|  | /* | 
|  | *  ELF loading code | 
|  | * | 
|  | *  Copyright (c) 2013 Stacey D. Son | 
|  | * | 
|  | *  This program is free software; you can redistribute it and/or modify | 
|  | *  it under the terms of the GNU General Public License as published by | 
|  | *  the Free Software Foundation; either version 2 of the License, or | 
|  | *  (at your option) any later version. | 
|  | * | 
|  | *  This program is distributed in the hope that it will be useful, | 
|  | *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | *  GNU General Public License for more details. | 
|  | * | 
|  | *  You should have received a copy of the GNU General Public License | 
|  | *  along with this program; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  |  | 
|  | #include "qemu.h" | 
|  | #include "disas/disas.h" | 
|  | #include "qemu/path.h" | 
|  |  | 
|  | static abi_ulong target_auxents;   /* Where the AUX entries are in target */ | 
|  | static size_t target_auxents_sz;   /* Size of AUX entries including AT_NULL */ | 
|  |  | 
|  | #include "target_arch_reg.h" | 
|  | #include "target_os_elf.h" | 
|  | #include "target_os_stack.h" | 
|  | #include "target_os_thread.h" | 
|  | #include "target_os_user.h" | 
|  |  | 
|  | abi_ulong target_stksiz; | 
|  | abi_ulong target_stkbas; | 
|  |  | 
|  | static int elf_core_dump(int signr, CPUArchState *env); | 
|  | static int load_elf_sections(const struct elfhdr *hdr, struct elf_phdr *phdr, | 
|  | int fd, abi_ulong rbase, abi_ulong *baddrp); | 
|  |  | 
|  | static inline void memcpy_fromfs(void *to, const void *from, unsigned long n) | 
|  | { | 
|  | memcpy(to, from, n); | 
|  | } | 
|  |  | 
|  | #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN | 
|  | static void bswap_ehdr(struct elfhdr *ehdr) | 
|  | { | 
|  | bswap16s(&ehdr->e_type);            /* Object file type */ | 
|  | bswap16s(&ehdr->e_machine);         /* Architecture */ | 
|  | bswap32s(&ehdr->e_version);         /* Object file version */ | 
|  | bswaptls(&ehdr->e_entry);           /* Entry point virtual address */ | 
|  | bswaptls(&ehdr->e_phoff);           /* Program header table file offset */ | 
|  | bswaptls(&ehdr->e_shoff);           /* Section header table file offset */ | 
|  | bswap32s(&ehdr->e_flags);           /* Processor-specific flags */ | 
|  | bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */ | 
|  | bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */ | 
|  | bswap16s(&ehdr->e_phnum);           /* Program header table entry count */ | 
|  | bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */ | 
|  | bswap16s(&ehdr->e_shnum);           /* Section header table entry count */ | 
|  | bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */ | 
|  | } | 
|  |  | 
|  | static void bswap_phdr(struct elf_phdr *phdr, int phnum) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < phnum; i++, phdr++) { | 
|  | bswap32s(&phdr->p_type);        /* Segment type */ | 
|  | bswap32s(&phdr->p_flags);       /* Segment flags */ | 
|  | bswaptls(&phdr->p_offset);      /* Segment file offset */ | 
|  | bswaptls(&phdr->p_vaddr);       /* Segment virtual address */ | 
|  | bswaptls(&phdr->p_paddr);       /* Segment physical address */ | 
