|  | /* | 
|  | * QEMU e1000 emulation | 
|  | * | 
|  | * Software developer's manual: | 
|  | * http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf | 
|  | * | 
|  | * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. | 
|  | * Copyright (c) 2008 Qumranet | 
|  | * Based on work done by: | 
|  | * Copyright (c) 2007 Dan Aloni | 
|  | * Copyright (c) 2004 Antony T Curtis | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2.1 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "hw/net/mii.h" | 
|  | #include "hw/pci/pci_device.h" | 
|  | #include "hw/qdev-properties.h" | 
|  | #include "migration/vmstate.h" | 
|  | #include "net/eth.h" | 
|  | #include "net/net.h" | 
|  | #include "net/checksum.h" | 
|  | #include "system/system.h" | 
|  | #include "system/dma.h" | 
|  | #include "qemu/iov.h" | 
|  | #include "qemu/module.h" | 
|  | #include "qemu/range.h" | 
|  |  | 
|  | #include "e1000_common.h" | 
|  | #include "e1000x_common.h" | 
|  | #include "trace.h" | 
|  | #include "qom/object.h" | 
|  |  | 
|  | /* #define E1000_DEBUG */ | 
|  |  | 
|  | #ifdef E1000_DEBUG | 
|  | enum { | 
|  | DEBUG_GENERAL,      DEBUG_IO,       DEBUG_MMIO,     DEBUG_INTERRUPT, | 
|  | DEBUG_RX,           DEBUG_TX,       DEBUG_MDIC,     DEBUG_EEPROM, | 
|  | DEBUG_UNKNOWN,      DEBUG_TXSUM,    DEBUG_TXERR,    DEBUG_RXERR, | 
|  | DEBUG_RXFILTER,     DEBUG_PHY,      DEBUG_NOTYET, | 
|  | }; | 
|  | #define DBGBIT(x)    (1<<DEBUG_##x) | 
|  | static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL); | 
|  |  | 
|  | #define DBGOUT(what, fmt, ...) do { \ | 
|  | if (debugflags & DBGBIT(what)) \ | 
|  | fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \ | 
|  | } while (0) | 
|  | #else | 
|  | #define DBGOUT(what, fmt, ...) do {} while (0) | 
|  | #endif | 
|  |  | 
|  | #define IOPORT_SIZE       0x40 | 
|  | #define PNPMMIO_SIZE      0x20000 | 
|  |  | 
|  | #define MAXIMUM_ETHERNET_HDR_LEN (ETH_HLEN + 4) | 
|  |  | 
|  | /* | 
|  | * HW models: | 
|  | *  E1000_DEV_ID_82540EM works with Windows, Linux, and OS X <= 10.8 | 
|  | *  E1000_DEV_ID_82544GC_COPPER appears to work; not well tested | 
|  | *  E1000_DEV_ID_82545EM_COPPER works with Linux and OS X >= 10.6 | 
|  | *  Others never tested | 
|  | */ | 
|  |  | 
|  | struct E1000State_st { | 
|  | /*< private >*/ | 
|  | PCIDevice parent_obj; | 
|  | /*< public >*/ | 
|  |  | 
|  | NICState *nic; | 
|  | NICConf conf; | 
|  | MemoryRegion mmio; | 
|  | MemoryRegion io; | 
|  |  | 
|  | uint32_t mac_reg[0x8000]; | 
|  | uint16_t phy_reg[0x20]; | 
|  | uint16_t eeprom_data[64]; | 
|  |  | 
|  | uint32_t rxbuf_size; | 
|  | uint32_t rxbuf_min_shift; | 
|  | struct e1000_tx { | 
|  | unsigned char header[256]; | 
|  | unsigned char vlan_header[4]; | 
|  | /* Fields vlan and data must not be reordered or separated. */ | 
|  | unsigned char vlan[4]; | 
|  | unsigned char data[0x10000]; | 
|  | uint16_t size; | 
|  | unsigned char vlan_needed; | 
|  | unsigned char sum_needed; | 
|  | bool cptse; | 
|  | e1000x_txd_props props; | 
|  | e1000x_txd_props tso_props; | 
|  | uint16_t tso_frames; | 
|  | bool busy; | 
|  | } tx; | 
|  |  | 
|  | struct { | 
|  | uint32_t val_in;    /* shifted in from guest driver */ | 
|  | uint16_t bitnum_in; | 
|  | uint16_t bitnum_out; | 
|  | uint16_t reading; | 
|  | uint32_t old_eecd; | 
|  | } eecd_state; | 
|  |  | 
|  | QEMUTimer *autoneg_timer; | 
|  |  | 
|  | QEMUTimer *mit_timer;      /* Mitigation timer. */ | 
|  | bool mit_timer_on;         /* Mitigation timer is running. */ | 
|  | bool mit_irq_level;        /* Tracks interrupt pin level. */ | 
|  | uint32_t mit_ide;          /* Tracks E1000_TXD_CMD_IDE bit. */ | 
|  |  | 
|  | QEMUTimer *flush_queue_timer; | 
|  |  | 
|  | /* Compatibility flags for migration to/from qemu 1.3.0 and older */ | 
|  | #define E1000_FLAG_MAC_BIT 2 | 
|  | #define E1000_FLAG_TSO_BIT 3 | 
|  | #define E1000_FLAG_VET_BIT 4 | 
|  | #define E1000_FLAG_MAC (1 << E1000_FLAG_MAC_BIT) | 
|  | #define E1000_FLAG_TSO (1 << E1000_FLAG_TSO_BIT) | 
|  | #define E1000_FLAG_VET (1 << E1000_FLAG_VET_BIT) | 
|  |  | 
|  | uint32_t compat_flags; | 
|  | bool received_tx_tso; | 
|  | bool use_tso_for_migration; | 
|  | e1000x_txd_props mig_props; | 
|  | }; | 
|  | typedef struct E1000State_st E1000State; | 
|  |  | 
|  | #define chkflag(x)     (s->compat_flags & E1000_FLAG_##x) | 
|  |  | 
|  | struct E1000BaseClass { | 
|  | PCIDeviceClass parent_class; | 
|  | uint16_t phy_id2; | 
|  | }; | 
|  | typedef struct E1000BaseClass E1000BaseClass; | 
|  |  | 
|  | #define TYPE_E1000_BASE "e1000-base" | 
|  |  | 
|  | DECLARE_OBJ_CHECKERS(E1000State, E1000BaseClass, | 
|  | E1000, TYPE_E1000_BASE) | 
|  |  | 
|  |  | 
|  | static void | 
|  | e1000_link_up(E1000State *s) | 
|  | { | 
|  | e1000x_update_regs_on_link_up(s->mac_reg, s->phy_reg); | 
|  |  | 
|  | /* E1000_STATUS_LU is tested by e1000_can_receive() */ | 
|  | qemu_flush_queued_packets(qemu_get_queue(s->nic)); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_autoneg_done(E1000State *s) | 
|  | { | 
|  | e1000x_update_regs_on_autoneg_done(s->mac_reg, s->phy_reg); | 
|  |  | 
|  | /* E1000_STATUS_LU is tested by e1000_can_receive() */ | 
|  | qemu_flush_queued_packets(qemu_get_queue(s->nic)); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | have_autoneg(E1000State *s) | 
|  | { | 
|  | return (s->phy_reg[MII_BMCR] & MII_BMCR_AUTOEN); | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_phy_ctrl(E1000State *s, int index, uint16_t val) | 
|  | { | 
|  | /* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */ | 
|  | s->phy_reg[MII_BMCR] = val & ~(0x3f | | 
|  | MII_BMCR_RESET | | 
|  | MII_BMCR_ANRESTART); | 
|  |  | 
|  | /* | 
|  | * QEMU 1.3 does not support link auto-negotiation emulation, so if we | 
|  | * migrate during auto negotiation, after migration the link will be | 
|  | * down. | 
|  | */ | 
|  | if (have_autoneg(s) && (val & MII_BMCR_ANRESTART)) { | 
|  | e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void (*phyreg_writeops[])(E1000State *, int, uint16_t) = { | 
|  | [MII_BMCR] = set_phy_ctrl, | 
|  | }; | 
|  |  | 
|  | enum { NPHYWRITEOPS = ARRAY_SIZE(phyreg_writeops) }; | 
|  |  | 
|  | enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W }; | 
|  | static const char phy_regcap[0x20] = { | 
|  | [MII_BMSR]   = PHY_R,     [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW, | 
|  | [MII_PHYID1] = PHY_R,     [M88E1000_PHY_SPEC_CTRL]     = PHY_RW, | 
|  | [MII_BMCR]   = PHY_RW,    [MII_CTRL1000]               = PHY_RW, | 
|  | [MII_ANLPAR] = PHY_R,     [MII_STAT1000]               = PHY_R, | 
|  | [MII_ANAR]   = PHY_RW,    [M88E1000_RX_ERR_CNTR]       = PHY_R, | 
|  | [MII_PHYID2] = PHY_R,     [M88E1000_PHY_SPEC_STATUS]   = PHY_R, | 
|  | [MII_ANER]   = PHY_R, | 
|  | }; | 
|  |  | 
|  | /* MII_PHYID2 documented in 8254x_GBe_SDM.pdf, pp. 250 */ | 
|  | static const uint16_t phy_reg_init[] = { | 
|  | [MII_BMCR] = MII_BMCR_SPEED1000 | | 
|  | MII_BMCR_FD | | 
|  | MII_BMCR_AUTOEN, | 
|  |  | 
|  | [MII_BMSR] = MII_BMSR_EXTCAP | | 
|  | MII_BMSR_LINK_ST |   /* link initially up */ | 
|  | MII_BMSR_AUTONEG | | 
|  | /* MII_BMSR_AN_COMP: initially NOT completed */ | 
|  | MII_BMSR_MFPS | | 
|  | MII_BMSR_EXTSTAT | | 
|  | MII_BMSR_10T_HD | | 
|  | MII_BMSR_10T_FD | | 
|  | MII_BMSR_100TX_HD | | 
|  | MII_BMSR_100TX_FD, | 
|  |  | 
|  | [MII_PHYID1] = 0x141, | 
|  | /* [MII_PHYID2] configured per DevId, from e1000_reset() */ | 
|  | [MII_ANAR] = MII_ANAR_CSMACD | MII_ANAR_10 | | 
|  | MII_ANAR_10FD | MII_ANAR_TX | | 
|  | MII_ANAR_TXFD | MII_ANAR_PAUSE | | 
|  | MII_ANAR_PAUSE_ASYM, | 
|  | [MII_ANLPAR] = MII_ANLPAR_10 | MII_ANLPAR_10FD | | 
|  | MII_ANLPAR_TX | MII_ANLPAR_TXFD, | 
|  | [MII_CTRL1000] = MII_CTRL1000_FULL | MII_CTRL1000_PORT | | 
|  | MII_CTRL1000_MASTER, | 
|  | [MII_STAT1000] = MII_STAT1000_HALF | MII_STAT1000_FULL | | 
|  | MII_STAT1000_ROK | MII_STAT1000_LOK, | 
|  | [M88E1000_PHY_SPEC_CTRL] = 0x360, | 
|  | [M88E1000_PHY_SPEC_STATUS] = 0xac00, | 
|  | [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60, | 
|  | }; | 
|  |  | 
|  | static const uint32_t mac_reg_init[] = { | 
