| /* |
| * block_copy API |
| * |
| * Copyright (C) 2013 Proxmox Server Solutions |
| * Copyright (c) 2019 Virtuozzo International GmbH. |
| * |
| * Authors: |
| * Dietmar Maurer (dietmar@proxmox.com) |
| * Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| */ |
| |
| #include "qemu/osdep.h" |
| |
| #include "trace.h" |
| #include "qapi/error.h" |
| #include "block/block-copy.h" |
| #include "block/reqlist.h" |
| #include "sysemu/block-backend.h" |
| #include "qemu/units.h" |
| #include "qemu/coroutine.h" |
| #include "block/aio_task.h" |
| #include "qemu/error-report.h" |
| #include "qemu/memalign.h" |
| |
| #define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB) |
| #define BLOCK_COPY_MAX_BUFFER (1 * MiB) |
| #define BLOCK_COPY_MAX_MEM (128 * MiB) |
| #define BLOCK_COPY_MAX_WORKERS 64 |
| #define BLOCK_COPY_SLICE_TIME 100000000ULL /* ns */ |
| #define BLOCK_COPY_CLUSTER_SIZE_DEFAULT (1 << 16) |
| |
| typedef enum { |
| COPY_READ_WRITE_CLUSTER, |
| COPY_READ_WRITE, |
| COPY_WRITE_ZEROES, |
| COPY_RANGE_SMALL, |
| COPY_RANGE_FULL |
| } BlockCopyMethod; |
| |
| static coroutine_fn int block_copy_task_entry(AioTask *task); |
| |
| typedef struct BlockCopyCallState { |
| /* Fields initialized in block_copy_async() and never changed. */ |
| BlockCopyState *s; |
| int64_t offset; |
| int64_t bytes; |
| int max_workers; |
| int64_t max_chunk; |
| bool ignore_ratelimit; |
| BlockCopyAsyncCallbackFunc cb; |
| void *cb_opaque; |
| /* Coroutine where async block-copy is running */ |
| Coroutine *co; |
| |
| /* Fields whose state changes throughout the execution */ |
| bool finished; /* atomic */ |
| QemuCoSleep sleep; /* TODO: protect API with a lock */ |
| bool cancelled; /* atomic */ |
| /* To reference all call states from BlockCopyState */ |
| QLIST_ENTRY(BlockCopyCallState) list; |
| |
| /* |
| * Fields that report information about return values and erros. |
| * Protected by lock in BlockCopyState. |
| */ |
| bool error_is_read; |
| /* |
| * @ret is set concurrently by tasks under mutex. Only set once by first |
| * failed task (and untouched if no task failed). |
| * After finishing (call_state->finished is true), it is not modified |
| * anymore and may be safely read without mutex. |
| */ |
| int ret; |
| } BlockCopyCallState; |
| |
| typedef struct BlockCopyTask { |
| AioTask task; |
| |
| /* |
| * Fields initialized in block_copy_task_create() |
| * and never changed. |
| */ |
| BlockCopyState *s; |
| BlockCopyCallState *call_state; |
| /* |
| * @method can also be set again in the while loop of |
| * block_copy_dirty_clusters(), but it is never accessed concurrently |
| * because the only other function that reads it is |
| * block_copy_task_entry() and it is invoked afterwards in the same |
| * iteration. |
| */ |
| BlockCopyMethod method; |
| |
| /* |
| * Generally, req is protected by lock in BlockCopyState, Still req.offset |
| * is only set on task creation, so may be read concurrently after creation. |
| * req.bytes is changed at most once, and need only protecting the case of |
| * parallel read while updating @bytes value in block_copy_task_shrink(). |
| */ |
| BlockReq req; |
| } BlockCopyTask; |
| |
| static int64_t task_end(BlockCopyTask *task) |
| { |
| return task->req.offset + task->req.bytes; |
| } |
| |
| typedef struct BlockCopyState { |
| /* |
| * BdrvChild objects are not owned or managed by block-copy. They are |
| * provided by block-copy user and user is responsible for appropriate |
| * permissions on these children. |
| */ |
| BdrvChild *source; |
| BdrvChild *target; |
| |
| /* |
| * Fields initialized in block_copy_state_new() |
| * and never changed. |
| */ |
| int64_t cluster_size; |
| int64_t max_transfer; |
| uint64_t len; |
| BdrvRequestFlags write_flags; |
