| /* |
| * QEMU KVM support |
| * |
| * Copyright IBM, Corp. 2008 |
| * Red Hat, Inc. 2008 |
| * |
| * Authors: |
| * Anthony Liguori <aliguori@us.ibm.com> |
| * Glauber Costa <gcosta@redhat.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include <sys/types.h> |
| #include <sys/ioctl.h> |
| #include <sys/mman.h> |
| #include <stdarg.h> |
| |
| #include <linux/kvm.h> |
| |
| #include "qemu-common.h" |
| #include "qemu/atomic.h" |
| #include "qemu/option.h" |
| #include "qemu/config-file.h" |
| #include "sysemu/sysemu.h" |
| #include "hw/hw.h" |
| #include "hw/pci/msi.h" |
| #include "hw/s390x/adapter.h" |
| #include "exec/gdbstub.h" |
| #include "sysemu/kvm.h" |
| #include "qemu/bswap.h" |
| #include "exec/memory.h" |
| #include "exec/ram_addr.h" |
| #include "exec/address-spaces.h" |
| #include "qemu/event_notifier.h" |
| #include "trace.h" |
| |
| #include "hw/boards.h" |
| |
| /* This check must be after config-host.h is included */ |
| #ifdef CONFIG_EVENTFD |
| #include <sys/eventfd.h> |
| #endif |
| |
| #ifdef CONFIG_VALGRIND_H |
| #include <valgrind/memcheck.h> |
| #endif |
| |
| /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */ |
| #define PAGE_SIZE TARGET_PAGE_SIZE |
| |
| //#define DEBUG_KVM |
| |
| #ifdef DEBUG_KVM |
| #define DPRINTF(fmt, ...) \ |
| do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
| #else |
| #define DPRINTF(fmt, ...) \ |
| do { } while (0) |
| #endif |
| |
| #define KVM_MSI_HASHTAB_SIZE 256 |
| |
| typedef struct KVMSlot |
| { |
| hwaddr start_addr; |
| ram_addr_t memory_size; |
| void *ram; |
| int slot; |
| int flags; |
| } KVMSlot; |
| |
| typedef struct kvm_dirty_log KVMDirtyLog; |
| |
| struct KVMState |
| { |
| KVMSlot *slots; |
| int nr_slots; |
| int fd; |
| int vmfd; |
| int coalesced_mmio; |
| struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; |
| bool coalesced_flush_in_progress; |
| int broken_set_mem_region; |
| int migration_log; |
| int vcpu_events; |
| int robust_singlestep; |
| int debugregs; |
| #ifdef KVM_CAP_SET_GUEST_DEBUG |
| struct kvm_sw_breakpoint_head kvm_sw_breakpoints; |
| #endif |
| int pit_state2; |
| int xsave, xcrs; |
| int many_ioeventfds; |
| int intx_set_mask; |
| /* The man page (and posix) say ioctl numbers are signed int, but |
| * they're not. Linux, glibc and *BSD all treat ioctl numbers as |
| * unsigned, and treating them as signed here can break things */ |
| unsigned irq_set_ioctl; |
| #ifdef KVM_CAP_IRQ_ROUTING |
| struct kvm_irq_routing *irq_routes; |
| int nr_allocated_irq_routes; |
| uint32_t *used_gsi_bitmap; |
| unsigned int gsi_count; |
| QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; |
| bool direct_msi; |
| #endif |
| }; |
| |
| KVMState *kvm_state; |
| bool kvm_kernel_irqchip; |
| bool kvm_async_interrupts_allowed; |
| bool kvm_halt_in_kernel_allowed; |
| bool kvm_irqfds_allowed; |
| bool kvm_msi_via_irqfd_allowed; |
| bool kvm_gsi_routing_allowed; |
| bool kvm_gsi_direct_mapping; |
| bool kvm_allowed; |
| bool kvm_readonly_mem_allowed; |
| |
| static const KVMCapabilityInfo kvm_required_capabilites[] = { |
| KVM_CAP_INFO(USER_MEMORY), |
| KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), |
| KVM_CAP_LAST_INFO |
| }; |
| |
| static KVMSlot *kvm_alloc_slot(KVMState *s) |
| { |
| int i; |
| |
| for (i = 0; i < s->nr_slots; i++) { |
| if (s->slots[i].memory_size == 0) { |
| return &s->slots[i]; |
| } |
| } |
| |
| fprintf(stderr, "%s: no free slot available\n", __func__); |
| abort(); |
| } |
| |
| static KVMSlot *kvm_lookup_matching_slot(KVMState *s, |
| hwaddr start_addr, |
| hwaddr end_addr) |
| { |
| int i; |
| |
| for (i = 0; i < s->nr_slots; i++) { |
| KVMSlot *mem = &s->slots[i]; |
| |
| if (start_addr == mem->start_addr && |
| end_addr == mem->start_addr + mem->memory_size) { |
| return mem; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * Find overlapping slot with lowest start address |
| */ |
| static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, |
| hwaddr start_addr, |
| hwaddr end_addr) |
| { |
| KVMSlot *found = NULL; |
| int i; |
| |
| for (i = 0; i < s->nr_slots; i++) { |
| KVMSlot *mem = &s->slots[i]; |
| |
| if (mem->memory_size == 0 || |
| (found && found->start_addr < mem->start_addr)) { |
| continue; |
| } |
| |
| if (end_addr > mem->start_addr && |
| start_addr < mem->start_addr + mem->memory_size) { |
| found = mem; |
| } |
| } |
| |
| return found; |
| } |
| |
| int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, |
| hwaddr *phys_addr) |
| { |
| int i; |
| |
| for (i = 0; i < s->nr_slots; i++) { |
| KVMSlot *mem = &s->slots[i]; |
| |
| if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { |
| *phys_addr = mem->start_addr + (ram - mem->ram); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
| { |
| struct kvm_userspace_memory_region mem; |
| |
| mem.slot = slot->slot; |
| mem.guest_phys_addr = slot->start_addr; |
| mem.userspace_addr = (unsigned long)slot->ram; |
| mem.flags = slot->flags; |
| if (s->migration_log) { |
| mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; |
| } |
| |
| if (slot->memory_size && mem.flags & KVM_MEM_READONLY) { |
| /* Set the slot size to 0 before setting the slot to the desired |
| * value. This is needed based on KVM commit 75d61fbc. */ |
| mem.memory_size = 0; |
| kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
| } |
| mem.memory_size = slot->memory_size; |
| return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
| } |
| |
| int kvm_init_vcpu(CPUState *cpu) |
| { |
| KVMState *s = kvm_state; |
| long mmap_size; |
| int ret; |
| |
| DPRINTF("kvm_init_vcpu\n"); |
| |
| ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu)); |
| if (ret < 0) { |
| DPRINTF("kvm_create_vcpu failed\n"); |
| goto err; |
| } |
| |
| cpu->kvm_fd = ret; |
| cpu->kvm_state = s; |
| cpu->kvm_vcpu_dirty = true; |
| |
| mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); |
| if (mmap_size < 0) { |
| ret = mmap_size; |
| DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); |
| goto err; |
| } |
| |
| cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, |
| cpu->kvm_fd, 0); |
| if (cpu->kvm_run == MAP_FAILED) { |
| ret = -errno; |
| DPRINTF("mmap'ing vcpu state failed\n"); |
| goto err; |
| } |
| |
| if (s->coalesced_mmio && !s->coalesced_mmio_ring) { |
| s->coalesced_mmio_ring = |
| (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; |
| } |
| |
| ret = kvm_arch_init_vcpu(cpu); |
| err: |
| return ret; |
| } |
| |
| /* |
| * dirty pages logging control |
| */ |
| |
| static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly) |
| { |
| int flags = 0; |
| flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0; |
| if (readonly && kvm_readonly_mem_allowed) { |
| flags |= KVM_MEM_READONLY; |