|  | [PBA]     = 0x00100030, | 
|  | [LEDCTL]  = 0x602, | 
|  | [CTRL]    = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 | | 
|  | E1000_CTRL_SPD_1000 | E1000_CTRL_SLU, | 
|  | [STATUS]  = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE | | 
|  | E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK | | 
|  | E1000_STATUS_SPEED_1000 | E1000_STATUS_FD | | 
|  | E1000_STATUS_LU, | 
|  | [MANC]    = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN | | 
|  | E1000_MANC_ARP_EN | E1000_MANC_0298_EN | | 
|  | E1000_MANC_RMCP_EN, | 
|  | }; | 
|  |  | 
|  | /* Helper function, *curr == 0 means the value is not set */ | 
|  | static inline void | 
|  | mit_update_delay(uint32_t *curr, uint32_t value) | 
|  | { | 
|  | if (value && (*curr == 0 || value < *curr)) { | 
|  | *curr = value; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_interrupt_cause(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | PCIDevice *d = PCI_DEVICE(s); | 
|  | uint32_t pending_ints; | 
|  | uint32_t mit_delay; | 
|  |  | 
|  | s->mac_reg[ICR] = val; | 
|  |  | 
|  | /* | 
|  | * Make sure ICR and ICS registers have the same value. | 
|  | * The spec says that the ICS register is write-only.  However in practice, | 
|  | * on real hardware ICS is readable, and for reads it has the same value as | 
|  | * ICR (except that ICS does not have the clear on read behaviour of ICR). | 
|  | * | 
|  | * The VxWorks PRO/1000 driver uses this behaviour. | 
|  | */ | 
|  | s->mac_reg[ICS] = val; | 
|  |  | 
|  | pending_ints = (s->mac_reg[IMS] & s->mac_reg[ICR]); | 
|  | if (!s->mit_irq_level && pending_ints) { | 
|  | /* | 
|  | * Here we detect a potential raising edge. We postpone raising the | 
|  | * interrupt line if we are inside the mitigation delay window | 
|  | * (s->mit_timer_on == 1). | 
|  | * We provide a partial implementation of interrupt mitigation, | 
|  | * emulating only RADV, TADV and ITR (lower 16 bits, 1024ns units for | 
|  | * RADV and TADV, 256ns units for ITR). RDTR is only used to enable | 
|  | * RADV; relative timers based on TIDV and RDTR are not implemented. | 
|  | */ | 
|  | if (s->mit_timer_on) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Compute the next mitigation delay according to pending | 
|  | * interrupts and the current values of RADV (provided | 
|  | * RDTR!=0), TADV and ITR. | 
|  | * Then rearm the timer. | 
|  | */ | 
|  | mit_delay = 0; | 
|  | if (s->mit_ide && | 
|  | (pending_ints & (E1000_ICR_TXQE | E1000_ICR_TXDW))) { | 
|  | mit_update_delay(&mit_delay, s->mac_reg[TADV] * 4); | 
|  | } | 
|  | if (s->mac_reg[RDTR] && (pending_ints & E1000_ICS_RXT0)) { | 
|  | mit_update_delay(&mit_delay, s->mac_reg[RADV] * 4); | 
|  | } | 
|  | mit_update_delay(&mit_delay, s->mac_reg[ITR]); | 
|  |  | 
|  | /* | 
|  | * According to e1000 SPEC, the Ethernet controller guarantees | 
|  | * a maximum observable interrupt rate of 7813 interrupts/sec. | 
|  | * Thus if mit_delay < 500 then the delay should be set to the | 
|  | * minimum delay possible which is 500. | 
|  | */ | 
|  | mit_delay = (mit_delay < 500) ? 500 : mit_delay; | 
|  |  | 
|  | s->mit_timer_on = 1; | 
|  | timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + | 
|  | mit_delay * 256); | 
|  | s->mit_ide = 0; | 
|  | } | 
|  |  | 
|  | s->mit_irq_level = (pending_ints != 0); | 
|  | pci_set_irq(d, s->mit_irq_level); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_mit_timer(void *opaque) | 
|  | { | 
|  | E1000State *s = opaque; | 
|  |  | 
|  | s->mit_timer_on = 0; | 
|  | /* Call set_interrupt_cause to update the irq level (if necessary). */ | 
|  | set_interrupt_cause(s, 0, s->mac_reg[ICR]); | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_ics(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR], | 
|  | s->mac_reg[IMS]); | 
|  | set_interrupt_cause(s, 0, val | s->mac_reg[ICR]); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_autoneg_timer(void *opaque) | 
|  | { | 
|  | E1000State *s = opaque; | 
|  | if (!qemu_get_queue(s->nic)->link_down) { | 
|  | e1000_autoneg_done(s); | 
|  | set_ics(s, 0, E1000_ICS_LSC); /* signal link status change to guest */ | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool e1000_vet_init_need(void *opaque) | 
|  | { | 
|  | E1000State *s = opaque; | 
|  |  | 
|  | return chkflag(VET); | 
|  | } | 
|  |  | 
|  | static void e1000_reset_hold(Object *obj, ResetType type) | 
|  | { | 
|  | E1000State *d = E1000(obj); | 
|  | E1000BaseClass *edc = E1000_GET_CLASS(d); | 
|  | uint8_t *macaddr = d->conf.macaddr.a; | 
|  |  | 
|  | timer_del(d->autoneg_timer); | 
|  | timer_del(d->mit_timer); | 
|  | timer_del(d->flush_queue_timer); | 
|  | d->mit_timer_on = 0; | 
|  | d->mit_irq_level = 0; | 
|  | d->mit_ide = 0; | 
|  | memset(d->phy_reg, 0, sizeof d->phy_reg); | 
|  | memcpy(d->phy_reg, phy_reg_init, sizeof phy_reg_init); | 
|  | d->phy_reg[MII_PHYID2] = edc->phy_id2; | 
|  | memset(d->mac_reg, 0, sizeof d->mac_reg); | 
|  | memcpy(d->mac_reg, mac_reg_init, sizeof mac_reg_init); | 
|  | d->rxbuf_min_shift = 1; | 
|  | memset(&d->tx, 0, sizeof d->tx); | 
|  |  | 
|  | if (qemu_get_queue(d->nic)->link_down) { | 
|  | e1000x_update_regs_on_link_down(d->mac_reg, d->phy_reg); | 
|  | } | 
|  |  | 
|  | e1000x_reset_mac_addr(d->nic, d->mac_reg, macaddr); | 
|  |  | 
|  | if (e1000_vet_init_need(d)) { | 
|  | d->mac_reg[VET] = ETH_P_VLAN; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_ctrl(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | /* RST is self clearing */ | 
|  | s->mac_reg[CTRL] = val & ~E1000_CTRL_RST; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_flush_queue_timer(void *opaque) | 
|  | { | 
|  | E1000State *s = opaque; | 
|  |  | 
|  | qemu_flush_queued_packets(qemu_get_queue(s->nic)); | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_rx_control(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | s->mac_reg[RCTL] = val; | 
|  | s->rxbuf_size = e1000x_rxbufsize(val); | 
|  | s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1; | 
|  | DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT], | 
|  | s->mac_reg[RCTL]); | 
|  | timer_mod(s->flush_queue_timer, | 
|  | qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 1000); | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_mdic(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | uint32_t data = val & E1000_MDIC_DATA_MASK; | 
|  | uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); | 
|  |  | 
|  | if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy # | 
|  | val = s->mac_reg[MDIC] | E1000_MDIC_ERROR; | 
|  | else if (val & E1000_MDIC_OP_READ) { | 
|  | DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr); | 
|  | if (!(phy_regcap[addr] & PHY_R)) { | 
|  | DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr); | 
|  | val |= E1000_MDIC_ERROR; | 
|  | } else | 
|  | val = (val ^ data) | s->phy_reg[addr]; | 
|  | } else if (val & E1000_MDIC_OP_WRITE) { | 
|  | DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data); | 
|  | if (!(phy_regcap[addr] & PHY_W)) { | 
|  | DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr); | 
|  | val |= E1000_MDIC_ERROR; | 
|  | } else { | 
|  | if (addr < NPHYWRITEOPS && phyreg_writeops[addr]) { | 
|  | phyreg_writeops[addr](s, index, data); | 
|  | } else { | 
|  | s->phy_reg[addr] = data; | 
|  | } | 
|  | } | 
|  | } | 
|  | s->mac_reg[MDIC] = val | E1000_MDIC_READY; | 
|  |  | 
|  | if (val & E1000_MDIC_INT_EN) { | 
|  | set_ics(s, 0, E1000_ICR_MDAC); | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | get_eecd(E1000State *s, int index) | 
|  | { | 
|  | uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd; | 
|  |  | 
|  | DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n", | 
|  | s->eecd_state.bitnum_out, s->eecd_state.reading); | 
|  | if (!s->eecd_state.reading || | 
|  | ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >> | 
|  | ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1) | 
|  | ret |= E1000_EECD_DO; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_eecd(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | uint32_t oldval = s->eecd_state.old_eecd; | 
