| /* |
| * User emulator execution |
| * |
| * Copyright (c) 2003-2005 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| #include "hw/core/tcg-cpu-ops.h" |
| #include "disas/disas.h" |
| #include "exec/exec-all.h" |
| #include "tcg/tcg.h" |
| #include "qemu/bitops.h" |
| #include "exec/cpu_ldst.h" |
| #include "exec/translate-all.h" |
| #include "exec/helper-proto.h" |
| #include "qemu/atomic128.h" |
| #include "trace/trace-root.h" |
| #include "tcg/tcg-ldst.h" |
| #include "internal.h" |
| |
| __thread uintptr_t helper_retaddr; |
| |
| //#define DEBUG_SIGNAL |
| |
| /* |
| * Adjust the pc to pass to cpu_restore_state; return the memop type. |
| */ |
| MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write) |
| { |
| switch (helper_retaddr) { |
| default: |
| /* |
| * Fault during host memory operation within a helper function. |
| * The helper's host return address, saved here, gives us a |
| * pointer into the generated code that will unwind to the |
| * correct guest pc. |
| */ |
| *pc = helper_retaddr; |
| break; |
| |
| case 0: |
| /* |
| * Fault during host memory operation within generated code. |
| * (Or, a unrelated bug within qemu, but we can't tell from here). |
| * |
| * We take the host pc from the signal frame. However, we cannot |
| * use that value directly. Within cpu_restore_state_from_tb, we |
| * assume PC comes from GETPC(), as used by the helper functions, |
| * so we adjust the address by -GETPC_ADJ to form an address that |
| * is within the call insn, so that the address does not accidentally |
| * match the beginning of the next guest insn. However, when the |
| * pc comes from the signal frame it points to the actual faulting |
| * host memory insn and not the return from a call insn. |
| * |
| * Therefore, adjust to compensate for what will be done later |
| * by cpu_restore_state_from_tb. |
| */ |
| *pc += GETPC_ADJ; |
| break; |
| |
| case 1: |
| /* |
| * Fault during host read for translation, or loosely, "execution". |
| * |
| * The guest pc is already pointing to the start of the TB for which |
| * code is being generated. If the guest translator manages the |
| * page crossings correctly, this is exactly the correct address |
| * (and if the translator doesn't handle page boundaries correctly |
| * there's little we can do about that here). Therefore, do not |
| * trigger the unwinder. |
| * |
| * Like tb_gen_code, release the memory lock before cpu_loop_exit. |
| */ |
| mmap_unlock(); |
| *pc = 0; |
| return MMU_INST_FETCH; |
| } |
| |
| return is_write ? MMU_DATA_STORE : MMU_DATA_LOAD; |
| } |
| |
| /** |
| * handle_sigsegv_accerr_write: |
| * @cpu: the cpu context |
| * @old_set: the sigset_t from the signal ucontext_t |
| * @host_pc: the host pc, adjusted for the signal |
| * @guest_addr: the guest address of the fault |
| * |
| * Return true if the write fault has been handled, and should be re-tried. |
| * |
| * Note that it is important that we don't call page_unprotect() unless |
| * this is really a "write to nonwriteable page" fault, because |
| * page_unprotect() assumes that if it is called for an access to |
| * a page that's writeable this means we had two threads racing and |
| * another thread got there first and already made the page writeable; |
| * so we will retry the access. If we were to call page_unprotect() |
| * for some other kind of fault that should really be passed to the |
| * guest, we'd end up in an infinite loop of retrying the faulting access. |
| */ |
| bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set, |
| uintptr_t host_pc, abi_ptr guest_addr) |
| { |
| switch (page_unprotect(guest_addr, host_pc)) { |
| case 0: |
| /* |
| * Fault not caused by a page marked unwritable to protect |
| * cached translations, must be the guest binary's problem. |
| */ |
| return false; |
| case 1: |