| } |
| return flags; |
| } |
| |
| static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty) |
| { |
| KVMState *s = kvm_state; |
| int flags, mask = KVM_MEM_LOG_DIRTY_PAGES; |
| int old_flags; |
| |
| old_flags = mem->flags; |
| |
| flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false); |
| mem->flags = flags; |
| |
| /* If nothing changed effectively, no need to issue ioctl */ |
| if (s->migration_log) { |
| flags |= KVM_MEM_LOG_DIRTY_PAGES; |
| } |
| |
| if (flags == old_flags) { |
| return 0; |
| } |
| |
| return kvm_set_user_memory_region(s, mem); |
| } |
| |
| static int kvm_dirty_pages_log_change(hwaddr phys_addr, |
| ram_addr_t size, bool log_dirty) |
| { |
| KVMState *s = kvm_state; |
| KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); |
| |
| if (mem == NULL) { |
| fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" |
| TARGET_FMT_plx "\n", __func__, phys_addr, |
| (hwaddr)(phys_addr + size - 1)); |
| return -EINVAL; |
| } |
| return kvm_slot_dirty_pages_log_change(mem, log_dirty); |
| } |
| |
| static void kvm_log_start(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| int r; |
| |
| r = kvm_dirty_pages_log_change(section->offset_within_address_space, |
| int128_get64(section->size), true); |
| if (r < 0) { |
| abort(); |
| } |
| } |
| |
| static void kvm_log_stop(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| int r; |
| |
| r = kvm_dirty_pages_log_change(section->offset_within_address_space, |
| int128_get64(section->size), false); |
| if (r < 0) { |
| abort(); |
| } |
| } |
| |
| static int kvm_set_migration_log(int enable) |
| { |
| KVMState *s = kvm_state; |
| KVMSlot *mem; |
| int i, err; |
| |
| s->migration_log = enable; |
| |
| for (i = 0; i < s->nr_slots; i++) { |
| mem = &s->slots[i]; |
| |
| if (!mem->memory_size) { |
| continue; |
| } |
| if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { |
| continue; |
| } |
| err = kvm_set_user_memory_region(s, mem); |
| if (err) { |
| return err; |
| } |
| } |
| return 0; |
| } |
| |
| /* get kvm's dirty pages bitmap and update qemu's */ |
| static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, |
| unsigned long *bitmap) |
| { |
| ram_addr_t start = section->offset_within_region + section->mr->ram_addr; |
| ram_addr_t pages = int128_get64(section->size) / getpagesize(); |
| |
| cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); |
| return 0; |
| } |
| |
| #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) |
| |
| /** |
| * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space |
| * This function updates qemu's dirty bitmap using |
| * memory_region_set_dirty(). This means all bits are set |
| * to dirty. |
| * |
| * @start_add: start of logged region. |
| * @end_addr: end of logged region. |
| */ |
| static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section) |
| { |
| KVMState *s = kvm_state; |
| unsigned long size, allocated_size = 0; |
| KVMDirtyLog d; |
| KVMSlot *mem; |
| int ret = 0; |
| hwaddr start_addr = section->offset_within_address_space; |
| hwaddr end_addr = start_addr + int128_get64(section->size); |
| |
| d.dirty_bitmap = NULL; |
| while (start_addr < end_addr) { |
| mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); |
| if (mem == NULL) { |
| break; |
| } |
| |
| /* XXX bad kernel interface alert |
| * For dirty bitmap, kernel allocates array of size aligned to |
| * bits-per-long. But for case when the kernel is 64bits and |
| * the userspace is 32bits, userspace can't align to the same |
| * bits-per-long, since sizeof(long) is different between kernel |
| * and user space. This way, userspace will provide buffer which |
| * may be 4 bytes less than the kernel will use, resulting in |
| * userspace memory corruption (which is not detectable by valgrind |
| * too, in most cases). |
| * So for now, let's align to 64 instead of HOST_LONG_BITS here, in |
| * a hope that sizeof(long) wont become >8 any time soon. |
| */ |
| size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), |
| /*HOST_LONG_BITS*/ 64) / 8; |
| if (!d.dirty_bitmap) { |
| d.dirty_bitmap = g_malloc(size); |
| } else if (size > allocated_size) { |
| d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); |
| } |
| allocated_size = size; |
| memset(d.dirty_bitmap, 0, allocated_size); |
| |
| d.slot = mem->slot; |
| |
| if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
| DPRINTF("ioctl failed %d\n", errno); |
| ret = -1; |
| break; |
| } |
| |
| kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); |
| start_addr = mem->start_addr + mem->memory_size; |
| } |
| g_free(d.dirty_bitmap); |
| |
| return ret; |
| } |
| |
| static void kvm_coalesce_mmio_region(MemoryListener *listener, |
| MemoryRegionSection *secion, |
| hwaddr start, hwaddr size) |
| { |
| KVMState *s = kvm_state; |
| |
| if (s->coalesced_mmio) { |
| struct kvm_coalesced_mmio_zone zone; |
| |
| zone.addr = start; |
| zone.size = size; |
| zone.pad = 0; |
| |
| (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); |
| } |
| } |
| |
| static void kvm_uncoalesce_mmio_region(MemoryListener *listener, |
| MemoryRegionSection *secion, |
| hwaddr start, hwaddr size) |
| { |
| KVMState *s = kvm_state; |
| |
| if (s->coalesced_mmio) { |
| struct kvm_coalesced_mmio_zone zone; |
| |
| zone.addr = start; |
| zone.size = size; |
| zone.pad = 0; |
| |
| (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); |
| } |
| } |
| |
| int kvm_check_extension(KVMState *s, unsigned int extension) |
| { |
| int ret; |
| |
| ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); |
| if (ret < 0) { |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, |
| bool assign, uint32_t size, bool datamatch) |
| { |
| int ret; |
| struct kvm_ioeventfd iofd; |
| |
| iofd.datamatch = datamatch ? val : 0; |
| iofd.addr = addr; |
| iofd.len = size; |
| iofd.flags = 0; |
| iofd.fd = fd; |
| |
| if (!kvm_enabled()) { |
| return -ENOSYS; |
| } |
| |
| if (datamatch) { |
| iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; |
| } |
| if (!assign) { |
| iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; |
| } |
| |
| ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); |
| |
| if (ret < 0) { |
| return -errno; |
| } |
| |
| return 0; |
| } |
| |
| static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, |
| bool assign, uint32_t size, bool datamatch) |
| { |
| struct kvm_ioeventfd kick = { |
| .datamatch = datamatch ? val : 0, |
| .addr = addr, |
| .flags = KVM_IOEVENTFD_FLAG_PIO, |
| .len = size, |
| .fd = fd, |
| }; |
| int r; |
| if (!kvm_enabled()) { |
| return -ENOSYS; |
| } |
| if (datamatch) { |
| kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; |
| } |
| if (!assign) { |
| kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; |
| } |
| r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); |
| if (r < 0) { |
| return r; |
| } |
| return 0; |
| } |
| |
| |
| static int kvm_check_many_ioeventfds(void) |
| { |
| /* Userspace can use ioeventfd for io notification. This requires a host |
| * that supports eventfd(2) and an I/O thread; since eventfd does not |
| * support SIGIO it cannot interrupt the vcpu. |
| * |
| * Older kernels have a 6 device limit on the KVM io bus. Find out so we |
| * can avoid creating too many ioeventfds. |
| */ |
| #if defined(CONFIG_EVENTFD) |
| int ioeventfds[7]; |
| int i, ret = 0; |
| for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { |
| ioeventfds[i] = eventfd(0, EFD_CLOEXEC); |
| if (ioeventfds[i] < 0) { |
| break; |
| } |
| ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); |
| if (ret < 0) { |
| close(ioeventfds[i]); |
| break; |
| } |
| } |
| |
| /* Decide whether many devices are supported or not */ |
| ret = i == ARRAY_SIZE(ioeventfds); |
| |
| while (i-- > 0) { |
| kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); |
| close(ioeventfds[i]); |
| } |
| return ret; |
| #else |
| return 0; |
| #endif |
| } |
| |
| static const KVMCapabilityInfo * |
| kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) |
| { |
| while (list->name) { |
| if (!kvm_check_extension(s, list->value)) { |
| return list; |
| } |
| list++; |
| } |
| return NULL; |
| } |
| |
| static void kvm_set_phys_mem(MemoryRegionSection *section, bool add) |
| { |
| KVMState *s = kvm_state; |
| KVMSlot *mem, old; |
| int err; |
| MemoryRegion *mr = section->mr; |
| bool log_dirty = memory_region_is_logging(mr); |
| bool writeable = !mr->readonly && !mr->rom_device; |
| bool readonly_flag = mr->readonly || memory_region_is_romd(mr); |
| hwaddr start_addr = section->offset_within_address_space; |
| ram_addr_t size = int128_get64(section->size); |
| void *ram = NULL; |
| unsigned delta; |
| |
| /* kvm works in page size chunks, but the function may be called |
| with sub-page size and unaligned start address. */ |
| delta = TARGET_PAGE_ALIGN(size) - size; |
| if (delta > size) { |
| return; |
| } |
| start_addr += delta; |
| size -= delta; |
| size &= TARGET_PAGE_MASK; |
| if (!size || (start_addr & ~TARGET_PAGE_MASK)) { |
| return; |
| } |
| |
| if (!memory_region_is_ram(mr)) { |
| if (writeable || !kvm_readonly_mem_allowed) { |
| return; |
| } else if (!mr->romd_mode) { |
| /* If the memory device is not in romd_mode, then we actually want |
| * to remove the kvm memory slot so all accesses will trap. */ |
| add = false; |
| } |
| } |
| |
| ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta; |
| |
| while (1) { |
| mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); |
| if (!mem) { |
| break; |
| } |
| |
| if (add && start_addr >= mem->start_addr && |
| (start_addr + size <= mem->start_addr + mem->memory_size) && |
| (ram - start_addr == mem->ram - mem->start_addr)) { |
| /* The new slot fits into the existing one and comes with |
| * identical parameters - update flags and done. */ |
| kvm_slot_dirty_pages_log_change(mem, log_dirty); |
| return; |
| } |
| |
| old = *mem; |
| |
| if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { |
| kvm_physical_sync_dirty_bitmap(section); |
| } |
| |
| /* unregister the overlapping slot */ |
| mem->memory_size = 0; |
| err = kvm_set_user_memory_region(s, mem); |
| if (err) { |
| fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", |
| __func__, strerror(-err)); |
| abort(); |
| } |
| |
| /* Workaround for older KVM versions: we can't join slots, even not by |
| * unregistering the previous ones and then registering the larger |
| * slot. We have to maintain the existing fragmentation. Sigh. |
| * |
| * This workaround assumes that the new slot starts at the same |
| * address as the first existing one. If not or if some overlapping |
| * slot comes around later, we will fail (not seen in practice so far) |
| * - and actually require a recent KVM version. */ |
| if (s->broken_set_mem_region && |
| old.start_addr == start_addr && old.memory_size < size && add) { |
| mem = kvm_alloc_slot(s); |
| mem->memory_size = old.memory_size; |
| mem->start_addr = old.start_addr; |
| mem->ram = old.ram; |
| mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
| |
| err = kvm_set_user_memory_region(s, mem); |
| if (err) { |
| fprintf(stderr, "%s: error updating slot: %s\n", __func__, |
| strerror(-err)); |
| abort(); |
| } |
| |
| start_addr += old.memory_size; |
| ram += old.memory_size; |
| size -= old.memory_size; |
| continue; |
| } |
| |
| /* register prefix slot */ |
| if (old.start_addr < start_addr) { |
| mem = kvm_alloc_slot(s); |
| mem->memory_size = start_addr - old.start_addr; |
| mem->start_addr = old.start_addr; |
| mem->ram = old.ram; |
| mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
| |
| err = kvm_set_user_memory_region(s, mem); |
| if (err) { |
| fprintf(stderr, "%s: error registering prefix slot: %s\n", |
| __func__, strerror(-err)); |
| #ifdef TARGET_PPC |
| fprintf(stderr, "%s: This is probably because your kernel's " \ |
| "PAGE_SIZE is too big. Please try to use 4k " \ |
| "PAGE_SIZE!\n", __func__); |
| #endif |
| abort(); |
| } |
| } |
| |
| /* register suffix slot */ |
| if (old.start_addr + old.memory_size > start_addr + size) { |
| ram_addr_t size_delta; |
| |
| mem = kvm_alloc_slot(s); |
| mem->start_addr = start_addr + size; |
| size_delta = mem->start_addr - old.start_addr; |
| mem->memory_size = old.memory_size - size_delta; |
| mem->ram = old.ram + size_delta; |
| mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
| |
| err = kvm_set_user_memory_region(s, mem); |
| if (err) { |
| fprintf(stderr, "%s: error registering suffix slot: %s\n", |
| __func__, strerror(-err)); |
| abort(); |
| } |
| } |
| } |
| |
| /* in case the KVM bug workaround already "consumed" the new slot */ |
| if (!size) { |
| return; |
| } |
| if (!add) { |
| return; |
| } |
| mem = kvm_alloc_slot(s); |
| mem->memory_size = size; |
| mem->start_addr = start_addr; |
| mem->ram = ram; |
| mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
| |
| err = kvm_set_user_memory_region(s, mem); |
| if (err) { |
| fprintf(stderr, "%s: error registering slot: %s\n", __func__, |
| strerror(-err)); |
| abort(); |
| } |
| } |
| |
| static void kvm_region_add(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| memory_region_ref(section->mr); |
| kvm_set_phys_mem(section, true); |
| } |
| |
| static void kvm_region_del(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| kvm_set_phys_mem(section, false); |
| memory_region_unref(section->mr); |
| } |
| |
| static void kvm_log_sync(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| int r; |
