| /* |
| * virtual page mapping and translated block handling |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| #include "config.h" |
| #ifdef _WIN32 |
| #define WIN32_LEAN_AND_MEAN |
| #include <windows.h> |
| #else |
| #include <sys/types.h> |
| #include <sys/mman.h> |
| #endif |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <stdarg.h> |
| #include <string.h> |
| #include <errno.h> |
| #include <unistd.h> |
| #include <inttypes.h> |
| |
| #include "cpu.h" |
| #include "exec-all.h" |
| #include "qemu-common.h" |
| #include "tcg.h" |
| #include "hw/hw.h" |
| #if defined(CONFIG_USER_ONLY) |
| #include <qemu.h> |
| #endif |
| |
| //#define DEBUG_TB_INVALIDATE |
| //#define DEBUG_FLUSH |
| //#define DEBUG_TLB |
| //#define DEBUG_UNASSIGNED |
| |
| /* make various TB consistency checks */ |
| //#define DEBUG_TB_CHECK |
| //#define DEBUG_TLB_CHECK |
| |
| //#define DEBUG_IOPORT |
| //#define DEBUG_SUBPAGE |
| |
| #if !defined(CONFIG_USER_ONLY) |
| /* TB consistency checks only implemented for usermode emulation. */ |
| #undef DEBUG_TB_CHECK |
| #endif |
| |
| #define SMC_BITMAP_USE_THRESHOLD 10 |
| |
| #define MMAP_AREA_START 0x00000000 |
| #define MMAP_AREA_END 0xa8000000 |
| |
| #if defined(TARGET_SPARC64) |
| #define TARGET_PHYS_ADDR_SPACE_BITS 41 |
| #elif defined(TARGET_SPARC) |
| #define TARGET_PHYS_ADDR_SPACE_BITS 36 |
| #elif defined(TARGET_ALPHA) |
| #define TARGET_PHYS_ADDR_SPACE_BITS 42 |
| #define TARGET_VIRT_ADDR_SPACE_BITS 42 |
| #elif defined(TARGET_PPC64) |
| #define TARGET_PHYS_ADDR_SPACE_BITS 42 |
| #elif defined(TARGET_X86_64) && !defined(USE_KQEMU) |
| #define TARGET_PHYS_ADDR_SPACE_BITS 42 |
| #elif defined(TARGET_I386) && !defined(USE_KQEMU) |
| #define TARGET_PHYS_ADDR_SPACE_BITS 36 |
| #else |
| /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */ |
| #define TARGET_PHYS_ADDR_SPACE_BITS 32 |
| #endif |
| |
| TranslationBlock *tbs; |
| int code_gen_max_blocks; |
| TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; |
| int nb_tbs; |
| /* any access to the tbs or the page table must use this lock */ |
| spinlock_t tb_lock = SPIN_LOCK_UNLOCKED; |
| |
| uint8_t code_gen_prologue[1024] __attribute__((aligned (32))); |
| uint8_t *code_gen_buffer; |
| unsigned long code_gen_buffer_size; |
| /* threshold to flush the translated code buffer */ |
| unsigned long code_gen_buffer_max_size; |
| uint8_t *code_gen_ptr; |
| |
| #if !defined(CONFIG_USER_ONLY) |
| ram_addr_t phys_ram_size; |
| int phys_ram_fd; |
| uint8_t *phys_ram_base; |
| uint8_t *phys_ram_dirty; |
| static ram_addr_t phys_ram_alloc_offset = 0; |
| #endif |
| |
| CPUState *first_cpu; |
| /* current CPU in the current thread. It is only valid inside |
| cpu_exec() */ |
| CPUState *cpu_single_env; |
| /* 0 = Do not count executed instructions. |
| 1 = Precise instruction counting. |
| 2 = Adaptive rate instruction counting. */ |
| int use_icount = 0; |
| /* Current instruction counter. While executing translated code this may |
| include some instructions that have not yet been executed. */ |
| int64_t qemu_icount; |
| |
| typedef struct PageDesc { |
| /* list of TBs intersecting this ram page */ |
| TranslationBlock *first_tb; |
| /* in order to optimize self modifying code, we count the number |
| of lookups we do to a given page to use a bitmap */ |
| unsigned int code_write_count; |
| uint8_t *code_bitmap; |
| #if defined(CONFIG_USER_ONLY) |
| unsigned long flags; |
| #endif |
| } PageDesc; |
| |
| typedef struct PhysPageDesc { |
| /* offset in host memory of the page + io_index in the low bits */ |
| ram_addr_t phys_offset; |
| } PhysPageDesc; |
| |
| #define L2_BITS 10 |
| #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS) |
| /* XXX: this is a temporary hack for alpha target. |
| * In the future, this is to be replaced by a multi-level table |
| * to actually be able to handle the complete 64 bits address space. |
| */ |
| #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS) |
| #else |
| #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS) |
| #endif |
| |
| #define L1_SIZE (1 << L1_BITS) |
| #define L2_SIZE (1 << L2_BITS) |
| |
| unsigned long qemu_real_host_page_size; |
| unsigned long qemu_host_page_bits; |
| unsigned long qemu_host_page_size; |
| unsigned long qemu_host_page_mask; |
| |
| /* XXX: for system emulation, it could just be an array */ |
| static PageDesc *l1_map[L1_SIZE]; |
| PhysPageDesc **l1_phys_map; |
| |
| #if !defined(CONFIG_USER_ONLY) |
| static void io_mem_init(void); |
| |
| /* io memory support */ |
| CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4]; |
| CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4]; |
| void *io_mem_opaque[IO_MEM_NB_ENTRIES]; |
| static int io_mem_nb; |
| static int io_mem_watch; |
| #endif |
| |
| /* log support */ |
| char *logfilename = "/tmp/qemu.log"; |
| FILE *logfile; |
| int loglevel; |
| static int log_append = 0; |
| |
| /* statistics */ |
| static int tlb_flush_count; |
| static int tb_flush_count; |
| static int tb_phys_invalidate_count; |
| |
| #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
| typedef struct subpage_t { |
| target_phys_addr_t base; |
| CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4]; |
| CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4]; |
| void *opaque[TARGET_PAGE_SIZE][2][4]; |
| } subpage_t; |
| |
| #ifdef _WIN32 |
| static void map_exec(void *addr, long size) |
| { |
| DWORD old_protect; |
| VirtualProtect(addr, size, |
| PAGE_EXECUTE_READWRITE, &old_protect); |
| |
| } |
| #else |
| static void map_exec(void *addr, long size) |
| { |
| unsigned long start, end, page_size; |
| |
| page_size = getpagesize(); |
| start = (unsigned long)addr; |
| start &= ~(page_size - 1); |
| |
| end = (unsigned long)addr + size; |
| end += page_size - 1; |
| end &= ~(page_size - 1); |
| |
| mprotect((void *)start, end - start, |
| PROT_READ | PROT_WRITE | PROT_EXEC); |
| } |
| #endif |
| |
| static void page_init(void) |
| { |
| /* NOTE: we can always suppose that qemu_host_page_size >= |
| TARGET_PAGE_SIZE */ |
| #ifdef _WIN32 |
| { |
| SYSTEM_INFO system_info; |
| DWORD old_protect; |
| |
| GetSystemInfo(&system_info); |
| qemu_real_host_page_size = system_info.dwPageSize; |
| } |
| #else |
| qemu_real_host_page_size = getpagesize(); |
| #endif |
| if (qemu_host_page_size == 0) |
| qemu_host_page_size = qemu_real_host_page_size; |
| if (qemu_host_page_size < TARGET_PAGE_SIZE) |
| qemu_host_page_size = TARGET_PAGE_SIZE; |
| qemu_host_page_bits = 0; |
| while ((1 << qemu_host_page_bits) < qemu_host_page_size) |
| qemu_host_page_bits++; |
| qemu_host_page_mask = ~(qemu_host_page_size - 1); |
| l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *)); |
| memset(l1_phys_map, 0, L1_SIZE * sizeof(void *)); |
| |
| #if !defined(_WIN32) && defined(CONFIG_USER_ONLY) |
| { |
| long long startaddr, endaddr; |
| FILE *f; |
| int n; |
| |
| mmap_lock(); |
| last_brk = (unsigned long)sbrk(0); |
| f = fopen("/proc/self/maps", "r"); |
| if (f) { |
| do { |
| n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr); |
| if (n == 2) { |
| startaddr = MIN(startaddr, |
| (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); |
| endaddr = MIN(endaddr, |
| (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); |
| page_set_flags(startaddr & TARGET_PAGE_MASK, |
| TARGET_PAGE_ALIGN(endaddr), |
| PAGE_RESERVED); |
| } |
| } while (!feof(f)); |
| fclose(f); |
| } |
| mmap_unlock(); |
| } |
| #endif |
| } |
| |
| static inline PageDesc *page_find_alloc(target_ulong index) |
| { |
| PageDesc **lp, *p; |
| |
| #if TARGET_LONG_BITS > 32 |
| /* Host memory outside guest VM. For 32-bit targets we have already |
| excluded high addresses. */ |
| if (index > ((target_ulong)L2_SIZE * L1_SIZE * TARGET_PAGE_SIZE)) |
| return NULL; |
| #endif |
| lp = &l1_map[index >> L2_BITS]; |
| p = *lp; |
| if (!p) { |
| /* allocate if not found */ |
| #if defined(CONFIG_USER_ONLY) |
| unsigned long addr; |
| size_t len = sizeof(PageDesc) * L2_SIZE; |
| /* Don't use qemu_malloc because it may recurse. */ |
| p = mmap(0, len, PROT_READ | PROT_WRITE, |
| MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| *lp = p; |
| addr = h2g(p); |
| if (addr == (target_ulong)addr) { |
| page_set_flags(addr & TARGET_PAGE_MASK, |
| TARGET_PAGE_ALIGN(addr + len), |
| PAGE_RESERVED); |
| } |
| #else |
| p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE); |
| *lp = p; |
| #endif |
| } |
| return p + (index & (L2_SIZE - 1)); |
| } |
| |
| static inline PageDesc *page_find(target_ulong index) |
| { |
| PageDesc *p; |
| |
| p = l1_map[index >> L2_BITS]; |
| if (!p) |
| return 0; |
| return p + (index & (L2_SIZE - 1)); |
| } |
| |
| static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc) |
| { |
| void **lp, **p; |
| PhysPageDesc *pd; |
| |
| p = (void **)l1_phys_map; |
| #if TARGET_PHYS_ADDR_SPACE_BITS > 32 |
| |
| #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS) |
| #error unsupported TARGET_PHYS_ADDR_SPACE_BITS |
| #endif |
| lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1)); |
| p = *lp; |
| if (!p) { |
| /* allocate if not found */ |
| if (!alloc) |
| return NULL; |
| p = qemu_vmalloc(sizeof(void *) * L1_SIZE); |
| memset(p, 0, sizeof(void *) * L1_SIZE); |
| *lp = p; |
| } |
| #endif |
| lp = p + ((index >> L2_BITS) & (L1_SIZE - 1)); |
| pd = *lp; |
| if (!pd) { |
| int i; |
| /* allocate if not found */ |
| if (!alloc) |
| return NULL; |
| pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE); |
| *lp = pd; |
| for (i = 0; i < L2_SIZE; i++) |
| pd[i].phys_offset = IO_MEM_UNASSIGNED; |
| } |
| return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1)); |
| } |
| |
| static inline PhysPageDesc *phys_page_find(target_phys_addr_t index) |
| { |
| return phys_page_find_alloc(index, 0); |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| static void tlb_protect_code(ram_addr_t ram_addr); |
| static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, |
| target_ulong vaddr); |
| #define mmap_lock() do { } while(0) |
| #define mmap_unlock() do { } while(0) |
| #endif |
| |
| #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024) |
| |
| #if defined(CONFIG_USER_ONLY) |
| /* Currently it is not recommanded to allocate big chunks of data in |
| user mode. It will change when a dedicated libc will be used */ |
| #define USE_STATIC_CODE_GEN_BUFFER |
| #endif |
| |
| #ifdef USE_STATIC_CODE_GEN_BUFFER |
| static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]; |
| #endif |
| |
| void code_gen_alloc(unsigned long tb_size) |
| { |
| #ifdef USE_STATIC_CODE_GEN_BUFFER |
| code_gen_buffer = static_code_gen_buffer; |
| code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; |
| map_exec(code_gen_buffer, code_gen_buffer_size); |
| #else |
| code_gen_buffer_size = tb_size; |
| if (code_gen_buffer_size == 0) { |
| #if defined(CONFIG_USER_ONLY) |
| /* in user mode, phys_ram_size is not meaningful */ |
| code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; |
| #else |
| /* XXX: needs ajustments */ |
| code_gen_buffer_size = (int)(phys_ram_size / 4); |
| #endif |
| } |
| if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE) |
| code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE; |
