| /* |
| * gdb server stub - softmmu specific bits |
| * |
| * Debug integration depends on support from the individual |
| * accelerators so most of this involves calling the ops helpers. |
| * |
| * Copyright (c) 2003-2005 Fabrice Bellard |
| * Copyright (c) 2022 Linaro Ltd |
| * |
| * SPDX-License-Identifier: LGPL-2.0+ |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qapi/error.h" |
| #include "qemu/error-report.h" |
| #include "qemu/cutils.h" |
| #include "exec/gdbstub.h" |
| #include "gdbstub/syscalls.h" |
| #include "exec/hwaddr.h" |
| #include "exec/tb-flush.h" |
| #include "sysemu/cpus.h" |
| #include "sysemu/runstate.h" |
| #include "sysemu/replay.h" |
| #include "hw/core/cpu.h" |
| #include "hw/cpu/cluster.h" |
| #include "hw/boards.h" |
| #include "chardev/char.h" |
| #include "chardev/char-fe.h" |
| #include "monitor/monitor.h" |
| #include "trace.h" |
| #include "internals.h" |
| |
| /* System emulation specific state */ |
| typedef struct { |
| CharBackend chr; |
| Chardev *mon_chr; |
| } GDBSystemState; |
| |
| GDBSystemState gdbserver_system_state; |
| |
| static void reset_gdbserver_state(void) |
| { |
| g_free(gdbserver_state.processes); |
| gdbserver_state.processes = NULL; |
| gdbserver_state.process_num = 0; |
| gdbserver_state.allow_stop_reply = false; |
| } |
| |
| /* |
| * Return the GDB index for a given vCPU state. |
| * |
| * In system mode GDB numbers CPUs from 1 as 0 is reserved as an "any |
| * cpu" index. |
| */ |
| int gdb_get_cpu_index(CPUState *cpu) |
| { |
| return cpu->cpu_index + 1; |
| } |
| |
| /* |
| * We check the status of the last message in the chardev receive code |
| */ |
| bool gdb_got_immediate_ack(void) |
| { |
| return true; |
| } |
| |
| /* |
| * GDB Connection management. For system emulation we do all of this |
| * via our existing Chardev infrastructure which allows us to support |
| * network and unix sockets. |
| */ |
| |
| void gdb_put_buffer(const uint8_t *buf, int len) |
| { |
| /* |
| * XXX this blocks entire thread. Rewrite to use |
| * qemu_chr_fe_write and background I/O callbacks |
| */ |
| qemu_chr_fe_write_all(&gdbserver_system_state.chr, buf, len); |
| } |
| |
| static void gdb_chr_event(void *opaque, QEMUChrEvent event) |
| { |
| int i; |
| GDBState *s = (GDBState *) opaque; |
| |
| switch (event) { |
| case CHR_EVENT_OPENED: |
| /* Start with first process attached, others detached */ |
| for (i = 0; i < s->process_num; i++) { |
| s->processes[i].attached = !i; |
| } |
| |
| s->c_cpu = gdb_first_attached_cpu(); |
| s->g_cpu = s->c_cpu; |
| |
| vm_stop(RUN_STATE_PAUSED); |
| replay_gdb_attached(); |
| gdb_has_xml = false; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* |
| * In softmmu mode we stop the VM and wait to send the syscall packet |
| * until notification that the CPU has stopped. This must be done |
| * because if the packet is sent now the reply from the syscall |
| * request could be received while the CPU is still in the running |
| * state, which can cause packets to be dropped and state transition |
| * 'T' packets to be sent while the syscall is still being processed. |
| */ |
| void gdb_syscall_handling(const char *syscall_packet) |