| |
| r = kvm_physical_sync_dirty_bitmap(section); |
| if (r < 0) { |
| abort(); |
| } |
| } |
| |
| static void kvm_log_global_start(struct MemoryListener *listener) |
| { |
| int r; |
| |
| r = kvm_set_migration_log(1); |
| assert(r >= 0); |
| } |
| |
| static void kvm_log_global_stop(struct MemoryListener *listener) |
| { |
| int r; |
| |
| r = kvm_set_migration_log(0); |
| assert(r >= 0); |
| } |
| |
| static void kvm_mem_ioeventfd_add(MemoryListener *listener, |
| MemoryRegionSection *section, |
| bool match_data, uint64_t data, |
| EventNotifier *e) |
| { |
| int fd = event_notifier_get_fd(e); |
| int r; |
| |
| r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
| data, true, int128_get64(section->size), |
| match_data); |
| if (r < 0) { |
| fprintf(stderr, "%s: error adding ioeventfd: %s\n", |
| __func__, strerror(-r)); |
| abort(); |
| } |
| } |
| |
| static void kvm_mem_ioeventfd_del(MemoryListener *listener, |
| MemoryRegionSection *section, |
| bool match_data, uint64_t data, |
| EventNotifier *e) |
| { |
| int fd = event_notifier_get_fd(e); |
| int r; |
| |
| r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
| data, false, int128_get64(section->size), |
| match_data); |
| if (r < 0) { |
| abort(); |
| } |
| } |
| |
| static void kvm_io_ioeventfd_add(MemoryListener *listener, |
| MemoryRegionSection *section, |
| bool match_data, uint64_t data, |
| EventNotifier *e) |
| { |
| int fd = event_notifier_get_fd(e); |
| int r; |
| |
| r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, |
| data, true, int128_get64(section->size), |
| match_data); |
| if (r < 0) { |
| fprintf(stderr, "%s: error adding ioeventfd: %s\n", |
| __func__, strerror(-r)); |
| abort(); |
| } |
| } |
| |
| static void kvm_io_ioeventfd_del(MemoryListener *listener, |
| MemoryRegionSection *section, |
| bool match_data, uint64_t data, |
| EventNotifier *e) |
| |
| { |
| int fd = event_notifier_get_fd(e); |
| int r; |
| |
| r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, |
| data, false, int128_get64(section->size), |
| match_data); |
| if (r < 0) { |
| abort(); |
| } |
| } |
| |
| static MemoryListener kvm_memory_listener = { |
| .region_add = kvm_region_add, |
| .region_del = kvm_region_del, |
| .log_start = kvm_log_start, |
| .log_stop = kvm_log_stop, |
| .log_sync = kvm_log_sync, |
| .log_global_start = kvm_log_global_start, |
| .log_global_stop = kvm_log_global_stop, |
| .eventfd_add = kvm_mem_ioeventfd_add, |
| .eventfd_del = kvm_mem_ioeventfd_del, |
| .coalesced_mmio_add = kvm_coalesce_mmio_region, |
| .coalesced_mmio_del = kvm_uncoalesce_mmio_region, |
| .priority = 10, |
| }; |
| |
| static MemoryListener kvm_io_listener = { |
| .eventfd_add = kvm_io_ioeventfd_add, |
| .eventfd_del = kvm_io_ioeventfd_del, |
| .priority = 10, |
| }; |
| |
| static void kvm_handle_interrupt(CPUState *cpu, int mask) |
| { |
| cpu->interrupt_request |= mask; |
| |
| if (!qemu_cpu_is_self(cpu)) { |
| qemu_cpu_kick(cpu); |
| } |
| } |
| |
| int kvm_set_irq(KVMState *s, int irq, int level) |
| { |
| struct kvm_irq_level event; |
| int ret; |
| |
| assert(kvm_async_interrupts_enabled()); |
| |
| event.level = level; |
| event.irq = irq; |
| ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); |
| if (ret < 0) { |
| perror("kvm_set_irq"); |
| abort(); |
| } |
| |
| return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; |
| } |
| |
| #ifdef KVM_CAP_IRQ_ROUTING |
| typedef struct KVMMSIRoute { |
| struct kvm_irq_routing_entry kroute; |
| QTAILQ_ENTRY(KVMMSIRoute) entry; |
| } KVMMSIRoute; |
| |
| static void set_gsi(KVMState *s, unsigned int gsi) |
| { |
| s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32); |
| } |
| |
| static void clear_gsi(KVMState *s, unsigned int gsi) |
| { |
| s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32)); |
| } |
| |
| void kvm_init_irq_routing(KVMState *s) |
| { |
| int gsi_count, i; |
| |
| gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING); |
| if (gsi_count > 0) { |
| unsigned int gsi_bits, i; |
| |
| /* Round up so we can search ints using ffs */ |
| gsi_bits = ALIGN(gsi_count, 32); |
| s->used_gsi_bitmap = g_malloc0(gsi_bits / 8); |
| s->gsi_count = gsi_count; |
| |
| /* Mark any over-allocated bits as already in use */ |
| for (i = gsi_count; i < gsi_bits; i++) { |
| set_gsi(s, i); |
| } |
| } |
| |
| s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); |
| s->nr_allocated_irq_routes = 0; |
| |
| if (!s->direct_msi) { |
| for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { |
| QTAILQ_INIT(&s->msi_hashtab[i]); |
| } |
| } |
| |
| kvm_arch_init_irq_routing(s); |
| } |
| |
| void kvm_irqchip_commit_routes(KVMState *s) |
| { |
| int ret; |
| |
| s->irq_routes->flags = 0; |
| ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); |
| assert(ret == 0); |
| } |
| |
| static void kvm_add_routing_entry(KVMState *s, |
| struct kvm_irq_routing_entry *entry) |
| { |
| struct kvm_irq_routing_entry *new; |
| int n, size; |
| |
| if (s->irq_routes->nr == s->nr_allocated_irq_routes) { |
| n = s->nr_allocated_irq_routes * 2; |
| if (n < 64) { |
| n = 64; |
| } |
| size = sizeof(struct kvm_irq_routing); |
| size += n * sizeof(*new); |
| s->irq_routes = g_realloc(s->irq_routes, size); |
| s->nr_allocated_irq_routes = n; |
| } |
| n = s->irq_routes->nr++; |
| new = &s->irq_routes->entries[n]; |
| |
| *new = *entry; |
| |
| set_gsi(s, entry->gsi); |
| } |
| |
| static int kvm_update_routing_entry(KVMState *s, |
| struct kvm_irq_routing_entry *new_entry) |
| { |
| struct kvm_irq_routing_entry *entry; |
| int n; |
| |
| for (n = 0; n < s->irq_routes->nr; n++) { |
| entry = &s->irq_routes->entries[n]; |
| if (entry->gsi != new_entry->gsi) { |
| continue; |
| } |
| |
| if(!memcmp(entry, new_entry, sizeof *entry)) { |
| return 0; |
| } |
| |
| *entry = *new_entry; |
| |
| kvm_irqchip_commit_routes(s); |
| |
| return 0; |
| } |
| |
| return -ESRCH; |
| } |
| |
| void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) |
| { |
| struct kvm_irq_routing_entry e = {}; |
| |
| assert(pin < s->gsi_count); |
| |
| e.gsi = irq; |
| e.type = KVM_IRQ_ROUTING_IRQCHIP; |
| e.flags = 0; |
| e.u.irqchip.irqchip = irqchip; |
| e.u.irqchip.pin = pin; |
| kvm_add_routing_entry(s, &e); |
| } |
| |
| void kvm_irqchip_release_virq(KVMState *s, int virq) |
| { |
| struct kvm_irq_routing_entry *e; |
| int i; |
| |
| if (kvm_gsi_direct_mapping()) { |
| return; |
| } |
| |
| for (i = 0; i < s->irq_routes->nr; i++) { |
| e = &s->irq_routes->entries[i]; |
| if (e->gsi == virq) { |
| s->irq_routes->nr--; |
| *e = s->irq_routes->entries[s->irq_routes->nr]; |
| } |
| } |
| clear_gsi(s, virq); |
| } |
| |
| static unsigned int kvm_hash_msi(uint32_t data) |