|  |  | 
|  | s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS | | 
|  | E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ); | 
|  | if (!(E1000_EECD_CS & val)) {            /* CS inactive; nothing to do */ | 
|  | return; | 
|  | } | 
|  | if (E1000_EECD_CS & (val ^ oldval)) {    /* CS rise edge; reset state */ | 
|  | s->eecd_state.val_in = 0; | 
|  | s->eecd_state.bitnum_in = 0; | 
|  | s->eecd_state.bitnum_out = 0; | 
|  | s->eecd_state.reading = 0; | 
|  | } | 
|  | if (!(E1000_EECD_SK & (val ^ oldval))) {    /* no clock edge */ | 
|  | return; | 
|  | } | 
|  | if (!(E1000_EECD_SK & val)) {               /* falling edge */ | 
|  | s->eecd_state.bitnum_out++; | 
|  | return; | 
|  | } | 
|  | s->eecd_state.val_in <<= 1; | 
|  | if (val & E1000_EECD_DI) | 
|  | s->eecd_state.val_in |= 1; | 
|  | if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) { | 
|  | s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1; | 
|  | s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) == | 
|  | EEPROM_READ_OPCODE_MICROWIRE); | 
|  | } | 
|  | DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n", | 
|  | s->eecd_state.bitnum_in, s->eecd_state.bitnum_out, | 
|  | s->eecd_state.reading); | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | flash_eerd_read(E1000State *s, int x) | 
|  | { | 
|  | unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START; | 
|  |  | 
|  | if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0) | 
|  | return (s->mac_reg[EERD]); | 
|  |  | 
|  | if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG) | 
|  | return (E1000_EEPROM_RW_REG_DONE | r); | 
|  |  | 
|  | return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) | | 
|  | E1000_EEPROM_RW_REG_DONE | r); | 
|  | } | 
|  |  | 
|  | static void | 
|  | putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse) | 
|  | { | 
|  | uint32_t sum; | 
|  |  | 
|  | if (cse && cse < n) | 
|  | n = cse + 1; | 
|  | if (sloc < n-1) { | 
|  | sum = net_checksum_add(n-css, data+css); | 
|  | stw_be_p(data + sloc, net_checksum_finish_nozero(sum)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | inc_tx_bcast_or_mcast_count(E1000State *s, const unsigned char *arr) | 
|  | { | 
|  | if (is_broadcast_ether_addr(arr)) { | 
|  | e1000x_inc_reg_if_not_full(s->mac_reg, BPTC); | 
|  | } else if (is_multicast_ether_addr(arr)) { | 
|  | e1000x_inc_reg_if_not_full(s->mac_reg, MPTC); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_send_packet(E1000State *s, const uint8_t *buf, int size) | 
|  | { | 
|  | static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511, | 
|  | PTC1023, PTC1522 }; | 
|  |  | 
|  | NetClientState *nc = qemu_get_queue(s->nic); | 
|  | if (s->phy_reg[MII_BMCR] & MII_BMCR_LOOPBACK) { | 
|  | qemu_receive_packet(nc, buf, size); | 
|  | } else { | 
|  | qemu_send_packet(nc, buf, size); | 
|  | } | 
|  | inc_tx_bcast_or_mcast_count(s, buf); | 
|  | e1000x_increase_size_stats(s->mac_reg, PTCregs, size + 4); | 
|  | } | 
|  |  | 
|  | static void | 
|  | xmit_seg(E1000State *s) | 
|  | { | 
|  | uint16_t len; | 
|  | unsigned int frames = s->tx.tso_frames, css, sofar; | 
|  | struct e1000_tx *tp = &s->tx; | 
|  | struct e1000x_txd_props *props = tp->cptse ? &tp->tso_props : &tp->props; | 
|  |  | 
|  | if (tp->cptse) { | 
|  | css = props->ipcss; | 
|  | DBGOUT(TXSUM, "frames %d size %d ipcss %d\n", | 
|  | frames, tp->size, css); | 
|  | if (props->ip) {    /* IPv4 */ | 
|  | stw_be_p(tp->data+css+2, tp->size - css); | 
|  | stw_be_p(tp->data+css+4, | 
|  | lduw_be_p(tp->data + css + 4) + frames); | 
|  | } else {         /* IPv6 */ | 
|  | stw_be_p(tp->data+css+4, tp->size - css); | 
|  | } | 
|  | css = props->tucss; | 
|  | len = tp->size - css; | 
|  | DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", props->tcp, css, len); | 
|  | if (props->tcp) { | 
|  | sofar = frames * props->mss; | 
|  | stl_be_p(tp->data+css+4, ldl_be_p(tp->data+css+4)+sofar); /* seq */ | 
|  | if (props->paylen - sofar > props->mss) { | 
|  | tp->data[css + 13] &= ~9;    /* PSH, FIN */ | 
|  | } else if (frames) { | 
|  | e1000x_inc_reg_if_not_full(s->mac_reg, TSCTC); | 
|  | } | 
|  | } else {    /* UDP */ | 
|  | stw_be_p(tp->data+css+4, len); | 
|  | } | 
|  | if (tp->sum_needed & E1000_TXD_POPTS_TXSM) { | 
|  | unsigned int phsum; | 
|  | // add pseudo-header length before checksum calculation | 
|  | void *sp = tp->data + props->tucso; | 
|  |  | 
|  | phsum = lduw_be_p(sp) + len; | 
|  | phsum = (phsum >> 16) + (phsum & 0xffff); | 
|  | stw_be_p(sp, phsum); | 
|  | } | 
|  | tp->tso_frames++; | 
|  | } | 
|  |  | 
|  | if (tp->sum_needed & E1000_TXD_POPTS_TXSM) { | 
|  | putsum(tp->data, tp->size, props->tucso, props->tucss, props->tucse); | 
|  | } | 
|  | if (tp->sum_needed & E1000_TXD_POPTS_IXSM) { | 
|  | putsum(tp->data, tp->size, props->ipcso, props->ipcss, props->ipcse); | 
|  | } | 
|  | if (tp->vlan_needed) { | 
|  | memmove(tp->vlan, tp->data, 4); | 
|  | memmove(tp->data, tp->data + 4, 8); | 
|  | memcpy(tp->data + 8, tp->vlan_header, 4); | 
|  | e1000_send_packet(s, tp->vlan, tp->size + 4); | 
|  | } else { | 
|  | e1000_send_packet(s, tp->data, tp->size); | 
|  | } | 
|  |  | 
|  | e1000x_inc_reg_if_not_full(s->mac_reg, TPT); | 
|  | e1000x_grow_8reg_if_not_full(s->mac_reg, TOTL, s->tx.size + 4); | 
|  | e1000x_inc_reg_if_not_full(s->mac_reg, GPTC); | 
|  | e1000x_grow_8reg_if_not_full(s->mac_reg, GOTCL, s->tx.size + 4); | 
|  | } | 
|  |  | 
|  | static void | 
|  | process_tx_desc(E1000State *s, struct e1000_tx_desc *dp) | 
|  | { | 
|  | PCIDevice *d = PCI_DEVICE(s); | 
|  | uint32_t txd_lower = le32_to_cpu(dp->lower.data); | 
|  | uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D); | 
|  | unsigned int split_size = txd_lower & 0xffff, bytes, sz; | 
|  | unsigned int msh = 0xfffff; | 
|  | uint64_t addr; | 
|  | struct e1000_context_desc *xp = (struct e1000_context_desc *)dp; | 
|  | struct e1000_tx *tp = &s->tx; | 
|  |  | 
|  | s->mit_ide |= (txd_lower & E1000_TXD_CMD_IDE); | 
|  | if (dtype == E1000_TXD_CMD_DEXT) {    /* context descriptor */ | 
|  | if (le32_to_cpu(xp->cmd_and_length) & E1000_TXD_CMD_TSE) { | 
|  | e1000x_read_tx_ctx_descr(xp, &tp->tso_props); | 
|  | s->use_tso_for_migration = 1; | 
|  | tp->tso_frames = 0; | 
|  | } else { | 
|  | e1000x_read_tx_ctx_descr(xp, &tp->props); | 
|  | s->use_tso_for_migration = 0; | 
|  | } | 
|  | return; | 
|  | } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) { | 
|  | // data descriptor | 
|  | if (tp->size == 0) { | 
|  | tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8; | 
|  | } | 
|  | tp->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0; | 
|  | } else { | 
|  | // legacy descriptor | 
|  | tp->cptse = 0; | 
|  | } | 
|  |  | 
|  | if (e1000x_vlan_enabled(s->mac_reg) && | 
|  | e1000x_is_vlan_txd(txd_lower) && | 
|  | (tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) { | 
|  | tp->vlan_needed = 1; | 
|  | stw_be_p(tp->vlan_header, | 
|  | le16_to_cpu(s->mac_reg[VET])); | 
|  | stw_be_p(tp->vlan_header + 2, | 
|  | le16_to_cpu(dp->upper.fields.special)); | 
|  | } | 
|  |  | 
|  | addr = le64_to_cpu(dp->buffer_addr); | 
|  | if (tp->cptse) { | 
|  | msh = tp->tso_props.hdr_len + tp->tso_props.mss; | 
|  | do { | 
|  | bytes = split_size; | 
|  | if (tp->size >= msh) { | 
|  | goto eop; | 
|  | } | 
|  | if (tp->size + bytes > msh) | 
|  | bytes = msh - tp->size; | 
|  |  | 
|  | bytes = MIN(sizeof(tp->data) - tp->size, bytes); | 
|  | pci_dma_read(d, addr, tp->data + tp->size, bytes); | 
|  | sz = tp->size + bytes; | 
|  | if (sz >= tp->tso_props.hdr_len | 
|  | && tp->size < tp->tso_props.hdr_len) { | 
|  | memmove(tp->header, tp->data, tp->tso_props.hdr_len); | 
|  | } | 
|  | tp->size = sz; | 
|  | addr += bytes; | 
|  | if (sz == msh) { | 
|  | xmit_seg(s); | 
|  | memmove(tp->data, tp->header, tp->tso_props.hdr_len); | 
|  | tp->size = tp->tso_props.hdr_len; | 
|  | } | 
|  | split_size -= bytes; | 
|  | } while (bytes && split_size); | 
|  | } else { | 
|  | split_size = MIN(sizeof(tp->data) - tp->size, split_size); | 