| /* The code gen buffer location may have constraints depending on |
| the host cpu and OS */ |
| #if defined(__linux__) |
| { |
| int flags; |
| flags = MAP_PRIVATE | MAP_ANONYMOUS; |
| #if defined(__x86_64__) |
| flags |= MAP_32BIT; |
| /* Cannot map more than that */ |
| if (code_gen_buffer_size > (800 * 1024 * 1024)) |
| code_gen_buffer_size = (800 * 1024 * 1024); |
| #endif |
| code_gen_buffer = mmap(NULL, code_gen_buffer_size, |
| PROT_WRITE | PROT_READ | PROT_EXEC, |
| flags, -1, 0); |
| if (code_gen_buffer == MAP_FAILED) { |
| fprintf(stderr, "Could not allocate dynamic translator buffer\n"); |
| exit(1); |
| } |
| } |
| #else |
| code_gen_buffer = qemu_malloc(code_gen_buffer_size); |
| if (!code_gen_buffer) { |
| fprintf(stderr, "Could not allocate dynamic translator buffer\n"); |
| exit(1); |
| } |
| map_exec(code_gen_buffer, code_gen_buffer_size); |
| #endif |
| #endif /* !USE_STATIC_CODE_GEN_BUFFER */ |
| map_exec(code_gen_prologue, sizeof(code_gen_prologue)); |
| code_gen_buffer_max_size = code_gen_buffer_size - |
| code_gen_max_block_size(); |
| code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE; |
| tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock)); |
| } |
| |
| /* Must be called before using the QEMU cpus. 'tb_size' is the size |
| (in bytes) allocated to the translation buffer. Zero means default |
| size. */ |
| void cpu_exec_init_all(unsigned long tb_size) |
| { |
| cpu_gen_init(); |
| code_gen_alloc(tb_size); |
| code_gen_ptr = code_gen_buffer; |
| page_init(); |
| #if !defined(CONFIG_USER_ONLY) |
| io_mem_init(); |
| #endif |
| } |
| |
| #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
| |
| #define CPU_COMMON_SAVE_VERSION 1 |
| |
| static void cpu_common_save(QEMUFile *f, void *opaque) |
| { |
| CPUState *env = opaque; |
| |
| qemu_put_be32s(f, &env->halted); |
| qemu_put_be32s(f, &env->interrupt_request); |
| } |
| |
| static int cpu_common_load(QEMUFile *f, void *opaque, int version_id) |
| { |
| CPUState *env = opaque; |
| |
| if (version_id != CPU_COMMON_SAVE_VERSION) |
| return -EINVAL; |
| |
| qemu_get_be32s(f, &env->halted); |
| qemu_get_be32s(f, &env->interrupt_request); |
| tlb_flush(env, 1); |
| |
| return 0; |
| } |
| #endif |
| |
| void cpu_exec_init(CPUState *env) |
| { |
| CPUState **penv; |
| int cpu_index; |
| |
| env->next_cpu = NULL; |
| penv = &first_cpu; |
| cpu_index = 0; |
| while (*penv != NULL) { |
| penv = (CPUState **)&(*penv)->next_cpu; |
| cpu_index++; |
| } |
| env->cpu_index = cpu_index; |
| env->nb_watchpoints = 0; |
| *penv = env; |
| #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
| register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION, |
| cpu_common_save, cpu_common_load, env); |
| register_savevm("cpu", cpu_index, CPU_SAVE_VERSION, |
| cpu_save, cpu_load, env); |
| #endif |
| } |
| |
| static inline void invalidate_page_bitmap(PageDesc *p) |
| { |
| if (p->code_bitmap) { |
| qemu_free(p->code_bitmap); |
| p->code_bitmap = NULL; |
| } |
| p->code_write_count = 0; |
| } |
| |
| /* set to NULL all the 'first_tb' fields in all PageDescs */ |
| static void page_flush_tb(void) |
| { |
| int i, j; |
| PageDesc *p; |
| |
| for(i = 0; i < L1_SIZE; i++) { |
| p = l1_map[i]; |
| if (p) { |
| for(j = 0; j < L2_SIZE; j++) { |
| p->first_tb = NULL; |
| invalidate_page_bitmap(p); |
| p++; |
| } |
| } |
| } |
| } |
| |
| /* flush all the translation blocks */ |
| /* XXX: tb_flush is currently not thread safe */ |
| void tb_flush(CPUState *env1) |
| { |
| CPUState *env; |
| #if defined(DEBUG_FLUSH) |
| printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", |
| (unsigned long)(code_gen_ptr - code_gen_buffer), |
| nb_tbs, nb_tbs > 0 ? |
| ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0); |
| #endif |
| if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size) |
| cpu_abort(env1, "Internal error: code buffer overflow\n"); |
| |
| nb_tbs = 0; |
| |
| for(env = first_cpu; env != NULL; env = env->next_cpu) { |
| memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); |
| } |
| |
| memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *)); |
| page_flush_tb(); |
| |
| code_gen_ptr = code_gen_buffer; |
| /* XXX: flush processor icache at this point if cache flush is |
| expensive */ |
| tb_flush_count++; |
| } |
| |
| #ifdef DEBUG_TB_CHECK |
| |
| static void tb_invalidate_check(target_ulong address) |
| { |
| TranslationBlock *tb; |
| int i; |
| address &= TARGET_PAGE_MASK; |
| for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { |
| for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { |
| if (!(address + TARGET_PAGE_SIZE <= tb->pc || |
| address >= tb->pc + tb->size)) { |
| printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n", |
| address, (long)tb->pc, tb->size); |
| } |
| } |
| } |
| } |
| |
| /* verify that all the pages have correct rights for code */ |
| static void tb_page_check(void) |
| { |
| TranslationBlock *tb; |
| int i, flags1, flags2; |
| |
| for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { |
| for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { |
| flags1 = page_get_flags(tb->pc); |
| flags2 = page_get_flags(tb->pc + tb->size - 1); |
| if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { |
| printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", |
| (long)tb->pc, tb->size, flags1, flags2); |
| } |
| } |
| } |
| } |
| |
| void tb_jmp_check(TranslationBlock *tb) |
| { |
| TranslationBlock *tb1; |
| unsigned int n1; |
| |
| /* suppress any remaining jumps to this TB */ |
| tb1 = tb->jmp_first; |
| for(;;) { |
| n1 = (long)tb1 & 3; |
| tb1 = (TranslationBlock *)((long)tb1 & ~3); |
| if (n1 == 2) |
| break; |
| tb1 = tb1->jmp_next[n1]; |
| } |
| /* check end of list */ |
| if (tb1 != tb) { |
| printf("ERROR: jmp_list from 0x%08lx\n", (long)tb); |
| } |
| } |
| |
| #endif |
| |
| /* invalidate one TB */ |
| static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb, |
| int next_offset) |
| { |
| TranslationBlock *tb1; |
| for(;;) { |
| tb1 = *ptb; |
| if (tb1 == tb) { |
| *ptb = *(TranslationBlock **)((char *)tb1 + next_offset); |
| break; |
| } |
| ptb = (TranslationBlock **)((char *)tb1 + next_offset); |
| } |
| } |
| |
| static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) |
| { |
| TranslationBlock *tb1; |
| unsigned int n1; |
| |
| for(;;) { |
| tb1 = *ptb; |
| n1 = (long)tb1 & 3; |
| tb1 = (TranslationBlock *)((long)tb1 & ~3); |
| if (tb1 == tb) { |
| *ptb = tb1->page_next[n1]; |
| break; |
| } |
| ptb = &tb1->page_next[n1]; |
| } |
| } |
| |
| static inline void tb_jmp_remove(TranslationBlock *tb, int n) |
| { |
| TranslationBlock *tb1, **ptb; |
| unsigned int n1; |
| |
| ptb = &tb->jmp_next[n]; |
| tb1 = *ptb; |
| if (tb1) { |
| /* find tb(n) in circular list */ |
| for(;;) { |
| tb1 = *ptb; |
| n1 = (long)tb1 & 3; |
| tb1 = (TranslationBlock *)((long)tb1 & ~3); |
| if (n1 == n && tb1 == tb) |
| break; |
| if (n1 == 2) { |
| ptb = &tb1->jmp_first; |
| } else { |
| ptb = &tb1->jmp_next[n1]; |
| } |
| } |
| /* now we can suppress tb(n) from the list */ |
| *ptb = tb->jmp_next[n]; |
| |
| tb->jmp_next[n] = NULL; |
| } |
| } |
| |
| /* reset the jump entry 'n' of a TB so that it is not chained to |
| another TB */ |
| static inline void tb_reset_jump(TranslationBlock *tb, int n) |
| { |
| tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n])); |
| } |
| |
| void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr) |
| { |
| CPUState *env; |
| PageDesc *p; |
| unsigned int h, n1; |
| target_phys_addr_t phys_pc; |
| TranslationBlock *tb1, *tb2; |
| |
| /* remove the TB from the hash list */ |
| phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); |
| h = tb_phys_hash_func(phys_pc); |
| tb_remove(&tb_phys_hash[h], tb, |
| offsetof(TranslationBlock, phys_hash_next)); |
| |
| /* remove the TB from the page list */ |
| if (tb->page_addr[0] != page_addr) { |
| p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); |
| tb_page_remove(&p->first_tb, tb); |
| invalidate_page_bitmap(p); |
| } |
| if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { |
| p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); |
| tb_page_remove(&p->first_tb, tb); |
| invalidate_page_bitmap(p); |
| } |
| |
| tb_invalidated_flag = 1; |
| |
| /* remove the TB from the hash list */ |
| h = tb_jmp_cache_hash_func(tb->pc); |
| for(env = first_cpu; env != NULL; env = env->next_cpu) { |
| if (env->tb_jmp_cache[h] == tb) |
| env->tb_jmp_cache[h] = NULL; |
| } |
| |
| /* suppress this TB from the two jump lists */ |
| tb_jmp_remove(tb, 0); |
| tb_jmp_remove(tb, 1); |
| |
| /* suppress any remaining jumps to this TB */ |
| tb1 = tb->jmp_first; |
| for(;;) { |
| n1 = (long)tb1 & 3; |
| if (n1 == 2) |
| break; |
| tb1 = (TranslationBlock *)((long)tb1 & ~3); |
| tb2 = tb1->jmp_next[n1]; |
| tb_reset_jump(tb1, n1); |
| tb1->jmp_next[n1] = NULL; |
| tb1 = tb2; |
| } |
| tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */ |
| |
| tb_phys_invalidate_count++; |
| } |
| |
| static inline void set_bits(uint8_t *tab, int start, int len) |
| { |
| int end, mask, end1; |
| |
| end = start + len; |
| tab += start >> 3; |
| mask = 0xff << (start & 7); |
| if ((start & ~7) == (end & ~7)) { |
| if (start < end) { |
| mask &= ~(0xff << (end & 7)); |
| *tab |= mask; |
| } |
| } else { |
| *tab++ |= mask; |
| start = (start + 8) & ~7; |
| end1 = end & ~7; |
| while (start < end1) { |
| *tab++ = 0xff; |
| start += 8; |
| } |
| if (start < end) { |
| mask = ~(0xff << (end & 7)); |
| *tab |= mask; |
| } |
| } |
| } |
| |
| static void build_page_bitmap(PageDesc *p) |
| { |
| int n, tb_start, tb_end; |
| TranslationBlock *tb; |
| |
| p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8); |
| if (!p->code_bitmap) |
| return; |
| |
| tb = p->first_tb; |
| while (tb != NULL) { |
| n = (long)tb & 3; |
| tb = (TranslationBlock *)((long)tb & ~3); |
| /* NOTE: this is subtle as a TB may span two physical pages */ |
| if (n == 0) { |
| /* NOTE: tb_end may be after the end of the page, but |
| it is not a problem */ |
| tb_start = tb->pc & ~TARGET_PAGE_MASK; |
| tb_end = tb_start + tb->size; |
| if (tb_end > TARGET_PAGE_SIZE) |
| tb_end = TARGET_PAGE_SIZE; |
| } else { |
| tb_start = 0; |
| tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); |
| } |
| set_bits(p->code_bitmap, tb_start, tb_end - tb_start); |
| tb = tb->page_next[n]; |
| } |
| } |
| |
| TranslationBlock *tb_gen_code(CPUState *env, |
| target_ulong pc, target_ulong cs_base, |
| int flags, int cflags) |
| { |
| TranslationBlock *tb; |
| uint8_t *tc_ptr; |
| target_ulong phys_pc, phys_page2, virt_page2; |
| int code_gen_size; |
| |
| phys_pc = get_phys_addr_code(env, pc); |
| tb = tb_alloc(pc); |
| if (!tb) { |
| /* flush must be done */ |
| tb_flush(env); |
| /* cannot fail at this point */ |
| tb = tb_alloc(pc); |
| /* Don't forget to invalidate previous TB info. */ |
| tb_invalidated_flag = 1; |
| } |
| tc_ptr = code_gen_ptr; |
| tb->tc_ptr = tc_ptr; |
| tb->cs_base = cs_base; |
| tb->flags = flags; |
| tb->cflags = cflags; |
| cpu_gen_code(env, tb, &code_gen_size); |
| code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); |
| |
| /* check next page if needed */ |
| virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; |
| phys_page2 = -1; |
| if ((pc & TARGET_PAGE_MASK) != virt_page2) { |
| phys_page2 = get_phys_addr_code(env, virt_page2); |
| } |
| tb_link_phys(tb, phys_pc, phys_page2); |
| return tb; |
| } |
| |
| /* invalidate all TBs which intersect with the target physical page |
| starting in range [start;end[. NOTE: start and end must refer to |
| the same physical page. 'is_cpu_write_access' should be true if called |
| from a real cpu write access: the virtual CPU will exit the current |
| TB if code is modified inside this TB. */ |
| void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end, |
| int is_cpu_write_access) |
| { |
| int n, current_tb_modified, current_tb_not_found, current_flags; |
| CPUState *env = cpu_single_env; |
| PageDesc *p; |
| TranslationBlock *tb, *tb_next, *current_tb, *saved_tb; |
| target_ulong tb_start, tb_end; |
| target_ulong current_pc, current_cs_base; |
| |
| p = page_find(start >> TARGET_PAGE_BITS); |
| if (!p) |
| return; |
| if (!p->code_bitmap && |
| ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD && |
| is_cpu_write_access) { |
| /* build code bitmap */ |
| build_page_bitmap(p); |
| } |
| |
| /* we remove all the TBs in the range [start, end[ */ |
| /* XXX: see if in some cases it could be faster to invalidate all the code */ |
| current_tb_not_found = is_cpu_write_access; |
| current_tb_modified = 0; |
| current_tb = NULL; /* avoid warning */ |
| current_pc = 0; /* avoid warning */ |
| current_cs_base = 0; /* avoid warning */ |
| current_flags = 0; /* avoid warning */ |
| tb = p->first_tb; |
| while (tb != NULL) { |
| n = (long)tb & 3; |
| tb = (TranslationBlock *)((long)tb & ~3); |
| tb_next = tb->page_next[n]; |
| /* NOTE: this is subtle as a TB may span two physical pages */ |
| if (n == 0) { |
| /* NOTE: tb_end may be after the end of the page, but |
| it is not a problem */ |
| tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); |
| tb_end = tb_start + tb->size; |
| } else { |
| tb_start = tb->page_addr[1]; |
| tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); |
| } |
| if (!(tb_end <= start || tb_start >= end)) { |
| #ifdef TARGET_HAS_PRECISE_SMC |
| if (current_tb_not_found) { |
| current_tb_not_found = 0; |
| current_tb = NULL; |
| if (env->mem_io_pc) { |
| /* now we have a real cpu fault */ |
| current_tb = tb_find_pc(env->mem_io_pc); |
| } |
| } |
| if (current_tb == tb && |
| (current_tb->cflags & CF_COUNT_MASK) != 1) { |
| /* If we are modifying the current TB, we must stop |
| its execution. We could be more precise by checking |
| that the modification is after the current PC, but it |
| would require a specialized function to partially |
| restore the CPU state */ |
| |
| current_tb_modified = 1; |
| cpu_restore_state(current_tb, env, |
| env->mem_io_pc, NULL); |
| #if defined(TARGET_I386) |
| current_flags = env->hflags; |
| current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK)); |
| current_cs_base = (target_ulong)env->segs[R_CS].base; |
| current_pc = current_cs_base + env->eip; |
| #else |
| #error unsupported CPU |
| #endif |
| } |
| #endif /* TARGET_HAS_PRECISE_SMC */ |
| /* we need to do that to handle the case where a signal |
| occurs while doing tb_phys_invalidate() */ |
| saved_tb = NULL; |
| if (env) { |
| saved_tb = env->current_tb; |
| env->current_tb = NULL; |
| } |
| tb_phys_invalidate(tb, -1); |
| if (env) { |
| env->current_tb = saved_tb; |
| if (env->interrupt_request && env->current_tb) |
| cpu_interrupt(env, env->interrupt_request); |
| } |
| } |
| tb = tb_next; |
| } |
| #if !defined(CONFIG_USER_ONLY) |
| /* if no code remaining, no need to continue to use slow writes */ |
| if (!p->first_tb) { |
| invalidate_page_bitmap(p); |
| if (is_cpu_write_access) { |
| tlb_unprotect_code_phys(env, start, env->mem_io_vaddr); |
| } |
| } |
| #endif |
| #ifdef TARGET_HAS_PRECISE_SMC |
| if (current_tb_modified) { |
| /* we generate a block containing just the instruction |
| modifying the memory. It will ensure that it cannot modify |
| itself */ |
| env->current_tb = NULL; |
| tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); |
| cpu_resume_from_signal(env, NULL); |
| } |
| #endif |
| } |
| |
| /* len must be <= 8 and start must be a multiple of len */ |
| static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len) |
| { |
| PageDesc *p; |
| int offset, b; |
| #if 0 |
| if (1) { |
| if (loglevel) { |
| fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n", |
| cpu_single_env->mem_io_vaddr, len, |
| cpu_single_env->eip, |
| cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base); |
| } |
| } |
| #endif |
| p = page_find(start >> TARGET_PAGE_BITS); |
| if (!p) |
| return; |
| if (p->code_bitmap) { |
| offset = start & ~TARGET_PAGE_MASK; |
| b = p->code_bitmap[offset >> 3] >> (offset & 7); |
| if (b & ((1 << len) - 1)) |
| goto do_invalidate; |
| } else { |
| do_invalidate: |
| tb_invalidate_phys_page_range(start, start + len, 1); |
| } |
| } |
| |
| #if !defined(CONFIG_SOFTMMU) |
| static void tb_invalidate_phys_page(target_phys_addr_t addr, |
| unsigned long pc, void *puc) |
| { |
| int n, current_flags, current_tb_modified; |
| target_ulong current_pc, current_cs_base; |
| PageDesc *p; |
| TranslationBlock *tb, *current_tb; |
| #ifdef TARGET_HAS_PRECISE_SMC |
| CPUState *env = cpu_single_env; |
| #endif |
| |
| addr &= TARGET_PAGE_MASK; |
| p = page_find(addr >> TARGET_PAGE_BITS); |
| if (!p) |
| return; |
| tb = p->first_tb; |
| current_tb_modified = 0; |
| current_tb = NULL; |
| current_pc = 0; /* avoid warning */ |
| current_cs_base = 0; /* avoid warning */ |
| current_flags = 0; /* avoid warning */ |
| #ifdef TARGET_HAS_PRECISE_SMC |
| if (tb && pc != 0) { |
| current_tb = tb_find_pc(pc); |
| } |
| #endif |
| while (tb != NULL) { |
| n = (long)tb & 3; |
| tb = (TranslationBlock *)((long)tb & ~3); |
| #ifdef TARGET_HAS_PRECISE_SMC |
| if (current_tb == tb && |
| (current_tb->cflags & CF_COUNT_MASK) != 1) { |
| /* If we are modifying the current TB, we must stop |
| its execution. We could be more precise by checking |
| that the modification is after the current PC, but it |
| would require a specialized function to partially |
| restore the CPU state */ |
| |
| current_tb_modified = 1; |
| cpu_restore_state(current_tb, env, pc, puc); |
| #if defined(TARGET_I386) |
| current_flags = env->hflags; |
| current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK)); |
| current_cs_base = (target_ulong)env->segs[R_CS].base; |
| current_pc = current_cs_base + env->eip; |
| #else |
| #error unsupported CPU |
| #endif |
| } |
| #endif /* TARGET_HAS_PRECISE_SMC */ |
| tb_phys_invalidate(tb, addr); |
| tb = tb->page_next[n]; |
| } |
| p->first_tb = NULL; |
| #ifdef TARGET_HAS_PRECISE_SMC |
| if (current_tb_modified) { |
| /* we generate a block containing just the instruction |
| modifying the memory. It will ensure that it cannot modify |
| itself */ |
| env->current_tb = NULL; |
| tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); |
| cpu_resume_from_signal(env, puc); |
| } |
| #endif |
| } |
| #endif |
| |
| /* add the tb in the target page and protect it if necessary */ |
| static inline void tb_alloc_page(TranslationBlock *tb, |
| unsigned int n, target_ulong page_addr) |
| { |
| PageDesc *p; |
| TranslationBlock *last_first_tb; |
| |
| tb->page_addr[n] = page_addr; |
| p = page_find_alloc(page_addr >> TARGET_PAGE_BITS); |
| tb->page_next[n] = p->first_tb; |
| last_first_tb = p->first_tb; |
| p->first_tb = (TranslationBlock *)((long)tb | n); |
| invalidate_page_bitmap(p); |
| |
| #if defined(TARGET_HAS_SMC) || 1 |
| |
| #if defined(CONFIG_USER_ONLY) |
| if (p->flags & PAGE_WRITE) { |
| target_ulong addr; |
| PageDesc *p2; |
| int prot; |
| |
| /* force the host page as non writable (writes will have a |
| page fault + mprotect overhead) */ |
| page_addr &= qemu_host_page_mask; |
| prot = 0; |
| for(addr = page_addr; addr < page_addr + qemu_host_page_size; |
| addr += TARGET_PAGE_SIZE) { |
| |
| p2 = page_find (addr >> TARGET_PAGE_BITS); |
| if (!p2) |
| continue; |
| prot |= p2->flags; |
| p2->flags &= ~PAGE_WRITE; |
| page_get_flags(addr); |
| } |
| mprotect(g2h(page_addr), qemu_host_page_size, |
| (prot & PAGE_BITS) & ~PAGE_WRITE); |
| #ifdef DEBUG_TB_INVALIDATE |
| printf("protecting code page: 0x" TARGET_FMT_lx "\n", |
| page_addr); |
| #endif |
| } |
| #else |
| /* if some code is already present, then the pages are already |
| protected. So we handle the case where only the first TB is |
| allocated in a physical page */ |
| if (!last_first_tb) { |
| tlb_protect_code(page_addr); |
| } |
| #endif |
| |
| #endif /* TARGET_HAS_SMC */ |
| } |
| |
| /* Allocate a new translation block. Flush the translation buffer if |
| too many translation blocks or too much generated code. */ |
| TranslationBlock *tb_alloc(target_ulong pc) |
| { |
| TranslationBlock *tb; |
| |
| if (nb_tbs >= code_gen_max_blocks || |
| (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size) |
| return NULL; |
| tb = &tbs[nb_tbs++]; |
| tb->pc = pc; |
| tb->cflags = 0; |
| return tb; |
| } |
| |
| void tb_free(TranslationBlock *tb) |
| { |
| /* In practice this is mostly used for single use temporary TB |
| Ignore the hard cases and just back up if this TB happens to |
| be the last one generated. */ |
| if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) { |
| code_gen_ptr = tb->tc_ptr; |
| nb_tbs--; |
| } |
| } |
| |
| /* add a new TB and link it to the physical page tables. phys_page2 is |
| (-1) to indicate that only one page contains the TB. */ |
| void tb_link_phys(TranslationBlock *tb, |
| target_ulong phys_pc, target_ulong phys_page2) |
| { |
| unsigned int h; |
| TranslationBlock **ptb; |
| |
| /* Grab the mmap lock to stop another thread invalidating this TB |
| before we are done. */ |
| mmap_lock(); |
| /* add in the physical hash table */ |
| h = tb_phys_hash_func(phys_pc); |
| ptb = &tb_phys_hash[h]; |
| tb->phys_hash_next = *ptb; |
| *ptb = tb; |
| |
| /* add in the page list */ |
| tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK); |
| if (phys_page2 != -1) |
| tb_alloc_page(tb, 1, phys_page2); |
| else |
| tb->page_addr[1] = -1; |
| |
| tb->jmp_first = (TranslationBlock *)((long)tb | 2); |
| tb->jmp_next[0] = NULL; |
| tb->jmp_next[1] = NULL; |
| |
| /* init original jump addresses */ |
| if (tb->tb_next_offset[0] != 0xffff) |
| tb_reset_jump(tb, 0); |
| if (tb->tb_next_offset[1] != 0xffff) |
| tb_reset_jump(tb, 1); |
| |
| #ifdef DEBUG_TB_CHECK |
| tb_page_check(); |
| #endif |
| mmap_unlock(); |
| } |
| |
| /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < |
| tb[1].tc_ptr. Return NULL if not found */ |
| TranslationBlock *tb_find_pc(unsigned long tc_ptr) |
| { |
| int m_min, m_max, m; |
| unsigned long v; |
| TranslationBlock *tb; |
| |
| if (nb_tbs <= 0) |
| return NULL; |
| if (tc_ptr < (unsigned long)code_gen_buffer || |
| tc_ptr >= (unsigned long)code_gen_ptr) |
| return NULL; |
| /* binary search (cf Knuth) */ |
| m_min = 0; |
| m_max = nb_tbs - 1; |
| while (m_min <= m_max) { |
| m = (m_min + m_max) >> 1; |
| tb = &tbs[m]; |
| v = (unsigned long)tb->tc_ptr; |