| { |
| vm_stop(RUN_STATE_DEBUG); |
| qemu_cpu_kick(gdbserver_state.c_cpu); |
| } |
| |
| static void gdb_vm_state_change(void *opaque, bool running, RunState state) |
| { |
| CPUState *cpu = gdbserver_state.c_cpu; |
| g_autoptr(GString) buf = g_string_new(NULL); |
| g_autoptr(GString) tid = g_string_new(NULL); |
| const char *type; |
| int ret; |
| |
| if (running || gdbserver_state.state == RS_INACTIVE) { |
| return; |
| } |
| |
| /* Is there a GDB syscall waiting to be sent? */ |
| if (gdb_handled_syscall()) { |
| return; |
| } |
| |
| if (cpu == NULL) { |
| /* No process attached */ |
| return; |
| } |
| |
| if (!gdbserver_state.allow_stop_reply) { |
| return; |
| } |
| |
| gdb_append_thread_id(cpu, tid); |
| |
| switch (state) { |
| case RUN_STATE_DEBUG: |
| if (cpu->watchpoint_hit) { |
| switch (cpu->watchpoint_hit->flags & BP_MEM_ACCESS) { |
| case BP_MEM_READ: |
| type = "r"; |
| break; |
| case BP_MEM_ACCESS: |
| type = "a"; |
| break; |
| default: |
| type = ""; |
| break; |
| } |
| trace_gdbstub_hit_watchpoint(type, |
| gdb_get_cpu_index(cpu), |
| cpu->watchpoint_hit->vaddr); |
| g_string_printf(buf, "T%02xthread:%s;%swatch:%" VADDR_PRIx ";", |
| GDB_SIGNAL_TRAP, tid->str, type, |
| cpu->watchpoint_hit->vaddr); |
| cpu->watchpoint_hit = NULL; |
| goto send_packet; |
| } else { |
| trace_gdbstub_hit_break(); |
| } |
| tb_flush(cpu); |
| ret = GDB_SIGNAL_TRAP; |
| break; |
| case RUN_STATE_PAUSED: |
| trace_gdbstub_hit_paused(); |
| ret = GDB_SIGNAL_INT; |
| break; |
| case RUN_STATE_SHUTDOWN: |
| trace_gdbstub_hit_shutdown(); |
| ret = GDB_SIGNAL_QUIT; |
| break; |
| case RUN_STATE_IO_ERROR: |
| trace_gdbstub_hit_io_error(); |
| ret = GDB_SIGNAL_IO; |
| break; |
| case RUN_STATE_WATCHDOG: |
| trace_gdbstub_hit_watchdog(); |
| ret = GDB_SIGNAL_ALRM; |
| break; |
| case RUN_STATE_INTERNAL_ERROR: |
| trace_gdbstub_hit_internal_error(); |
| ret = GDB_SIGNAL_ABRT; |
| break; |
| case RUN_STATE_SAVE_VM: |
| case RUN_STATE_RESTORE_VM: |
| return; |
| case RUN_STATE_FINISH_MIGRATE: |
| ret = GDB_SIGNAL_XCPU; |
| break; |
| default: |
| trace_gdbstub_hit_unknown(state); |
| ret = GDB_SIGNAL_UNKNOWN; |
| break; |
| } |
| gdb_set_stop_cpu(cpu); |
| g_string_printf(buf, "T%02xthread:%s;", ret, tid->str); |
| |
| send_packet: |
| gdb_put_packet(buf->str); |
| gdbserver_state.allow_stop_reply = false; |
| |
| /* disable single step if it was enabled */ |
| cpu_single_step(cpu, 0); |
| } |
| |
| #ifndef _WIN32 |
| static void gdb_sigterm_handler(int signal) |
| { |
| if (runstate_is_running()) { |
| vm_stop(RUN_STATE_PAUSED); |
| } |
| } |
| #endif |
| |
| static int gdb_monitor_write(Chardev *chr, const uint8_t *buf, int len) |
| { |
| g_autoptr(GString) hex_buf = g_string_new("O"); |
| gdb_memtohex(hex_buf, buf, len); |
| gdb_put_packet(hex_buf->str); |
| return len; |
| } |
| |
| static void gdb_monitor_open(Chardev *chr, ChardevBackend *backend, |
| bool *be_opened, Error **errp) |
| { |
| *be_opened = false; |
| } |
| |
| static void char_gdb_class_init(ObjectClass *oc, void *data) |
| { |
| ChardevClass *cc = CHARDEV_CLASS(oc); |
| |
| cc->internal = true; |
| cc->open = gdb_monitor_open; |
| cc->chr_write = gdb_monitor_write; |
| } |
