| /* |
| * QEMU KVM support |
| * |
| * Copyright (C) 2006-2008 Qumranet Technologies |
| * Copyright IBM, Corp. 2008 |
| * |
| * Authors: |
| * Anthony Liguori <aliguori@us.ibm.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include <sys/types.h> |
| #include <sys/ioctl.h> |
| #include <sys/mman.h> |
| |
| #include <linux/kvm.h> |
| |
| #include "qemu-common.h" |
| #include "sysemu.h" |
| #include "kvm.h" |
| #include "cpu.h" |
| #include "gdbstub.h" |
| #include "host-utils.h" |
| #include "hw/pc.h" |
| #include "ioport.h" |
| |
| #ifdef CONFIG_KVM_PARA |
| #include <linux/kvm_para.h> |
| #endif |
| // |
| //#define DEBUG_KVM |
| |
| #ifdef DEBUG_KVM |
| #define DPRINTF(fmt, ...) \ |
| do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
| #else |
| #define DPRINTF(fmt, ...) \ |
| do { } while (0) |
| #endif |
| |
| #define MSR_KVM_WALL_CLOCK 0x11 |
| #define MSR_KVM_SYSTEM_TIME 0x12 |
| |
| #ifdef KVM_CAP_EXT_CPUID |
| |
| static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) |
| { |
| struct kvm_cpuid2 *cpuid; |
| int r, size; |
| |
| size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); |
| cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size); |
| cpuid->nent = max; |
| r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); |
| if (r == 0 && cpuid->nent >= max) { |
| r = -E2BIG; |
| } |
| if (r < 0) { |
| if (r == -E2BIG) { |
| qemu_free(cpuid); |
| return NULL; |
| } else { |
| fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", |
| strerror(-r)); |
| exit(1); |
| } |
| } |
| return cpuid; |
| } |
| |
| uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg) |
| { |
| struct kvm_cpuid2 *cpuid; |
| int i, max; |
| uint32_t ret = 0; |
| uint32_t cpuid_1_edx; |
| |
| if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) { |
| return -1U; |
| } |
| |
| max = 1; |
| while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) { |
| max *= 2; |
| } |
| |
| for (i = 0; i < cpuid->nent; ++i) { |
| if (cpuid->entries[i].function == function) { |
| switch (reg) { |
| case R_EAX: |
| ret = cpuid->entries[i].eax; |
| break; |
| case R_EBX: |
| ret = cpuid->entries[i].ebx; |
| break; |
| case R_ECX: |
| ret = cpuid->entries[i].ecx; |
| break; |
| case R_EDX: |
| ret = cpuid->entries[i].edx; |
| switch (function) { |
| case 1: |
| /* KVM before 2.6.30 misreports the following features */ |
| ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; |
| break; |
| case 0x80000001: |
| /* On Intel, kvm returns cpuid according to the Intel spec, |
| * so add missing bits according to the AMD spec: |
| */ |
| cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX); |
| ret |= cpuid_1_edx & 0xdfeff7ff; |
| break; |
| } |
| break; |
| } |
| } |
| } |
| |
| qemu_free(cpuid); |
| |
| return ret; |
| } |
| |
| #else |
| |
| uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg) |
| { |
| return -1U; |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_KVM_PARA |
| struct kvm_para_features { |
| int cap; |
| int feature; |
| } para_features[] = { |
| #ifdef KVM_CAP_CLOCKSOURCE |
| { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, |
| #endif |
| #ifdef KVM_CAP_NOP_IO_DELAY |
| { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, |
| #endif |
| #ifdef KVM_CAP_PV_MMU |
| { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, |
| #endif |
| { -1, -1 } |
| }; |
| |
| static int get_para_features(CPUState *env) |
| { |
| int i, features = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) { |
| if (kvm_check_extension(env->kvm_state, para_features[i].cap)) |
| features |= (1 << para_features[i].feature); |
| } |
| |
| return features; |
| } |
| #endif |
| |
| int kvm_arch_init_vcpu(CPUState *env) |
| { |
| struct { |
| struct kvm_cpuid2 cpuid; |
| struct kvm_cpuid_entry2 entries[100]; |
| } __attribute__((packed)) cpuid_data; |
| uint32_t limit, i, j, cpuid_i; |
| uint32_t unused; |
| struct kvm_cpuid_entry2 *c; |