|  | bswaptls(&phdr->p_filesz);      /* Segment size in file */ | 
|  | bswaptls(&phdr->p_memsz);       /* Segment size in memory */ | 
|  | bswaptls(&phdr->p_align);       /* Segment alignment */ | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bswap_shdr(struct elf_shdr *shdr, int shnum) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < shnum; i++, shdr++) { | 
|  | bswap32s(&shdr->sh_name); | 
|  | bswap32s(&shdr->sh_type); | 
|  | bswaptls(&shdr->sh_flags); | 
|  | bswaptls(&shdr->sh_addr); | 
|  | bswaptls(&shdr->sh_offset); | 
|  | bswaptls(&shdr->sh_size); | 
|  | bswap32s(&shdr->sh_link); | 
|  | bswap32s(&shdr->sh_info); | 
|  | bswaptls(&shdr->sh_addralign); | 
|  | bswaptls(&shdr->sh_entsize); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bswap_sym(struct elf_sym *sym) | 
|  | { | 
|  | bswap32s(&sym->st_name); | 
|  | bswaptls(&sym->st_value); | 
|  | bswaptls(&sym->st_size); | 
|  | bswap16s(&sym->st_shndx); | 
|  | } | 
|  |  | 
|  | static void bswap_note(struct elf_note *en) | 
|  | { | 
|  | bswap32s(&en->n_namesz); | 
|  | bswap32s(&en->n_descsz); | 
|  | bswap32s(&en->n_type); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static void bswap_ehdr(struct elfhdr *ehdr) { } | 
|  | static void bswap_phdr(struct elf_phdr *phdr, int phnum) { } | 
|  | static void bswap_shdr(struct elf_shdr *shdr, int shnum) { } | 
|  | static void bswap_sym(struct elf_sym *sym) { } | 
|  | static void bswap_note(struct elf_note *en) { } | 
|  |  | 
|  | #endif /* HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN */ | 
|  |  | 
|  | #include "elfcore.c" | 
|  |  | 
|  | /* | 
|  | * 'copy_elf_strings()' copies argument/envelope strings from user | 
|  | * memory to free pages in kernel mem. These are in a format ready | 
|  | * to be put directly into the top of new user memory. | 
|  | * | 
|  | */ | 
|  | static abi_ulong copy_elf_strings(int argc, char **argv, void **page, | 
|  | abi_ulong p) | 
|  | { | 
|  | char *tmp, *tmp1, *pag = NULL; | 
|  | int len, offset = 0; | 
|  |  | 
|  | if (!p) { | 
|  | return 0;       /* bullet-proofing */ | 
|  | } | 
|  | while (argc-- > 0) { | 
|  | tmp = argv[argc]; | 
|  | if (!tmp) { | 
|  | fprintf(stderr, "VFS: argc is wrong"); | 
|  | exit(-1); | 
|  | } | 
|  | tmp1 = tmp; | 
|  | while (*tmp++) { | 
|  | continue; | 
|  | } | 
|  | len = tmp - tmp1; | 
|  | if (p < len) {  /* this shouldn't happen - 128kB */ | 
|  | return 0; | 
|  | } | 
|  | while (len) { | 
|  | --p; --tmp; --len; | 
|  | if (--offset < 0) { | 
|  | offset = p % TARGET_PAGE_SIZE; | 
|  | pag = page[p / TARGET_PAGE_SIZE]; | 
|  | if (!pag) { | 
|  | pag = g_try_malloc0(TARGET_PAGE_SIZE); | 
|  | page[p / TARGET_PAGE_SIZE] = pag; | 
|  | if (!pag) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (len == 0 || offset == 0) { | 
|  | *(pag + offset) = *tmp; | 
|  | } else { | 
|  | int bytes_to_copy = (len > offset) ? offset : len; | 
|  | tmp -= bytes_to_copy; | 
|  | p -= bytes_to_copy; | 
|  | offset -= bytes_to_copy; | 
|  | len -= bytes_to_copy; | 
|  | memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1); | 
|  | } | 
|  | } | 
|  | } | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static void setup_arg_pages(struct bsd_binprm *bprm, struct image_info *info, | 