| { |
| /* This is optimized for IA32 MSI layout. However, no other arch shall |
| * repeat the mistake of not providing a direct MSI injection API. */ |
| return data & 0xff; |
| } |
| |
| static void kvm_flush_dynamic_msi_routes(KVMState *s) |
| { |
| KVMMSIRoute *route, *next; |
| unsigned int hash; |
| |
| for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { |
| QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { |
| kvm_irqchip_release_virq(s, route->kroute.gsi); |
| QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); |
| g_free(route); |
| } |
| } |
| } |
| |
| static int kvm_irqchip_get_virq(KVMState *s) |
| { |
| uint32_t *word = s->used_gsi_bitmap; |
| int max_words = ALIGN(s->gsi_count, 32) / 32; |
| int i, bit; |
| bool retry = true; |
| |
| again: |
| /* Return the lowest unused GSI in the bitmap */ |
| for (i = 0; i < max_words; i++) { |
| bit = ffs(~word[i]); |
| if (!bit) { |
| continue; |
| } |
| |
| return bit - 1 + i * 32; |
| } |
| if (!s->direct_msi && retry) { |
| retry = false; |
| kvm_flush_dynamic_msi_routes(s); |
| goto again; |
| } |
| return -ENOSPC; |
| |
| } |
| |
| static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) |
| { |
| unsigned int hash = kvm_hash_msi(msg.data); |
| KVMMSIRoute *route; |
| |
| QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { |
| if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && |
| route->kroute.u.msi.address_hi == (msg.address >> 32) && |
| route->kroute.u.msi.data == le32_to_cpu(msg.data)) { |
| return route; |
| } |
| } |
| return NULL; |
| } |
| |
| int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) |
| { |
| struct kvm_msi msi; |
| KVMMSIRoute *route; |
| |
| if (s->direct_msi) { |
| msi.address_lo = (uint32_t)msg.address; |
| msi.address_hi = msg.address >> 32; |
| msi.data = le32_to_cpu(msg.data); |
| msi.flags = 0; |
| memset(msi.pad, 0, sizeof(msi.pad)); |
| |
| return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); |
| } |
| |
| route = kvm_lookup_msi_route(s, msg); |
| if (!route) { |
| int virq; |
| |
| virq = kvm_irqchip_get_virq(s); |
| if (virq < 0) { |
| return virq; |
| } |
| |
| route = g_malloc0(sizeof(KVMMSIRoute)); |
| route->kroute.gsi = virq; |
| route->kroute.type = KVM_IRQ_ROUTING_MSI; |
| route->kroute.flags = 0; |
| route->kroute.u.msi.address_lo = (uint32_t)msg.address; |
| route->kroute.u.msi.address_hi = msg.address >> 32; |
| route->kroute.u.msi.data = le32_to_cpu(msg.data); |
| |
| kvm_add_routing_entry(s, &route->kroute); |
| kvm_irqchip_commit_routes(s); |
| |
| QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, |
| entry); |
| } |
| |
| assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); |
| |
| return kvm_set_irq(s, route->kroute.gsi, 1); |
| } |
| |
| int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) |
| { |
| struct kvm_irq_routing_entry kroute = {}; |
| int virq; |
| |
| if (kvm_gsi_direct_mapping()) { |
| return msg.data & 0xffff; |
| } |
| |
| if (!kvm_gsi_routing_enabled()) { |
| return -ENOSYS; |
| } |
| |
| virq = kvm_irqchip_get_virq(s); |
| if (virq < 0) { |
| return virq; |
| } |
| |
| kroute.gsi = virq; |
| kroute.type = KVM_IRQ_ROUTING_MSI; |
| kroute.flags = 0; |
| kroute.u.msi.address_lo = (uint32_t)msg.address; |
| kroute.u.msi.address_hi = msg.address >> 32; |
| kroute.u.msi.data = le32_to_cpu(msg.data); |
| |
| kvm_add_routing_entry(s, &kroute); |
| kvm_irqchip_commit_routes(s); |
| |
| return virq; |
| } |
| |
| int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) |
| { |
| struct kvm_irq_routing_entry kroute = {}; |
| |
| if (kvm_gsi_direct_mapping()) { |
| return 0; |
| } |
| |
| if (!kvm_irqchip_in_kernel()) { |
| return -ENOSYS; |
| } |
| |
| kroute.gsi = virq; |
| kroute.type = KVM_IRQ_ROUTING_MSI; |
| kroute.flags = 0; |
| kroute.u.msi.address_lo = (uint32_t)msg.address; |
| kroute.u.msi.address_hi = msg.address >> 32; |
| kroute.u.msi.data = le32_to_cpu(msg.data); |
| |
| return kvm_update_routing_entry(s, &kroute); |
| } |
| |
| static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, |
| bool assign) |
| { |
| struct kvm_irqfd irqfd = { |
| .fd = fd, |
| .gsi = virq, |
| .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, |
| }; |
| |
| if (rfd != -1) { |
| irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; |
| irqfd.resamplefd = rfd; |
| } |
| |
| if (!kvm_irqfds_enabled()) { |
| return -ENOSYS; |
| } |
| |
| return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); |
| } |
| |
| int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) |
| { |
| struct kvm_irq_routing_entry kroute; |
| int virq; |
| |
| if (!kvm_gsi_routing_enabled()) { |
| return -ENOSYS; |
| } |
| |
| virq = kvm_irqchip_get_virq(s); |
| if (virq < 0) { |
| return virq; |
| } |
| |
| kroute.gsi = virq; |
| kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; |
| kroute.flags = 0; |
| kroute.u.adapter.summary_addr = adapter->summary_addr; |
| kroute.u.adapter.ind_addr = adapter->ind_addr; |
| kroute.u.adapter.summary_offset = adapter->summary_offset; |
| kroute.u.adapter.ind_offset = adapter->ind_offset; |
| kroute.u.adapter.adapter_id = adapter->adapter_id; |
| |
| kvm_add_routing_entry(s, &kroute); |
| kvm_irqchip_commit_routes(s); |
| |
| return virq; |
| } |
| |
| #else /* !KVM_CAP_IRQ_ROUTING */ |
| |
| void kvm_init_irq_routing(KVMState *s) |
| { |
| } |
| |
| void kvm_irqchip_release_virq(KVMState *s, int virq) |
| { |
| } |
| |
| int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) |
| { |
| abort(); |
| } |
| |
| int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) |
| { |
| return -ENOSYS; |
| } |
| |
| int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) |
| { |
| return -ENOSYS; |
| } |
| |
| static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) |
| { |
| abort(); |
| } |
| |
| int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) |
| { |
| return -ENOSYS; |
| } |
| #endif /* !KVM_CAP_IRQ_ROUTING */ |
| |
| int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, |
| EventNotifier *rn, int virq) |
| { |
| return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), |
| rn ? event_notifier_get_fd(rn) : -1, virq, true); |
| } |
| |
| int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq) |
| { |
| return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, |
| false); |
| } |
| |
| static int kvm_irqchip_create(KVMState *s) |
| { |
| int ret; |
| |
| if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) || |
| (!kvm_check_extension(s, KVM_CAP_IRQCHIP) && |
| (kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0) < 0))) { |
| return 0; |
| } |
| |
| /* First probe and see if there's a arch-specific hook to create the |
| * in-kernel irqchip for us */ |