| #ifdef KVM_CPUID_SIGNATURE |
| uint32_t signature[3]; |
| #endif |
| |
| env->mp_state = KVM_MP_STATE_RUNNABLE; |
| |
| env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, R_EDX); |
| |
| i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR; |
| env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, R_ECX); |
| env->cpuid_ext_features |= i; |
| |
| env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001, |
| R_EDX); |
| env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001, |
| R_ECX); |
| |
| cpuid_i = 0; |
| |
| #ifdef CONFIG_KVM_PARA |
| /* Paravirtualization CPUIDs */ |
| memcpy(signature, "KVMKVMKVM\0\0\0", 12); |
| c = &cpuid_data.entries[cpuid_i++]; |
| memset(c, 0, sizeof(*c)); |
| c->function = KVM_CPUID_SIGNATURE; |
| c->eax = 0; |
| c->ebx = signature[0]; |
| c->ecx = signature[1]; |
| c->edx = signature[2]; |
| |
| c = &cpuid_data.entries[cpuid_i++]; |
| memset(c, 0, sizeof(*c)); |
| c->function = KVM_CPUID_FEATURES; |
| c->eax = env->cpuid_kvm_features & get_para_features(env); |
| #endif |
| |
| cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
| |
| for (i = 0; i <= limit; i++) { |
| c = &cpuid_data.entries[cpuid_i++]; |
| |
| switch (i) { |
| case 2: { |
| /* Keep reading function 2 till all the input is received */ |
| int times; |
| |
| c->function = i; |
| c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
| KVM_CPUID_FLAG_STATE_READ_NEXT; |
| cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); |
| times = c->eax & 0xff; |
| |
| for (j = 1; j < times; ++j) { |
| c = &cpuid_data.entries[cpuid_i++]; |
| c->function = i; |
| c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
| cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); |
| } |
| break; |
| } |
| case 4: |
| case 0xb: |
| case 0xd: |
| for (j = 0; ; j++) { |
| c->function = i; |
| c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; |
| c->index = j; |
| cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
| |
| if (i == 4 && c->eax == 0) |
| break; |
| if (i == 0xb && !(c->ecx & 0xff00)) |
| break; |
| if (i == 0xd && c->eax == 0) |
| break; |
| |
| c = &cpuid_data.entries[cpuid_i++]; |
| } |
| break; |
| default: |
| c->function = i; |
| c->flags = 0; |
| cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); |
| break; |
| } |
| } |
| cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
| |
| for (i = 0x80000000; i <= limit; i++) { |
| c = &cpuid_data.entries[cpuid_i++]; |
| |
| c->function = i; |
| c->flags = 0; |
| cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); |
| } |
| |
| cpuid_data.cpuid.nent = cpuid_i; |
| |
| return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data); |
| } |
| |
| void kvm_arch_reset_vcpu(CPUState *env) |
| { |
| env->exception_injected = -1; |
| env->interrupt_injected = -1; |
| env->nmi_injected = 0; |
| env->nmi_pending = 0; |
| } |
| |
| static int kvm_has_msr_star(CPUState *env) |
| { |
| static int has_msr_star; |
| int ret; |
| |
| /* first time */ |
| if (has_msr_star == 0) { |
| struct kvm_msr_list msr_list, *kvm_msr_list; |
| |
| has_msr_star = -1; |
| |
| /* Obtain MSR list from KVM. These are the MSRs that we must |
| * save/restore */ |
| msr_list.nmsrs = 0; |
| ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list); |
| if (ret < 0 && ret != -E2BIG) { |
| return 0; |
| } |
| /* Old kernel modules had a bug and could write beyond the provided |
| memory. Allocate at least a safe amount of 1K. */ |
| kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) + |
| msr_list.nmsrs * |
| sizeof(msr_list.indices[0]))); |
| |
| kvm_msr_list->nmsrs = msr_list.nmsrs; |
| ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
| if (ret >= 0) { |
| int i; |
| |
| for (i = 0; i < kvm_msr_list->nmsrs; i++) { |
| if (kvm_msr_list->indices[i] == MSR_STAR) { |
| has_msr_star = 1; |
| break; |
| } |
| } |
| } |
| |
| free(kvm_msr_list); |
| } |
| |