|  | abi_ulong *stackp, abi_ulong *stringp) | 
|  | { | 
|  | abi_ulong stack_base, size; | 
|  | abi_long addr; | 
|  |  | 
|  | /* | 
|  | * Create enough stack to hold everything.  If we don't use it for args, | 
|  | * we'll use it for something else... | 
|  | */ | 
|  | size = target_dflssiz; | 
|  | stack_base = TARGET_USRSTACK - size; | 
|  | addr = target_mmap(stack_base , size + qemu_host_page_size, | 
|  | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); | 
|  | if (addr == -1) { | 
|  | perror("stk mmap"); | 
|  | exit(-1); | 
|  | } | 
|  | /* we reserve one extra page at the top of the stack as guard */ | 
|  | target_mprotect(addr + size, qemu_host_page_size, PROT_NONE); | 
|  |  | 
|  | target_stksiz = size; | 
|  | target_stkbas = addr; | 
|  |  | 
|  | if (setup_initial_stack(bprm, stackp, stringp) != 0) { | 
|  | perror("stk setup"); | 
|  | exit(-1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_brk(abi_ulong start, abi_ulong end) | 
|  | { | 
|  | /* page-align the start and end addresses... */ | 
|  | start = HOST_PAGE_ALIGN(start); | 
|  | end = HOST_PAGE_ALIGN(end); | 
|  | if (end <= start) { | 
|  | return; | 
|  | } | 
|  | if (target_mmap(start, end - start, PROT_READ | PROT_WRITE | PROT_EXEC, | 
|  | MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) { | 
|  | perror("cannot mmap brk"); | 
|  | exit(-1); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * We need to explicitly zero any fractional pages after the data | 
|  | * section (i.e. bss).  This would contain the junk from the file that | 
|  | * should not be in memory. | 
|  | */ | 
|  | static void padzero(abi_ulong elf_bss, abi_ulong last_bss) | 
|  | { | 
|  | abi_ulong nbyte; | 
|  |  | 
|  | if (elf_bss >= last_bss) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * XXX: this is really a hack : if the real host page size is | 
|  | * smaller than the target page size, some pages after the end | 
|  | * of the file may not be mapped. A better fix would be to | 
|  | * patch target_mmap(), but it is more complicated as the file | 
|  | * size must be known. | 
|  | */ | 
|  | if (qemu_real_host_page_size() < qemu_host_page_size) { | 
|  | abi_ulong end_addr, end_addr1; | 
|  | end_addr1 = REAL_HOST_PAGE_ALIGN(elf_bss); | 
|  | end_addr = HOST_PAGE_ALIGN(elf_bss); | 
|  | if (end_addr1 < end_addr) { | 
|  | mmap((void *)g2h_untagged(end_addr1), end_addr - end_addr1, | 
|  | PROT_READ | PROT_WRITE | PROT_EXEC, | 
|  | MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | nbyte = elf_bss & (qemu_host_page_size - 1); | 
|  | if (nbyte) { | 
|  | nbyte = qemu_host_page_size - nbyte; | 
|  | do { | 
|  | /* FIXME - what to do if put_user() fails? */ | 
|  | put_user_u8(0, elf_bss); | 
|  | elf_bss++; | 
|  | } while (--nbyte); | 
|  | } | 
|  | } | 
|  |  | 
|  | static abi_ulong load_elf_interp(struct elfhdr *interp_elf_ex, | 
|  | int interpreter_fd, | 
|  | abi_ulong *interp_load_addr) | 
|  | { | 
|  | struct elf_phdr *elf_phdata  =  NULL; | 
|  | abi_ulong rbase; | 
|  | int retval; | 
|  | abi_ulong baddr, error; | 
|  |  | 
|  | error = 0; | 
|  |  | 
|  | bswap_ehdr(interp_elf_ex); | 
|  | /* First of all, some simple consistency checks */ | 