| ret = kvm_arch_irqchip_create(s); |
| if (ret < 0) { |
| return ret; |
| } else if (ret == 0) { |
| ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); |
| if (ret < 0) { |
| fprintf(stderr, "Create kernel irqchip failed\n"); |
| return ret; |
| } |
| } |
| |
| kvm_kernel_irqchip = true; |
| /* If we have an in-kernel IRQ chip then we must have asynchronous |
| * interrupt delivery (though the reverse is not necessarily true) |
| */ |
| kvm_async_interrupts_allowed = true; |
| kvm_halt_in_kernel_allowed = true; |
| |
| kvm_init_irq_routing(s); |
| |
| return 0; |
| } |
| |
| /* Find number of supported CPUs using the recommended |
| * procedure from the kernel API documentation to cope with |
| * older kernels that may be missing capabilities. |
| */ |
| static int kvm_recommended_vcpus(KVMState *s) |
| { |
| int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); |
| return (ret) ? ret : 4; |
| } |
| |
| static int kvm_max_vcpus(KVMState *s) |
| { |
| int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); |
| return (ret) ? ret : kvm_recommended_vcpus(s); |
| } |
| |
| int kvm_init(MachineClass *mc) |
| { |
| static const char upgrade_note[] = |
| "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" |
| "(see http://sourceforge.net/projects/kvm).\n"; |
| struct { |
| const char *name; |
| int num; |
| } num_cpus[] = { |
| { "SMP", smp_cpus }, |
| { "hotpluggable", max_cpus }, |
| { NULL, } |
| }, *nc = num_cpus; |
| int soft_vcpus_limit, hard_vcpus_limit; |
| KVMState *s; |
| const KVMCapabilityInfo *missing_cap; |
| int ret; |
| int i, type = 0; |
| const char *kvm_type; |
| |
| s = g_malloc0(sizeof(KVMState)); |
| |
| /* |
| * On systems where the kernel can support different base page |
| * sizes, host page size may be different from TARGET_PAGE_SIZE, |
| * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum |
| * page size for the system though. |
| */ |
| assert(TARGET_PAGE_SIZE <= getpagesize()); |
| page_size_init(); |
| |
| #ifdef KVM_CAP_SET_GUEST_DEBUG |
| QTAILQ_INIT(&s->kvm_sw_breakpoints); |
| #endif |
| s->vmfd = -1; |
| s->fd = qemu_open("/dev/kvm", O_RDWR); |
| if (s->fd == -1) { |
| fprintf(stderr, "Could not access KVM kernel module: %m\n"); |
| ret = -errno; |
| goto err; |
| } |
| |
| ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); |
| if (ret < KVM_API_VERSION) { |
| if (ret >= 0) { |
| ret = -EINVAL; |
| } |
| fprintf(stderr, "kvm version too old\n"); |
| goto err; |
| } |
| |
| if (ret > KVM_API_VERSION) { |
| ret = -EINVAL; |
| fprintf(stderr, "kvm version not supported\n"); |
| goto err; |
| } |
| |
| s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); |
| |
| /* If unspecified, use the default value */ |
| if (!s->nr_slots) { |
| s->nr_slots = 32; |
| } |
| |
| s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); |
| |
| for (i = 0; i < s->nr_slots; i++) { |
| s->slots[i].slot = i; |
| } |
| |
| /* check the vcpu limits */ |
| soft_vcpus_limit = kvm_recommended_vcpus(s); |
| hard_vcpus_limit = kvm_max_vcpus(s); |
| |
| while (nc->name) { |
| if (nc->num > soft_vcpus_limit) { |
| fprintf(stderr, |
| "Warning: Number of %s cpus requested (%d) exceeds " |
| "the recommended cpus supported by KVM (%d)\n", |
| nc->name, nc->num, soft_vcpus_limit); |
| |
| if (nc->num > hard_vcpus_limit) { |
| fprintf(stderr, "Number of %s cpus requested (%d) exceeds " |
| "the maximum cpus supported by KVM (%d)\n", |
| nc->name, nc->num, hard_vcpus_limit); |
| exit(1); |
| } |
| } |
| nc++; |
| } |
| |
| kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); |
| if (mc->kvm_type) { |
| type = mc->kvm_type(kvm_type); |
| } else if (kvm_type) { |
| ret = -EINVAL; |
| fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); |
| goto err; |
| } |
| |
| do { |
| ret = kvm_ioctl(s, KVM_CREATE_VM, type); |
| } while (ret == -EINTR); |
| |
| if (ret < 0) { |
| fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, |
| strerror(-ret)); |
| |
| #ifdef TARGET_S390X |
| fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " |
| "your host kernel command line\n"); |
| #endif |
| goto err; |
| } |
| |
| s->vmfd = ret; |
| missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); |
| if (!missing_cap) { |
| missing_cap = |
| kvm_check_extension_list(s, kvm_arch_required_capabilities); |
| } |
| if (missing_cap) { |
| ret = -EINVAL; |
| fprintf(stderr, "kvm does not support %s\n%s", |
| missing_cap->name, upgrade_note); |
| goto err; |
| } |
| |
| s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
| |
| s->broken_set_mem_region = 1; |
| ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); |
| if (ret > 0) { |
| s->broken_set_mem_region = 0; |
| } |
| |
| #ifdef KVM_CAP_VCPU_EVENTS |
| s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); |
| #endif |
| |
| s->robust_singlestep = |
| kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); |
| |
| #ifdef KVM_CAP_DEBUGREGS |
| s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); |
| #endif |
| |
| #ifdef KVM_CAP_XSAVE |
| s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); |
| #endif |
| |
| #ifdef KVM_CAP_XCRS |
| s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); |
| #endif |
| |
| #ifdef KVM_CAP_PIT_STATE2 |
| s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); |
| #endif |
| |
| #ifdef KVM_CAP_IRQ_ROUTING |
| s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); |
| #endif |
| |
| s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); |
| |
| s->irq_set_ioctl = KVM_IRQ_LINE; |
| if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { |
| s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; |
| } |
| |
| #ifdef KVM_CAP_READONLY_MEM |
| kvm_readonly_mem_allowed = |
| (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); |
| #endif |
| |
| ret = kvm_arch_init(s); |
| if (ret < 0) { |
| goto err; |
| } |
| |
| ret = kvm_irqchip_create(s); |
| if (ret < 0) { |
| goto err; |
| } |
| |
| kvm_state = s; |
| memory_listener_register(&kvm_memory_listener, &address_space_memory); |
| memory_listener_register(&kvm_io_listener, &address_space_io); |
| |
| s->many_ioeventfds = kvm_check_many_ioeventfds(); |
| |
| cpu_interrupt_handler = kvm_handle_interrupt; |
| |
| return 0; |
| |
| err: |
| assert(ret < 0); |
| if (s->vmfd >= 0) { |
| close(s->vmfd); |
| } |
| if (s->fd != -1) { |
| close(s->fd); |
| } |
| g_free(s->slots); |
| g_free(s); |
| |
| return ret; |
| } |
| |
| static void kvm_handle_io(uint16_t port, void *data, int direction, int size, |
| uint32_t count) |
| { |
| int i; |
| uint8_t *ptr = data; |
| |
| for (i = 0; i < count; i++) { |
| address_space_rw(&address_space_io, port, ptr, size, |
| direction == KVM_EXIT_IO_OUT); |
| ptr += size; |
| } |
| } |
| |