| |
| /* |
| * Fields whose state changes throughout the execution |
| * Protected by lock. |
| */ |
| CoMutex lock; |
| int64_t in_flight_bytes; |
| BlockCopyMethod method; |
| BlockReqList reqs; |
| QLIST_HEAD(, BlockCopyCallState) calls; |
| /* |
| * skip_unallocated: |
| * |
| * Used by sync=top jobs, which first scan the source node for unallocated |
| * areas and clear them in the copy_bitmap. During this process, the bitmap |
| * is thus not fully initialized: It may still have bits set for areas that |
| * are unallocated and should actually not be copied. |
| * |
| * This is indicated by skip_unallocated. |
| * |
| * In this case, block_copy() will query the source’s allocation status, |
| * skip unallocated regions, clear them in the copy_bitmap, and invoke |
| * block_copy_reset_unallocated() every time it does. |
| */ |
| bool skip_unallocated; /* atomic */ |
| /* State fields that use a thread-safe API */ |
| BdrvDirtyBitmap *copy_bitmap; |
| ProgressMeter *progress; |
| SharedResource *mem; |
| RateLimit rate_limit; |
| } BlockCopyState; |
| |
| /* Called with lock held */ |
| static int64_t block_copy_chunk_size(BlockCopyState *s) |
| { |
| switch (s->method) { |
| case COPY_READ_WRITE_CLUSTER: |
| return s->cluster_size; |
| case COPY_READ_WRITE: |
| case COPY_RANGE_SMALL: |
| return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER), |
| s->max_transfer); |
| case COPY_RANGE_FULL: |
| return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE), |
| s->max_transfer); |
| default: |
| /* Cannot have COPY_WRITE_ZEROES here. */ |
| abort(); |
| } |
| } |
| |
| /* |
| * Search for the first dirty area in offset/bytes range and create task at |
| * the beginning of it. |
| */ |
| static coroutine_fn BlockCopyTask * |
| block_copy_task_create(BlockCopyState *s, BlockCopyCallState *call_state, |
| int64_t offset, int64_t bytes) |
| { |
| BlockCopyTask *task; |
| int64_t max_chunk; |
| |
| QEMU_LOCK_GUARD(&s->lock); |
| max_chunk = MIN_NON_ZERO(block_copy_chunk_size(s), call_state->max_chunk); |
| if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap, |
| offset, offset + bytes, |
| max_chunk, &offset, &bytes)) |
| { |
| return NULL; |
| } |
| |
| assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); |
| bytes = QEMU_ALIGN_UP(bytes, s->cluster_size); |
| |
| /* region is dirty, so no existent tasks possible in it */ |
| assert(!reqlist_find_conflict(&s->reqs, offset, bytes)); |
| |
| bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes); |
| s->in_flight_bytes += bytes; |
| |
| task = g_new(BlockCopyTask, 1); |
| *task = (BlockCopyTask) { |
| .task.func = block_copy_task_entry, |
| .s = s, |
| .call_state = call_state, |
| .method = s->method, |
| }; |
| reqlist_init_req(&s->reqs, &task->req, offset, bytes); |
| |
| return task; |
| } |
| |
| /* |
| * block_copy_task_shrink |
| * |
| * Drop the tail of the task to be handled later. Set dirty bits back and |
| * wake up all tasks waiting for us (may be some of them are not intersecting |
| * with shrunk task) |
| */ |
| static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task, |
| int64_t new_bytes) |
| { |
| QEMU_LOCK_GUARD(&task->s->lock); |
| if (new_bytes == task->req.bytes) { |
| return; |
| } |
| |
| assert(new_bytes > 0 && new_bytes < task->req.bytes); |
| |
| task->s->in_flight_bytes -= task->req.bytes - new_bytes; |
| bdrv_set_dirty_bitmap(task->s->copy_bitmap, |
| task->req.offset + new_bytes, |
| task->req.bytes - new_bytes); |
| |
| reqlist_shrink_req(&task->req, new_bytes); |
| } |
| |
| static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret) |
| { |
| QEMU_LOCK_GUARD(&task->s->lock); |
| task->s->in_flight_bytes -= task->req.bytes; |
| if (ret < 0) { |
| bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->req.offset, |
| task->req.bytes); |
| } |
| if (task->s->progress) { |
| progress_set_remaining(task->s->progress, |
| bdrv_get_dirty_count(task->s->copy_bitmap) + |
| task->s->in_flight_bytes); |
| } |
| reqlist_remove_req(&task->req); |
| } |
| |
| void block_copy_state_free(BlockCopyState *s) |
| { |
| if (!s) { |
| return; |
| } |
| |
| ratelimit_destroy(&s->rate_limit); |
| bdrv_release_dirty_bitmap(s->copy_bitmap); |
| shres_destroy(s->mem); |
| g_free(s); |
| } |
| |
| static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target) |
| { |
| return MIN_NON_ZERO(INT_MAX, |
| MIN_NON_ZERO(source->bs->bl.max_transfer, |
| target->bs->bl.max_transfer)); |
| } |
| |
| void block_copy_set_copy_opts(BlockCopyState *s, bool use_copy_range, |
| bool compress) |
| { |
| /* Keep BDRV_REQ_SERIALISING set (or not set) in block_copy_state_new() */ |
| s->write_flags = (s->write_flags & BDRV_REQ_SERIALISING) | |
| (compress ? BDRV_REQ_WRITE_COMPRESSED : 0); |
| |
| if (s->max_transfer < s->cluster_size) { |
| /* |
| * copy_range does not respect max_transfer. We don't want to bother |
| * with requests smaller than block-copy cluster size, so fallback to |
| * buffered copying (read and write respect max_transfer on their |
| * behalf). |
| */ |
| s->method = COPY_READ_WRITE_CLUSTER; |
| } else if (compress) { |
| /* Compression supports only cluster-size writes and no copy-range. */ |
| s->method = COPY_READ_WRITE_CLUSTER; |
| } else { |
| /* |
| * If copy range enabled, start with COPY_RANGE_SMALL, until first |
| * successful copy_range (look at block_copy_do_copy). |
| */ |
| s->method = use_copy_range ? COPY_RANGE_SMALL : COPY_READ_WRITE; |
| } |
| } |
| |
| static int64_t block_copy_calculate_cluster_size(BlockDriverState *target, |
| Error **errp) |
| { |
| int ret; |
| BlockDriverInfo bdi; |
| bool target_does_cow = bdrv_backing_chain_next(target); |
| |
| /* |
| * If there is no backing file on the target, we cannot rely on COW if our |
| * backup cluster size is smaller than the target cluster size. Even for |
| * targets with a backing file, try to avoid COW if possible. |
| */ |
| ret = bdrv_get_info(target, &bdi); |
| if (ret == -ENOTSUP && !target_does_cow) { |
| /* Cluster size is not defined */ |
| warn_report("The target block device doesn't provide " |
| "information about the block size and it doesn't have a " |
| "backing file. The default block size of %u bytes is " |
| "used. If the actual block size of the target exceeds " |
| "this default, the backup may be unusable", |
| BLOCK_COPY_CLUSTER_SIZE_DEFAULT); |
| return BLOCK_COPY_CLUSTER_SIZE_DEFAULT; |
| } else if (ret < 0 && !target_does_cow) { |
| error_setg_errno(errp, -ret, |
| "Couldn't determine the cluster size of the target image, " |
| "which has no backing file"); |
| error_append_hint(errp, |
| "Aborting, since this may create an unusable destination image\n"); |
| return ret; |
| } else if (ret < 0 && target_does_cow) { |
| /* Not fatal; just trudge on ahead. */ |
| return BLOCK_COPY_CLUSTER_SIZE_DEFAULT; |
| } |
| |
| return MAX(BLOCK_COPY_CLUSTER_SIZE_DEFAULT, bdi.cluster_size); |
| } |
| |
| BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target, |
| const BdrvDirtyBitmap *bitmap, |
| Error **errp) |
| { |
| ERRP_GUARD(); |
| BlockCopyState *s; |
| int64_t cluster_size; |
| BdrvDirtyBitmap *copy_bitmap; |
| bool is_fleecing; |
| |
| cluster_size = block_copy_calculate_cluster_size(target->bs, errp); |
| if (cluster_size < 0) { |
| return NULL; |
| } |
| |
| copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL, |
| errp); |
| if (!copy_bitmap) { |
| return NULL; |
| } |
| bdrv_disable_dirty_bitmap(copy_bitmap); |
| if (bitmap) { |