| if (v == tc_ptr) |
| return tb; |
| else if (tc_ptr < v) { |
| m_max = m - 1; |
| } else { |
| m_min = m + 1; |
| } |
| } |
| return &tbs[m_max]; |
| } |
| |
| static void tb_reset_jump_recursive(TranslationBlock *tb); |
| |
| static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n) |
| { |
| TranslationBlock *tb1, *tb_next, **ptb; |
| unsigned int n1; |
| |
| tb1 = tb->jmp_next[n]; |
| if (tb1 != NULL) { |
| /* find head of list */ |
| for(;;) { |
| n1 = (long)tb1 & 3; |
| tb1 = (TranslationBlock *)((long)tb1 & ~3); |
| if (n1 == 2) |
| break; |
| tb1 = tb1->jmp_next[n1]; |
| } |
| /* we are now sure now that tb jumps to tb1 */ |
| tb_next = tb1; |
| |
| /* remove tb from the jmp_first list */ |
| ptb = &tb_next->jmp_first; |
| for(;;) { |
| tb1 = *ptb; |
| n1 = (long)tb1 & 3; |
| tb1 = (TranslationBlock *)((long)tb1 & ~3); |
| if (n1 == n && tb1 == tb) |
| break; |
| ptb = &tb1->jmp_next[n1]; |
| } |
| *ptb = tb->jmp_next[n]; |
| tb->jmp_next[n] = NULL; |
| |
| /* suppress the jump to next tb in generated code */ |
| tb_reset_jump(tb, n); |
| |
| /* suppress jumps in the tb on which we could have jumped */ |
| tb_reset_jump_recursive(tb_next); |
| } |
| } |
| |
| static void tb_reset_jump_recursive(TranslationBlock *tb) |
| { |
| tb_reset_jump_recursive2(tb, 0); |
| tb_reset_jump_recursive2(tb, 1); |
| } |
| |
| #if defined(TARGET_HAS_ICE) |
| static void breakpoint_invalidate(CPUState *env, target_ulong pc) |
| { |
| target_phys_addr_t addr; |
| target_ulong pd; |
| ram_addr_t ram_addr; |
| PhysPageDesc *p; |
| |
| addr = cpu_get_phys_page_debug(env, pc); |
| p = phys_page_find(addr >> TARGET_PAGE_BITS); |
| if (!p) { |
| pd = IO_MEM_UNASSIGNED; |
| } else { |
| pd = p->phys_offset; |
| } |
| ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK); |
| tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); |
| } |
| #endif |
| |
| /* Add a watchpoint. */ |
| int cpu_watchpoint_insert(CPUState *env, target_ulong addr, int type) |
| { |
| int i; |
| |
| for (i = 0; i < env->nb_watchpoints; i++) { |
| if (addr == env->watchpoint[i].vaddr) |
| return 0; |
| } |
| if (env->nb_watchpoints >= MAX_WATCHPOINTS) |
| return -1; |
| |
| i = env->nb_watchpoints++; |
| env->watchpoint[i].vaddr = addr; |
| env->watchpoint[i].type = type; |
| tlb_flush_page(env, addr); |
| /* FIXME: This flush is needed because of the hack to make memory ops |
| terminate the TB. It can be removed once the proper IO trap and |
| re-execute bits are in. */ |
| tb_flush(env); |
| return i; |
| } |
| |
| /* Remove a watchpoint. */ |
| int cpu_watchpoint_remove(CPUState *env, target_ulong addr) |
| { |
| int i; |
| |
| for (i = 0; i < env->nb_watchpoints; i++) { |
| if (addr == env->watchpoint[i].vaddr) { |
| env->nb_watchpoints--; |
| env->watchpoint[i] = env->watchpoint[env->nb_watchpoints]; |
| tlb_flush_page(env, addr); |
| return 0; |
| } |
| } |
| return -1; |
| } |
| |
| /* Remove all watchpoints. */ |
| void cpu_watchpoint_remove_all(CPUState *env) { |
| int i; |
| |
| for (i = 0; i < env->nb_watchpoints; i++) { |
| tlb_flush_page(env, env->watchpoint[i].vaddr); |
| } |
| env->nb_watchpoints = 0; |
| } |
| |
| /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a |
| breakpoint is reached */ |
| int cpu_breakpoint_insert(CPUState *env, target_ulong pc) |
| { |
| #if defined(TARGET_HAS_ICE) |
| int i; |
| |
| for(i = 0; i < env->nb_breakpoints; i++) { |
| if (env->breakpoints[i] == pc) |
| return 0; |
| } |
| |
| if (env->nb_breakpoints >= MAX_BREAKPOINTS) |
| return -1; |
| env->breakpoints[env->nb_breakpoints++] = pc; |
| |
| breakpoint_invalidate(env, pc); |
| return 0; |
| #else |
| return -1; |
| #endif |
| } |
| |
| /* remove all breakpoints */ |
| void cpu_breakpoint_remove_all(CPUState *env) { |
| #if defined(TARGET_HAS_ICE) |
| int i; |
| for(i = 0; i < env->nb_breakpoints; i++) { |
| breakpoint_invalidate(env, env->breakpoints[i]); |
| } |
| env->nb_breakpoints = 0; |
| #endif |
| } |
| |
| /* remove a breakpoint */ |
| int cpu_breakpoint_remove(CPUState *env, target_ulong pc) |
| { |
| #if defined(TARGET_HAS_ICE) |
| int i; |
| for(i = 0; i < env->nb_breakpoints; i++) { |
| if (env->breakpoints[i] == pc) |
| goto found; |
| } |
| return -1; |
| found: |
| env->nb_breakpoints--; |
| if (i < env->nb_breakpoints) |
| env->breakpoints[i] = env->breakpoints[env->nb_breakpoints]; |
| |
| breakpoint_invalidate(env, pc); |
| return 0; |
| #else |
| return -1; |
| #endif |
| } |
| |
| /* enable or disable single step mode. EXCP_DEBUG is returned by the |
| CPU loop after each instruction */ |
| void cpu_single_step(CPUState *env, int enabled) |
| { |
| #if defined(TARGET_HAS_ICE) |
| if (env->singlestep_enabled != enabled) { |
| env->singlestep_enabled = enabled; |
| /* must flush all the translated code to avoid inconsistancies */ |
| /* XXX: only flush what is necessary */ |
| tb_flush(env); |
| } |
| #endif |
| } |
| |
| /* enable or disable low levels log */ |
| void cpu_set_log(int log_flags) |
| { |
| loglevel = log_flags; |
| if (loglevel && !logfile) { |
| logfile = fopen(logfilename, log_append ? "a" : "w"); |
| if (!logfile) { |
| perror(logfilename); |
| _exit(1); |
| } |
| #if !defined(CONFIG_SOFTMMU) |
| /* must avoid mmap() usage of glibc by setting a buffer "by hand" */ |
| { |
| static uint8_t logfile_buf[4096]; |
| setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf)); |
| } |
| #else |
| setvbuf(logfile, NULL, _IOLBF, 0); |
| #endif |
| log_append = 1; |
| } |
| if (!loglevel && logfile) { |
| fclose(logfile); |
| logfile = NULL; |
| } |
| } |
| |
| void cpu_set_log_filename(const char *filename) |
| { |
| logfilename = strdup(filename); |
| if (logfile) { |
| fclose(logfile); |
| logfile = NULL; |
| } |
| cpu_set_log(loglevel); |
| } |
| |
| /* mask must never be zero, except for A20 change call */ |
| void cpu_interrupt(CPUState *env, int mask) |
| { |
| #if !defined(USE_NPTL) |
| TranslationBlock *tb; |
| static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED; |
| #endif |
| int old_mask; |
| |
| old_mask = env->interrupt_request; |
| /* FIXME: This is probably not threadsafe. A different thread could |
| be in the middle of a read-modify-write operation. */ |
| env->interrupt_request |= mask; |
| #if defined(USE_NPTL) |
| /* FIXME: TB unchaining isn't SMP safe. For now just ignore the |
| problem and hope the cpu will stop of its own accord. For userspace |
| emulation this often isn't actually as bad as it sounds. Often |
| signals are used primarily to interrupt blocking syscalls. */ |
| #else |
| if (use_icount) { |
| env->icount_decr.u16.high = 0x8000; |
| #ifndef CONFIG_USER_ONLY |
| /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means |
| an async event happened and we need to process it. */ |
| if (!can_do_io(env) |
| && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) { |
| cpu_abort(env, "Raised interrupt while not in I/O function"); |
| } |
| #endif |
| } else { |
| tb = env->current_tb; |
| /* if the cpu is currently executing code, we must unlink it and |
| all the potentially executing TB */ |
| if (tb && !testandset(&interrupt_lock)) { |
| env->current_tb = NULL; |
| tb_reset_jump_recursive(tb); |
| resetlock(&interrupt_lock); |
| } |
| } |
| #endif |
| } |
| |
| void cpu_reset_interrupt(CPUState *env, int mask) |
| { |
| env->interrupt_request &= ~mask; |
| } |
| |
| CPULogItem cpu_log_items[] = { |
| { CPU_LOG_TB_OUT_ASM, "out_asm", |
| "show generated host assembly code for each compiled TB" }, |
| { CPU_LOG_TB_IN_ASM, "in_asm", |
| "show target assembly code for each compiled TB" }, |
| { CPU_LOG_TB_OP, "op", |
| "show micro ops for each compiled TB" }, |
| { CPU_LOG_TB_OP_OPT, "op_opt", |
| "show micro ops " |
| #ifdef TARGET_I386 |
| "before eflags optimization and " |
| #endif |
| "after liveness analysis" }, |
| { CPU_LOG_INT, "int", |
| "show interrupts/exceptions in short format" }, |
| { CPU_LOG_EXEC, "exec", |
| "show trace before each executed TB (lots of logs)" }, |
| { CPU_LOG_TB_CPU, "cpu", |
| "show CPU state before block translation" }, |
| #ifdef TARGET_I386 |
| { CPU_LOG_PCALL, "pcall", |
| "show protected mode far calls/returns/exceptions" }, |
| #endif |
| #ifdef DEBUG_IOPORT |
| { CPU_LOG_IOPORT, "ioport", |
| "show all i/o ports accesses" }, |
| #endif |
| { 0, NULL, NULL }, |
| }; |
| |
| static int cmp1(const char *s1, int n, const char *s2) |
| { |
| if (strlen(s2) != n) |
| return 0; |
| return memcmp(s1, s2, n) == 0; |
| } |
| |
| /* takes a comma separated list of log masks. Return 0 if error. */ |
| int cpu_str_to_log_mask(const char *str) |
| { |
| CPULogItem *item; |
| int mask; |
| const char *p, *p1; |
| |
| p = str; |
| mask = 0; |
| for(;;) { |
| p1 = strchr(p, ','); |
| if (!p1) |
| p1 = p + strlen(p); |
| if(cmp1(p,p1-p,"all")) { |
| for(item = cpu_log_items; item->mask != 0; item++) { |
| mask |= item->mask; |
| } |
| } else { |
| for(item = cpu_log_items; item->mask != 0; item++) { |
| if (cmp1(p, p1 - p, item->name)) |
| goto found; |
| } |
| return 0; |
| } |
| found: |
| mask |= item->mask; |
| if (*p1 != ',') |
| break; |
| p = p1 + 1; |
| } |
| return mask; |
| } |
| |
| void cpu_abort(CPUState *env, const char *fmt, ...) |
| { |
| va_list ap; |
| va_list ap2; |
| |
| va_start(ap, fmt); |
| va_copy(ap2, ap); |
| fprintf(stderr, "qemu: fatal: "); |
| vfprintf(stderr, fmt, ap); |
| fprintf(stderr, "\n"); |
| #ifdef TARGET_I386 |
| cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP); |
| #else |
| cpu_dump_state(env, stderr, fprintf, 0); |
| #endif |
| if (logfile) { |
| fprintf(logfile, "qemu: fatal: "); |
| vfprintf(logfile, fmt, ap2); |
| fprintf(logfile, "\n"); |
| #ifdef TARGET_I386 |
| cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP); |
| #else |
| cpu_dump_state(env, logfile, fprintf, 0); |
| #endif |
| fflush(logfile); |
| fclose(logfile); |
| } |
| va_end(ap2); |
| va_end(ap); |
| abort(); |
| } |
| |
| CPUState *cpu_copy(CPUState *env) |
| { |
| CPUState *new_env = cpu_init(env->cpu_model_str); |
| /* preserve chaining and index */ |
| CPUState *next_cpu = new_env->next_cpu; |
| int cpu_index = new_env->cpu_index; |
| memcpy(new_env, env, sizeof(CPUState)); |
| new_env->next_cpu = next_cpu; |
| new_env->cpu_index = cpu_index; |
| return new_env; |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr) |
| { |
| unsigned int i; |
| |
| /* Discard jump cache entries for any tb which might potentially |
| overlap the flushed page. */ |
| i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE); |
| memset (&env->tb_jmp_cache[i], 0, |
| TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); |
| |
| i = tb_jmp_cache_hash_page(addr); |
| memset (&env->tb_jmp_cache[i], 0, |
| TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); |
| } |
| |
| /* NOTE: if flush_global is true, also flush global entries (not |
| implemented yet) */ |
| void tlb_flush(CPUState *env, int flush_global) |
| { |
| int i; |
| |
| #if defined(DEBUG_TLB) |
| printf("tlb_flush:\n"); |
| #endif |
| /* must reset current TB so that interrupts cannot modify the |
| links while we are modifying them */ |
| env->current_tb = NULL; |
| |
| for(i = 0; i < CPU_TLB_SIZE; i++) { |