| /* |
| * Fault caused by protection of cached translation; TBs |
| * invalidated, so resume execution. |
| */ |
| return true; |
| case 2: |
| /* |
| * Fault caused by protection of cached translation, and the |
| * currently executing TB was modified and must be exited immediately. |
| */ |
| sigprocmask(SIG_SETMASK, old_set, NULL); |
| cpu_loop_exit_noexc(cpu); |
| /* NORETURN */ |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static int probe_access_internal(CPUArchState *env, target_ulong addr, |
| int fault_size, MMUAccessType access_type, |
| bool nonfault, uintptr_t ra) |
| { |
| int acc_flag; |
| bool maperr; |
| |
| switch (access_type) { |
| case MMU_DATA_STORE: |
| acc_flag = PAGE_WRITE_ORG; |
| break; |
| case MMU_DATA_LOAD: |
| acc_flag = PAGE_READ; |
| break; |
| case MMU_INST_FETCH: |
| acc_flag = PAGE_EXEC; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (guest_addr_valid_untagged(addr)) { |
| int page_flags = page_get_flags(addr); |
| if (page_flags & acc_flag) { |
| return 0; /* success */ |
| } |
| maperr = !(page_flags & PAGE_VALID); |
| } else { |
| maperr = true; |
| } |
| |
| if (nonfault) { |
| return TLB_INVALID_MASK; |
| } |
| |
| cpu_loop_exit_sigsegv(env_cpu(env), addr, access_type, maperr, ra); |
| } |
| |
| int probe_access_flags(CPUArchState *env, target_ulong addr, |
| MMUAccessType access_type, int mmu_idx, |
| bool nonfault, void **phost, uintptr_t ra) |
| { |
| int flags; |
| |
| flags = probe_access_internal(env, addr, 0, access_type, nonfault, ra); |
| *phost = flags ? NULL : g2h(env_cpu(env), addr); |
| return flags; |
| } |
| |
| void *probe_access(CPUArchState *env, target_ulong addr, int size, |
| MMUAccessType access_type, int mmu_idx, uintptr_t ra) |
| { |
| int flags; |
| |
| g_assert(-(addr | TARGET_PAGE_MASK) >= size); |
| flags = probe_access_internal(env, addr, size, access_type, false, ra); |
| g_assert(flags == 0); |
| |
| return size ? g2h(env_cpu(env), addr) : NULL; |
| } |
| |
| /* The softmmu versions of these helpers are in cputlb.c. */ |
| |
| /* |
| * Verify that we have passed the correct MemOp to the correct function. |
| * |
| * We could present one function to target code, and dispatch based on |
| * the MemOp, but so far we have worked hard to avoid an indirect function |
| * call along the memory path. |
| */ |
| static void validate_memop(MemOpIdx oi, MemOp expected) |
| { |
| #ifdef CONFIG_DEBUG_TCG |
| MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP); |
| assert(have == expected); |
| #endif |
| } |
| |
| void helper_unaligned_ld(CPUArchState *env, target_ulong addr) |
| { |
| cpu_loop_exit_sigbus(env_cpu(env), addr, MMU_DATA_LOAD, GETPC()); |
| } |
| |
| void helper_unaligned_st(CPUArchState *env, target_ulong addr) |
| { |
| cpu_loop_exit_sigbus(env_cpu(env), addr, MMU_DATA_STORE, GETPC()); |
| } |
| |
| static void *cpu_mmu_lookup(CPUArchState *env, target_ulong addr, |
| MemOpIdx oi, uintptr_t ra, MMUAccessType type) |
| { |
| MemOp mop = get_memop(oi); |
| int a_bits = get_alignment_bits(mop); |
| void *ret; |
| |
| /* Enforce guest required alignment. */ |
| if (unlikely(addr & ((1 << a_bits) - 1))) { |
| cpu_loop_exit_sigbus(env_cpu(env), addr, type, ra); |
| } |
| |
| ret = g2h(env_cpu(env), addr); |
| set_helper_retaddr(ra); |
| return ret; |
| } |
| |
| uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, |
| MemOpIdx oi, uintptr_t ra) |
| { |
| void *haddr; |
| uint8_t ret; |
| |
| validate_memop(oi, MO_UB); |
| trace_guest_ld_before_exec(env_cpu(env), addr, oi); |
| haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); |
| ret = ldub_p(haddr); |
| clear_helper_retaddr(); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); |
| return ret; |
| } |
| |
| uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr, |
| MemOpIdx oi, uintptr_t ra) |
| { |
| void *haddr; |