| if (has_msr_star == 1) |
| return 1; |
| return 0; |
| } |
| |
| int kvm_arch_init(KVMState *s, int smp_cpus) |
| { |
| int ret; |
| |
| /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code |
| * directly. In order to use vm86 mode, a TSS is needed. Since this |
| * must be part of guest physical memory, we need to allocate it. Older |
| * versions of KVM just assumed that it would be at the end of physical |
| * memory but that doesn't work with more than 4GB of memory. We simply |
| * refuse to work with those older versions of KVM. */ |
| ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR); |
| if (ret <= 0) { |
| fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n"); |
| return ret; |
| } |
| |
| /* this address is 3 pages before the bios, and the bios should present |
| * as unavaible memory. FIXME, need to ensure the e820 map deals with |
| * this? |
| */ |
| /* |
| * Tell fw_cfg to notify the BIOS to reserve the range. |
| */ |
| if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) { |
| perror("e820_add_entry() table is full"); |
| exit(1); |
| } |
| return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000); |
| } |
| |
| static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
| { |
| lhs->selector = rhs->selector; |
| lhs->base = rhs->base; |
| lhs->limit = rhs->limit; |
| lhs->type = 3; |
| lhs->present = 1; |
| lhs->dpl = 3; |
| lhs->db = 0; |
| lhs->s = 1; |
| lhs->l = 0; |
| lhs->g = 0; |
| lhs->avl = 0; |
| lhs->unusable = 0; |
| } |
| |
| static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
| { |
| unsigned flags = rhs->flags; |
| lhs->selector = rhs->selector; |
| lhs->base = rhs->base; |
| lhs->limit = rhs->limit; |
| lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; |
| lhs->present = (flags & DESC_P_MASK) != 0; |
| lhs->dpl = rhs->selector & 3; |
| lhs->db = (flags >> DESC_B_SHIFT) & 1; |
| lhs->s = (flags & DESC_S_MASK) != 0; |
| lhs->l = (flags >> DESC_L_SHIFT) & 1; |
| lhs->g = (flags & DESC_G_MASK) != 0; |
| lhs->avl = (flags & DESC_AVL_MASK) != 0; |
| lhs->unusable = 0; |
| } |
| |
| static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) |
| { |
| lhs->selector = rhs->selector; |
| lhs->base = rhs->base; |
| lhs->limit = rhs->limit; |
| lhs->flags = |
| (rhs->type << DESC_TYPE_SHIFT) |
| | (rhs->present * DESC_P_MASK) |
| | (rhs->dpl << DESC_DPL_SHIFT) |
| | (rhs->db << DESC_B_SHIFT) |
| | (rhs->s * DESC_S_MASK) |
| | (rhs->l << DESC_L_SHIFT) |
| | (rhs->g * DESC_G_MASK) |
| | (rhs->avl * DESC_AVL_MASK); |
| } |
| |
| static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) |
| { |
| if (set) |
| *kvm_reg = *qemu_reg; |
| else |
| *qemu_reg = *kvm_reg; |
| } |
| |
| static int kvm_getput_regs(CPUState *env, int set) |
| { |
| struct kvm_regs regs; |
| int ret = 0; |
| |
| if (!set) { |
| ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); |
| if (ret < 0) |
| return ret; |
| } |
| |
| kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); |
| kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); |
| kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); |
| kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); |
| kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); |
| kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); |
| kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); |
| kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); |
| #ifdef TARGET_X86_64 |
| kvm_getput_reg(®s.r8, &env->regs[8], set); |
| kvm_getput_reg(®s.r9, &env->regs[9], set); |
| kvm_getput_reg(®s.r10, &env->regs[10], set); |
| kvm_getput_reg(®s.r11, &env->regs[11], set); |
| kvm_getput_reg(®s.r12, &env->regs[12], set); |
| kvm_getput_reg(®s.r13, &env->regs[13], set); |
| kvm_getput_reg(®s.r14, &env->regs[14], set); |
| kvm_getput_reg(®s.r15, &env->regs[15], set); |
| #endif |
| |
| kvm_getput_reg(®s.rflags, &env->eflags, set); |
| kvm_getput_reg(®s.rip, &env->eip, set); |