| env->tlb_table[0][i].addr_read = -1; |
| env->tlb_table[0][i].addr_write = -1; |
| env->tlb_table[0][i].addr_code = -1; |
| env->tlb_table[1][i].addr_read = -1; |
| env->tlb_table[1][i].addr_write = -1; |
| env->tlb_table[1][i].addr_code = -1; |
| #if (NB_MMU_MODES >= 3) |
| env->tlb_table[2][i].addr_read = -1; |
| env->tlb_table[2][i].addr_write = -1; |
| env->tlb_table[2][i].addr_code = -1; |
| #if (NB_MMU_MODES == 4) |
| env->tlb_table[3][i].addr_read = -1; |
| env->tlb_table[3][i].addr_write = -1; |
| env->tlb_table[3][i].addr_code = -1; |
| #endif |
| #endif |
| } |
| |
| memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); |
| |
| #ifdef USE_KQEMU |
| if (env->kqemu_enabled) { |
| kqemu_flush(env, flush_global); |
| } |
| #endif |
| tlb_flush_count++; |
| } |
| |
| static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) |
| { |
| if (addr == (tlb_entry->addr_read & |
| (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
| addr == (tlb_entry->addr_write & |
| (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
| addr == (tlb_entry->addr_code & |
| (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { |
| tlb_entry->addr_read = -1; |
| tlb_entry->addr_write = -1; |
| tlb_entry->addr_code = -1; |
| } |
| } |
| |
| void tlb_flush_page(CPUState *env, target_ulong addr) |
| { |
| int i; |
| |
| #if defined(DEBUG_TLB) |
| printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); |
| #endif |
| /* must reset current TB so that interrupts cannot modify the |
| links while we are modifying them */ |
| env->current_tb = NULL; |
| |
| addr &= TARGET_PAGE_MASK; |
| i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
| tlb_flush_entry(&env->tlb_table[0][i], addr); |
| tlb_flush_entry(&env->tlb_table[1][i], addr); |
| #if (NB_MMU_MODES >= 3) |
| tlb_flush_entry(&env->tlb_table[2][i], addr); |
| #if (NB_MMU_MODES == 4) |
| tlb_flush_entry(&env->tlb_table[3][i], addr); |
| #endif |
| #endif |
| |
| tlb_flush_jmp_cache(env, addr); |
| |
| #ifdef USE_KQEMU |
| if (env->kqemu_enabled) { |
| kqemu_flush_page(env, addr); |
| } |
| #endif |
| } |
| |
| /* update the TLBs so that writes to code in the virtual page 'addr' |
| can be detected */ |
| static void tlb_protect_code(ram_addr_t ram_addr) |
| { |
| cpu_physical_memory_reset_dirty(ram_addr, |
| ram_addr + TARGET_PAGE_SIZE, |
| CODE_DIRTY_FLAG); |
| } |
| |
| /* update the TLB so that writes in physical page 'phys_addr' are no longer |
| tested for self modifying code */ |
| static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, |
| target_ulong vaddr) |
| { |
| phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG; |
| } |
| |
| static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, |
| unsigned long start, unsigned long length) |
| { |
| unsigned long addr; |
| if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { |
| addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; |
| if ((addr - start) < length) { |
| tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY; |
| } |
| } |
| } |
| |
| void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, |
| int dirty_flags) |
| { |
| CPUState *env; |
| unsigned long length, start1; |
| int i, mask, len; |
| uint8_t *p; |
| |
| start &= TARGET_PAGE_MASK; |
| end = TARGET_PAGE_ALIGN(end); |
| |
| length = end - start; |
| if (length == 0) |
| return; |
| len = length >> TARGET_PAGE_BITS; |
| #ifdef USE_KQEMU |
| /* XXX: should not depend on cpu context */ |
| env = first_cpu; |
| if (env->kqemu_enabled) { |
| ram_addr_t addr; |
| addr = start; |
| for(i = 0; i < len; i++) { |
| kqemu_set_notdirty(env, addr); |
| addr += TARGET_PAGE_SIZE; |
| } |
| } |
| #endif |
| mask = ~dirty_flags; |
| p = phys_ram_dirty + (start >> TARGET_PAGE_BITS); |
| for(i = 0; i < len; i++) |
| p[i] &= mask; |
| |
| /* we modify the TLB cache so that the dirty bit will be set again |
| when accessing the range */ |
| start1 = start + (unsigned long)phys_ram_base; |
| for(env = first_cpu; env != NULL; env = env->next_cpu) { |
| for(i = 0; i < CPU_TLB_SIZE; i++) |
| tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length); |
| for(i = 0; i < CPU_TLB_SIZE; i++) |
| tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length); |
| #if (NB_MMU_MODES >= 3) |
| for(i = 0; i < CPU_TLB_SIZE; i++) |
| tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length); |
| #if (NB_MMU_MODES == 4) |
| for(i = 0; i < CPU_TLB_SIZE; i++) |
| tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length); |
| #endif |
| #endif |
| } |
| } |
| |
| static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry) |
| { |
| ram_addr_t ram_addr; |
| |
| if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { |
| ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + |
| tlb_entry->addend - (unsigned long)phys_ram_base; |
| if (!cpu_physical_memory_is_dirty(ram_addr)) { |
| tlb_entry->addr_write |= TLB_NOTDIRTY; |
| } |
| } |
| } |
| |
| /* update the TLB according to the current state of the dirty bits */ |
| void cpu_tlb_update_dirty(CPUState *env) |
| { |
| int i; |
| for(i = 0; i < CPU_TLB_SIZE; i++) |
| tlb_update_dirty(&env->tlb_table[0][i]); |
| for(i = 0; i < CPU_TLB_SIZE; i++) |
| tlb_update_dirty(&env->tlb_table[1][i]); |
| #if (NB_MMU_MODES >= 3) |
| for(i = 0; i < CPU_TLB_SIZE; i++) |
| tlb_update_dirty(&env->tlb_table[2][i]); |
| #if (NB_MMU_MODES == 4) |
| for(i = 0; i < CPU_TLB_SIZE; i++) |
| tlb_update_dirty(&env->tlb_table[3][i]); |
| #endif |
| #endif |
| } |
| |
| static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) |
| { |
| if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) |
| tlb_entry->addr_write = vaddr; |
| } |
| |
| /* update the TLB corresponding to virtual page vaddr |
| so that it is no longer dirty */ |
| static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr) |
| { |
| int i; |
| |
| vaddr &= TARGET_PAGE_MASK; |
| i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
| tlb_set_dirty1(&env->tlb_table[0][i], vaddr); |
| tlb_set_dirty1(&env->tlb_table[1][i], vaddr); |
| #if (NB_MMU_MODES >= 3) |
| tlb_set_dirty1(&env->tlb_table[2][i], vaddr); |
| #if (NB_MMU_MODES == 4) |
| tlb_set_dirty1(&env->tlb_table[3][i], vaddr); |
| #endif |
| #endif |
| } |
| |
| /* add a new TLB entry. At most one entry for a given virtual address |
| is permitted. Return 0 if OK or 2 if the page could not be mapped |
| (can only happen in non SOFTMMU mode for I/O pages or pages |
| conflicting with the host address space). */ |
| int tlb_set_page_exec(CPUState *env, target_ulong vaddr, |
| target_phys_addr_t paddr, int prot, |
| int mmu_idx, int is_softmmu) |
| { |
| PhysPageDesc *p; |
| unsigned long pd; |
| unsigned int index; |
| target_ulong address; |
| target_ulong code_address; |
| target_phys_addr_t addend; |
| int ret; |
| CPUTLBEntry *te; |
| int i; |
| target_phys_addr_t iotlb; |
| |
| p = phys_page_find(paddr >> TARGET_PAGE_BITS); |
| if (!p) { |
| pd = IO_MEM_UNASSIGNED; |
| } else { |
| pd = p->phys_offset; |
| } |
| #if defined(DEBUG_TLB) |
| printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n", |
| vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd); |
| #endif |
| |
| ret = 0; |
| address = vaddr; |
| if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) { |
| /* IO memory case (romd handled later) */ |
| address |= TLB_MMIO; |
| } |
| addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK); |
| if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) { |
| /* Normal RAM. */ |
| iotlb = pd & TARGET_PAGE_MASK; |
| if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM) |
| iotlb |= IO_MEM_NOTDIRTY; |
| else |
| iotlb |= IO_MEM_ROM; |
| } else { |
| /* IO handlers are currently passed a phsical address. |
| It would be nice to pass an offset from the base address |
| of that region. This would avoid having to special case RAM, |
| and avoid full address decoding in every device. |
| We can't use the high bits of pd for this because |
| IO_MEM_ROMD uses these as a ram address. */ |
| iotlb = (pd & ~TARGET_PAGE_MASK) + paddr; |
| } |
| |
| code_address = address; |
| /* Make accesses to pages with watchpoints go via the |
| watchpoint trap routines. */ |
| for (i = 0; i < env->nb_watchpoints; i++) { |
| if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) { |
| iotlb = io_mem_watch + paddr; |
| /* TODO: The memory case can be optimized by not trapping |
| reads of pages with a write breakpoint. */ |
| address |= TLB_MMIO; |
| } |
| } |
| |
| index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
| env->iotlb[mmu_idx][index] = iotlb - vaddr; |
| te = &env->tlb_table[mmu_idx][index]; |
| te->addend = addend - vaddr; |
| if (prot & PAGE_READ) { |
| te->addr_read = address; |
| } else { |
| te->addr_read = -1; |
| } |
| |
| if (prot & PAGE_EXEC) { |
| te->addr_code = code_address; |
| } else { |
| te->addr_code = -1; |
| } |
| if (prot & PAGE_WRITE) { |
| if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM || |
| (pd & IO_MEM_ROMD)) { |
| /* Write access calls the I/O callback. */ |
| te->addr_write = address | TLB_MMIO; |
| } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM && |
| !cpu_physical_memory_is_dirty(pd)) { |
| te->addr_write = address | TLB_NOTDIRTY; |
| } else { |
| te->addr_write = address; |
| } |
| } else { |
| te->addr_write = -1; |
| } |
| return ret; |
| } |
| |
| #else |
| |
| void tlb_flush(CPUState *env, int flush_global) |
| { |
| } |
| |
| void tlb_flush_page(CPUState *env, target_ulong addr) |
| { |
| } |
| |
| int tlb_set_page_exec(CPUState *env, target_ulong vaddr, |
| target_phys_addr_t paddr, int prot, |
| int mmu_idx, int is_softmmu) |
| { |
| return 0; |
| } |
| |
| /* dump memory mappings */ |
| void page_dump(FILE *f) |
| { |
| unsigned long start, end; |
| int i, j, prot, prot1; |
| PageDesc *p; |
| |
| fprintf(f, "%-8s %-8s %-8s %s\n", |
| "start", "end", "size", "prot"); |
| start = -1; |
| end = -1; |
| prot = 0; |
| for(i = 0; i <= L1_SIZE; i++) { |
| if (i < L1_SIZE) |
| p = l1_map[i]; |
| else |
| p = NULL; |
| for(j = 0;j < L2_SIZE; j++) { |
| if (!p) |
| prot1 = 0; |
| else |
| prot1 = p[j].flags; |
| if (prot1 != prot) { |
| end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS); |
| if (start != -1) { |
| fprintf(f, "%08lx-%08lx %08lx %c%c%c\n", |
| start, end, end - start, |
| prot & PAGE_READ ? 'r' : '-', |
| prot & PAGE_WRITE ? 'w' : '-', |
| prot & PAGE_EXEC ? 'x' : '-'); |
| } |
| if (prot1 != 0) |
| start = end; |
| else |
| start = -1; |
| prot = prot1; |
| } |
| if (!p) |
| break; |
| } |
| } |
| } |
| |
| int page_get_flags(target_ulong address) |
| { |
| PageDesc *p; |
| |
| p = page_find(address >> TARGET_PAGE_BITS); |
| if (!p) |
| return 0; |
| return p->flags; |
| } |
| |
| /* modify the flags of a page and invalidate the code if |
| necessary. The flag PAGE_WRITE_ORG is positionned automatically |
| depending on PAGE_WRITE */ |
| void page_set_flags(target_ulong start, target_ulong end, int flags) |
| { |
| PageDesc *p; |
| target_ulong addr; |
| |
| /* mmap_lock should already be held. */ |
| start = start & TARGET_PAGE_MASK; |
| end = TARGET_PAGE_ALIGN(end); |
| if (flags & PAGE_WRITE) |
| flags |= PAGE_WRITE_ORG; |
| for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { |
| p = page_find_alloc(addr >> TARGET_PAGE_BITS); |
| /* We may be called for host regions that are outside guest |
| address space. */ |
| if (!p) |
| return; |
| /* if the write protection is set, then we invalidate the code |
| inside */ |
| if (!(p->flags & PAGE_WRITE) && |
| (flags & PAGE_WRITE) && |
| p->first_tb) { |
| tb_invalidate_phys_page(addr, 0, NULL); |
| } |
| p->flags = flags; |
| } |
| } |
| |
| int page_check_range(target_ulong start, target_ulong len, int flags) |
| { |
| PageDesc *p; |
| target_ulong end; |
| target_ulong addr; |
| |
| end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */ |
| start = start & TARGET_PAGE_MASK; |
| |
| if( end < start ) |
| /* we've wrapped around */ |
| return -1; |
| for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { |
| p = page_find(addr >> TARGET_PAGE_BITS); |
| if( !p ) |
| return -1; |
| if( !(p->flags & PAGE_VALID) ) |
| return -1; |
| |
| if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) |
| return -1; |
| if (flags & PAGE_WRITE) { |
| if (!(p->flags & PAGE_WRITE_ORG)) |
| return -1; |
| /* unprotect the page if it was put read-only because it |
| contains translated code */ |
| if (!(p->flags & PAGE_WRITE)) { |
| if (!page_unprotect(addr, 0, NULL)) |
| return -1; |
| } |
| return 0; |
| } |
| } |
| return 0; |
| } |
| |
| /* called from signal handler: invalidate the code and unprotect the |
| page. Return TRUE if the fault was succesfully handled. */ |
| int page_unprotect(target_ulong address, unsigned long pc, void *puc) |
| { |
| unsigned int page_index, prot, pindex; |
| PageDesc *p, *p1; |
| target_ulong host_start, host_end, addr; |
| |
| /* Technically this isn't safe inside a signal handler. However we |
| know this only ever happens in a synchronous SEGV handler, so in |
| practice it seems to be ok. */ |
| mmap_lock(); |
| |
| host_start = address & qemu_host_page_mask; |
| page_index = host_start >> TARGET_PAGE_BITS; |
| p1 = page_find(page_index); |
| if (!p1) { |
| mmap_unlock(); |
| return 0; |
| } |
| host_end = host_start + qemu_host_page_size; |
| p = p1; |
| prot = 0; |
| for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) { |
| prot |= p->flags; |
| p++; |
| } |
| /* if the page was really writable, then we change its |
| protection back to writable */ |
| if (prot & PAGE_WRITE_ORG) { |
| pindex = (address - host_start) >> TARGET_PAGE_BITS; |
| if (!(p1[pindex].flags & PAGE_WRITE)) { |
| mprotect((void *)g2h(host_start), qemu_host_page_size, |
| (prot & PAGE_BITS) | PAGE_WRITE); |
| p1[pindex].flags |= PAGE_WRITE; |
| /* and since the content will be modified, we must invalidate |
| the corresponding translated code. */ |
| tb_invalidate_phys_page(address, pc, puc); |
| #ifdef DEBUG_TB_CHECK |
| tb_invalidate_check(address); |
| #endif |
| mmap_unlock(); |
| return 1; |
| } |
| } |
| mmap_unlock(); |
| return 0; |
| } |
| |
| static inline void tlb_set_dirty(CPUState *env, |
| unsigned long addr, target_ulong vaddr) |
| { |
| } |
| #endif /* defined(CONFIG_USER_ONLY) */ |
| |
| #if !defined(CONFIG_USER_ONLY) |
| static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
| ram_addr_t memory); |
| static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, |
| ram_addr_t orig_memory); |
| #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \ |
| need_subpage) \ |
| do { \ |
| if (addr > start_addr) \ |
| start_addr2 = 0; \ |
| else { \ |
| start_addr2 = start_addr & ~TARGET_PAGE_MASK; \ |
| if (start_addr2 > 0) \ |
| need_subpage = 1; \ |
| } \ |
| \ |
| if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \ |
| end_addr2 = TARGET_PAGE_SIZE - 1; \ |
| else { \ |
| end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \ |
| if (end_addr2 < TARGET_PAGE_SIZE - 1) \ |
| need_subpage = 1; \ |
| } \ |
| } while (0) |
| |
| /* register physical memory. 'size' must be a multiple of the target |
| page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an |
| io memory page */ |
| void cpu_register_physical_memory(target_phys_addr_t start_addr, |
| ram_addr_t size, |
| ram_addr_t phys_offset) |
| { |
| target_phys_addr_t addr, end_addr; |
| PhysPageDesc *p; |
| CPUState *env; |
| ram_addr_t orig_size = size; |
| void *subpage; |
| |
| #ifdef USE_KQEMU |
| /* XXX: should not depend on cpu context */ |
| env = first_cpu; |
| if (env->kqemu_enabled) { |
| kqemu_set_phys_mem(start_addr, size, phys_offset); |
| } |
| #endif |
| size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK; |
| end_addr = start_addr + (target_phys_addr_t)size; |
| for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) { |
| p = phys_page_find(addr >> TARGET_PAGE_BITS); |
| if (p && p->phys_offset != IO_MEM_UNASSIGNED) { |
| ram_addr_t orig_memory = p->phys_offset; |
| target_phys_addr_t start_addr2, end_addr2; |
| int need_subpage = 0; |
| |
| CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, |
| need_subpage); |
| if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { |
| if (!(orig_memory & IO_MEM_SUBPAGE)) { |
| subpage = subpage_init((addr & TARGET_PAGE_MASK), |
| &p->phys_offset, orig_memory); |
| } else { |
| subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK) |
| >> IO_MEM_SHIFT]; |
| } |
| subpage_register(subpage, start_addr2, end_addr2, phys_offset); |
| } else { |
| p->phys_offset = phys_offset; |
| if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || |
| (phys_offset & IO_MEM_ROMD)) |
| phys_offset += TARGET_PAGE_SIZE; |
| } |
| } else { |
| p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1); |
| p->phys_offset = phys_offset; |
| if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || |
| (phys_offset & IO_MEM_ROMD)) |
| phys_offset += TARGET_PAGE_SIZE; |
| else { |
| target_phys_addr_t start_addr2, end_addr2; |
| int need_subpage = 0; |
| |
| CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, |
| end_addr2, need_subpage); |
| |
| if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { |
| subpage = subpage_init((addr & TARGET_PAGE_MASK), |
| &p->phys_offset, IO_MEM_UNASSIGNED); |
| subpage_register(subpage, start_addr2, end_addr2, |
| phys_offset); |
| } |
| } |
| } |
| } |
| |
| /* since each CPU stores ram addresses in its TLB cache, we must |
| reset the modified entries */ |
| /* XXX: slow ! */ |
| for(env = first_cpu; env != NULL; env = env->next_cpu) { |
| tlb_flush(env, 1); |
| } |
| } |
| |
| /* XXX: temporary until new memory mapping API */ |
| ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr) |
| { |
| PhysPageDesc *p; |
| |
| p = phys_page_find(addr >> TARGET_PAGE_BITS); |
| if (!p) |
| return IO_MEM_UNASSIGNED; |
| return p->phys_offset; |
| } |
| |
| /* XXX: better than nothing */ |
| ram_addr_t qemu_ram_alloc(ram_addr_t size) |
| { |
| ram_addr_t addr; |
| if ((phys_ram_alloc_offset + size) > phys_ram_size) { |
| fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 "\n", |
| (uint64_t)size, (uint64_t)phys_ram_size); |
| abort(); |
| } |
| addr = phys_ram_alloc_offset; |
| phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size); |
| return addr; |
| } |
| |
| void qemu_ram_free(ram_addr_t addr) |
| { |
| } |
| |
| static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr) |
| { |
| #ifdef DEBUG_UNASSIGNED |
| printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); |
| #endif |
| #ifdef TARGET_SPARC |
| do_unassigned_access(addr, 0, 0, 0); |
| #elif TARGET_CRIS |
| do_unassigned_access(addr, 0, 0, 0); |
| #endif |
| return 0; |
| } |
| |
| static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) |
| { |
| #ifdef DEBUG_UNASSIGNED |
| printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); |
| #endif |
| #ifdef TARGET_SPARC |
| do_unassigned_access(addr, 1, 0, 0); |
| #elif TARGET_CRIS |
| do_unassigned_access(addr, 1, 0, 0); |
| #endif |
| } |
| |
| static CPUReadMemoryFunc *unassigned_mem_read[3] = { |
| unassigned_mem_readb, |
| unassigned_mem_readb, |
| unassigned_mem_readb, |
| }; |
| |
| static CPUWriteMemoryFunc *unassigned_mem_write[3] = { |
| unassigned_mem_writeb, |
| unassigned_mem_writeb, |
| unassigned_mem_writeb, |
| }; |
| |
| static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr, |
| uint32_t val) |
| { |
| int dirty_flags; |
| dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
| if (!(dirty_flags & CODE_DIRTY_FLAG)) { |
| #if !defined(CONFIG_USER_ONLY) |
| tb_invalidate_phys_page_fast(ram_addr, 1); |
| dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
| #endif |
| } |
| stb_p(phys_ram_base + ram_addr, val); |
| #ifdef USE_KQEMU |
| if (cpu_single_env->kqemu_enabled && |
| (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) |
| kqemu_modify_page(cpu_single_env, ram_addr); |
| #endif |
| dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
| phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; |
| /* we remove the notdirty callback only if the code has been |
| flushed */ |
| if (dirty_flags == 0xff) |
| tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
| } |
| |
| static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr, |
| uint32_t val) |
| { |
| int dirty_flags; |
| dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
| if (!(dirty_flags & CODE_DIRTY_FLAG)) { |
| #if !defined(CONFIG_USER_ONLY) |
| tb_invalidate_phys_page_fast(ram_addr, 2); |
| dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
| #endif |
| } |
| stw_p(phys_ram_base + ram_addr, val); |
| #ifdef USE_KQEMU |
| if (cpu_single_env->kqemu_enabled && |
| (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) |
| kqemu_modify_page(cpu_single_env, ram_addr); |
| #endif |
| dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
| phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; |
| /* we remove the notdirty callback only if the code has been |
| flushed */ |
| if (dirty_flags == 0xff) |
| tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
| } |
| |
| static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr, |
| uint32_t val) |
| { |
| int dirty_flags; |
| dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
| if (!(dirty_flags & CODE_DIRTY_FLAG)) { |
| #if !defined(CONFIG_USER_ONLY) |
| tb_invalidate_phys_page_fast(ram_addr, 4); |
| dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
| #endif |
| } |
| stl_p(phys_ram_base + ram_addr, val); |
| #ifdef USE_KQEMU |
| if (cpu_single_env->kqemu_enabled && |
| (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) |
| kqemu_modify_page(cpu_single_env, ram_addr); |
| #endif |
| dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
| phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; |
| /* we remove the notdirty callback only if the code has been |
| flushed */ |
| if (dirty_flags == 0xff) |
| tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
| } |
| |
| static CPUReadMemoryFunc *error_mem_read[3] = { |
| NULL, /* never used */ |
| NULL, /* never used */ |
| NULL, /* never used */ |
| }; |
| |
| static CPUWriteMemoryFunc *notdirty_mem_write[3] = { |
| notdirty_mem_writeb, |
| notdirty_mem_writew, |
| notdirty_mem_writel, |
| }; |
| |
| /* Generate a debug exception if a watchpoint has been hit. */ |
| static void check_watchpoint(int offset, int flags) |
| { |
| CPUState *env = cpu_single_env; |