| if (!bdrv_merge_dirty_bitmap(copy_bitmap, bitmap, NULL, errp)) { |
| error_prepend(errp, "Failed to merge bitmap '%s' to internal " |
| "copy-bitmap: ", bdrv_dirty_bitmap_name(bitmap)); |
| bdrv_release_dirty_bitmap(copy_bitmap); |
| return NULL; |
| } |
| } else { |
| bdrv_set_dirty_bitmap(copy_bitmap, 0, |
| bdrv_dirty_bitmap_size(copy_bitmap)); |
| } |
| |
| /* |
| * If source is in backing chain of target assume that target is going to be |
| * used for "image fleecing", i.e. it should represent a kind of snapshot of |
| * source at backup-start point in time. And target is going to be read by |
| * somebody (for example, used as NBD export) during backup job. |
| * |
| * In this case, we need to add BDRV_REQ_SERIALISING write flag to avoid |
| * intersection of backup writes and third party reads from target, |
| * otherwise reading from target we may occasionally read already updated by |
| * guest data. |
| * |
| * For more information see commit f8d59dfb40bb and test |
| * tests/qemu-iotests/222 |
| */ |
| is_fleecing = bdrv_chain_contains(target->bs, source->bs); |
| |
| s = g_new(BlockCopyState, 1); |
| *s = (BlockCopyState) { |
| .source = source, |
| .target = target, |
| .copy_bitmap = copy_bitmap, |
| .cluster_size = cluster_size, |
| .len = bdrv_dirty_bitmap_size(copy_bitmap), |
| .write_flags = (is_fleecing ? BDRV_REQ_SERIALISING : 0), |
| .mem = shres_create(BLOCK_COPY_MAX_MEM), |
| .max_transfer = QEMU_ALIGN_DOWN( |
| block_copy_max_transfer(source, target), |
| cluster_size), |
| }; |
| |
| block_copy_set_copy_opts(s, false, false); |
| |
| ratelimit_init(&s->rate_limit); |
| qemu_co_mutex_init(&s->lock); |
| QLIST_INIT(&s->reqs); |
| QLIST_INIT(&s->calls); |
| |
| return s; |
| } |
| |
| /* Only set before running the job, no need for locking. */ |
| void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm) |
| { |
| s->progress = pm; |
| } |
| |
| /* |
| * Takes ownership of @task |
| * |
| * If pool is NULL directly run the task, otherwise schedule it into the pool. |
| * |
| * Returns: task.func return code if pool is NULL |
| * otherwise -ECANCELED if pool status is bad |
| * otherwise 0 (successfully scheduled) |
| */ |
| static coroutine_fn int block_copy_task_run(AioTaskPool *pool, |
| BlockCopyTask *task) |
| { |
| if (!pool) { |
| int ret = task->task.func(&task->task); |
| |
| g_free(task); |
| return ret; |
| } |
| |
| aio_task_pool_wait_slot(pool); |
| if (aio_task_pool_status(pool) < 0) { |
| co_put_to_shres(task->s->mem, task->req.bytes); |
| block_copy_task_end(task, -ECANCELED); |
| g_free(task); |
| return -ECANCELED; |
| } |
| |
| aio_task_pool_start_task(pool, &task->task); |
| |
| return 0; |
| } |
| |
| /* |
| * block_copy_do_copy |
| * |
| * Do copy of cluster-aligned chunk. Requested region is allowed to exceed |
| * s->len only to cover last cluster when s->len is not aligned to clusters. |
| * |
| * No sync here: nor bitmap neighter intersecting requests handling, only copy. |
| * |
| * @method is an in-out argument, so that copy_range can be either extended to |
| * a full-size buffer or disabled if the copy_range attempt fails. The output |
| * value of @method should be used for subsequent tasks. |
| * Returns 0 on success. |
| */ |
| static int coroutine_fn block_copy_do_copy(BlockCopyState *s, |
| int64_t offset, int64_t bytes, |
| BlockCopyMethod *method, |
| bool *error_is_read) |
| { |
| int ret; |
| int64_t nbytes = MIN(offset + bytes, s->len) - offset; |
| void *bounce_buffer = NULL; |
| |
| assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes); |
| assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); |
| assert(QEMU_IS_ALIGNED(bytes, s->cluster_size)); |
| assert(offset < s->len); |
| assert(offset + bytes <= s->len || |
| offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size)); |
| assert(nbytes < INT_MAX); |
| |
| switch (*method) { |
| case COPY_WRITE_ZEROES: |
| ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags & |
| ~BDRV_REQ_WRITE_COMPRESSED); |
| if (ret < 0) { |
| trace_block_copy_write_zeroes_fail(s, offset, ret); |
| *error_is_read = false; |
| } |
| return ret; |
| |
| case COPY_RANGE_SMALL: |
| case COPY_RANGE_FULL: |
| ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes, |
| 0, s->write_flags); |
| if (ret >= 0) { |
| /* Successful copy-range, increase chunk size. */ |
| *method = COPY_RANGE_FULL; |
| return 0; |
| } |
| |
| trace_block_copy_copy_range_fail(s, offset, ret); |
| *method = COPY_READ_WRITE; |
| /* Fall through to read+write with allocated buffer */ |
| |
| case COPY_READ_WRITE_CLUSTER: |
| case COPY_READ_WRITE: |
| /* |
| * In case of failed copy_range request above, we may proceed with |
| * buffered request larger than BLOCK_COPY_MAX_BUFFER. |
| * Still, further requests will be properly limited, so don't care too |
| * much. Moreover the most likely case (copy_range is unsupported for |
| * the configuration, so the very first copy_range request fails) |
| * is handled by setting large copy_size only after first successful |
| * copy_range. |
| */ |
| |
| bounce_buffer = qemu_blockalign(s->source->bs, nbytes); |
| |
| ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0); |
| if (ret < 0) { |
| trace_block_copy_read_fail(s, offset, ret); |
| *error_is_read = true; |
| goto out; |
| } |
| |
| ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer, |
| s->write_flags); |
| if (ret < 0) { |
| trace_block_copy_write_fail(s, offset, ret); |
| *error_is_read = false; |
| goto out; |
| } |
| |
| out: |
| qemu_vfree(bounce_buffer); |
| break; |
| |
| default: |
| abort(); |
| } |
| |
| return ret; |
| } |
| |
| static coroutine_fn int block_copy_task_entry(AioTask *task) |
| { |
| BlockCopyTask *t = container_of(task, BlockCopyTask, task); |
| BlockCopyState *s = t->s; |
| bool error_is_read = false; |
| BlockCopyMethod method = t->method; |
| int ret; |
| |
| ret = block_copy_do_copy(s, t->req.offset, t->req.bytes, &method, |
| &error_is_read); |
| |
| WITH_QEMU_LOCK_GUARD(&s->lock) { |
| if (s->method == t->method) { |
| s->method = method; |
| } |
| |
| if (ret < 0) { |
| if (!t->call_state->ret) { |
| t->call_state->ret = ret; |
| t->call_state->error_is_read = error_is_read; |
| } |
| } else if (s->progress) { |
| progress_work_done(s->progress, t->req.bytes); |
| } |
| } |
| co_put_to_shres(s->mem, t->req.bytes); |
| block_copy_task_end(t, ret); |
| |
| return ret; |
| } |
| |
| static coroutine_fn int block_copy_block_status(BlockCopyState *s, |
| int64_t offset, |
| int64_t bytes, int64_t *pnum) |
| { |
| int64_t num; |
| BlockDriverState *base; |
| int ret; |
| |
| if (qatomic_read(&s->skip_unallocated)) { |
| base = bdrv_backing_chain_next(s->source->bs); |
| } else { |
| base = NULL; |
| } |
| |
| ret = bdrv_co_block_status_above(s->source->bs, base, offset, bytes, &num, |
| NULL, NULL); |
| if (ret < 0 || num < s->cluster_size) { |
| /* |
| * On error or if failed to obtain large enough chunk just fallback to |
| * copy one cluster. |
| */ |
| num = s->cluster_size; |
| ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA; |
| } else if (offset + num == s->len) { |
| num = QEMU_ALIGN_UP(num, s->cluster_size); |
| } else { |
| num = QEMU_ALIGN_DOWN(num, s->cluster_size); |
| } |
| |
| *pnum = num; |
| return ret; |
| } |
| |
| /* |
| * Check if the cluster starting at offset is allocated or not. |
| * return via pnum the number of contiguous clusters sharing this allocation. |
| */ |
| static int coroutine_fn block_copy_is_cluster_allocated(BlockCopyState *s, |
| int64_t offset, |