| |
| if (set) |
| ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s); |
| |
| return ret; |
| } |
| |
| static int kvm_put_fpu(CPUState *env) |
| { |
| struct kvm_fpu fpu; |
| int i; |
| |
| memset(&fpu, 0, sizeof fpu); |
| fpu.fsw = env->fpus & ~(7 << 11); |
| fpu.fsw |= (env->fpstt & 7) << 11; |
| fpu.fcw = env->fpuc; |
| for (i = 0; i < 8; ++i) |
| fpu.ftwx |= (!env->fptags[i]) << i; |
| memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); |
| memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs); |
| fpu.mxcsr = env->mxcsr; |
| |
| return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu); |
| } |
| |
| static int kvm_put_sregs(CPUState *env) |
| { |
| struct kvm_sregs sregs; |
| |
| memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
| if (env->interrupt_injected >= 0) { |
| sregs.interrupt_bitmap[env->interrupt_injected / 64] |= |
| (uint64_t)1 << (env->interrupt_injected % 64); |
| } |
| |
| if ((env->eflags & VM_MASK)) { |
| set_v8086_seg(&sregs.cs, &env->segs[R_CS]); |
| set_v8086_seg(&sregs.ds, &env->segs[R_DS]); |
| set_v8086_seg(&sregs.es, &env->segs[R_ES]); |
| set_v8086_seg(&sregs.fs, &env->segs[R_FS]); |
| set_v8086_seg(&sregs.gs, &env->segs[R_GS]); |
| set_v8086_seg(&sregs.ss, &env->segs[R_SS]); |
| } else { |
| set_seg(&sregs.cs, &env->segs[R_CS]); |
| set_seg(&sregs.ds, &env->segs[R_DS]); |
| set_seg(&sregs.es, &env->segs[R_ES]); |
| set_seg(&sregs.fs, &env->segs[R_FS]); |
| set_seg(&sregs.gs, &env->segs[R_GS]); |
| set_seg(&sregs.ss, &env->segs[R_SS]); |
| |
| if (env->cr[0] & CR0_PE_MASK) { |
| /* force ss cpl to cs cpl */ |
| sregs.ss.selector = (sregs.ss.selector & ~3) | |
| (sregs.cs.selector & 3); |
| sregs.ss.dpl = sregs.ss.selector & 3; |
| } |
| } |
| |
| set_seg(&sregs.tr, &env->tr); |
| set_seg(&sregs.ldt, &env->ldt); |
| |
| sregs.idt.limit = env->idt.limit; |
| sregs.idt.base = env->idt.base; |
| sregs.gdt.limit = env->gdt.limit; |
| sregs.gdt.base = env->gdt.base; |
| |
| sregs.cr0 = env->cr[0]; |
| sregs.cr2 = env->cr[2]; |
| sregs.cr3 = env->cr[3]; |
| sregs.cr4 = env->cr[4]; |
| |
| sregs.cr8 = cpu_get_apic_tpr(env); |
| sregs.apic_base = cpu_get_apic_base(env); |
| |
| sregs.efer = env->efer; |
| |
| return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs); |
| } |
| |
| static void kvm_msr_entry_set(struct kvm_msr_entry *entry, |
| uint32_t index, uint64_t value) |
| { |
| entry->index = index; |
| entry->data = value; |
| } |
| |
| static int kvm_put_msrs(CPUState *env, int level) |
| { |
| struct { |
| struct kvm_msrs info; |
| struct kvm_msr_entry entries[100]; |
| } msr_data; |
| struct kvm_msr_entry *msrs = msr_data.entries; |
| int n = 0; |
| |
| kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); |
| kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); |
| kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); |
| if (kvm_has_msr_star(env)) |
| kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star); |
| #ifdef TARGET_X86_64 |
| /* FIXME if lm capable */ |
| kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); |
| kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); |
| kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); |
| kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); |
| #endif |
| if (level == KVM_PUT_FULL_STATE) { |
| kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); |
| kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, |
| env->system_time_msr); |
| kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr); |
| } |
| |
| msr_data.info.nmsrs = n; |
| |
| return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data); |
| |
| } |
| |
| |
| static int kvm_get_fpu(CPUState *env) |
| { |
| struct kvm_fpu fpu; |
| int i, ret; |
| |
| ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu); |
| if (ret < 0) |
| return ret; |
| |
| env->fpstt = (fpu.fsw >> 11) & 7; |
| env->fpus = fpu.fsw; |
| env->fpuc = fpu.fcw; |