|  | pci_dma_read(d, addr, tp->data + tp->size, split_size); | 
|  | tp->size += split_size; | 
|  | } | 
|  |  | 
|  | eop: | 
|  | if (!(txd_lower & E1000_TXD_CMD_EOP)) | 
|  | return; | 
|  | if (!(tp->cptse && tp->size < tp->tso_props.hdr_len)) { | 
|  | xmit_seg(s); | 
|  | } | 
|  | tp->tso_frames = 0; | 
|  | tp->sum_needed = 0; | 
|  | tp->vlan_needed = 0; | 
|  | tp->size = 0; | 
|  | tp->cptse = 0; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | txdesc_writeback(E1000State *s, dma_addr_t base, struct e1000_tx_desc *dp) | 
|  | { | 
|  | PCIDevice *d = PCI_DEVICE(s); | 
|  | uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data); | 
|  |  | 
|  | if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS))) | 
|  | return 0; | 
|  | txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) & | 
|  | ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU); | 
|  | dp->upper.data = cpu_to_le32(txd_upper); | 
|  | pci_dma_write(d, base + ((char *)&dp->upper - (char *)dp), | 
|  | &dp->upper, sizeof(dp->upper)); | 
|  | return E1000_ICR_TXDW; | 
|  | } | 
|  |  | 
|  | static uint64_t tx_desc_base(E1000State *s) | 
|  | { | 
|  | uint64_t bah = s->mac_reg[TDBAH]; | 
|  | uint64_t bal = s->mac_reg[TDBAL] & ~0xf; | 
|  |  | 
|  | return (bah << 32) + bal; | 
|  | } | 
|  |  | 
|  | static void | 
|  | start_xmit(E1000State *s) | 
|  | { | 
|  | PCIDevice *d = PCI_DEVICE(s); | 
|  | dma_addr_t base; | 
|  | struct e1000_tx_desc desc; | 
|  | uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE; | 
|  |  | 
|  | if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) { | 
|  | DBGOUT(TX, "tx disabled\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (s->tx.busy) { | 
|  | return; | 
|  | } | 
|  | s->tx.busy = true; | 
|  |  | 
|  | while (s->mac_reg[TDH] != s->mac_reg[TDT]) { | 
|  | base = tx_desc_base(s) + | 
|  | sizeof(struct e1000_tx_desc) * s->mac_reg[TDH]; | 
|  | pci_dma_read(d, base, &desc, sizeof(desc)); | 
|  |  | 
|  | DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH], | 
|  | (void *)(intptr_t)desc.buffer_addr, desc.lower.data, | 
|  | desc.upper.data); | 
|  |  | 
|  | process_tx_desc(s, &desc); | 
|  | cause |= txdesc_writeback(s, base, &desc); | 
|  |  | 
|  | if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN]) | 
|  | s->mac_reg[TDH] = 0; | 
|  | /* | 
|  | * the following could happen only if guest sw assigns | 
|  | * bogus values to TDT/TDLEN. | 
|  | * there's nothing too intelligent we could do about this. | 
|  | */ | 
|  | if (s->mac_reg[TDH] == tdh_start || | 
|  | tdh_start >= s->mac_reg[TDLEN] / sizeof(desc)) { | 
|  | DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n", | 
|  | tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]); | 
|  | break; | 
|  | } | 
|  | } | 
|  | s->tx.busy = false; | 
|  | set_ics(s, 0, cause); | 
|  | } | 
|  |  | 
|  | static int | 
|  | receive_filter(E1000State *s, const void *buf) | 
|  | { | 
|  | return (!e1000x_is_vlan_packet(buf, s->mac_reg[VET]) || | 
|  | e1000x_rx_vlan_filter(s->mac_reg, PKT_GET_VLAN_HDR(buf))) && | 
|  | e1000x_rx_group_filter(s->mac_reg, buf); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_set_link_status(NetClientState *nc) | 
|  | { | 
|  | E1000State *s = qemu_get_nic_opaque(nc); | 
|  | uint32_t old_status = s->mac_reg[STATUS]; | 
|  |  | 
|  | if (nc->link_down) { | 
|  | e1000x_update_regs_on_link_down(s->mac_reg, s->phy_reg); | 
|  | } else { | 
|  | if (have_autoneg(s) && | 
|  | !(s->phy_reg[MII_BMSR] & MII_BMSR_AN_COMP)) { | 
|  | e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer); | 
|  | } else { | 
|  | e1000_link_up(s); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (s->mac_reg[STATUS] != old_status) | 
|  | set_ics(s, 0, E1000_ICR_LSC); | 
|  | } | 
|  |  | 
|  | static bool e1000_has_rxbufs(E1000State *s, size_t total_size) | 
|  | { | 
|  | int bufs; | 
|  | /* Fast-path short packets */ | 
|  | if (total_size <= s->rxbuf_size) { | 
|  | return s->mac_reg[RDH] != s->mac_reg[RDT]; | 
|  | } | 
|  | if (s->mac_reg[RDH] < s->mac_reg[RDT]) { | 
|  | bufs = s->mac_reg[RDT] - s->mac_reg[RDH]; | 
|  | } else if (s->mac_reg[RDH] > s->mac_reg[RDT]) { | 
|  | bufs = s->mac_reg[RDLEN] /  sizeof(struct e1000_rx_desc) + | 
|  | s->mac_reg[RDT] - s->mac_reg[RDH]; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | return total_size <= bufs * s->rxbuf_size; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | e1000_can_receive(NetClientState *nc) | 
|  | { | 
|  | E1000State *s = qemu_get_nic_opaque(nc); | 
|  |  | 
|  | return e1000x_rx_ready(&s->parent_obj, s->mac_reg) && | 
|  | e1000_has_rxbufs(s, 1) && !timer_pending(s->flush_queue_timer); | 
|  | } | 
|  |  | 
|  | static uint64_t rx_desc_base(E1000State *s) | 
|  | { | 
|  | uint64_t bah = s->mac_reg[RDBAH]; | 
|  | uint64_t bal = s->mac_reg[RDBAL] & ~0xf; | 
|  |  | 
|  | return (bah << 32) + bal; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_receiver_overrun(E1000State *s, size_t size) | 
|  | { | 
|  | trace_e1000_receiver_overrun(size, s->mac_reg[RDH], s->mac_reg[RDT]); | 
|  | e1000x_inc_reg_if_not_full(s->mac_reg, RNBC); | 
|  | e1000x_inc_reg_if_not_full(s->mac_reg, MPC); | 
|  | set_ics(s, 0, E1000_ICS_RXO); | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt) | 
|  | { | 
|  | E1000State *s = qemu_get_nic_opaque(nc); | 
|  | PCIDevice *d = PCI_DEVICE(s); | 
|  | struct e1000_rx_desc desc; | 
|  | dma_addr_t base; | 
|  | unsigned int n, rdt; | 
|  | uint32_t rdh_start; | 
|  | uint16_t vlan_special = 0; | 
|  | uint8_t vlan_status = 0; | 
|  | uint8_t min_buf[ETH_ZLEN]; | 
|  | uint8_t *filter_buf = iov->iov_base; | 
|  | size_t size = iov_size(iov, iovcnt); | 
|  | size_t iov_ofs = 0; | 
|  | size_t desc_offset; | 
|  | size_t desc_size; | 
|  | size_t total_size; | 
|  | eth_pkt_types_e pkt_type; | 
|  |  | 
|  | if (!e1000x_hw_rx_enabled(s->mac_reg)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (timer_pending(s->flush_queue_timer)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (iov->iov_len < MAXIMUM_ETHERNET_HDR_LEN) { | 
|  | /* This is very unlikely, but may happen. */ | 
|  | iov_to_buf(iov, iovcnt, 0, min_buf, MAXIMUM_ETHERNET_HDR_LEN); | 
|  | filter_buf = min_buf; | 
|  | } | 
|  |  | 
|  | /* Discard oversized packets if !LPE and !SBP. */ | 
|  | if (e1000x_is_oversized(s->mac_reg, size)) { | 
|  | return size; | 
|  | } | 
|  |  | 
|  | if (!receive_filter(s, filter_buf)) { | 
|  | return size; | 
|  | } | 
|  |  | 
|  | if (e1000x_vlan_enabled(s->mac_reg) && | 
|  | e1000x_is_vlan_packet(filter_buf, le16_to_cpu(s->mac_reg[VET]))) { | 
|  | vlan_special = cpu_to_le16(lduw_be_p(filter_buf + 14)); | 
|  | iov_ofs = 4; | 
|  | if (filter_buf == iov->iov_base) { | 
|  | memmove(filter_buf + 4, filter_buf, 12); | 
|  | } else { | 
|  | iov_from_buf(iov, iovcnt, 4, filter_buf, 12); | 
|  | while (iov->iov_len <= iov_ofs) { | 
|  | iov_ofs -= iov->iov_len; | 
|  | iov++; | 
|  | } | 
|  | } | 
|  | vlan_status = E1000_RXD_STAT_VP; | 
|  | size -= 4; | 
|  | } | 
|  |  | 
|  | pkt_type = get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf)); | 
|  | rdh_start = s->mac_reg[RDH]; | 
|  | desc_offset = 0; | 
|  | total_size = size + e1000x_fcs_len(s->mac_reg); | 
|  | if (!e1000_has_rxbufs(s, total_size)) { | 
|  | e1000_receiver_overrun(s, total_size); | 
|  | return -1; | 
|  | } | 
|  | do { | 
|  | desc_size = total_size - desc_offset; | 
|  | if (desc_size > s->rxbuf_size) { | 
|  | desc_size = s->rxbuf_size; | 
|  | } | 
|  | base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH]; | 
|  | pci_dma_read(d, base, &desc, sizeof(desc)); | 
|  | desc.special = vlan_special; | 
|  | desc.status &= ~E1000_RXD_STAT_DD; | 
|  | if (desc.buffer_addr) { | 
|  | if (desc_offset < size) { | 
|  | size_t iov_copy; | 
|  | hwaddr ba = le64_to_cpu(desc.buffer_addr); | 
|  | size_t copy_size = size - desc_offset; | 
|  | if (copy_size > s->rxbuf_size) { | 
|  | copy_size = s->rxbuf_size; | 
|  | } | 
|  | do { | 
|  | iov_copy = MIN(copy_size, iov->iov_len - iov_ofs); | 
|  | pci_dma_write(d, ba, iov->iov_base + iov_ofs, iov_copy); | 