|  | if ((interp_elf_ex->e_type != ET_EXEC && interp_elf_ex->e_type != ET_DYN) || | 
|  | !elf_check_arch(interp_elf_ex->e_machine)) { | 
|  | return ~((abi_ulong)0UL); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Now read in all of the header information */ | 
|  | if (sizeof(struct elf_phdr) * interp_elf_ex->e_phnum > TARGET_PAGE_SIZE) { | 
|  | return ~(abi_ulong)0UL; | 
|  | } | 
|  |  | 
|  | elf_phdata =  (struct elf_phdr *) malloc(sizeof(struct elf_phdr) * | 
|  | interp_elf_ex->e_phnum); | 
|  |  | 
|  | if (!elf_phdata) { | 
|  | return ~((abi_ulong)0UL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the size of this structure has changed, then punt, since | 
|  | * we will be doing the wrong thing. | 
|  | */ | 
|  | if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) { | 
|  | free(elf_phdata); | 
|  | return ~((abi_ulong)0UL); | 
|  | } | 
|  |  | 
|  | retval = lseek(interpreter_fd, interp_elf_ex->e_phoff, SEEK_SET); | 
|  | if (retval >= 0) { | 
|  | retval = read(interpreter_fd, (char *) elf_phdata, | 
|  | sizeof(struct elf_phdr) * interp_elf_ex->e_phnum); | 
|  | } | 
|  | if (retval < 0) { | 
|  | perror("load_elf_interp"); | 
|  | exit(-1); | 
|  | free(elf_phdata); | 
|  | return retval; | 
|  | } | 
|  | bswap_phdr(elf_phdata, interp_elf_ex->e_phnum); | 
|  |  | 
|  | rbase = 0; | 
|  | if (interp_elf_ex->e_type == ET_DYN) { | 
|  | /* | 
|  | * In order to avoid hardcoding the interpreter load | 
|  | * address in qemu, we allocate a big enough memory zone. | 
|  | */ | 
|  | rbase = target_mmap(0, INTERP_MAP_SIZE, PROT_NONE, | 
|  | MAP_PRIVATE | MAP_ANON, -1, 0); | 
|  | if (rbase == -1) { | 
|  | perror("mmap"); | 
|  | exit(-1); | 
|  | } | 
|  | } | 
|  |  | 
|  | error = load_elf_sections(interp_elf_ex, elf_phdata, interpreter_fd, rbase, | 
|  | &baddr); | 
|  | if (error != 0) { | 
|  | perror("load_elf_sections"); | 
|  | exit(-1); | 
|  | } | 
|  |  | 
|  | /* Now use mmap to map the library into memory. */ | 
|  | close(interpreter_fd); | 
|  | free(elf_phdata); | 
|  |  | 
|  | *interp_load_addr = baddr; | 
|  | return ((abi_ulong) interp_elf_ex->e_entry) + rbase; | 
|  | } | 
|  |  | 
|  | static int symfind(const void *s0, const void *s1) | 
|  | { | 
|  | struct elf_sym *sym = (struct elf_sym *)s1; | 
|  | __typeof(sym->st_value) addr = *(uint64_t *)s0; | 
|  | int result = 0; | 
|  |  | 
|  | if (addr < sym->st_value) { | 
|  | result = -1; | 
|  | } else if (addr >= sym->st_value + sym->st_size) { | 
|  | result = 1; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr) | 
|  | { | 
|  | #if ELF_CLASS == ELFCLASS32 | 
|  | struct elf_sym *syms = s->disas_symtab.elf32; | 
|  | #else | 
|  | struct elf_sym *syms = s->disas_symtab.elf64; | 
|  | #endif | 
|  |  | 
|  | /* binary search */ | 
|  | struct elf_sym *sym; | 
|  |  | 
|  | sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); | 
|  | if (sym != NULL) { | 
|  | return s->disas_strtab + sym->st_name; | 
|  | } | 
|  |  | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | /* FIXME: This should use elf_ops.h.inc  */ | 
|  | static int symcmp(const void *s0, const void *s1) | 
|  | { | 
|  | struct elf_sym *sym0 = (struct elf_sym *)s0; | 
