blob: 6a29ce27119e29c881244c88c71881bdc5b08efe [file] [log] [blame]
/*
* QEMU Sparc SLAVIO timer controller emulation
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "sun4m.h"
#include "qemu-timer.h"
//#define DEBUG_TIMER
#ifdef DEBUG_TIMER
#define DPRINTF(fmt, args...) \
do { printf("TIMER: " fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...) do {} while (0)
#endif
/*
* Registers of hardware timer in sun4m.
*
* This is the timer/counter part of chip STP2001 (Slave I/O), also
* produced as NCR89C105. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
*
* The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
* are zero. Bit 31 is 1 when count has been reached.
*
* Per-CPU timers interrupt local CPU, system timer uses normal
* interrupt routing.
*
*/
#define MAX_CPUS 16
typedef struct SLAVIO_TIMERState {
qemu_irq irq;
ptimer_state *timer;
uint32_t count, counthigh, reached;
uint64_t limit;
// processor only
uint32_t running;
struct SLAVIO_TIMERState *master;
uint32_t slave_index;
// system only
uint32_t num_slaves;
struct SLAVIO_TIMERState *slave[MAX_CPUS];
uint32_t slave_mode;
} SLAVIO_TIMERState;
#define SYS_TIMER_SIZE 0x14
#define CPU_TIMER_SIZE 0x10
#define SYS_TIMER_OFFSET 0x10000ULL
#define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
#define TIMER_LIMIT 0
#define TIMER_COUNTER 1
#define TIMER_COUNTER_NORST 2
#define TIMER_STATUS 3
#define TIMER_MODE 4
#define TIMER_COUNT_MASK32 0xfffffe00
#define TIMER_LIMIT_MASK32 0x7fffffff
#define TIMER_MAX_COUNT64 0x7ffffffffffffe00ULL
#define TIMER_MAX_COUNT32 0x7ffffe00ULL
#define TIMER_REACHED 0x80000000
#define TIMER_PERIOD 500ULL // 500ns
#define LIMIT_TO_PERIODS(l) ((l) >> 9)
#define PERIODS_TO_LIMIT(l) ((l) << 9)
static int slavio_timer_is_user(SLAVIO_TIMERState *s)
{
return s->master && (s->master->slave_mode & (1 << s->slave_index));
}
// Update count, set irq, update expire_time
// Convert from ptimer countdown units
static void slavio_timer_get_out(SLAVIO_TIMERState *s)
{
uint64_t count, limit;
if (s->limit == 0) /* free-run processor or system counter */
limit = TIMER_MAX_COUNT32;
else
limit = s->limit;
if (s->timer)
count = limit - PERIODS_TO_LIMIT(ptimer_get_count(s->timer));
else
count = 0;
DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit,
s->counthigh, s->count);
s->count = count & TIMER_COUNT_MASK32;
s->counthigh = count >> 32;
}
// timer callback
static void slavio_timer_irq(void *opaque)
{
SLAVIO_TIMERState *s = opaque;
slavio_timer_get_out(s);
DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
s->reached = TIMER_REACHED;
if (!slavio_timer_is_user(s))
qemu_irq_raise(s->irq);
}
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
{
SLAVIO_TIMERState *s = opaque;
uint32_t saddr, ret;
saddr = addr >> 2;
switch (saddr) {
case TIMER_LIMIT:
// read limit (system counter mode) or read most signifying
// part of counter (user mode)
if (slavio_timer_is_user(s)) {
// read user timer MSW
slavio_timer_get_out(s);
ret = s->counthigh | s->reached;
} else {
// read limit
// clear irq
qemu_irq_lower(s->irq);
s->reached = 0;
ret = s->limit & TIMER_LIMIT_MASK32;
}
break;
case TIMER_COUNTER:
// read counter and reached bit (system mode) or read lsbits
// of counter (user mode)
slavio_timer_get_out(s);
if (slavio_timer_is_user(s)) // read user timer LSW
ret = s->count & TIMER_MAX_COUNT64;
else // read limit
ret = (s->count & TIMER_MAX_COUNT32) | s->reached;
break;
case TIMER_STATUS:
// only available in processor counter/timer
// read start/stop status
ret = s->running;
break;
case TIMER_MODE:
// only available in system counter
// read user/system mode
ret = s->slave_mode;
break;
default:
DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
ret = 0;
break;
}
DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
return ret;
}
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
SLAVIO_TIMERState *s = opaque;
uint32_t saddr;
DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
saddr = addr >> 2;
switch (saddr) {
case TIMER_LIMIT:
if (slavio_timer_is_user(s)) {
uint64_t count;
// set user counter MSW, reset counter
s->limit = TIMER_MAX_COUNT64;
s->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
s->reached = 0;
count = ((uint64_t)s->counthigh << 32) | s->count;
DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
count);
if (s->timer)
ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
} else {
// set limit, reset counter
qemu_irq_lower(s->irq);
s->limit = val & TIMER_MAX_COUNT32;
if (s->timer) {
if (s->limit == 0) /* free-run */
ptimer_set_limit(s->timer,
LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
else
ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);
}
}
break;
case TIMER_COUNTER:
if (slavio_timer_is_user(s)) {
uint64_t count;