| |
| #define TYPE_CHARDEV_GDB "chardev-gdb" |
| |
| static const TypeInfo char_gdb_type_info = { |
| .name = TYPE_CHARDEV_GDB, |
| .parent = TYPE_CHARDEV, |
| .class_init = char_gdb_class_init, |
| }; |
| |
| static int gdb_chr_can_receive(void *opaque) |
| { |
| /* |
| * We can handle an arbitrarily large amount of data. |
| * Pick the maximum packet size, which is as good as anything. |
| */ |
| return MAX_PACKET_LENGTH; |
| } |
| |
| static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size) |
| { |
| int i; |
| |
| for (i = 0; i < size; i++) { |
| gdb_read_byte(buf[i]); |
| } |
| } |
| |
| static int find_cpu_clusters(Object *child, void *opaque) |
| { |
| if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) { |
| GDBState *s = (GDBState *) opaque; |
| CPUClusterState *cluster = CPU_CLUSTER(child); |
| GDBProcess *process; |
| |
| s->processes = g_renew(GDBProcess, s->processes, ++s->process_num); |
| |
| process = &s->processes[s->process_num - 1]; |
| |
| /* |
| * GDB process IDs -1 and 0 are reserved. To avoid subtle errors at |
| * runtime, we enforce here that the machine does not use a cluster ID |
| * that would lead to PID 0. |
| */ |
| assert(cluster->cluster_id != UINT32_MAX); |
| process->pid = cluster->cluster_id + 1; |
| process->attached = false; |
| process->target_xml[0] = '\0'; |
| |
| return 0; |
| } |
| |
| return object_child_foreach(child, find_cpu_clusters, opaque); |
| } |
| |
| static int pid_order(const void *a, const void *b) |
| { |
| GDBProcess *pa = (GDBProcess *) a; |
| GDBProcess *pb = (GDBProcess *) b; |
| |
| if (pa->pid < pb->pid) { |
| return -1; |
| } else if (pa->pid > pb->pid) { |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| static void create_processes(GDBState *s) |
| { |
| object_child_foreach(object_get_root(), find_cpu_clusters, s); |
| |
| if (gdbserver_state.processes) { |
| /* Sort by PID */ |
| qsort(gdbserver_state.processes, |
| gdbserver_state.process_num, |
| sizeof(gdbserver_state.processes[0]), |
| pid_order); |
| } |
| |
| gdb_create_default_process(s); |
| } |
| |
| int gdbserver_start(const char *device) |
| { |
| trace_gdbstub_op_start(device); |
| |
| char gdbstub_device_name[128]; |
| Chardev *chr = NULL; |
| Chardev *mon_chr; |
| |
| if (!first_cpu) { |
| error_report("gdbstub: meaningless to attach gdb to a " |
| "machine without any CPU."); |
| return -1; |
| } |
| |
| if (!gdb_supports_guest_debug()) { |
| error_report("gdbstub: current accelerator doesn't " |
| "support guest debugging"); |
| return -1; |
| } |
| |
| if (!device) { |
| return -1; |
| } |
| if (strcmp(device, "none") != 0) { |
| if (strstart(device, "tcp:", NULL)) { |
| /* enforce required TCP attributes */ |
| snprintf(gdbstub_device_name, sizeof(gdbstub_device_name), |
| "%s,wait=off,nodelay=on,server=on", device); |
| device = gdbstub_device_name; |
| } |
| #ifndef _WIN32 |
| else if (strcmp(device, "stdio") == 0) { |
| struct sigaction act; |
| |
| memset(&act, 0, sizeof(act)); |
| act.sa_handler = gdb_sigterm_handler; |
| sigaction(SIGINT, &act, NULL); |
| } |
| #endif |
| /* |
| * FIXME: it's a bit weird to allow using a mux chardev here |