| int64_t *pnum) |
| { |
| BlockDriverState *bs = s->source->bs; |
| int64_t count, total_count = 0; |
| int64_t bytes = s->len - offset; |
| int ret; |
| |
| assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); |
| |
| while (true) { |
| ret = bdrv_co_is_allocated(bs, offset, bytes, &count); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| total_count += count; |
| |
| if (ret || count == 0) { |
| /* |
| * ret: partial segment(s) are considered allocated. |
| * otherwise: unallocated tail is treated as an entire segment. |
| */ |
| *pnum = DIV_ROUND_UP(total_count, s->cluster_size); |
| return ret; |
| } |
| |
| /* Unallocated segment(s) with uncertain following segment(s) */ |
| if (total_count >= s->cluster_size) { |
| *pnum = total_count / s->cluster_size; |
| return 0; |
| } |
| |
| offset += count; |
| bytes -= count; |
| } |
| } |
| |
| void block_copy_reset(BlockCopyState *s, int64_t offset, int64_t bytes) |
| { |
| QEMU_LOCK_GUARD(&s->lock); |
| |
| bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes); |
| if (s->progress) { |
| progress_set_remaining(s->progress, |
| bdrv_get_dirty_count(s->copy_bitmap) + |
| s->in_flight_bytes); |
| } |
| } |
| |
| /* |
| * Reset bits in copy_bitmap starting at offset if they represent unallocated |
| * data in the image. May reset subsequent contiguous bits. |
| * @return 0 when the cluster at @offset was unallocated, |
| * 1 otherwise, and -ret on error. |
| */ |
| int64_t coroutine_fn block_copy_reset_unallocated(BlockCopyState *s, |
| int64_t offset, |
| int64_t *count) |
| { |
| int ret; |
| int64_t clusters, bytes; |
| |
| ret = block_copy_is_cluster_allocated(s, offset, &clusters); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| bytes = clusters * s->cluster_size; |
| |
| if (!ret) { |
| block_copy_reset(s, offset, bytes); |
| } |
| |
| *count = bytes; |
| return ret; |
| } |
| |
| /* |
| * block_copy_dirty_clusters |
| * |
| * Copy dirty clusters in @offset/@bytes range. |
| * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty |
| * clusters found and -errno on failure. |
| */ |
| static int coroutine_fn |
| block_copy_dirty_clusters(BlockCopyCallState *call_state) |
| { |
| BlockCopyState *s = call_state->s; |
| int64_t offset = call_state->offset; |
| int64_t bytes = call_state->bytes; |
| |
| int ret = 0; |
| bool found_dirty = false; |
| int64_t end = offset + bytes; |
| AioTaskPool *aio = NULL; |
| |
| /* |
| * block_copy() user is responsible for keeping source and target in same |
| * aio context |
| */ |
| assert(bdrv_get_aio_context(s->source->bs) == |
| bdrv_get_aio_context(s->target->bs)); |
| |
| assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); |
| assert(QEMU_IS_ALIGNED(bytes, s->cluster_size)); |
| |
| while (bytes && aio_task_pool_status(aio) == 0 && |
| !qatomic_read(&call_state->cancelled)) { |
| BlockCopyTask *task; |
| int64_t status_bytes; |
| |
| task = block_copy_task_create(s, call_state, offset, bytes); |
| if (!task) { |
| /* No more dirty bits in the bitmap */ |
| trace_block_copy_skip_range(s, offset, bytes); |
| break; |
| } |
| if (task->req.offset > offset) { |
| trace_block_copy_skip_range(s, offset, task->req.offset - offset); |
| } |
| |
| found_dirty = true; |
| |
| ret = block_copy_block_status(s, task->req.offset, task->req.bytes, |
| &status_bytes); |
| assert(ret >= 0); /* never fail */ |
| if (status_bytes < task->req.bytes) { |
| block_copy_task_shrink(task, status_bytes); |
| } |
| if (qatomic_read(&s->skip_unallocated) && |
| !(ret & BDRV_BLOCK_ALLOCATED)) { |
| block_copy_task_end(task, 0); |
| trace_block_copy_skip_range(s, task->req.offset, task->req.bytes); |
| offset = task_end(task); |
| bytes = end - offset; |
| g_free(task); |
| continue; |
| } |