| for (i = 0; i < 8; ++i) |
| env->fptags[i] = !((fpu.ftwx >> i) & 1); |
| memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); |
| memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs); |
| env->mxcsr = fpu.mxcsr; |
| |
| return 0; |
| } |
| |
| static int kvm_get_sregs(CPUState *env) |
| { |
| struct kvm_sregs sregs; |
| uint32_t hflags; |
| int bit, i, ret; |
| |
| ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs); |
| if (ret < 0) |
| return ret; |
| |
| /* There can only be one pending IRQ set in the bitmap at a time, so try |
| to find it and save its number instead (-1 for none). */ |
| env->interrupt_injected = -1; |
| for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { |
| if (sregs.interrupt_bitmap[i]) { |
| bit = ctz64(sregs.interrupt_bitmap[i]); |
| env->interrupt_injected = i * 64 + bit; |
| break; |
| } |
| } |
| |
| get_seg(&env->segs[R_CS], &sregs.cs); |
| get_seg(&env->segs[R_DS], &sregs.ds); |
| get_seg(&env->segs[R_ES], &sregs.es); |
| get_seg(&env->segs[R_FS], &sregs.fs); |
| get_seg(&env->segs[R_GS], &sregs.gs); |
| get_seg(&env->segs[R_SS], &sregs.ss); |
| |
| get_seg(&env->tr, &sregs.tr); |
| get_seg(&env->ldt, &sregs.ldt); |
| |
| env->idt.limit = sregs.idt.limit; |
| env->idt.base = sregs.idt.base; |
| env->gdt.limit = sregs.gdt.limit; |
| env->gdt.base = sregs.gdt.base; |
| |
| env->cr[0] = sregs.cr0; |
| env->cr[2] = sregs.cr2; |
| env->cr[3] = sregs.cr3; |
| env->cr[4] = sregs.cr4; |
| |
| cpu_set_apic_base(env, sregs.apic_base); |
| |
| env->efer = sregs.efer; |
| //cpu_set_apic_tpr(env, sregs.cr8); |
| |
| #define HFLAG_COPY_MASK ~( \ |
| HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ |
| HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ |
| HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ |
| HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) |
| |
| |
| |
| hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; |
| hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); |
| hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & |
| (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); |
| hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); |
| hflags |= (env->cr[4] & CR4_OSFXSR_MASK) << |
| (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); |
| |
| if (env->efer & MSR_EFER_LMA) { |
| hflags |= HF_LMA_MASK; |
| } |
| |
| if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { |
| hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; |
| } else { |
| hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> |
| (DESC_B_SHIFT - HF_CS32_SHIFT); |
| hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> |
| (DESC_B_SHIFT - HF_SS32_SHIFT); |
| if (!(env->cr[0] & CR0_PE_MASK) || |
| (env->eflags & VM_MASK) || |
| !(hflags & HF_CS32_MASK)) { |
| hflags |= HF_ADDSEG_MASK; |
| } else { |
| hflags |= ((env->segs[R_DS].base | |
| env->segs[R_ES].base | |
| env->segs[R_SS].base) != 0) << |
| HF_ADDSEG_SHIFT; |
| } |
| } |
| env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; |
| |
| return 0; |
| } |
| |
| static int kvm_get_msrs(CPUState *env) |
| { |
| struct { |
| struct kvm_msrs info; |
| struct kvm_msr_entry entries[100]; |
| } msr_data; |
| struct kvm_msr_entry *msrs = msr_data.entries; |
| int ret, i, n; |
| |
| n = 0; |
| msrs[n++].index = MSR_IA32_SYSENTER_CS; |
| msrs[n++].index = MSR_IA32_SYSENTER_ESP; |
| msrs[n++].index = MSR_IA32_SYSENTER_EIP; |
| if (kvm_has_msr_star(env)) |
| msrs[n++].index = MSR_STAR; |
| msrs[n++].index = MSR_IA32_TSC; |
| #ifdef TARGET_X86_64 |
| /* FIXME lm_capable_kernel */ |
| msrs[n++].index = MSR_CSTAR; |
| msrs[n++].index = MSR_KERNELGSBASE; |
| msrs[n++].index = MSR_FMASK; |
| msrs[n++].index = MSR_LSTAR; |
| #endif |
| msrs[n++].index = MSR_KVM_SYSTEM_TIME; |
| msrs[n++].index = MSR_KVM_WALL_CLOCK; |
| |
| msr_data.info.nmsrs = n; |
| ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data); |