|  | copy_size -= iov_copy; | 
|  | ba += iov_copy; | 
|  | iov_ofs += iov_copy; | 
|  | if (iov_ofs == iov->iov_len) { | 
|  | iov++; | 
|  | iov_ofs = 0; | 
|  | } | 
|  | } while (copy_size); | 
|  | } | 
|  | desc_offset += desc_size; | 
|  | desc.length = cpu_to_le16(desc_size); | 
|  | if (desc_offset >= total_size) { | 
|  | desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM; | 
|  | } else { | 
|  | /* Guest zeroing out status is not a hardware requirement. | 
|  | Clear EOP in case guest didn't do it. */ | 
|  | desc.status &= ~E1000_RXD_STAT_EOP; | 
|  | } | 
|  | } else { // as per intel docs; skip descriptors with null buf addr | 
|  | DBGOUT(RX, "Null RX descriptor!!\n"); | 
|  | } | 
|  | pci_dma_write(d, base, &desc, sizeof(desc)); | 
|  | desc.status |= (vlan_status | E1000_RXD_STAT_DD); | 
|  | pci_dma_write(d, base + offsetof(struct e1000_rx_desc, status), | 
|  | &desc.status, sizeof(desc.status)); | 
|  |  | 
|  | if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN]) | 
|  | s->mac_reg[RDH] = 0; | 
|  | /* see comment in start_xmit; same here */ | 
|  | if (s->mac_reg[RDH] == rdh_start || | 
|  | rdh_start >= s->mac_reg[RDLEN] / sizeof(desc)) { | 
|  | DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n", | 
|  | rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]); | 
|  | e1000_receiver_overrun(s, total_size); | 
|  | return -1; | 
|  | } | 
|  | } while (desc_offset < total_size); | 
|  |  | 
|  | e1000x_update_rx_total_stats(s->mac_reg, pkt_type, size, total_size); | 
|  |  | 
|  | n = E1000_ICS_RXT0; | 
|  | if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH]) | 
|  | rdt += s->mac_reg[RDLEN] / sizeof(desc); | 
|  | if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >> | 
|  | s->rxbuf_min_shift) | 
|  | n |= E1000_ICS_RXDMT0; | 
|  |  | 
|  | set_ics(s, 0, n); | 
|  |  | 
|  | return size; | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | e1000_receive(NetClientState *nc, const uint8_t *buf, size_t size) | 
|  | { | 
|  | const struct iovec iov = { | 
|  | .iov_base = (uint8_t *)buf, | 
|  | .iov_len = size | 
|  | }; | 
|  |  | 
|  | return e1000_receive_iov(nc, &iov, 1); | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | mac_readreg(E1000State *s, int index) | 
|  | { | 
|  | return s->mac_reg[index]; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | mac_icr_read(E1000State *s, int index) | 
|  | { | 
|  | uint32_t ret = s->mac_reg[ICR]; | 
|  |  | 
|  | DBGOUT(INTERRUPT, "ICR read: %x\n", ret); | 
|  | set_interrupt_cause(s, 0, 0); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | mac_read_clr4(E1000State *s, int index) | 
|  | { | 
|  | uint32_t ret = s->mac_reg[index]; | 
|  |  | 
|  | s->mac_reg[index] = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | mac_read_clr8(E1000State *s, int index) | 
|  | { | 
|  | uint32_t ret = s->mac_reg[index]; | 
|  |  | 
|  | s->mac_reg[index] = 0; | 
|  | s->mac_reg[index-1] = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void | 
|  | mac_writereg(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | uint32_t macaddr[2]; | 
|  |  | 
|  | s->mac_reg[index] = val; | 
|  |  | 
|  | if (index == RA + 1) { | 
|  | macaddr[0] = cpu_to_le32(s->mac_reg[RA]); | 
|  | macaddr[1] = cpu_to_le32(s->mac_reg[RA + 1]); | 
|  | qemu_format_nic_info_str(qemu_get_queue(s->nic), (uint8_t *)macaddr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_rdt(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | s->mac_reg[index] = val & 0xffff; | 
|  | if (e1000_has_rxbufs(s, 1)) { | 
|  | qemu_flush_queued_packets(qemu_get_queue(s->nic)); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define LOW_BITS_SET_FUNC(num)                             \ | 
|  | static void                                            \ | 
|  | set_##num##bit(E1000State *s, int index, uint32_t val) \ | 
|  | {                                                      \ | 
|  | s->mac_reg[index] = val & (BIT(num) - 1);          \ | 
|  | } | 
|  |  | 
|  | LOW_BITS_SET_FUNC(4) | 
|  | LOW_BITS_SET_FUNC(11) | 
|  | LOW_BITS_SET_FUNC(13) | 
|  | LOW_BITS_SET_FUNC(16) | 
|  |  | 
|  | static void | 
|  | set_dlen(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | s->mac_reg[index] = val & 0xfff80; | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_tctl(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | s->mac_reg[index] = val; | 
|  | s->mac_reg[TDT] &= 0xffff; | 
|  | start_xmit(s); | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_icr(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | DBGOUT(INTERRUPT, "set_icr %x\n", val); | 
|  | set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val); | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_imc(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | s->mac_reg[IMS] &= ~val; | 
|  | set_ics(s, 0, 0); | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_ims(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | s->mac_reg[IMS] |= val; | 
|  | set_ics(s, 0, 0); | 
|  | } | 
|  |  | 
|  | #define getreg(x)    [x] = mac_readreg | 
|  | typedef uint32_t (*readops)(E1000State *, int); | 
|  | static const readops macreg_readops[] = { | 
|  | getreg(PBA),      getreg(RCTL),     getreg(TDH),      getreg(TXDCTL), | 
|  | getreg(WUFC),     getreg(TDT),      getreg(CTRL),     getreg(LEDCTL), | 
|  | getreg(MANC),     getreg(MDIC),     getreg(SWSM),     getreg(STATUS), | 
|  | getreg(TORL),     getreg(TOTL),     getreg(IMS),      getreg(TCTL), | 
|  | getreg(RDH),      getreg(RDT),      getreg(VET),      getreg(ICS), | 
|  | getreg(TDBAL),    getreg(TDBAH),    getreg(RDBAH),    getreg(RDBAL), | 
|  | getreg(TDLEN),    getreg(RDLEN),    getreg(RDTR),     getreg(RADV), | 
|  | getreg(TADV),     getreg(ITR),      getreg(FCRUC),    getreg(IPAV), | 
|  | getreg(WUC),      getreg(WUS),      getreg(SCC),      getreg(ECOL), | 
|  | getreg(MCC),      getreg(LATECOL),  getreg(COLC),     getreg(DC), | 
|  | getreg(TNCRS),    getreg(SEQEC),    getreg(CEXTERR),  getreg(RLEC), | 
|  | getreg(XONRXC),   getreg(XONTXC),   getreg(XOFFRXC),  getreg(XOFFTXC), | 
|  | getreg(RFC),      getreg(RJC),      getreg(RNBC),     getreg(TSCTFC), | 
|  | getreg(MGTPRC),   getreg(MGTPDC),   getreg(MGTPTC),   getreg(GORCL), | 
|  | getreg(GOTCL),    getreg(RDFH),     getreg(RDFT),     getreg(RDFHS), | 
|  | getreg(RDFTS),    getreg(RDFPC),    getreg(TDFH),     getreg(TDFT), | 
|  | getreg(TDFHS),    getreg(TDFTS),    getreg(TDFPC),    getreg(AIT), | 
|  |  | 
|  | [TOTH]    = mac_read_clr8,      [TORH]    = mac_read_clr8, | 
|  | [GOTCH]   = mac_read_clr8,      [GORCH]   = mac_read_clr8, | 
|  | [PRC64]   = mac_read_clr4,      [PRC127]  = mac_read_clr4, | 
|  | [PRC255]  = mac_read_clr4,      [PRC511]  = mac_read_clr4, | 
|  | [PRC1023] = mac_read_clr4,      [PRC1522] = mac_read_clr4, | 
|  | [PTC64]   = mac_read_clr4,      [PTC127]  = mac_read_clr4, | 
|  | [PTC255]  = mac_read_clr4,      [PTC511]  = mac_read_clr4, | 
|  | [PTC1023] = mac_read_clr4,      [PTC1522] = mac_read_clr4, | 
|  | [GPRC]    = mac_read_clr4,      [GPTC]    = mac_read_clr4, | 
|  | [TPT]     = mac_read_clr4,      [TPR]     = mac_read_clr4, | 
|  | [RUC]     = mac_read_clr4,      [ROC]     = mac_read_clr4, | 
|  | [BPRC]    = mac_read_clr4,      [MPRC]    = mac_read_clr4, | 
|  | [TSCTC]   = mac_read_clr4,      [BPTC]    = mac_read_clr4, | 
|  | [MPTC]    = mac_read_clr4, | 
|  | [ICR]     = mac_icr_read,       [EECD]    = get_eecd, | 
|  | [EERD]    = flash_eerd_read, | 
|  |  | 
|  | [CRCERRS ... MPC]     = &mac_readreg, | 
|  | [IP6AT ... IP6AT + 3] = &mac_readreg,    [IP4AT ... IP4AT + 6] = &mac_readreg, | 
|  | [FFLT ... FFLT + 6]   = &mac_readreg, | 
|  | [RA ... RA + 31]      = &mac_readreg, | 
|  | [WUPM ... WUPM + 31]  = &mac_readreg, | 
|  | [MTA ... MTA + E1000_MC_TBL_SIZE - 1]   = &mac_readreg, | 
|  | [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = &mac_readreg, | 
|  | [FFMT ... FFMT + 254] = &mac_readreg, | 
|  | [FFVT ... FFVT + 254] = &mac_readreg, | 
|  | [PBM ... PBM + 16383] = &mac_readreg, | 
|  | }; | 
|  | enum { NREADOPS = ARRAY_SIZE(macreg_readops) }; | 