| target_ulong vaddr; |
| int i; |
| |
| vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
| for (i = 0; i < env->nb_watchpoints; i++) { |
| if (vaddr == env->watchpoint[i].vaddr |
| && (env->watchpoint[i].type & flags)) { |
| env->watchpoint_hit = i + 1; |
| cpu_interrupt(env, CPU_INTERRUPT_DEBUG); |
| break; |
| } |
| } |
| } |
| |
| /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
| so these check for a hit then pass through to the normal out-of-line |
| phys routines. */ |
| static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr) |
| { |
| check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ); |
| return ldub_phys(addr); |
| } |
| |
| static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr) |
| { |
| check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ); |
| return lduw_phys(addr); |
| } |
| |
| static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr) |
| { |
| check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ); |
| return ldl_phys(addr); |
| } |
| |
| static void watch_mem_writeb(void *opaque, target_phys_addr_t addr, |
| uint32_t val) |
| { |
| check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE); |
| stb_phys(addr, val); |
| } |
| |
| static void watch_mem_writew(void *opaque, target_phys_addr_t addr, |
| uint32_t val) |
| { |
| check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE); |
| stw_phys(addr, val); |
| } |
| |
| static void watch_mem_writel(void *opaque, target_phys_addr_t addr, |
| uint32_t val) |
| { |
| check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE); |
| stl_phys(addr, val); |
| } |
| |
| static CPUReadMemoryFunc *watch_mem_read[3] = { |
| watch_mem_readb, |
| watch_mem_readw, |
| watch_mem_readl, |
| }; |
| |
| static CPUWriteMemoryFunc *watch_mem_write[3] = { |
| watch_mem_writeb, |
| watch_mem_writew, |
| watch_mem_writel, |
| }; |
| |
| static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr, |
| unsigned int len) |
| { |
| uint32_t ret; |
| unsigned int idx; |
| |
| idx = SUBPAGE_IDX(addr - mmio->base); |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__, |
| mmio, len, addr, idx); |
| #endif |
| ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr); |
| |
| return ret; |
| } |
| |
| static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr, |
| uint32_t value, unsigned int len) |
| { |
| unsigned int idx; |
| |
| idx = SUBPAGE_IDX(addr - mmio->base); |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__, |
| mmio, len, addr, idx, value); |
| #endif |
| (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value); |
| } |
| |
| static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr) |
| { |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); |
| #endif |
| |
| return subpage_readlen(opaque, addr, 0); |
| } |
| |
| static void subpage_writeb (void *opaque, target_phys_addr_t addr, |
| uint32_t value) |
| { |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); |
| #endif |
| subpage_writelen(opaque, addr, value, 0); |
| } |
| |
| static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr) |
| { |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); |
| #endif |
| |
| return subpage_readlen(opaque, addr, 1); |
| } |
| |
| static void subpage_writew (void *opaque, target_phys_addr_t addr, |
| uint32_t value) |
| { |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); |
| #endif |
| subpage_writelen(opaque, addr, value, 1); |
| } |
| |
| static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr) |
| { |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); |
| #endif |
| |
| return subpage_readlen(opaque, addr, 2); |
| } |
| |
| static void subpage_writel (void *opaque, |
| target_phys_addr_t addr, uint32_t value) |
| { |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); |
| #endif |
| subpage_writelen(opaque, addr, value, 2); |
| } |
| |
| static CPUReadMemoryFunc *subpage_read[] = { |
| &subpage_readb, |
| &subpage_readw, |
| &subpage_readl, |
| }; |
| |
| static CPUWriteMemoryFunc *subpage_write[] = { |
| &subpage_writeb, |
| &subpage_writew, |
| &subpage_writel, |
| }; |
| |
| static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
| ram_addr_t memory) |
| { |
| int idx, eidx; |
| unsigned int i; |
| |
| if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) |
| return -1; |
| idx = SUBPAGE_IDX(start); |
| eidx = SUBPAGE_IDX(end); |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__, |
| mmio, start, end, idx, eidx, memory); |
| #endif |
| memory >>= IO_MEM_SHIFT; |
| for (; idx <= eidx; idx++) { |
| for (i = 0; i < 4; i++) { |
| if (io_mem_read[memory][i]) { |
| mmio->mem_read[idx][i] = &io_mem_read[memory][i]; |
| mmio->opaque[idx][0][i] = io_mem_opaque[memory]; |
| } |
| if (io_mem_write[memory][i]) { |
| mmio->mem_write[idx][i] = &io_mem_write[memory][i]; |
| mmio->opaque[idx][1][i] = io_mem_opaque[memory]; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, |
| ram_addr_t orig_memory) |
| { |
| subpage_t *mmio; |
| int subpage_memory; |
| |
| mmio = qemu_mallocz(sizeof(subpage_t)); |
| if (mmio != NULL) { |
| mmio->base = base; |
| subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio); |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__, |
| mmio, base, TARGET_PAGE_SIZE, subpage_memory); |
| #endif |
| *phys = subpage_memory | IO_MEM_SUBPAGE; |
| subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory); |
| } |
| |
| return mmio; |
| } |
| |
| static void io_mem_init(void) |
| { |
| cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL); |
| cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL); |
| cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL); |
| io_mem_nb = 5; |
| |
| io_mem_watch = cpu_register_io_memory(0, watch_mem_read, |
| watch_mem_write, NULL); |
| /* alloc dirty bits array */ |
| phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS); |
| memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS); |
| } |
| |
| /* mem_read and mem_write are arrays of functions containing the |
| function to access byte (index 0), word (index 1) and dword (index |
| 2). Functions can be omitted with a NULL function pointer. The |
| registered functions may be modified dynamically later. |
| If io_index is non zero, the corresponding io zone is |
| modified. If it is zero, a new io zone is allocated. The return |
| value can be used with cpu_register_physical_memory(). (-1) is |
| returned if error. */ |
| int cpu_register_io_memory(int io_index, |
| CPUReadMemoryFunc **mem_read, |
| CPUWriteMemoryFunc **mem_write, |
| void *opaque) |
| { |
| int i, subwidth = 0; |
| |
| if (io_index <= 0) { |
| if (io_mem_nb >= IO_MEM_NB_ENTRIES) |
| return -1; |
| io_index = io_mem_nb++; |
| } else { |
| if (io_index >= IO_MEM_NB_ENTRIES) |
| return -1; |
| } |
| |
| for(i = 0;i < 3; i++) { |
| if (!mem_read[i] || !mem_write[i]) |
| subwidth = IO_MEM_SUBWIDTH; |
| io_mem_read[io_index][i] = mem_read[i]; |
| io_mem_write[io_index][i] = mem_write[i]; |
| } |
| io_mem_opaque[io_index] = opaque; |
| return (io_index << IO_MEM_SHIFT) | subwidth; |
| } |
| |
| CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index) |
| { |
| return io_mem_write[io_index >> IO_MEM_SHIFT]; |
| } |
| |
| CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index) |
| { |
| return io_mem_read[io_index >> IO_MEM_SHIFT]; |
| } |
| |
| #endif /* !defined(CONFIG_USER_ONLY) */ |
| |
| /* physical memory access (slow version, mainly for debug) */ |
| #if defined(CONFIG_USER_ONLY) |
| void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, |
| int len, int is_write) |
| { |
| int l, flags; |
| target_ulong page; |
| void * p; |
| |
| while (len > 0) { |
| page = addr & TARGET_PAGE_MASK; |
| l = (page + TARGET_PAGE_SIZE) - addr; |
| if (l > len) |
| l = len; |
| flags = page_get_flags(page); |
| if (!(flags & PAGE_VALID)) |
| return; |
| if (is_write) { |
| if (!(flags & PAGE_WRITE)) |
| return; |
| /* XXX: this code should not depend on lock_user */ |
| if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
| /* FIXME - should this return an error rather than just fail? */ |
| return; |
| memcpy(p, buf, l); |
| unlock_user(p, addr, l); |
| } else { |
| if (!(flags & PAGE_READ)) |
| return; |
| /* XXX: this code should not depend on lock_user */ |
| if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
| /* FIXME - should this return an error rather than just fail? */ |
| return; |
| memcpy(buf, p, l); |
| unlock_user(p, addr, 0); |
| } |
| len -= l; |
| buf += l; |
| addr += l; |
| } |
| } |
| |
| #else |
| void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, |
| int len, int is_write) |
| { |
| int l, io_index; |
| uint8_t *ptr; |
| uint32_t val; |
| target_phys_addr_t page; |
| unsigned long pd; |
| PhysPageDesc *p; |
| |
| while (len > 0) { |
| page = addr & TARGET_PAGE_MASK; |
| l = (page + TARGET_PAGE_SIZE) - addr; |
| if (l > len) |
| l = len; |
| p = phys_page_find(page >> TARGET_PAGE_BITS); |
| if (!p) { |
| pd = IO_MEM_UNASSIGNED; |
| } else { |
| pd = p->phys_offset; |
| } |
| |
| if (is_write) { |
| if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
| io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
| /* XXX: could force cpu_single_env to NULL to avoid |
| potential bugs */ |
| if (l >= 4 && ((addr & 3) == 0)) { |
| /* 32 bit write access */ |
| val = ldl_p(buf); |
| io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); |
| l = 4; |
| } else if (l >= 2 && ((addr & 1) == 0)) { |
| /* 16 bit write access */ |
| val = lduw_p(buf); |
| io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val); |
| l = 2; |
| } else { |
| /* 8 bit write access */ |
| val = ldub_p(buf); |
| io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val); |
| l = 1; |
| } |
| } else { |
| unsigned long addr1; |
| addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); |
| /* RAM case */ |
| ptr = phys_ram_base + addr1; |
| memcpy(ptr, buf, l); |
| if (!cpu_physical_memory_is_dirty(addr1)) { |
| /* invalidate code */ |
| tb_invalidate_phys_page_range(addr1, addr1 + l, 0); |
| /* set dirty bit */ |
| phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= |
| (0xff & ~CODE_DIRTY_FLAG); |
| } |
| } |
| } else { |
| if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
| !(pd & IO_MEM_ROMD)) { |
| /* I/O case */ |
| io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
| if (l >= 4 && ((addr & 3) == 0)) { |
| /* 32 bit read access */ |
| val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); |
| stl_p(buf, val); |
| l = 4; |
| } else if (l >= 2 && ((addr & 1) == 0)) { |
| /* 16 bit read access */ |
| val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr); |
| stw_p(buf, val); |
| l = 2; |
| } else { |
| /* 8 bit read access */ |
| val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr); |
| stb_p(buf, val); |
| l = 1; |
| } |
| } else { |
| /* RAM case */ |
| ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
| (addr & ~TARGET_PAGE_MASK); |
| memcpy(buf, ptr, l); |
| } |
| } |
| len -= l; |
| buf += l; |
| addr += l; |
| } |
| } |
| |
| /* used for ROM loading : can write in RAM and ROM */ |
| void cpu_physical_memory_write_rom(target_phys_addr_t addr, |
| const uint8_t *buf, int len) |