| if (ret < 0) |
| return ret; |
| |
| for (i = 0; i < ret; i++) { |
| switch (msrs[i].index) { |
| case MSR_IA32_SYSENTER_CS: |
| env->sysenter_cs = msrs[i].data; |
| break; |
| case MSR_IA32_SYSENTER_ESP: |
| env->sysenter_esp = msrs[i].data; |
| break; |
| case MSR_IA32_SYSENTER_EIP: |
| env->sysenter_eip = msrs[i].data; |
| break; |
| case MSR_STAR: |
| env->star = msrs[i].data; |
| break; |
| #ifdef TARGET_X86_64 |
| case MSR_CSTAR: |
| env->cstar = msrs[i].data; |
| break; |
| case MSR_KERNELGSBASE: |
| env->kernelgsbase = msrs[i].data; |
| break; |
| case MSR_FMASK: |
| env->fmask = msrs[i].data; |
| break; |
| case MSR_LSTAR: |
| env->lstar = msrs[i].data; |
| break; |
| #endif |
| case MSR_IA32_TSC: |
| env->tsc = msrs[i].data; |
| break; |
| case MSR_KVM_SYSTEM_TIME: |
| env->system_time_msr = msrs[i].data; |
| break; |
| case MSR_KVM_WALL_CLOCK: |
| env->wall_clock_msr = msrs[i].data; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int kvm_put_mp_state(CPUState *env) |
| { |
| struct kvm_mp_state mp_state = { .mp_state = env->mp_state }; |
| |
| return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state); |
| } |
| |
| static int kvm_get_mp_state(CPUState *env) |
| { |
| struct kvm_mp_state mp_state; |
| int ret; |
| |
| ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state); |
| if (ret < 0) { |
| return ret; |
| } |
| env->mp_state = mp_state.mp_state; |
| return 0; |
| } |
| |
| static int kvm_put_vcpu_events(CPUState *env, int level) |
| { |
| #ifdef KVM_CAP_VCPU_EVENTS |
| struct kvm_vcpu_events events; |
| |
| if (!kvm_has_vcpu_events()) { |
| return 0; |
| } |
| |
| events.exception.injected = (env->exception_injected >= 0); |
| events.exception.nr = env->exception_injected; |
| events.exception.has_error_code = env->has_error_code; |
| events.exception.error_code = env->error_code; |
| |
| events.interrupt.injected = (env->interrupt_injected >= 0); |
| events.interrupt.nr = env->interrupt_injected; |
| events.interrupt.soft = env->soft_interrupt; |
| |
| events.nmi.injected = env->nmi_injected; |
| events.nmi.pending = env->nmi_pending; |
| events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); |
| |
| events.sipi_vector = env->sipi_vector; |
| |
| events.flags = 0; |
| if (level >= KVM_PUT_RESET_STATE) { |
| events.flags |= |
| KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; |
| } |
| |
| return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events); |
| #else |
| return 0; |
| #endif |
| } |
| |
| static int kvm_get_vcpu_events(CPUState *env) |
| { |
| #ifdef KVM_CAP_VCPU_EVENTS |
| struct kvm_vcpu_events events; |
| int ret; |
| |
| if (!kvm_has_vcpu_events()) { |
| return 0; |
| } |
| |
| ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events); |
| if (ret < 0) { |
| return ret; |
| } |
| env->exception_injected = |
| events.exception.injected ? events.exception.nr : -1; |
| env->has_error_code = events.exception.has_error_code; |
| env->error_code = events.exception.error_code; |
| |
| env->interrupt_injected = |
| events.interrupt.injected ? events.interrupt.nr : -1; |
| env->soft_interrupt = events.interrupt.soft; |
| |
| env->nmi_injected = events.nmi.injected; |
| env->nmi_pending = events.nmi.pending; |
| if (events.nmi.masked) { |
| env->hflags2 |= HF2_NMI_MASK; |
| } else { |
| env->hflags2 &= ~HF2_NMI_MASK; |
| } |
| |
| env->sipi_vector = events.sipi_vector; |
| #endif |
| |
| return 0; |
| } |
| |
| static int kvm_guest_debug_workarounds(CPUState *env) |
| { |
| int ret = 0; |
| #ifdef KVM_CAP_SET_GUEST_DEBUG |
| unsigned long reinject_trap = 0; |
| |
| if (!kvm_has_vcpu_events()) { |
| if (env->exception_injected == 1) { |
| reinject_trap = KVM_GUESTDBG_INJECT_DB; |
| } else if (env->exception_injected == 3) { |
| reinject_trap = KVM_GUESTDBG_INJECT_BP; |
| } |
| env->exception_injected = -1; |
| } |
| |
| /* |
| * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF |
| * injected via SET_GUEST_DEBUG while updating GP regs. Work around this |
| * by updating the debug state once again if single-stepping is on. |
| * Another reason to call kvm_update_guest_debug here is a pending debug |
| * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to |
| * reinject them via SET_GUEST_DEBUG. |
| */ |
| if (reinject_trap || |
| (!kvm_has_robust_singlestep() && env->singlestep_enabled)) { |
| ret = kvm_update_guest_debug(env, reinject_trap); |
| } |
| #endif /* KVM_CAP_SET_GUEST_DEBUG */ |
| return ret; |
| } |
| |
| int kvm_arch_put_registers(CPUState *env, int level) |
| { |
| int ret; |
| |
| ret = kvm_getput_regs(env, 1); |
| if (ret < 0) |
| return ret; |
| |
| ret = kvm_put_fpu(env); |
| if (ret < 0) |
| return ret; |
| |
| ret = kvm_put_sregs(env); |
| if (ret < 0) |
| return ret; |
| |
| ret = kvm_put_msrs(env, level); |
| if (ret < 0) |
| return ret; |
| |
| if (level >= KVM_PUT_RESET_STATE) { |
| ret = kvm_put_mp_state(env); |
| if (ret < 0) |
| return ret; |
| } |
| |
| ret = kvm_put_vcpu_events(env, level); |
| if (ret < 0) |
| return ret; |
| |
| /* must be last */ |
| ret = kvm_guest_debug_workarounds(env); |
| if (ret < 0) |
| return ret; |
| |
| return 0; |
| } |
| |
| int kvm_arch_get_registers(CPUState *env) |
| { |
| int ret; |
| |
| ret = kvm_getput_regs(env, 0); |
| if (ret < 0) |
| return ret; |
| |
| ret = kvm_get_fpu(env); |
| if (ret < 0) |
| return ret; |
| |
| ret = kvm_get_sregs(env); |
| if (ret < 0) |
| return ret; |
| |
| ret = kvm_get_msrs(env); |
| if (ret < 0) |
| return ret; |
| |
| ret = kvm_get_mp_state(env); |
| if (ret < 0) |
| return ret; |
| |
| ret = kvm_get_vcpu_events(env); |
| if (ret < 0) |
| return ret; |
| |
| return 0; |
| } |
| |
| int kvm_arch_pre_run(CPUState *env, struct kvm_run *run) |
| { |
| /* Try to inject an interrupt if the guest can accept it */ |
| if (run->ready_for_interrupt_injection && |
| (env->interrupt_request & CPU_INTERRUPT_HARD) && |
| (env->eflags & IF_MASK)) { |
| int irq; |
| |
| env->interrupt_request &= ~CPU_INTERRUPT_HARD; |
| irq = cpu_get_pic_interrupt(env); |
| if (irq >= 0) { |
| struct kvm_interrupt intr; |
| intr.irq = irq; |
| /* FIXME: errors */ |
| DPRINTF("injected interrupt %d\n", irq); |
| kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr); |
| } |
| } |
| |
| /* If we have an interrupt but the guest is not ready to receive an |
| * interrupt, request an interrupt window exit. This will |
| * cause a return to userspace as soon as the guest is ready to |
| * receive interrupts. */ |
| if ((env->interrupt_request & CPU_INTERRUPT_HARD)) |
| run->request_interrupt_window = 1; |
| else |
| run->request_interrupt_window = 0; |
| |
| DPRINTF("setting tpr\n"); |
| run->cr8 = cpu_get_apic_tpr(env); |
| |
| return 0; |
| } |
| |
| int kvm_arch_post_run(CPUState *env, struct kvm_run *run) |
| { |
| if (run->if_flag) |
| env->eflags |= IF_MASK; |
| else |
| env->eflags &= ~IF_MASK; |
| |
| cpu_set_apic_tpr(env, run->cr8); |
| cpu_set_apic_base(env, run->apic_base); |
| |
| return 0; |
| } |
| |
| static int kvm_handle_halt(CPUState *env) |
| { |
| if (!((env->interrupt_request & CPU_INTERRUPT_HARD) && |
| (env->eflags & IF_MASK)) && |
| !(env->interrupt_request & CPU_INTERRUPT_NMI)) { |
| env->halted = 1; |
| env->exception_index = EXCP_HLT; |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run) |
| { |
| int ret = 0; |
| |
| switch (run->exit_reason) { |
| case KVM_EXIT_HLT: |
| DPRINTF("handle_hlt\n"); |
| ret = kvm_handle_halt(env); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| #ifdef KVM_CAP_SET_GUEST_DEBUG |
| int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) |
| { |
| static const uint8_t int3 = 0xcc; |
| |
| if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
| cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) |
| return -EINVAL; |
| return 0; |
| } |
| |