|  |  | 
|  | #define putreg(x)    [x] = mac_writereg | 
|  | typedef void (*writeops)(E1000State *, int, uint32_t); | 
|  | static const writeops macreg_writeops[] = { | 
|  | putreg(PBA),      putreg(EERD),     putreg(SWSM),     putreg(WUFC), | 
|  | putreg(TDBAL),    putreg(TDBAH),    putreg(TXDCTL),   putreg(RDBAH), | 
|  | putreg(RDBAL),    putreg(LEDCTL),   putreg(VET),      putreg(FCRUC), | 
|  | putreg(IPAV),     putreg(WUC), | 
|  | putreg(WUS), | 
|  |  | 
|  | [TDLEN]  = set_dlen,   [RDLEN]  = set_dlen,       [TCTL]  = set_tctl, | 
|  | [TDT]    = set_tctl,   [MDIC]   = set_mdic,       [ICS]   = set_ics, | 
|  | [TDH]    = set_16bit,  [RDH]    = set_16bit,      [RDT]   = set_rdt, | 
|  | [IMC]    = set_imc,    [IMS]    = set_ims,        [ICR]   = set_icr, | 
|  | [EECD]   = set_eecd,   [RCTL]   = set_rx_control, [CTRL]  = set_ctrl, | 
|  | [RDTR]   = set_16bit,  [RADV]   = set_16bit,      [TADV]  = set_16bit, | 
|  | [ITR]    = set_16bit,  [TDFH]   = set_11bit,      [TDFT]  = set_11bit, | 
|  | [TDFHS]  = set_13bit,  [TDFTS]  = set_13bit,      [TDFPC] = set_13bit, | 
|  | [RDFH]   = set_13bit,  [RDFT]   = set_13bit,      [RDFHS] = set_13bit, | 
|  | [RDFTS]  = set_13bit,  [RDFPC]  = set_13bit,      [AIT]   = set_16bit, | 
|  |  | 
|  | [IP6AT ... IP6AT + 3] = &mac_writereg, [IP4AT ... IP4AT + 6] = &mac_writereg, | 
|  | [FFLT ... FFLT + 6]   = &set_11bit, | 
|  | [RA ... RA + 31]      = &mac_writereg, | 
|  | [WUPM ... WUPM + 31]  = &mac_writereg, | 
|  | [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = &mac_writereg, | 
|  | [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = &mac_writereg, | 
|  | [FFMT ... FFMT + 254] = &set_4bit,     [FFVT ... FFVT + 254] = &mac_writereg, | 
|  | [PBM ... PBM + 16383] = &mac_writereg, | 
|  | }; | 
|  |  | 
|  | enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) }; | 
|  |  | 
|  | enum { MAC_ACCESS_PARTIAL = 1, MAC_ACCESS_FLAG_NEEDED = 2 }; | 
|  |  | 
|  | #define markflag(x)    ((E1000_FLAG_##x << 2) | MAC_ACCESS_FLAG_NEEDED) | 
|  | /* In the array below the meaning of the bits is: [f|f|f|f|f|f|n|p] | 
|  | * f - flag bits (up to 6 possible flags) | 
|  | * n - flag needed | 
|  | * p - partially implenented */ | 
|  | static const uint8_t mac_reg_access[0x8000] = { | 
|  | [IPAV]    = markflag(MAC),    [WUC]     = markflag(MAC), | 
|  | [IP6AT]   = markflag(MAC),    [IP4AT]   = markflag(MAC), | 
|  | [FFVT]    = markflag(MAC),    [WUPM]    = markflag(MAC), | 
|  | [ECOL]    = markflag(MAC),    [MCC]     = markflag(MAC), | 
|  | [DC]      = markflag(MAC),    [TNCRS]   = markflag(MAC), | 
|  | [RLEC]    = markflag(MAC),    [XONRXC]  = markflag(MAC), | 
|  | [XOFFTXC] = markflag(MAC),    [RFC]     = markflag(MAC), | 
|  | [TSCTFC]  = markflag(MAC),    [MGTPRC]  = markflag(MAC), | 
|  | [WUS]     = markflag(MAC),    [AIT]     = markflag(MAC), | 
|  | [FFLT]    = markflag(MAC),    [FFMT]    = markflag(MAC), | 
|  | [SCC]     = markflag(MAC),    [FCRUC]   = markflag(MAC), | 
|  | [LATECOL] = markflag(MAC),    [COLC]    = markflag(MAC), | 
|  | [SEQEC]   = markflag(MAC),    [CEXTERR] = markflag(MAC), | 
|  | [XONTXC]  = markflag(MAC),    [XOFFRXC] = markflag(MAC), | 
|  | [RJC]     = markflag(MAC),    [RNBC]    = markflag(MAC), | 
|  | [MGTPDC]  = markflag(MAC),    [MGTPTC]  = markflag(MAC), | 
|  | [RUC]     = markflag(MAC),    [ROC]     = markflag(MAC), | 
|  | [GORCL]   = markflag(MAC),    [GORCH]   = markflag(MAC), | 
|  | [GOTCL]   = markflag(MAC),    [GOTCH]   = markflag(MAC), | 
|  | [BPRC]    = markflag(MAC),    [MPRC]    = markflag(MAC), | 
|  | [TSCTC]   = markflag(MAC),    [PRC64]   = markflag(MAC), | 
|  | [PRC127]  = markflag(MAC),    [PRC255]  = markflag(MAC), | 
|  | [PRC511]  = markflag(MAC),    [PRC1023] = markflag(MAC), | 
|  | [PRC1522] = markflag(MAC),    [PTC64]   = markflag(MAC), | 
|  | [PTC127]  = markflag(MAC),    [PTC255]  = markflag(MAC), | 
|  | [PTC511]  = markflag(MAC),    [PTC1023] = markflag(MAC), | 
|  | [PTC1522] = markflag(MAC),    [MPTC]    = markflag(MAC), | 
|  | [BPTC]    = markflag(MAC), | 
|  |  | 
|  | [TDFH]  = markflag(MAC) | MAC_ACCESS_PARTIAL, | 
|  | [TDFT]  = markflag(MAC) | MAC_ACCESS_PARTIAL, | 
|  | [TDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL, | 
|  | [TDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL, | 
|  | [TDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL, | 
|  | [RDFH]  = markflag(MAC) | MAC_ACCESS_PARTIAL, | 
|  | [RDFT]  = markflag(MAC) | MAC_ACCESS_PARTIAL, | 
|  | [RDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL, | 
|  | [RDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL, | 
|  | [RDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL, | 
|  | [PBM]   = markflag(MAC) | MAC_ACCESS_PARTIAL, | 
|  | }; | 
|  |  | 
|  | static void | 
|  | e1000_mmio_write(void *opaque, hwaddr addr, uint64_t val, | 
|  | unsigned size) | 
|  | { | 
|  | E1000State *s = opaque; | 
|  | unsigned int index = (addr & 0x1ffff) >> 2; | 
|  |  | 
|  | if (index < NWRITEOPS && macreg_writeops[index]) { | 
|  | if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED) | 
|  | || (s->compat_flags & (mac_reg_access[index] >> 2))) { | 
|  | if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { | 
|  | DBGOUT(GENERAL, "Writing to register at offset: 0x%08x. " | 
|  | "It is not fully implemented.\n", index<<2); | 
|  | } | 
|  | macreg_writeops[index](s, index, val); | 
|  | } else {    /* "flag needed" bit is set, but the flag is not active */ | 
|  | DBGOUT(MMIO, "MMIO write attempt to disabled reg. addr=0x%08x\n", | 
|  | index<<2); | 
|  | } | 
|  | } else if (index < NREADOPS && macreg_readops[index]) { | 
|  | DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04"PRIx64"\n", | 
|  | index<<2, val); | 
|  | } else { | 
|  | DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64"\n", | 
|  | index<<2, val); | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint64_t | 
|  | e1000_mmio_read(void *opaque, hwaddr addr, unsigned size) | 
|  | { | 
|  | E1000State *s = opaque; | 
|  | unsigned int index = (addr & 0x1ffff) >> 2; | 
|  |  | 
|  | if (index < NREADOPS && macreg_readops[index]) { | 
|  | if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED) | 
|  | || (s->compat_flags & (mac_reg_access[index] >> 2))) { | 
|  | if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { | 
|  | DBGOUT(GENERAL, "Reading register at offset: 0x%08x. " | 
|  | "It is not fully implemented.\n", index<<2); | 
|  | } | 
|  | return macreg_readops[index](s, index); | 
|  | } else {    /* "flag needed" bit is set, but the flag is not active */ | 
|  | DBGOUT(MMIO, "MMIO read attempt of disabled reg. addr=0x%08x\n", | 
|  | index<<2); | 
|  | } | 
|  | } else { | 
|  | DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps e1000_mmio_ops = { | 
|  | .read = e1000_mmio_read, | 
|  | .write = e1000_mmio_write, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | .impl = { | 
|  | .min_access_size = 4, | 
|  | .max_access_size = 4, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static uint64_t e1000_io_read(void *opaque, hwaddr addr, | 
|  | unsigned size) | 
|  | { | 
|  | E1000State *s = opaque; | 
|  |  | 
|  | (void)s; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void e1000_io_write(void *opaque, hwaddr addr, | 
|  | uint64_t val, unsigned size) | 
|  | { | 
|  | E1000State *s = opaque; | 
|  |  | 
|  | (void)s; | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps e1000_io_ops = { | 
|  | .read = e1000_io_read, | 
|  | .write = e1000_io_write, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | }; | 
|  |  | 
|  | static bool is_version_1(void *opaque, int version_id) | 
|  | { | 
|  | return version_id == 1; | 
|  | } | 
|  |  | 
|  | static int e1000_pre_save(void *opaque) | 
|  | { | 
|  | E1000State *s = opaque; | 
|  | NetClientState *nc = qemu_get_queue(s->nic); | 
|  |  | 
|  | /* | 
|  | * If link is down and auto-negotiation is supported and ongoing, | 
|  | * complete auto-negotiation immediately. This allows us to look | 
|  | * at MII_BMSR_AN_COMP to infer link status on load. | 
|  | */ | 