| uint16_t ret; |
| |
| validate_memop(oi, MO_BEUW); |
| trace_guest_ld_before_exec(env_cpu(env), addr, oi); |
| haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); |
| ret = lduw_be_p(haddr); |
| clear_helper_retaddr(); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); |
| return ret; |
| } |
| |
| uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr, |
| MemOpIdx oi, uintptr_t ra) |
| { |
| void *haddr; |
| uint32_t ret; |
| |
| validate_memop(oi, MO_BEUL); |
| trace_guest_ld_before_exec(env_cpu(env), addr, oi); |
| haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); |
| ret = ldl_be_p(haddr); |
| clear_helper_retaddr(); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); |
| return ret; |
| } |
| |
| uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr, |
| MemOpIdx oi, uintptr_t ra) |
| { |
| void *haddr; |
| uint64_t ret; |
| |
| validate_memop(oi, MO_BEUQ); |
| trace_guest_ld_before_exec(env_cpu(env), addr, oi); |
| haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); |
| ret = ldq_be_p(haddr); |
| clear_helper_retaddr(); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); |
| return ret; |
| } |
| |
| uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr, |
| MemOpIdx oi, uintptr_t ra) |
| { |
| void *haddr; |
| uint16_t ret; |
| |
| validate_memop(oi, MO_LEUW); |
| trace_guest_ld_before_exec(env_cpu(env), addr, oi); |
| haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); |
| ret = lduw_le_p(haddr); |
| clear_helper_retaddr(); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); |
| return ret; |
| } |
| |
| uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr, |
| MemOpIdx oi, uintptr_t ra) |
| { |
| void *haddr; |
| uint32_t ret; |
| |
| validate_memop(oi, MO_LEUL); |
| trace_guest_ld_before_exec(env_cpu(env), addr, oi); |
| haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); |
| ret = ldl_le_p(haddr); |
| clear_helper_retaddr(); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); |
| return ret; |
| } |
| |
| uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr, |
| MemOpIdx oi, uintptr_t ra) |
| { |
| void *haddr; |
| uint64_t ret; |
| |
| validate_memop(oi, MO_LEUQ); |
| trace_guest_ld_before_exec(env_cpu(env), addr, oi); |
| haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); |
| ret = ldq_le_p(haddr); |
| clear_helper_retaddr(); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); |
| return ret; |
| } |
| |
| void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val, |
| MemOpIdx oi, uintptr_t ra) |
| { |
| void *haddr; |
| |
| validate_memop(oi, MO_UB); |
| trace_guest_st_before_exec(env_cpu(env), addr, oi); |
| haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE); |
| stb_p(haddr, val); |
| clear_helper_retaddr(); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); |
| } |
| |
| void cpu_stw_be_mmu(CPUArchState *env, abi_ptr addr, uint16_t val, |
| MemOpIdx oi, uintptr_t ra) |
| { |
| void *haddr; |
| |
| validate_memop(oi, MO_BEUW); |
| trace_guest_st_before_exec(env_cpu(env), addr, oi); |
| haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE); |
| stw_be_p(haddr, val); |
| clear_helper_retaddr(); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); |
| } |
| |
| void cpu_stl_be_mmu(CPUArchState *env, abi_ptr addr, uint32_t val, |
| MemOpIdx oi, uintptr_t ra) |
| { |
| void *haddr; |
| |
| validate_memop(oi, MO_BEUL); |
| trace_guest_st_before_exec(env_cpu(env), addr, oi); |
| haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE); |
| stl_be_p(haddr, val); |
| clear_helper_retaddr(); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); |
| } |
| |
| void cpu_stq_be_mmu(CPUArchState *env, abi_ptr addr, uint64_t val, |
| MemOpIdx oi, uintptr_t ra) |
| { |
| void *haddr; |
| |
| validate_memop(oi, MO_BEUQ); |
| trace_guest_st_before_exec(env_cpu(env), addr, oi); |
| haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE); |
| stq_be_p(haddr, val); |
| clear_helper_retaddr(); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); |
| } |
| |
| void cpu_stw_le_mmu(CPUArchState *env, abi_ptr addr, uint16_t val, |
| MemOpIdx oi, uintptr_t ra) |
| { |
| void *haddr; |
| |
| validate_memop(oi, MO_LEUW); |
| trace_guest_st_before_exec(env_cpu(env), addr, oi); |
| haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE); |
| stw_le_p(haddr, val); |
| clear_helper_retaddr(); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); |
| } |
| |
| void cpu_stl_le_mmu(CPUArchState *env, abi_ptr addr, uint32_t val, |
| MemOpIdx oi, uintptr_t ra) |
| { |
| void *haddr; |
| |
| validate_memop(oi, MO_LEUL); |
| trace_guest_st_before_exec(env_cpu(env), addr, oi); |
| haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE); |
| stl_le_p(haddr, val); |
| clear_helper_retaddr(); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); |
| } |
| |
| void cpu_stq_le_mmu(CPUArchState *env, abi_ptr addr, uint64_t val, |
| MemOpIdx oi, uintptr_t ra) |
| { |
| void *haddr; |
| |
| validate_memop(oi, MO_LEUQ); |
| trace_guest_st_before_exec(env_cpu(env), addr, oi); |
| haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE); |
| stq_le_p(haddr, val); |
| clear_helper_retaddr(); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); |
| } |
| |
| uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr) |
| { |
| uint32_t ret; |
| |
| set_helper_retaddr(1); |
| ret = ldub_p(g2h_untagged(ptr)); |
| clear_helper_retaddr(); |
| return ret; |
| } |
| |
| uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr) |
| { |
| uint32_t ret; |
| |
| set_helper_retaddr(1); |
| ret = lduw_p(g2h_untagged(ptr)); |
| clear_helper_retaddr(); |
| return ret; |
| } |
| |
| uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr) |
| { |
| uint32_t ret; |
| |
| set_helper_retaddr(1); |
| ret = ldl_p(g2h_untagged(ptr)); |
| clear_helper_retaddr(); |
| return ret; |
| } |
| |
| uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr) |
| { |
| uint64_t ret; |
| |
| set_helper_retaddr(1); |
| ret = ldq_p(g2h_untagged(ptr)); |
| clear_helper_retaddr(); |
| return ret; |
| } |
| |
| #include "ldst_common.c.inc" |
| |
| /* |
| * Do not allow unaligned operations to proceed. Return the host address. |
| * |
| * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE. |
| */ |
| static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, |
| MemOpIdx oi, int size, int prot, |
| uintptr_t retaddr) |
| { |
| MemOp mop = get_memop(oi); |
| int a_bits = get_alignment_bits(mop); |
| void *ret; |
| |
| /* Enforce guest required alignment. */ |
| if (unlikely(addr & ((1 << a_bits) - 1))) { |
| MMUAccessType t = prot == PAGE_READ ? MMU_DATA_LOAD : MMU_DATA_STORE; |
| cpu_loop_exit_sigbus(env_cpu(env), addr, t, retaddr); |
| } |
| |
| /* Enforce qemu required alignment. */ |
| if (unlikely(addr & (size - 1))) { |
| cpu_loop_exit_atomic(env_cpu(env), retaddr); |
| } |
| |
| ret = g2h(env_cpu(env), addr); |
| set_helper_retaddr(retaddr); |
| return ret; |
| } |
| |
| #include "atomic_common.c.inc" |
| |
| /* |
| * First set of functions passes in OI and RETADDR. |
| * This makes them callable from other helpers. |
| */ |
| |
| #define ATOMIC_NAME(X) \ |
| glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) |
| #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0) |
| #define ATOMIC_MMU_IDX MMU_USER_IDX |
| |
| #define DATA_SIZE 1 |
| #include "atomic_template.h" |
| |
| #define DATA_SIZE 2 |
| #include "atomic_template.h" |
| |
| #define DATA_SIZE 4 |
| #include "atomic_template.h" |
| |
| #ifdef CONFIG_ATOMIC64 |
| #define DATA_SIZE 8 |
| #include "atomic_template.h" |
| #endif |
| |
| #if HAVE_ATOMIC128 || HAVE_CMPXCHG128 |
| #define DATA_SIZE 16 |
| #include "atomic_template.h" |
| #endif |