// set user counter LSW, reset counter
s->limit = TIMER_MAX_COUNT64;
s->count = val & TIMER_MAX_COUNT64;
s->reached = 0;
count = ((uint64_t)s->counthigh) << 32 | s->count;
DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
count);
if (s->timer)
ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
} else
DPRINTF("not user timer\n");
break;
case TIMER_COUNTER_NORST:
// set limit without resetting counter
s->limit = val & TIMER_MAX_COUNT32;
if (s->timer) {
if (s->limit == 0) /* free-run */
ptimer_set_limit(s->timer,
LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
else
ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0);
}
break;
case TIMER_STATUS:
if (slavio_timer_is_user(s)) {
// start/stop user counter
if ((val & 1) && !s->running) {
DPRINTF("processor %d user timer started\n", s->slave_index);
if (s->timer)
ptimer_run(s->timer, 0);
s->running = 1;
} else if (!(val & 1) && s->running) {
DPRINTF("processor %d user timer stopped\n", s->slave_index);
if (s->timer)
ptimer_stop(s->timer);
s->running = 0;
}
}
break;
case TIMER_MODE:
if (s->master == NULL) {
unsigned int i;
for (i = 0; i < s->num_slaves; i++) {
unsigned int processor = 1 << i;
// check for a change in timer mode for this processor
if ((val & processor) != (s->slave_mode & processor)) {
if (val & processor) { // counter -> user timer
qemu_irq_lower(s->slave[i]->irq);
// counters are always running
ptimer_stop(s->slave[i]->timer);
s->slave[i]->running = 0;
// user timer limit is always the same
s->slave[i]->limit = TIMER_MAX_COUNT64;
ptimer_set_limit(s->slave[i]->timer,
LIMIT_TO_PERIODS(s->slave[i]->limit),
1);
// set this processors user timer bit in config
// register
s->slave_mode |= processor;
DPRINTF("processor %d changed from counter to user "
"timer\n", s->slave[i]->slave_index);
} else { // user timer -> counter
// stop the user timer if it is running
if (s->slave[i]->running)
ptimer_stop(s->slave[i]->timer);
// start the counter
ptimer_run(s->slave[i]->timer, 0);
s->slave[i]->running = 1;
// clear this processors user timer bit in config
// register
s->slave_mode &= ~processor;
DPRINTF("processor %d changed from user timer to "
"counter\n", s->slave[i]->slave_index);
}
}
}
} else
DPRINTF("not system timer\n");
break;
default:
DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
break;
}
}
static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
NULL,
NULL,
slavio_timer_mem_readl,
};
static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
NULL,
NULL,
slavio_timer_mem_writel,
};
static void slavio_timer_save(QEMUFile *f, void *opaque)
{
SLAVIO_TIMERState *s = opaque;
qemu_put_be64s(f, &s->limit);
qemu_put_be32s(f, &s->count);
qemu_put_be32s(f, &s->counthigh);
qemu_put_be32s(f, &s->reached);
qemu_put_be32s(f, &s->running);
if (s->timer)
qemu_put_ptimer(f, s->timer);
}
static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
{
SLAVIO_TIMERState *s = opaque;
if (version_id != 3)
return -EINVAL;
qemu_get_be64s(f, &s->limit);
qemu_get_be32s(f, &s->count);
qemu_get_be32s(f, &s->counthigh);
qemu_get_be32s(f, &s->reached);
qemu_get_be32s(f, &s->running);
if (s->timer)
qemu_get_ptimer(f, s->timer);
return 0;
}
static void slavio_timer_reset(void *opaque)
{
SLAVIO_TIMERState *s = opaque;
s->limit = 0;
s->count = 0;
s->reached = 0;
s->slave_mode = 0;
if (!s->master || s->slave_index < s->master->num_slaves) {
ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
ptimer_run(s->timer, 0);
}
s->running = 1;
qemu_irq_lower(s->irq);
}
static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
qemu_irq irq,
SLAVIO_TIMERState *master,
uint32_t slave_index)
{
int slavio_timer_io_memory;
SLAVIO_TIMERState *s;
QEMUBH *bh;
s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
s->irq = irq;
s->master = master;
s->slave_index = slave_index;
if (!master || slave_index < master->num_slaves) {
bh = qemu_bh_new(slavio_timer_irq, s);
s->timer = ptimer_init(bh);
ptimer_set_period(s->timer, TIMER_PERIOD);
}
slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
slavio_timer_mem_write, s);
if (master)
cpu_register_physical_memory(addr, CPU_TIMER_SIZE,
slavio_timer_io_memory);
else
cpu_register_physical_memory(addr, SYS_TIMER_SIZE,
slavio_timer_io_memory);
register_savevm("slavio_timer", addr, 3, slavio_timer_save,
slavio_timer_load, s);
qemu_register_reset(slavio_timer_reset, s);
slavio_timer_reset(s);
return s;
}
void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
qemu_irq *cpu_irqs, unsigned int num_cpus)
{
SLAVIO_TIMERState *master;
unsigned int i;
master = slavio_timer_init(base + SYS_TIMER_OFFSET, master_irq, NULL, 0);
master->num_slaves = num_cpus;
for (i = 0; i < MAX_CPUS; i++) {
master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)
CPU_TIMER_OFFSET(i),
cpu_irqs[i], master, i);
}
}