|  | if (nc->link_down && have_autoneg(s)) { | 
|  | s->phy_reg[MII_BMSR] |= MII_BMSR_AN_COMP; | 
|  | } | 
|  |  | 
|  | /* Decide which set of props to migrate in the main structure */ | 
|  | if (chkflag(TSO) || !s->use_tso_for_migration) { | 
|  | /* Either we're migrating with the extra subsection, in which | 
|  | * case the mig_props is always 'props' OR | 
|  | * we've not got the subsection, but 'props' was the last | 
|  | * updated. | 
|  | */ | 
|  | s->mig_props = s->tx.props; | 
|  | } else { | 
|  | /* We're not using the subsection, and 'tso_props' was | 
|  | * the last updated. | 
|  | */ | 
|  | s->mig_props = s->tx.tso_props; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e1000_post_load(void *opaque, int version_id) | 
|  | { | 
|  | E1000State *s = opaque; | 
|  | NetClientState *nc = qemu_get_queue(s->nic); | 
|  |  | 
|  | s->mit_ide = 0; | 
|  | s->mit_timer_on = true; | 
|  | timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1); | 
|  |  | 
|  | /* nc.link_down can't be migrated, so infer link_down according | 
|  | * to link status bit in mac_reg[STATUS]. | 
|  | * Alternatively, restart link negotiation if it was in progress. */ | 
|  | nc->link_down = (s->mac_reg[STATUS] & E1000_STATUS_LU) == 0; | 
|  |  | 
|  | if (have_autoneg(s) && !(s->phy_reg[MII_BMSR] & MII_BMSR_AN_COMP)) { | 
|  | nc->link_down = false; | 
|  | timer_mod(s->autoneg_timer, | 
|  | qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500); | 
|  | } | 
|  |  | 
|  | s->tx.props = s->mig_props; | 
|  | if (!s->received_tx_tso) { | 
|  | /* We received only one set of offload data (tx.props) | 
|  | * and haven't got tx.tso_props.  The best we can do | 
|  | * is dupe the data. | 
|  | */ | 
|  | s->tx.tso_props = s->mig_props; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e1000_tx_tso_post_load(void *opaque, int version_id) | 
|  | { | 
|  | E1000State *s = opaque; | 
|  | s->received_tx_tso = true; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool e1000_full_mac_needed(void *opaque) | 
|  | { | 
|  | E1000State *s = opaque; | 
|  |  | 
|  | return chkflag(MAC); | 
|  | } | 
|  |  | 
|  | static bool e1000_tso_state_needed(void *opaque) | 
|  | { | 
|  | E1000State *s = opaque; | 
|  |  | 
|  | return chkflag(TSO); | 
|  | } | 
|  |  | 
|  | static const VMStateDescription vmstate_e1000_mit_state = { | 
|  | .name = "e1000/mit_state", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_UINT32(mac_reg[RDTR], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[RADV], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TADV], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[ITR], E1000State), | 
|  | VMSTATE_BOOL(mit_irq_level, E1000State), | 
|  | VMSTATE_END_OF_LIST() | 
|  | } | 
|  | }; | 
|  |  | 
|  | static const VMStateDescription vmstate_e1000_full_mac_state = { | 
|  | .name = "e1000/full_mac_state", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .needed = e1000_full_mac_needed, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_UINT32_ARRAY(mac_reg, E1000State, 0x8000), | 
|  | VMSTATE_END_OF_LIST() | 
|  | } | 
|  | }; | 
|  |  | 
|  | static const VMStateDescription vmstate_e1000_tx_tso_state = { | 
|  | .name = "e1000/tx_tso_state", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .needed = e1000_tso_state_needed, | 
|  | .post_load = e1000_tx_tso_post_load, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_UINT8(tx.tso_props.ipcss, E1000State), | 
|  | VMSTATE_UINT8(tx.tso_props.ipcso, E1000State), | 
|  | VMSTATE_UINT16(tx.tso_props.ipcse, E1000State), | 
|  | VMSTATE_UINT8(tx.tso_props.tucss, E1000State), | 
|  | VMSTATE_UINT8(tx.tso_props.tucso, E1000State), | 
|  | VMSTATE_UINT16(tx.tso_props.tucse, E1000State), | 
|  | VMSTATE_UINT32(tx.tso_props.paylen, E1000State), | 
|  | VMSTATE_UINT8(tx.tso_props.hdr_len, E1000State), | 
|  | VMSTATE_UINT16(tx.tso_props.mss, E1000State), | 
|  | VMSTATE_INT8(tx.tso_props.ip, E1000State), | 
|  | VMSTATE_INT8(tx.tso_props.tcp, E1000State), | 
|  | VMSTATE_END_OF_LIST() | 
|  | } | 
|  | }; | 
|  |  | 
|  | static const VMStateDescription vmstate_e1000 = { | 
|  | .name = "e1000", | 
|  | .version_id = 2, | 
|  | .minimum_version_id = 1, | 
|  | .pre_save = e1000_pre_save, | 
|  | .post_load = e1000_post_load, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_PCI_DEVICE(parent_obj, E1000State), | 
|  | VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */ | 
|  | VMSTATE_UNUSED(4), /* Was mmio_base.  */ | 
|  | VMSTATE_UINT32(rxbuf_size, E1000State), | 
|  | VMSTATE_UINT32(rxbuf_min_shift, E1000State), | 
|  | VMSTATE_UINT32(eecd_state.val_in, E1000State), | 
|  | VMSTATE_UINT16(eecd_state.bitnum_in, E1000State), | 
|  | VMSTATE_UINT16(eecd_state.bitnum_out, E1000State), | 
|  | VMSTATE_UINT16(eecd_state.reading, E1000State), | 
|  | VMSTATE_UINT32(eecd_state.old_eecd, E1000State), | 
|  | VMSTATE_UINT8(mig_props.ipcss, E1000State), | 
|  | VMSTATE_UINT8(mig_props.ipcso, E1000State), | 
|  | VMSTATE_UINT16(mig_props.ipcse, E1000State), | 
|  | VMSTATE_UINT8(mig_props.tucss, E1000State), | 
|  | VMSTATE_UINT8(mig_props.tucso, E1000State), | 
|  | VMSTATE_UINT16(mig_props.tucse, E1000State), | 
|  | VMSTATE_UINT32(mig_props.paylen, E1000State), | 
|  | VMSTATE_UINT8(mig_props.hdr_len, E1000State), | 
|  | VMSTATE_UINT16(mig_props.mss, E1000State), | 
|  | VMSTATE_UINT16(tx.size, E1000State), | 
|  | VMSTATE_UINT16(tx.tso_frames, E1000State), | 
|  | VMSTATE_UINT8(tx.sum_needed, E1000State), | 
|  | VMSTATE_INT8(mig_props.ip, E1000State), | 
|  | VMSTATE_INT8(mig_props.tcp, E1000State), | 
|  | VMSTATE_BUFFER(tx.header, E1000State), | 
|  | VMSTATE_BUFFER(tx.data, E1000State), | 
|  | VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64), | 
|  | VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20), | 
|  | VMSTATE_UINT32(mac_reg[CTRL], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[EECD], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[EERD], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[GPRC], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[GPTC], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[ICR], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[ICS], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[IMC], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[IMS], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[LEDCTL], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[MANC], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[MDIC], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[MPC], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[PBA], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[RCTL], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[RDBAH], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[RDBAL], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[RDH], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[RDLEN], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[RDT], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[STATUS], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[SWSM], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TCTL], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TDBAH], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TDBAL], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TDH], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TDLEN], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TDT], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TORH], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TORL], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TOTH], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TOTL], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TPR], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TPT], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TXDCTL], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[WUFC], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[VET], E1000State), | 
|  | VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32), | 
|  | VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, E1000_MC_TBL_SIZE), | 