| * and implicitly setup a monitor. We may want to break this. |
| */ |
| chr = qemu_chr_new_noreplay("gdb", device, true, NULL); |
| if (!chr) { |
| return -1; |
| } |
| } |
| |
| if (!gdbserver_state.init) { |
| gdb_init_gdbserver_state(); |
| |
| qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL); |
| |
| /* Initialize a monitor terminal for gdb */ |
| mon_chr = qemu_chardev_new(NULL, TYPE_CHARDEV_GDB, |
| NULL, NULL, &error_abort); |
| monitor_init_hmp(mon_chr, false, &error_abort); |
| } else { |
| qemu_chr_fe_deinit(&gdbserver_system_state.chr, true); |
| mon_chr = gdbserver_system_state.mon_chr; |
| reset_gdbserver_state(); |
| } |
| |
| create_processes(&gdbserver_state); |
| |
| if (chr) { |
| qemu_chr_fe_init(&gdbserver_system_state.chr, chr, &error_abort); |
| qemu_chr_fe_set_handlers(&gdbserver_system_state.chr, |
| gdb_chr_can_receive, |
| gdb_chr_receive, gdb_chr_event, |
| NULL, &gdbserver_state, NULL, true); |
| } |
| gdbserver_state.state = chr ? RS_IDLE : RS_INACTIVE; |
| gdbserver_system_state.mon_chr = mon_chr; |
| gdb_syscall_reset(); |
| |
| return 0; |
| } |
| |
| static void register_types(void) |
| { |
| type_register_static(&char_gdb_type_info); |
| } |
| |
| type_init(register_types); |
| |
| /* Tell the remote gdb that the process has exited. */ |
| void gdb_exit(int code) |
| { |
| char buf[4]; |
| |
| if (!gdbserver_state.init) { |
| return; |
| } |
| |
| trace_gdbstub_op_exiting((uint8_t)code); |
| |
| if (gdbserver_state.allow_stop_reply) { |
| snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code); |
| gdb_put_packet(buf); |
| gdbserver_state.allow_stop_reply = false; |
| } |
| |
| qemu_chr_fe_deinit(&gdbserver_system_state.chr, true); |
| } |
| |
| /* |
| * Memory access |
| */ |
| static int phy_memory_mode; |
| |
| int gdb_target_memory_rw_debug(CPUState *cpu, hwaddr addr, |
| uint8_t *buf, int len, bool is_write) |
| { |
| CPUClass *cc; |
| |
| if (phy_memory_mode) { |
| if (is_write) { |
| cpu_physical_memory_write(addr, buf, len); |
| } else { |
| cpu_physical_memory_read(addr, buf, len); |
| } |
| return 0; |
| } |
| |
| cc = CPU_GET_CLASS(cpu); |
| if (cc->memory_rw_debug) { |
| return cc->memory_rw_debug(cpu, addr, buf, len, is_write); |
| } |
| |
| return cpu_memory_rw_debug(cpu, addr, buf, len, is_write); |
| } |
| |
| /* |
| * cpu helpers |
| */ |
| |
| unsigned int gdb_get_max_cpus(void) |
| { |
| MachineState *ms = MACHINE(qdev_get_machine()); |
| return ms->smp.max_cpus; |
| } |
| |
| bool gdb_can_reverse(void) |
| { |
| return replay_mode == REPLAY_MODE_PLAY; |
| } |
| |
| /* |
| * Softmmu specific command helpers |
| */ |
| |
| void gdb_handle_query_qemu_phy_mem_mode(GArray *params, |
| void *user_ctx) |
| { |
| g_string_printf(gdbserver_state.str_buf, "%d", phy_memory_mode); |
| gdb_put_strbuf(); |
| } |
| |
| void gdb_handle_set_qemu_phy_mem_mode(GArray *params, void *user_ctx) |
| { |
| if (!params->len) { |
| gdb_put_packet("E22"); |
| return; |
| } |
| |
| if (!get_param(params, 0)->val_ul) { |
| phy_memory_mode = 0; |
| } else { |
| phy_memory_mode = 1; |
| } |
| gdb_put_packet("OK"); |
| } |
| |
| void gdb_handle_query_rcmd(GArray *params, void *user_ctx) |
| { |
| const guint8 zero = 0; |