| { |
| int l; |
| uint8_t *ptr; |
| target_phys_addr_t page; |
| unsigned long pd; |
| PhysPageDesc *p; |
| |
| while (len > 0) { |
| page = addr & TARGET_PAGE_MASK; |
| l = (page + TARGET_PAGE_SIZE) - addr; |
| if (l > len) |
| l = len; |
| p = phys_page_find(page >> TARGET_PAGE_BITS); |
| if (!p) { |
| pd = IO_MEM_UNASSIGNED; |
| } else { |
| pd = p->phys_offset; |
| } |
| |
| if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM && |
| (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM && |
| !(pd & IO_MEM_ROMD)) { |
| /* do nothing */ |
| } else { |
| unsigned long addr1; |
| addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); |
| /* ROM/RAM case */ |
| ptr = phys_ram_base + addr1; |
| memcpy(ptr, buf, l); |
| } |
| len -= l; |
| buf += l; |
| addr += l; |
| } |
| } |
| |
| |
| /* warning: addr must be aligned */ |
| uint32_t ldl_phys(target_phys_addr_t addr) |
| { |
| int io_index; |
| uint8_t *ptr; |
| uint32_t val; |
| unsigned long pd; |
| PhysPageDesc *p; |
| |
| p = phys_page_find(addr >> TARGET_PAGE_BITS); |
| if (!p) { |
| pd = IO_MEM_UNASSIGNED; |
| } else { |
| pd = p->phys_offset; |
| } |
| |
| if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
| !(pd & IO_MEM_ROMD)) { |
| /* I/O case */ |
| io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
| val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); |
| } else { |
| /* RAM case */ |
| ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
| (addr & ~TARGET_PAGE_MASK); |
| val = ldl_p(ptr); |
| } |
| return val; |
| } |
| |
| /* warning: addr must be aligned */ |
| uint64_t ldq_phys(target_phys_addr_t addr) |
| { |
| int io_index; |
| uint8_t *ptr; |
| uint64_t val; |
| unsigned long pd; |
| PhysPageDesc *p; |
| |
| p = phys_page_find(addr >> TARGET_PAGE_BITS); |
| if (!p) { |
| pd = IO_MEM_UNASSIGNED; |
| } else { |
| pd = p->phys_offset; |
| } |
| |
| if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
| !(pd & IO_MEM_ROMD)) { |
| /* I/O case */ |
| io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
| #ifdef TARGET_WORDS_BIGENDIAN |
| val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32; |
| val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4); |
| #else |
| val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); |
| val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32; |
| #endif |
| } else { |
| /* RAM case */ |
| ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
| (addr & ~TARGET_PAGE_MASK); |
| val = ldq_p(ptr); |
| } |
| return val; |
| } |
| |
| /* XXX: optimize */ |
| uint32_t ldub_phys(target_phys_addr_t addr) |
| { |
| uint8_t val; |
| cpu_physical_memory_read(addr, &val, 1); |
| return val; |
| } |
| |
| /* XXX: optimize */ |
| uint32_t lduw_phys(target_phys_addr_t addr) |
| { |
| uint16_t val; |
| cpu_physical_memory_read(addr, (uint8_t *)&val, 2); |
| return tswap16(val); |
| } |
| |
| /* warning: addr must be aligned. The ram page is not masked as dirty |
| and the code inside is not invalidated. It is useful if the dirty |
| bits are used to track modified PTEs */ |
| void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val) |
| { |
| int io_index; |
| uint8_t *ptr; |
| unsigned long pd; |
| PhysPageDesc *p; |
| |
| p = phys_page_find(addr >> TARGET_PAGE_BITS); |
| if (!p) { |
| pd = IO_MEM_UNASSIGNED; |
| } else { |
| pd = p->phys_offset; |
| } |
| |
| if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
| io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
| io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); |
| } else { |
| ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
| (addr & ~TARGET_PAGE_MASK); |
| stl_p(ptr, val); |
| } |
| } |
| |
| void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val) |
| { |
| int io_index; |
| uint8_t *ptr; |
| unsigned long pd; |
| PhysPageDesc *p; |
| |
| p = phys_page_find(addr >> TARGET_PAGE_BITS); |
| if (!p) { |
| pd = IO_MEM_UNASSIGNED; |
| } else { |
| pd = p->phys_offset; |
| } |
| |
| if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
| io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
| #ifdef TARGET_WORDS_BIGENDIAN |
| io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32); |
| io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val); |
| #else |
| io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); |
| io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32); |
| #endif |
| } else { |
| ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
| (addr & ~TARGET_PAGE_MASK); |
| stq_p(ptr, val); |
| } |
| } |
| |
| /* warning: addr must be aligned */ |
| void stl_phys(target_phys_addr_t addr, uint32_t val) |
| { |
| int io_index; |
| uint8_t *ptr; |
| unsigned long pd; |
| PhysPageDesc *p; |
| |
| p = phys_page_find(addr >> TARGET_PAGE_BITS); |
| if (!p) { |
| pd = IO_MEM_UNASSIGNED; |
| } else { |
| pd = p->phys_offset; |
| } |
| |
| if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
| io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
| io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); |
| } else { |
| unsigned long addr1; |
| addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); |
| /* RAM case */ |
| ptr = phys_ram_base + addr1; |
| stl_p(ptr, val); |
| if (!cpu_physical_memory_is_dirty(addr1)) { |
| /* invalidate code */ |
| tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); |
| /* set dirty bit */ |
| phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= |
| (0xff & ~CODE_DIRTY_FLAG); |
| } |
| } |
| } |
| |
| /* XXX: optimize */ |
| void stb_phys(target_phys_addr_t addr, uint32_t val) |
| { |
| uint8_t v = val; |
| cpu_physical_memory_write(addr, &v, 1); |
| } |
| |
| /* XXX: optimize */ |
| void stw_phys(target_phys_addr_t addr, uint32_t val) |
| { |
| uint16_t v = tswap16(val); |
| cpu_physical_memory_write(addr, (const uint8_t *)&v, 2); |
| } |
| |
| /* XXX: optimize */ |
| void stq_phys(target_phys_addr_t addr, uint64_t val) |
| { |
| val = tswap64(val); |
| cpu_physical_memory_write(addr, (const uint8_t *)&val, 8); |
| } |
| |
| #endif |
| |
| /* virtual memory access for debug */ |
| int cpu_memory_rw_debug(CPUState *env, target_ulong addr, |
| uint8_t *buf, int len, int is_write) |
| { |
| int l; |
| target_phys_addr_t phys_addr; |
| target_ulong page; |
| |
| while (len > 0) { |
| page = addr & TARGET_PAGE_MASK; |
| phys_addr = cpu_get_phys_page_debug(env, page); |
| /* if no physical page mapped, return an error */ |
| if (phys_addr == -1) |
| return -1; |
| l = (page + TARGET_PAGE_SIZE) - addr; |
| if (l > len) |
| l = len; |
| cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK), |
| buf, l, is_write); |
| len -= l; |
| buf += l; |
| addr += l; |
| } |
| return 0; |
| } |
| |
| /* in deterministic execution mode, instructions doing device I/Os |
| must be at the end of the TB */ |
| void cpu_io_recompile(CPUState *env, void *retaddr) |
| { |
| TranslationBlock *tb; |
| uint32_t n, cflags; |
| target_ulong pc, cs_base; |
| uint64_t flags; |
| |
| tb = tb_find_pc((unsigned long)retaddr); |
| if (!tb) { |
| cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", |
| retaddr); |
| } |
| n = env->icount_decr.u16.low + tb->icount; |
| cpu_restore_state(tb, env, (unsigned long)retaddr, NULL); |
| /* Calculate how many instructions had been executed before the fault |
| occurred. */ |
| n = n - env->icount_decr.u16.low; |
| /* Generate a new TB ending on the I/O insn. */ |
| n++; |
| /* On MIPS and SH, delay slot instructions can only be restarted if |
| they were already the first instruction in the TB. If this is not |
| the first instruction in a TB then re-execute the preceding |
| branch. */ |
| #if defined(TARGET_MIPS) |
| if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { |
| env->active_tc.PC -= 4; |
| env->icount_decr.u16.low++; |
| env->hflags &= ~MIPS_HFLAG_BMASK; |
| } |
| #elif defined(TARGET_SH4) |
| if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 |
| && n > 1) { |
| env->pc -= 2; |
| env->icount_decr.u16.low++; |
| env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); |
| } |
| #endif |
| /* This should never happen. */ |
| if (n > CF_COUNT_MASK) |
| cpu_abort(env, "TB too big during recompile"); |
| |
| cflags = n | CF_LAST_IO; |
| pc = tb->pc; |
| cs_base = tb->cs_base; |
| flags = tb->flags; |
| tb_phys_invalidate(tb, -1); |
| /* FIXME: In theory this could raise an exception. In practice |
| we have already translated the block once so it's probably ok. */ |
| tb_gen_code(env, pc, cs_base, flags, cflags); |
| /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not |
| the first in the TB) then we end up generating a whole new TB and |
| repeating the fault, which is horribly inefficient. |
| Better would be to execute just this insn uncached, or generate a |
| second new TB. */ |
| cpu_resume_from_signal(env, NULL); |
| } |
| |
| void dump_exec_info(FILE *f, |
| int (*cpu_fprintf)(FILE *f, const char *fmt, ...)) |
| { |
| int i, target_code_size, max_target_code_size; |
| int direct_jmp_count, direct_jmp2_count, cross_page; |
| TranslationBlock *tb; |
| |
| target_code_size = 0; |
| max_target_code_size = 0; |
| cross_page = 0; |
| direct_jmp_count = 0; |
| direct_jmp2_count = 0; |
| for(i = 0; i < nb_tbs; i++) { |
| tb = &tbs[i]; |
| target_code_size += tb->size; |
| if (tb->size > max_target_code_size) |
| max_target_code_size = tb->size; |
| if (tb->page_addr[1] != -1) |
| cross_page++; |
| if (tb->tb_next_offset[0] != 0xffff) { |
| direct_jmp_count++; |
| if (tb->tb_next_offset[1] != 0xffff) { |
| direct_jmp2_count++; |
| } |
| } |
| } |
| /* XXX: avoid using doubles ? */ |
| cpu_fprintf(f, "Translation buffer state:\n"); |
| cpu_fprintf(f, "gen code size %ld/%ld\n", |
| code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size); |
| cpu_fprintf(f, "TB count %d/%d\n", |
| nb_tbs, code_gen_max_blocks); |
| cpu_fprintf(f, "TB avg target size %d max=%d bytes\n", |
| nb_tbs ? target_code_size / nb_tbs : 0, |
| max_target_code_size); |
| cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n", |
| nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0, |
| target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0); |
| cpu_fprintf(f, "cross page TB count %d (%d%%)\n", |
| cross_page, |
| nb_tbs ? (cross_page * 100) / nb_tbs : 0); |
| cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n", |
| direct_jmp_count, |
| nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0, |
| direct_jmp2_count, |
| nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0); |
| cpu_fprintf(f, "\nStatistics:\n"); |
| cpu_fprintf(f, "TB flush count %d\n", tb_flush_count); |
| cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count); |
| cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count); |
| tcg_dump_info(f, cpu_fprintf); |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| #define MMUSUFFIX _cmmu |
| #define GETPC() NULL |
| #define env cpu_single_env |
| #define SOFTMMU_CODE_ACCESS |
| |
| #define SHIFT 0 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 1 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 2 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 3 |
| #include "softmmu_template.h" |
| |
| #undef env |
| |
| #endif |