|  | struct elf_sym *sym1 = (struct elf_sym *)s1; | 
|  | return (sym0->st_value < sym1->st_value) ? -1 : | 
|  | ((sym0->st_value > sym1->st_value) ? 1 : 0); | 
|  | } | 
|  |  | 
|  | /* Best attempt to load symbols from this ELF object. */ | 
|  | static void load_symbols(struct elfhdr *hdr, int fd) | 
|  | { | 
|  | unsigned int i, nsyms; | 
|  | struct elf_shdr sechdr, symtab, strtab; | 
|  | char *strings; | 
|  | struct syminfo *s; | 
|  | struct elf_sym *syms, *new_syms; | 
|  |  | 
|  | lseek(fd, hdr->e_shoff, SEEK_SET); | 
|  | for (i = 0; i < hdr->e_shnum; i++) { | 
|  | if (read(fd, &sechdr, sizeof(sechdr)) != sizeof(sechdr)) { | 
|  | return; | 
|  | } | 
|  | bswap_shdr(&sechdr, 1); | 
|  | if (sechdr.sh_type == SHT_SYMTAB) { | 
|  | symtab = sechdr; | 
|  | lseek(fd, hdr->e_shoff + sizeof(sechdr) * sechdr.sh_link, | 
|  | SEEK_SET); | 
|  | if (read(fd, &strtab, sizeof(strtab)) != sizeof(strtab)) { | 
|  | return; | 
|  | } | 
|  | bswap_shdr(&strtab, 1); | 
|  | goto found; | 
|  | } | 
|  | } | 
|  | return; /* Shouldn't happen... */ | 
|  |  | 
|  | found: | 
|  | /* Now know where the strtab and symtab are.  Snarf them. */ | 
|  | s = malloc(sizeof(*s)); | 
|  | syms = malloc(symtab.sh_size); | 
|  | if (!syms) { | 
|  | free(s); | 
|  | return; | 
|  | } | 
|  | s->disas_strtab = strings = malloc(strtab.sh_size); | 
|  | if (!s->disas_strtab) { | 
|  | free(s); | 
|  | free(syms); | 
|  | return; | 
|  | } | 
|  |  | 
|  | lseek(fd, symtab.sh_offset, SEEK_SET); | 
|  | if (read(fd, syms, symtab.sh_size) != symtab.sh_size) { | 
|  | free(s); | 
|  | free(syms); | 
|  | free(strings); | 
|  | return; | 
|  | } | 
|  |  | 
|  | nsyms = symtab.sh_size / sizeof(struct elf_sym); | 
|  |  | 
|  | i = 0; | 
|  | while (i < nsyms) { | 
|  | bswap_sym(syms + i); | 
|  | /* Throw away entries which we do not need. */ | 
|  | if (syms[i].st_shndx == SHN_UNDEF || | 
|  | syms[i].st_shndx >= SHN_LORESERVE || | 
|  | ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { | 
|  | nsyms--; | 
|  | if (i < nsyms) { | 
|  | syms[i] = syms[nsyms]; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | #if defined(TARGET_ARM) || defined(TARGET_MIPS) | 
|  | /* The bottom address bit marks a Thumb or MIPS16 symbol.  */ | 
|  | syms[i].st_value &= ~(target_ulong)1; | 
|  | #endif | 
|  | i++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attempt to free the storage associated with the local symbols | 
|  | * that we threw away.  Whether or not this has any effect on the | 
|  | * memory allocation depends on the malloc implementation and how | 
|  | * many symbols we managed to discard. | 
|  | */ | 
|  | new_syms = realloc(syms, nsyms * sizeof(*syms)); | 
|  | if (new_syms == NULL) { | 
|  | free(s); | 
|  | free(syms); | 
|  | free(strings); | 
|  | return; | 
|  | } | 
|  | syms = new_syms; | 
|  |  | 
|  | qsort(syms, nsyms, sizeof(*syms), symcmp); | 
|  |  | 
|  | lseek(fd, strtab.sh_offset, SEEK_SET); | 
|  | if (read(fd, strings, strtab.sh_size) != strtab.sh_size) { | 
|  | free(s); | 
|  | free(syms); | 
|  | free(strings); | 
|  | return; | 
|  | } | 
|  | s->disas_num_syms = nsyms; | 
|  | #if ELF_CLASS == ELFCLASS32 | 
|  | s->disas_symtab.elf32 = syms; | 