| int len; |
| |
| if (!params->len) { |
| gdb_put_packet("E22"); |
| return; |
| } |
| |
| len = strlen(get_param(params, 0)->data); |
| if (len % 2) { |
| gdb_put_packet("E01"); |
| return; |
| } |
| |
| g_assert(gdbserver_state.mem_buf->len == 0); |
| len = len / 2; |
| gdb_hextomem(gdbserver_state.mem_buf, get_param(params, 0)->data, len); |
| g_byte_array_append(gdbserver_state.mem_buf, &zero, 1); |
| qemu_chr_be_write(gdbserver_system_state.mon_chr, |
| gdbserver_state.mem_buf->data, |
| gdbserver_state.mem_buf->len); |
| gdb_put_packet("OK"); |
| } |
| |
| /* |
| * Execution state helpers |
| */ |
| |
| void gdb_handle_query_attached(GArray *params, void *user_ctx) |
| { |
| gdb_put_packet("1"); |
| } |
| |
| void gdb_continue(void) |
| { |
| if (!runstate_needs_reset()) { |
| trace_gdbstub_op_continue(); |
| vm_start(); |
| } |
| } |
| |
| /* |
| * Resume execution, per CPU actions. |
| */ |
| int gdb_continue_partial(char *newstates) |
| { |
| CPUState *cpu; |
| int res = 0; |
| int flag = 0; |
| |
| if (!runstate_needs_reset()) { |
| bool step_requested = false; |
| CPU_FOREACH(cpu) { |
| if (newstates[cpu->cpu_index] == 's') { |
| step_requested = true; |
| break; |
| } |
| } |
| |
| if (vm_prepare_start(step_requested)) { |
| return 0; |
| } |
| |
| CPU_FOREACH(cpu) { |
| switch (newstates[cpu->cpu_index]) { |
| case 0: |
| case 1: |
| break; /* nothing to do here */ |
| case 's': |
| trace_gdbstub_op_stepping(cpu->cpu_index); |
| cpu_single_step(cpu, gdbserver_state.sstep_flags); |
| cpu_resume(cpu); |
| flag = 1; |
| break; |
| case 'c': |
| trace_gdbstub_op_continue_cpu(cpu->cpu_index); |
| cpu_resume(cpu); |
| flag = 1; |
| break; |
| default: |
| res = -1; |
| break; |
| } |
| } |
| } |
| if (flag) { |
| qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true); |
| } |
| return res; |
| } |
| |
| /* |
| * Signal Handling - in system mode we only need SIGINT and SIGTRAP; other |
| * signals are not yet supported. |
| */ |
| |
| enum { |
| TARGET_SIGINT = 2, |
| TARGET_SIGTRAP = 5 |
| }; |
| |
| int gdb_signal_to_target(int sig) |
| { |
| switch (sig) { |
| case 2: |
| return TARGET_SIGINT; |
| case 5: |
| return TARGET_SIGTRAP; |
| default: |
| return -1; |
| } |
| } |
| |
| /* |
| * Break/Watch point helpers |
| */ |
| |
| bool gdb_supports_guest_debug(void) |
| { |
| const AccelOpsClass *ops = cpus_get_accel(); |
| if (ops->supports_guest_debug) { |
| return ops->supports_guest_debug(); |
| } |
| return false; |
| } |
| |
| int gdb_breakpoint_insert(CPUState *cs, int type, vaddr addr, vaddr len) |
| { |
| const AccelOpsClass *ops = cpus_get_accel(); |
| if (ops->insert_breakpoint) { |
| return ops->insert_breakpoint(cs, type, addr, len); |
| } |
| return -ENOSYS; |
| } |
| |
| int gdb_breakpoint_remove(CPUState *cs, int type, vaddr addr, vaddr len) |
| { |
| const AccelOpsClass *ops = cpus_get_accel(); |
| if (ops->remove_breakpoint) { |
| return ops->remove_breakpoint(cs, type, addr, len); |
| } |
| return -ENOSYS; |
| } |
| |
| void gdb_breakpoint_remove_all(CPUState *cs) |
| { |
| const AccelOpsClass *ops = cpus_get_accel(); |
| if (ops->remove_all_breakpoints) { |
| ops->remove_all_breakpoints(cs); |
| } |
| } |