| if (ret & BDRV_BLOCK_ZERO) { |
| task->method = COPY_WRITE_ZEROES; |
| } |
| |
| if (!call_state->ignore_ratelimit) { |
| uint64_t ns = ratelimit_calculate_delay(&s->rate_limit, 0); |
| if (ns > 0) { |
| block_copy_task_end(task, -EAGAIN); |
| g_free(task); |
| qemu_co_sleep_ns_wakeable(&call_state->sleep, |
| QEMU_CLOCK_REALTIME, ns); |
| continue; |
| } |
| } |
| |
| ratelimit_calculate_delay(&s->rate_limit, task->req.bytes); |
| |
| trace_block_copy_process(s, task->req.offset); |
| |
| co_get_from_shres(s->mem, task->req.bytes); |
| |
| offset = task_end(task); |
| bytes = end - offset; |
| |
| if (!aio && bytes) { |
| aio = aio_task_pool_new(call_state->max_workers); |
| } |
| |
| ret = block_copy_task_run(aio, task); |
| if (ret < 0) { |
| goto out; |
| } |
| } |
| |
| out: |
| if (aio) { |
| aio_task_pool_wait_all(aio); |
| |
| /* |
| * We are not really interested in -ECANCELED returned from |
| * block_copy_task_run. If it fails, it means some task already failed |
| * for real reason, let's return first failure. |
| * Still, assert that we don't rewrite failure by success. |
| * |
| * Note: ret may be positive here because of block-status result. |
| */ |
| assert(ret >= 0 || aio_task_pool_status(aio) < 0); |
| ret = aio_task_pool_status(aio); |
| |
| aio_task_pool_free(aio); |
| } |
| |
| return ret < 0 ? ret : found_dirty; |
| } |
| |
| void block_copy_kick(BlockCopyCallState *call_state) |
| { |
| qemu_co_sleep_wake(&call_state->sleep); |
| } |
| |
| /* |
| * block_copy_common |
| * |
| * Copy requested region, accordingly to dirty bitmap. |
| * Collaborate with parallel block_copy requests: if they succeed it will help |
| * us. If they fail, we will retry not-copied regions. So, if we return error, |
| * it means that some I/O operation failed in context of _this_ block_copy call, |
| * not some parallel operation. |
| */ |
| static int coroutine_fn block_copy_common(BlockCopyCallState *call_state) |
| { |
| int ret; |
| BlockCopyState *s = call_state->s; |
| |
| qemu_co_mutex_lock(&s->lock); |
| QLIST_INSERT_HEAD(&s->calls, call_state, list); |
| qemu_co_mutex_unlock(&s->lock); |
| |
| do { |
| ret = block_copy_dirty_clusters(call_state); |
| |
| if (ret == 0 && !qatomic_read(&call_state->cancelled)) { |
| WITH_QEMU_LOCK_GUARD(&s->lock) { |
| /* |
| * Check that there is no task we still need to |
| * wait to complete |
| */ |
| ret = reqlist_wait_one(&s->reqs, call_state->offset, |
| call_state->bytes, &s->lock); |
| if (ret == 0) { |
| /* |
| * No pending tasks, but check again the bitmap in this |
| * same critical section, since a task might have failed |
| * between this and the critical section in |
| * block_copy_dirty_clusters(). |
| * |
| * reqlist_wait_one return value 0 also means that it |
| * didn't release the lock. So, we are still in the same |
| * critical section, not interrupted by any concurrent |
| * access to state. |
| */ |
| ret = bdrv_dirty_bitmap_next_dirty(s->copy_bitmap, |
| call_state->offset, |
| call_state->bytes) >= 0; |
| } |
| } |
| } |
| |
| /* |
| * We retry in two cases: |
| * 1. Some progress done |
| * Something was copied, which means that there were yield points |
| * and some new dirty bits may have appeared (due to failed parallel |
| * block-copy requests). |
| * 2. We have waited for some intersecting block-copy request |
| * It may have failed and produced new dirty bits. |
| */ |
| } while (ret > 0 && !qatomic_read(&call_state->cancelled)); |
| |
| qatomic_store_release(&call_state->finished, true); |
| |
| if (call_state->cb) { |
| call_state->cb(call_state->cb_opaque); |
| } |
| |
| qemu_co_mutex_lock(&s->lock); |
| QLIST_REMOVE(call_state, list); |
| qemu_co_mutex_unlock(&s->lock); |
| |
| return ret; |
| } |
| |