| int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) |
| { |
| uint8_t int3; |
| |
| if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc || |
| cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) |
| return -EINVAL; |
| return 0; |
| } |
| |
| static struct { |
| target_ulong addr; |
| int len; |
| int type; |
| } hw_breakpoint[4]; |
| |
| static int nb_hw_breakpoint; |
| |
| static int find_hw_breakpoint(target_ulong addr, int len, int type) |
| { |
| int n; |
| |
| for (n = 0; n < nb_hw_breakpoint; n++) |
| if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && |
| (hw_breakpoint[n].len == len || len == -1)) |
| return n; |
| return -1; |
| } |
| |
| int kvm_arch_insert_hw_breakpoint(target_ulong addr, |
| target_ulong len, int type) |
| { |
| switch (type) { |
| case GDB_BREAKPOINT_HW: |
| len = 1; |
| break; |
| case GDB_WATCHPOINT_WRITE: |
| case GDB_WATCHPOINT_ACCESS: |
| switch (len) { |
| case 1: |
| break; |
| case 2: |
| case 4: |
| case 8: |
| if (addr & (len - 1)) |
| return -EINVAL; |
| break; |
| default: |
| return -EINVAL; |
| } |
| break; |
| default: |
| return -ENOSYS; |
| } |
| |
| if (nb_hw_breakpoint == 4) |
| return -ENOBUFS; |
| |
| if (find_hw_breakpoint(addr, len, type) >= 0) |
| return -EEXIST; |
| |
| hw_breakpoint[nb_hw_breakpoint].addr = addr; |
| hw_breakpoint[nb_hw_breakpoint].len = len; |
| hw_breakpoint[nb_hw_breakpoint].type = type; |
| nb_hw_breakpoint++; |
| |
| return 0; |
| } |
| |
| int kvm_arch_remove_hw_breakpoint(target_ulong addr, |
| target_ulong len, int type) |
| { |
| int n; |
| |
| n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); |
| if (n < 0) |
| return -ENOENT; |
| |
| nb_hw_breakpoint--; |
| hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; |
| |
| return 0; |
| } |
| |
| void kvm_arch_remove_all_hw_breakpoints(void) |
| { |
| nb_hw_breakpoint = 0; |
| } |
| |
| static CPUWatchpoint hw_watchpoint; |
| |
| int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info) |
| { |
| int handle = 0; |
| int n; |
| |
| if (arch_info->exception == 1) { |
| if (arch_info->dr6 & (1 << 14)) { |
| if (cpu_single_env->singlestep_enabled) |
| handle = 1; |
| } else { |
| for (n = 0; n < 4; n++) |
| if (arch_info->dr6 & (1 << n)) |
| switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { |
| case 0x0: |
| handle = 1; |
| break; |
| case 0x1: |
| handle = 1; |
| cpu_single_env->watchpoint_hit = &hw_watchpoint; |
| hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
| hw_watchpoint.flags = BP_MEM_WRITE; |
| break; |
| case 0x3: |
| handle = 1; |
| cpu_single_env->watchpoint_hit = &hw_watchpoint; |
| hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
| hw_watchpoint.flags = BP_MEM_ACCESS; |
| break; |
| } |
| } |
| } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) |
| handle = 1; |
| |
| if (!handle) { |
| cpu_synchronize_state(cpu_single_env); |
| assert(cpu_single_env->exception_injected == -1); |
| |
| cpu_single_env->exception_injected = arch_info->exception; |
| cpu_single_env->has_error_code = 0; |
| } |
| |
| return handle; |
| } |
| |
| void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg) |
| { |
| const uint8_t type_code[] = { |
| [GDB_BREAKPOINT_HW] = 0x0, |
| [GDB_WATCHPOINT_WRITE] = 0x1, |
| [GDB_WATCHPOINT_ACCESS] = 0x3 |
| }; |
| const uint8_t len_code[] = { |
| [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 |
| }; |
| int n; |
| |
| if (kvm_sw_breakpoints_active(env)) |
| dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
| |
| if (nb_hw_breakpoint > 0) { |
| dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; |
| dbg->arch.debugreg[7] = 0x0600; |
| for (n = 0; n < nb_hw_breakpoint; n++) { |
| dbg->arch.debugreg[n] = hw_breakpoint[n].addr; |
| dbg->arch.debugreg[7] |= (2 << (n * 2)) | |
| (type_code[hw_breakpoint[n].type] << (16 + n*4)) | |
| (len_code[hw_breakpoint[n].len] << (18 + n*4)); |
| } |
| } |
| } |
| #endif /* KVM_CAP_SET_GUEST_DEBUG */ |