| static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) |
| { |
| fprintf(stderr, "KVM internal error. Suberror: %d\n", |
| run->internal.suberror); |
| |
| if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { |
| int i; |
| |
| for (i = 0; i < run->internal.ndata; ++i) { |
| fprintf(stderr, "extra data[%d]: %"PRIx64"\n", |
| i, (uint64_t)run->internal.data[i]); |
| } |
| } |
| if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { |
| fprintf(stderr, "emulation failure\n"); |
| if (!kvm_arch_stop_on_emulation_error(cpu)) { |
| cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); |
| return EXCP_INTERRUPT; |
| } |
| } |
| /* FIXME: Should trigger a qmp message to let management know |
| * something went wrong. |
| */ |
| return -1; |
| } |
| |
| void kvm_flush_coalesced_mmio_buffer(void) |
| { |
| KVMState *s = kvm_state; |
| |
| if (s->coalesced_flush_in_progress) { |
| return; |
| } |
| |
| s->coalesced_flush_in_progress = true; |
| |
| if (s->coalesced_mmio_ring) { |
| struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; |
| while (ring->first != ring->last) { |
| struct kvm_coalesced_mmio *ent; |
| |
| ent = &ring->coalesced_mmio[ring->first]; |
| |
| cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); |
| smp_wmb(); |
| ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; |
| } |
| } |
| |
| s->coalesced_flush_in_progress = false; |
| } |
| |
| static void do_kvm_cpu_synchronize_state(void *arg) |
| { |
| CPUState *cpu = arg; |
| |
| if (!cpu->kvm_vcpu_dirty) { |
| kvm_arch_get_registers(cpu); |
| cpu->kvm_vcpu_dirty = true; |
| } |
| } |
| |
| void kvm_cpu_synchronize_state(CPUState *cpu) |
| { |
| if (!cpu->kvm_vcpu_dirty) { |
| run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu); |
| } |
| } |
| |
| void kvm_cpu_synchronize_post_reset(CPUState *cpu) |
| { |
| kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); |
| cpu->kvm_vcpu_dirty = false; |
| } |
| |
| void kvm_cpu_synchronize_post_init(CPUState *cpu) |
| { |
| kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); |
| cpu->kvm_vcpu_dirty = false; |
| } |
| |
| int kvm_cpu_exec(CPUState *cpu) |
| { |
| struct kvm_run *run = cpu->kvm_run; |
| int ret, run_ret; |
| |
| DPRINTF("kvm_cpu_exec()\n"); |
| |
| if (kvm_arch_process_async_events(cpu)) { |
| cpu->exit_request = 0; |
| return EXCP_HLT; |
| } |
| |
| do { |
| if (cpu->kvm_vcpu_dirty) { |
| kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); |
| cpu->kvm_vcpu_dirty = false; |
| } |
| |
| kvm_arch_pre_run(cpu, run); |
| if (cpu->exit_request) { |
| DPRINTF("interrupt exit requested\n"); |
| /* |
| * KVM requires us to reenter the kernel after IO exits to complete |
| * instruction emulation. This self-signal will ensure that we |
| * leave ASAP again. |
| */ |
| qemu_cpu_kick_self(); |
| } |
| qemu_mutex_unlock_iothread(); |
| |
| run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); |
| |
| qemu_mutex_lock_iothread(); |
| kvm_arch_post_run(cpu, run); |
| |
| if (run_ret < 0) { |
| if (run_ret == -EINTR || run_ret == -EAGAIN) { |
| DPRINTF("io window exit\n"); |
| ret = EXCP_INTERRUPT; |
| break; |
| } |
| fprintf(stderr, "error: kvm run failed %s\n", |
| strerror(-run_ret)); |
| abort(); |
| } |
| |
| trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); |
| switch (run->exit_reason) { |
| case KVM_EXIT_IO: |
| DPRINTF("handle_io\n"); |
| kvm_handle_io(run->io.port, |
| (uint8_t *)run + run->io.data_offset, |
| run->io.direction, |
| run->io.size, |
| run->io.count); |
| ret = 0; |
| break; |
| case KVM_EXIT_MMIO: |
| DPRINTF("handle_mmio\n"); |
| cpu_physical_memory_rw(run->mmio.phys_addr, |
| run->mmio.data, |
| run->mmio.len, |
| run->mmio.is_write); |
| ret = 0; |
| break; |
| case KVM_EXIT_IRQ_WINDOW_OPEN: |
| DPRINTF("irq_window_open\n"); |
| ret = EXCP_INTERRUPT; |
| break; |
| case KVM_EXIT_SHUTDOWN: |
| DPRINTF("shutdown\n"); |
| qemu_system_reset_request(); |
| ret = EXCP_INTERRUPT; |
| break; |
| case KVM_EXIT_UNKNOWN: |
| fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", |
| (uint64_t)run->hw.hardware_exit_reason); |
| ret = -1; |
| break; |
| case KVM_EXIT_INTERNAL_ERROR: |
| ret = kvm_handle_internal_error(cpu, run); |
| break; |
| case KVM_EXIT_SYSTEM_EVENT: |
| switch (run->system_event.type) { |
| case KVM_SYSTEM_EVENT_SHUTDOWN: |
| qemu_system_shutdown_request(); |
| ret = EXCP_INTERRUPT; |
| break; |
| case KVM_SYSTEM_EVENT_RESET: |
| qemu_system_reset_request(); |
| ret = EXCP_INTERRUPT; |
| break; |
| default: |
| DPRINTF("kvm_arch_handle_exit\n"); |
| ret = kvm_arch_handle_exit(cpu, run); |
| break; |
| } |
| break; |
| default: |
| DPRINTF("kvm_arch_handle_exit\n"); |
| ret = kvm_arch_handle_exit(cpu, run); |
| break; |
| } |
| } while (ret == 0); |
| |
| if (ret < 0) { |
| cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); |
| vm_stop(RUN_STATE_INTERNAL_ERROR); |
| } |
| |
| cpu->exit_request = 0; |
| return ret; |
| } |
| |
| int kvm_ioctl(KVMState *s, int type, ...) |
| { |
| int ret; |
| void *arg; |
| va_list ap; |
| |
| va_start(ap, type); |
| arg = va_arg(ap, void *); |
| va_end(ap); |
| |
| trace_kvm_ioctl(type, arg); |
| ret = ioctl(s->fd, type, arg); |
| if (ret == -1) { |
| ret = -errno; |
| } |
| return ret; |
| } |
| |
| int kvm_vm_ioctl(KVMState *s, int type, ...) |
| { |
| int ret; |
| void *arg; |
| va_list ap; |
| |
| va_start(ap, type); |
| arg = va_arg(ap, void *); |
| va_end(ap); |
| |
| trace_kvm_vm_ioctl(type, arg); |
| ret = ioctl(s->vmfd, type, arg); |
| if (ret == -1) { |
| ret = -errno; |
| } |
| return ret; |
| } |
| |
| int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) |
| { |
| int ret; |
| void *arg; |
| va_list ap; |
| |
| va_start(ap, type); |
| arg = va_arg(ap, void *); |
| va_end(ap); |
| |
| trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); |
| ret = ioctl(cpu->kvm_fd, type, arg); |
| if (ret == -1) { |
| ret = -errno; |
| } |
| return ret; |
| } |
| |
| int kvm_device_ioctl(int fd, int type, ...) |
| { |
| int ret; |
| void *arg; |
| va_list ap; |
| |
| va_start(ap, type); |
| arg = va_arg(ap, void *); |
| va_end(ap); |
| |
| trace_kvm_device_ioctl(fd, type, arg); |
| ret = ioctl(fd, type, arg); |
| if (ret == -1) { |
| ret = -errno; |
| } |
| return ret; |
| } |
| |
| int kvm_has_sync_mmu(void) |
| { |
| return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); |
| } |
| |
| int kvm_has_vcpu_events(void) |
| { |
| return kvm_state->vcpu_events; |
| } |
| |
| int kvm_has_robust_singlestep(void) |
| { |
| return kvm_state->robust_singlestep; |
| } |
| |
| int kvm_has_debugregs(void) |
| { |
| return kvm_state->debugregs; |
| } |
| |
| int kvm_has_xsave(void) |
| { |
| return kvm_state->xsave; |
| } |
| |
| int kvm_has_xcrs(void) |
| { |