| static void coroutine_fn block_copy_async_co_entry(void *opaque) |
| { |
| block_copy_common(opaque); |
| } |
| |
| int coroutine_fn block_copy(BlockCopyState *s, int64_t start, int64_t bytes, |
| bool ignore_ratelimit, uint64_t timeout_ns, |
| BlockCopyAsyncCallbackFunc cb, |
| void *cb_opaque) |
| { |
| int ret; |
| BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1); |
| |
| *call_state = (BlockCopyCallState) { |
| .s = s, |
| .offset = start, |
| .bytes = bytes, |
| .ignore_ratelimit = ignore_ratelimit, |
| .max_workers = BLOCK_COPY_MAX_WORKERS, |
| .cb = cb, |
| .cb_opaque = cb_opaque, |
| }; |
| |
| ret = qemu_co_timeout(block_copy_async_co_entry, call_state, timeout_ns, |
| g_free); |
| if (ret < 0) { |
| assert(ret == -ETIMEDOUT); |
| block_copy_call_cancel(call_state); |
| /* call_state will be freed by running coroutine. */ |
| return ret; |
| } |
| |
| ret = call_state->ret; |
| g_free(call_state); |
| |
| return ret; |
| } |
| |
| BlockCopyCallState *block_copy_async(BlockCopyState *s, |
| int64_t offset, int64_t bytes, |
| int max_workers, int64_t max_chunk, |
| BlockCopyAsyncCallbackFunc cb, |
| void *cb_opaque) |
| { |
| BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1); |
| |
| *call_state = (BlockCopyCallState) { |
| .s = s, |
| .offset = offset, |
| .bytes = bytes, |
| .max_workers = max_workers, |
| .max_chunk = max_chunk, |
| .cb = cb, |
| .cb_opaque = cb_opaque, |
| |
| .co = qemu_coroutine_create(block_copy_async_co_entry, call_state), |
| }; |
| |
| qemu_coroutine_enter(call_state->co); |
| |
| return call_state; |
| } |
| |
| void block_copy_call_free(BlockCopyCallState *call_state) |
| { |
| if (!call_state) { |
| return; |
| } |
| |
| assert(qatomic_read(&call_state->finished)); |
| g_free(call_state); |
| } |
| |
| bool block_copy_call_finished(BlockCopyCallState *call_state) |
| { |
| return qatomic_read(&call_state->finished); |
| } |
| |
| bool block_copy_call_succeeded(BlockCopyCallState *call_state) |
| { |
| return qatomic_load_acquire(&call_state->finished) && |
| !qatomic_read(&call_state->cancelled) && |
| call_state->ret == 0; |
| } |
| |
| bool block_copy_call_failed(BlockCopyCallState *call_state) |
| { |
| return qatomic_load_acquire(&call_state->finished) && |
| !qatomic_read(&call_state->cancelled) && |
| call_state->ret < 0; |
| } |
| |
| bool block_copy_call_cancelled(BlockCopyCallState *call_state) |
| { |
| return qatomic_read(&call_state->cancelled); |
| } |
| |
| int block_copy_call_status(BlockCopyCallState *call_state, bool *error_is_read) |
| { |
| assert(qatomic_load_acquire(&call_state->finished)); |
| if (error_is_read) { |
| *error_is_read = call_state->error_is_read; |
| } |
| return call_state->ret; |
| } |
| |
| /* |
| * Note that cancelling and finishing are racy. |
| * User can cancel a block-copy that is already finished. |
| */ |
| void block_copy_call_cancel(BlockCopyCallState *call_state) |
| { |
| qatomic_set(&call_state->cancelled, true); |
| block_copy_kick(call_state); |
| } |
| |
| BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s) |
| { |
| return s->copy_bitmap; |
| } |
| |
| int64_t block_copy_cluster_size(BlockCopyState *s) |
| { |
| return s->cluster_size; |
| } |
| |
| void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip) |
| { |
| qatomic_set(&s->skip_unallocated, skip); |
| } |
| |
| void block_copy_set_speed(BlockCopyState *s, uint64_t speed) |
| { |
| ratelimit_set_speed(&s->rate_limit, speed, BLOCK_COPY_SLICE_TIME); |
| |
| /* |
| * Note: it's good to kick all call states from here, but it should be done |
| * only from a coroutine, to not crash if s->calls list changed while |
| * entering one call. So for now, the only user of this function kicks its |
| * only one call_state by hand. |
| */ |
| } |