|  | VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, | 
|  | E1000_VLAN_FILTER_TBL_SIZE), | 
|  | VMSTATE_END_OF_LIST() | 
|  | }, | 
|  | .subsections = (const VMStateDescription * const []) { | 
|  | &vmstate_e1000_mit_state, | 
|  | &vmstate_e1000_full_mac_state, | 
|  | &vmstate_e1000_tx_tso_state, | 
|  | NULL | 
|  | } | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * EEPROM contents documented in Tables 5-2 and 5-3, pp. 98-102. | 
|  | * Note: A valid DevId will be inserted during pci_e1000_realize(). | 
|  | */ | 
|  | static const uint16_t e1000_eeprom_template[64] = { | 
|  | 0x0000, 0x0000, 0x0000, 0x0000,      0xffff, 0x0000,      0x0000, 0x0000, | 
|  | 0x3000, 0x1000, 0x6403, 0 /*DevId*/, 0x8086, 0 /*DevId*/, 0x8086, 0x3040, | 
|  | 0x0008, 0x2000, 0x7e14, 0x0048,      0x1000, 0x00d8,      0x0000, 0x2700, | 
|  | 0x6cc9, 0x3150, 0x0722, 0x040b,      0x0984, 0x0000,      0xc000, 0x0706, | 
|  | 0x1008, 0x0000, 0x0f04, 0x7fff,      0x4d01, 0xffff,      0xffff, 0xffff, | 
|  | 0xffff, 0xffff, 0xffff, 0xffff,      0xffff, 0xffff,      0xffff, 0xffff, | 
|  | 0x0100, 0x4000, 0x121c, 0xffff,      0xffff, 0xffff,      0xffff, 0xffff, | 
|  | 0xffff, 0xffff, 0xffff, 0xffff,      0xffff, 0xffff,      0xffff, 0x0000, | 
|  | }; | 
|  |  | 
|  | /* PCI interface */ | 
|  |  | 
|  | static void | 
|  | e1000_mmio_setup(E1000State *d) | 
|  | { | 
|  | int i; | 
|  | const uint32_t excluded_regs[] = { | 
|  | E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS, | 
|  | E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE | 
|  | }; | 
|  |  | 
|  | memory_region_init_io(&d->mmio, OBJECT(d), &e1000_mmio_ops, d, | 
|  | "e1000-mmio", PNPMMIO_SIZE); | 
|  | memory_region_add_coalescing(&d->mmio, 0, excluded_regs[0]); | 
|  | for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++) | 
|  | memory_region_add_coalescing(&d->mmio, excluded_regs[i] + 4, | 
|  | excluded_regs[i+1] - excluded_regs[i] - 4); | 
|  | memory_region_init_io(&d->io, OBJECT(d), &e1000_io_ops, d, "e1000-io", IOPORT_SIZE); | 
|  | } | 
|  |  | 
|  | static void | 
|  | pci_e1000_uninit(PCIDevice *dev) | 
|  | { | 
|  | E1000State *d = E1000(dev); | 
|  |  | 
|  | timer_free(d->autoneg_timer); | 
|  | timer_free(d->mit_timer); | 
|  | timer_free(d->flush_queue_timer); | 
|  | qemu_del_nic(d->nic); | 
|  | } | 
|  |  | 
|  | static NetClientInfo net_e1000_info = { | 
|  | .type = NET_CLIENT_DRIVER_NIC, | 
|  | .size = sizeof(NICState), | 
|  | .can_receive = e1000_can_receive, | 
|  | .receive = e1000_receive, | 
|  | .receive_iov = e1000_receive_iov, | 
|  | .link_status_changed = e1000_set_link_status, | 
|  | }; | 
|  |  | 
|  | static void e1000_write_config(PCIDevice *pci_dev, uint32_t address, | 
|  | uint32_t val, int len) | 
|  | { | 
|  | E1000State *s = E1000(pci_dev); | 
|  |  | 
|  | pci_default_write_config(pci_dev, address, val, len); | 
|  |  | 
|  | if (range_covers_byte(address, len, PCI_COMMAND) && | 
|  | (pci_dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) { | 
|  | qemu_flush_queued_packets(qemu_get_queue(s->nic)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pci_e1000_realize(PCIDevice *pci_dev, Error **errp) | 
|  | { | 
|  | DeviceState *dev = DEVICE(pci_dev); | 
|  | E1000State *d = E1000(pci_dev); | 
|  | uint8_t *pci_conf; | 
|  | uint8_t *macaddr; | 
|  |  | 
|  | pci_dev->config_write = e1000_write_config; | 
|  |  | 
|  | pci_conf = pci_dev->config; | 
|  |  | 
|  | /* TODO: RST# value should be 0, PCI spec 6.2.4 */ | 
|  | pci_conf[PCI_CACHE_LINE_SIZE] = 0x10; | 
|  |  | 
|  | pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */ | 
|  |  | 
|  | e1000_mmio_setup(d); | 
|  |  | 
|  | pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio); | 
|  |  | 
|  | pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io); | 
|  |  | 
|  | qemu_macaddr_default_if_unset(&d->conf.macaddr); | 
|  | macaddr = d->conf.macaddr.a; | 
|  |  | 
|  | e1000x_core_prepare_eeprom(d->eeprom_data, | 
|  | e1000_eeprom_template, | 
|  | sizeof(e1000_eeprom_template), | 
|  | PCI_DEVICE_GET_CLASS(pci_dev)->device_id, | 
|  | macaddr); | 
|  |  | 
|  | d->nic = qemu_new_nic(&net_e1000_info, &d->conf, | 
|  | object_get_typename(OBJECT(d)), dev->id, | 
|  | &dev->mem_reentrancy_guard, d); | 
|  |  | 
|  | qemu_format_nic_info_str(qemu_get_queue(d->nic), macaddr); | 
|  |  | 
|  | d->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, e1000_autoneg_timer, d); | 
|  | d->mit_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000_mit_timer, d); | 
|  | d->flush_queue_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, | 
|  | e1000_flush_queue_timer, d); | 
|  | } | 
|  |  | 
|  | static const Property e1000_properties[] = { | 
|  | DEFINE_NIC_PROPERTIES(E1000State, conf), | 
|  | DEFINE_PROP_BIT("extra_mac_registers", E1000State, | 
|  | compat_flags, E1000_FLAG_MAC_BIT, true), | 
|  | DEFINE_PROP_BIT("migrate_tso_props", E1000State, | 
|  | compat_flags, E1000_FLAG_TSO_BIT, true), | 
|  | DEFINE_PROP_BIT("init-vet", E1000State, | 
|  | compat_flags, E1000_FLAG_VET_BIT, true), | 
|  | }; | 
|  |  | 
|  | typedef struct E1000Info { | 
|  | const char *name; | 
|  | uint16_t   device_id; | 
|  | uint8_t    revision; | 
|  | uint16_t   phy_id2; | 
|  | } E1000Info; | 
|  |  | 
|  | static void e1000_class_init(ObjectClass *klass, const void *data) | 
|  | { | 
|  | DeviceClass *dc = DEVICE_CLASS(klass); | 
|  | ResettableClass *rc = RESETTABLE_CLASS(klass); | 
|  | PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); | 
|  | E1000BaseClass *e = E1000_CLASS(klass); | 
|  | const E1000Info *info = data; | 
|  |  | 
|  | k->realize = pci_e1000_realize; | 
|  | k->exit = pci_e1000_uninit; | 
|  | k->romfile = "efi-e1000.rom"; | 
|  | k->vendor_id = PCI_VENDOR_ID_INTEL; | 
|  | k->device_id = info->device_id; | 
|  | k->revision = info->revision; | 
|  | e->phy_id2 = info->phy_id2; | 
|  | k->class_id = PCI_CLASS_NETWORK_ETHERNET; | 
|  | rc->phases.hold = e1000_reset_hold; | 
|  | set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); | 
|  | dc->desc = "Intel Gigabit Ethernet"; | 
|  | dc->vmsd = &vmstate_e1000; | 
|  | device_class_set_props(dc, e1000_properties); | 
|  | } | 
|  |  | 
|  | static void e1000_instance_init(Object *obj) | 
|  | { | 
|  | E1000State *n = E1000(obj); | 
|  | device_add_bootindex_property(obj, &n->conf.bootindex, | 
|  | "bootindex", "/ethernet-phy@0", | 
|  | DEVICE(n)); | 
|  | } | 
|  |  | 
|  | static const TypeInfo e1000_base_info = { | 
|  | .name          = TYPE_E1000_BASE, | 
|  | .parent        = TYPE_PCI_DEVICE, | 
|  | .instance_size = sizeof(E1000State), | 
|  | .instance_init = e1000_instance_init, | 
|  | .class_size    = sizeof(E1000BaseClass), | 
|  | .abstract      = true, | 
|  | .interfaces = (InterfaceInfo[]) { | 
|  | { INTERFACE_CONVENTIONAL_PCI_DEVICE }, | 
|  | { }, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const E1000Info e1000_devices[] = { | 
|  | { | 
|  | .name      = "e1000", | 
|  | .device_id = E1000_DEV_ID_82540EM, | 
|  | .revision  = 0x03, | 
|  | .phy_id2   = E1000_PHY_ID2_8254xx_DEFAULT, | 
|  | }, | 
|  | { | 
|  | .name      = "e1000-82544gc", | 
|  | .device_id = E1000_DEV_ID_82544GC_COPPER, | 
|  | .revision  = 0x03, | 
|  | .phy_id2   = E1000_PHY_ID2_82544x, | 
|  | }, | 
|  | { | 
|  | .name      = "e1000-82545em", | 
|  | .device_id = E1000_DEV_ID_82545EM_COPPER, | 
|  | .revision  = 0x03, | 
|  | .phy_id2   = E1000_PHY_ID2_8254xx_DEFAULT, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static void e1000_register_types(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | type_register_static(&e1000_base_info); | 
|  | for (i = 0; i < ARRAY_SIZE(e1000_devices); i++) { | 
|  | const E1000Info *info = &e1000_devices[i]; | 
|  | TypeInfo type_info = {}; | 
|  |  | 
|  | type_info.name = info->name; | 
|  | type_info.parent = TYPE_E1000_BASE; | 
|  | type_info.class_data = info; | 
|  | type_info.class_init = e1000_class_init; | 
|  |  | 
|  | type_register_static(&type_info); | 
|  | } | 
|  | } | 
|  |  | 
|  | type_init(e1000_register_types) |