |
| int i; |
| CPUState *cs; |
| |
| CPU_FOREACH(cs) { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| |
| icp_pic_print_info(ICP(cpu->intc), mon); |
| } |
| |
| for (i = 0; i < pnv->num_chips; i++) { |
| ics_pic_print_info(&pnv->chips[i]->psi.ics, mon); |
| } |
| } |
| |
| static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name, |
| void *opaque, Error **errp) |
| { |
| visit_type_uint32(v, name, &POWERNV_MACHINE(obj)->num_chips, errp); |
| } |
| |
| static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name, |
| void *opaque, Error **errp) |
| { |
| PnvMachineState *pnv = POWERNV_MACHINE(obj); |
| uint32_t num_chips; |
| Error *local_err = NULL; |
| |
| visit_type_uint32(v, name, &num_chips, &local_err); |
| if (local_err) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| |
| /* |
| * TODO: should we decide on how many chips we can create based |
| * on #cores and Venice vs. Murano vs. Naples chip type etc..., |
| */ |
| if (!is_power_of_2(num_chips) || num_chips > 4) { |
| error_setg(errp, "invalid number of chips: '%d'", num_chips); |
| return; |
| } |
| |
| pnv->num_chips = num_chips; |
| } |
| |
| static void powernv_machine_initfn(Object *obj) |
| { |
| PnvMachineState *pnv = POWERNV_MACHINE(obj); |
| pnv->num_chips = 1; |
| } |
| |
| static void powernv_machine_class_props_init(ObjectClass *oc) |
| { |
| object_class_property_add(oc, "num-chips", "uint32_t", |
| pnv_get_num_chips, pnv_set_num_chips, |
| NULL, NULL, NULL); |
| object_class_property_set_description(oc, "num-chips", |
| "Specifies the number of processor chips", |
| NULL); |
| } |
| |
| static void powernv_machine_class_init(ObjectClass *oc, void *data) |
| { |
| MachineClass *mc = MACHINE_CLASS(oc); |
| XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); |
| InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); |
| |
| mc->desc = "IBM PowerNV (Non-Virtualized)"; |
| mc->init = ppc_powernv_init; |
| mc->reset = ppc_powernv_reset; |
| mc->max_cpus = MAX_CPUS; |
| mc->block_default_type = IF_IDE; /* Pnv provides a AHCI device for |
| * storage */ |
| mc->no_parallel = 1; |
| mc->default_boot_order = NULL; |
| mc->default_ram_size = 1 * G_BYTE; |
| xic->icp_get = pnv_icp_get; |
| xic->ics_get = pnv_ics_get; |
| xic->ics_resend = pnv_ics_resend; |
| ispc->print_info = pnv_pic_print_info; |
| |
| powernv_machine_class_props_init(oc); |
| } |
| |
| static const TypeInfo powernv_machine_info = { |
| .name = TYPE_POWERNV_MACHINE, |
| .parent = TYPE_MACHINE, |
| .instance_size = sizeof(PnvMachineState), |
| .instance_init = powernv_machine_initfn, |
| .class_init = powernv_machine_class_init, |
| .interfaces = (InterfaceInfo[]) { |
| { TYPE_XICS_FABRIC }, |
| { TYPE_INTERRUPT_STATS_PROVIDER }, |
| { }, |
| }, |
| }; |
| |
| static void powernv_machine_register_types(void) |
| { |
| type_register_static(&powernv_machine_info); |
| type_register_static(&pnv_chip_info); |
| type_register_static(&pnv_chip_power8e_info); |
| type_register_static(&pnv_chip_power8_info); |
| type_register_static(&pnv_chip_power8nvl_info); |
| type_register_static(&pnv_chip_power9_info); |
| } |
| |
| type_init(powernv_machine_register_types) |