| return kvm_state->xcrs; |
| } |
| |
| int kvm_has_pit_state2(void) |
| { |
| return kvm_state->pit_state2; |
| } |
| |
| int kvm_has_many_ioeventfds(void) |
| { |
| if (!kvm_enabled()) { |
| return 0; |
| } |
| return kvm_state->many_ioeventfds; |
| } |
| |
| int kvm_has_gsi_routing(void) |
| { |
| #ifdef KVM_CAP_IRQ_ROUTING |
| return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); |
| #else |
| return false; |
| #endif |
| } |
| |
| int kvm_has_intx_set_mask(void) |
| { |
| return kvm_state->intx_set_mask; |
| } |
| |
| void kvm_setup_guest_memory(void *start, size_t size) |
| { |
| #ifdef CONFIG_VALGRIND_H |
| VALGRIND_MAKE_MEM_DEFINED(start, size); |
| #endif |
| if (!kvm_has_sync_mmu()) { |
| int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); |
| |
| if (ret) { |
| perror("qemu_madvise"); |
| fprintf(stderr, |
| "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); |
| exit(1); |
| } |
| } |
| } |
| |
| #ifdef KVM_CAP_SET_GUEST_DEBUG |
| struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, |
| target_ulong pc) |
| { |
| struct kvm_sw_breakpoint *bp; |
| |
| QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { |
| if (bp->pc == pc) { |
| return bp; |
| } |
| } |
| return NULL; |
| } |
| |
| int kvm_sw_breakpoints_active(CPUState *cpu) |
| { |
| return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); |
| } |
| |
| struct kvm_set_guest_debug_data { |
| struct kvm_guest_debug dbg; |
| CPUState *cpu; |
| int err; |
| }; |
| |
| static void kvm_invoke_set_guest_debug(void *data) |
| { |
| struct kvm_set_guest_debug_data *dbg_data = data; |
| |
| dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG, |
| &dbg_data->dbg); |
| } |
| |
| int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) |
| { |
| struct kvm_set_guest_debug_data data; |
| |
| data.dbg.control = reinject_trap; |
| |
| if (cpu->singlestep_enabled) { |
| data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; |
| } |
| kvm_arch_update_guest_debug(cpu, &data.dbg); |
| data.cpu = cpu; |
| |
| run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data); |
| return data.err; |
| } |
| |
| int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, |
| target_ulong len, int type) |
| { |
| struct kvm_sw_breakpoint *bp; |
| int err; |
| |
| if (type == GDB_BREAKPOINT_SW) { |
| bp = kvm_find_sw_breakpoint(cpu, addr); |
| if (bp) { |
| bp->use_count++; |
| return 0; |
| } |
| |
| bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); |
| if (!bp) { |
| return -ENOMEM; |
| } |
| |
| bp->pc = addr; |
| bp->use_count = 1; |
| err = kvm_arch_insert_sw_breakpoint(cpu, bp); |
| if (err) { |
| g_free(bp); |
| return err; |
| } |
| |
| QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); |
| } else { |
| err = kvm_arch_insert_hw_breakpoint(addr, len, type); |
| if (err) { |
| return err; |
| } |
| } |
| |
| CPU_FOREACH(cpu) { |
| err = kvm_update_guest_debug(cpu, 0); |
| if (err) { |
| return err; |
| } |
| } |
| return 0; |
| } |
| |
| int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, |
| target_ulong len, int type) |
| { |
| struct kvm_sw_breakpoint *bp; |
| int err; |
| |
| if (type == GDB_BREAKPOINT_SW) { |
| bp = kvm_find_sw_breakpoint(cpu, addr); |
| if (!bp) { |
| return -ENOENT; |
| } |
| |
| if (bp->use_count > 1) { |
| bp->use_count--; |
| return 0; |
| } |
| |
| err = kvm_arch_remove_sw_breakpoint(cpu, bp); |
| if (err) { |
| return err; |
| } |
| |
| QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); |
| g_free(bp); |
| } else { |
| err = kvm_arch_remove_hw_breakpoint(addr, len, type); |
| if (err) { |
| return err; |
| } |
| } |
| |
| CPU_FOREACH(cpu) { |
| err = kvm_update_guest_debug(cpu, 0); |
| if (err) { |
| return err; |
| } |
| } |
| return 0; |
| } |
| |
| void kvm_remove_all_breakpoints(CPUState *cpu) |
| { |
| struct kvm_sw_breakpoint *bp, *next; |
| KVMState *s = cpu->kvm_state; |
| |
| QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { |
| if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { |
| /* Try harder to find a CPU that currently sees the breakpoint. */ |
| CPU_FOREACH(cpu) { |
| if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) { |
| break; |
| } |
| } |
| } |
| QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); |
| g_free(bp); |
| } |
| kvm_arch_remove_all_hw_breakpoints(); |
| |
| CPU_FOREACH(cpu) { |
| kvm_update_guest_debug(cpu, 0); |
| } |
| } |
| |
| #else /* !KVM_CAP_SET_GUEST_DEBUG */ |
| |
| int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) |
| { |
| return -EINVAL; |
| } |
| |
| int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, |
| target_ulong len, int type) |
| { |
| return -EINVAL; |
| } |
| |
| int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, |
| target_ulong len, int type) |
| { |
| return -EINVAL; |
| } |
| |
| void kvm_remove_all_breakpoints(CPUState *cpu) |
| { |
| } |
| #endif /* !KVM_CAP_SET_GUEST_DEBUG */ |
| |
| int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) |
| { |
| struct kvm_signal_mask *sigmask; |
| int r; |
| |
| if (!sigset) { |
| return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL); |
| } |
| |
| sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); |
| |
| sigmask->len = 8; |
| memcpy(sigmask->sigset, sigset, sizeof(*sigset)); |
| r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); |
| g_free(sigmask); |
| |
| return r; |
| } |
| int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) |
| { |
| return kvm_arch_on_sigbus_vcpu(cpu, code, addr); |
| } |
| |
| int kvm_on_sigbus(int code, void *addr) |
| { |
| return kvm_arch_on_sigbus(code, addr); |
| } |
| |
| int kvm_create_device(KVMState *s, uint64_t type, bool test) |
| { |
| int ret; |
| struct kvm_create_device create_dev; |
| |
| create_dev.type = type; |
| create_dev.fd = -1; |
| create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; |
| |
| if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { |
| return -ENOTSUP; |
| } |
| |
| ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); |
| if (ret) { |
| return ret; |
| } |
| |
| return test ? 0 : create_dev.fd; |
| } |
| |
| int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) |
| { |
| struct kvm_one_reg reg; |
| int r; |
| |
| reg.id = id; |
| reg.addr = (uintptr_t) source; |
| r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
| if (r) { |
| trace_kvm_failed_reg_set(id, strerror(r)); |
| } |
| return r; |
| } |
| |
| int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) |
| { |
| struct kvm_one_reg reg; |
| int r; |
| |
| reg.id = id; |
| reg.addr = (uintptr_t) target; |
| r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
| if (r) { |
| trace_kvm_failed_reg_get(id, strerror(r)); |
| } |
| return r; |
| } |