|  | s->lookup_symbol = (lookup_symbol_t)lookup_symbolxx; | 
|  | #else | 
|  | s->disas_symtab.elf64 = syms; | 
|  | s->lookup_symbol = (lookup_symbol_t)lookup_symbolxx; | 
|  | #endif | 
|  | s->next = syminfos; | 
|  | syminfos = s; | 
|  | } | 
|  |  | 
|  | /* Check the elf header and see if this a target elf binary. */ | 
|  | int is_target_elf_binary(int fd) | 
|  | { | 
|  | uint8_t buf[128]; | 
|  | struct elfhdr elf_ex; | 
|  |  | 
|  | if (lseek(fd, 0L, SEEK_SET) < 0) { | 
|  | return 0; | 
|  | } | 
|  | if (read(fd, buf, sizeof(buf)) < 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | elf_ex = *((struct elfhdr *)buf); | 
|  | bswap_ehdr(&elf_ex); | 
|  |  | 
|  | if ((elf_ex.e_type != ET_EXEC && elf_ex.e_type != ET_DYN) || | 
|  | (!elf_check_arch(elf_ex.e_machine))) { | 
|  | return 0; | 
|  | } else { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | load_elf_sections(const struct elfhdr *hdr, struct elf_phdr *phdr, int fd, | 
|  | abi_ulong rbase, abi_ulong *baddrp) | 
|  | { | 
|  | struct elf_phdr *elf_ppnt; | 
|  | abi_ulong baddr; | 
|  | int i; | 
|  | bool first; | 
|  |  | 
|  | /* | 
|  | * Now we do a little grungy work by mmaping the ELF image into | 
|  | * the correct location in memory.  At this point, we assume that | 
|  | * the image should be loaded at fixed address, not at a variable | 
|  | * address. | 
|  | */ | 
|  | first = true; | 
|  | for (i = 0, elf_ppnt = phdr; i < hdr->e_phnum; i++, elf_ppnt++) { | 
|  | int elf_prot = 0; | 
|  | abi_ulong error; | 
|  |  | 
|  | /* XXX Skip memsz == 0. */ | 
|  | if (elf_ppnt->p_type != PT_LOAD) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (elf_ppnt->p_flags & PF_R) { | 
|  | elf_prot |= PROT_READ; | 
|  | } | 
|  | if (elf_ppnt->p_flags & PF_W) { | 
|  | elf_prot |= PROT_WRITE; | 
|  | } | 
|  | if (elf_ppnt->p_flags & PF_X) { | 
|  | elf_prot |= PROT_EXEC; | 
|  | } | 
|  |  | 
|  | error = target_mmap(TARGET_ELF_PAGESTART(rbase + elf_ppnt->p_vaddr), | 
|  | (elf_ppnt->p_filesz + | 
|  | TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)), | 
|  | elf_prot, | 
|  | (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE), | 
|  | fd, | 
|  | (elf_ppnt->p_offset - | 
|  | TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr))); | 
|  | if (error == -1) { | 
|  | perror("mmap"); | 
|  | exit(-1); | 
|  | } else if (elf_ppnt->p_memsz != elf_ppnt->p_filesz) { | 
|  | abi_ulong start_bss, end_bss; | 
|  |  | 
|  | start_bss = rbase + elf_ppnt->p_vaddr + elf_ppnt->p_filesz; | 
|  | end_bss = rbase + elf_ppnt->p_vaddr + elf_ppnt->p_memsz; | 
|  |  | 
|  | /* | 
|  | * Calling set_brk effectively mmaps the pages that we need for the | 
|  | * bss and break sections. | 
|  | */ | 
|  | set_brk(start_bss, end_bss); | 
|  | padzero(start_bss, end_bss); | 
|  | } | 
|  |  | 
|  | if (first) { | 
|  | baddr = TARGET_ELF_PAGESTART(rbase + elf_ppnt->p_vaddr); | 
|  | first = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (baddrp != NULL) { | 
|  | *baddrp = baddr; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int load_elf_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs, | 
|  | struct image_info *info) | 
|  | { | 
|  | struct elfhdr elf_ex; | 
|  | struct elfhdr interp_elf_ex; | 
|  | int interpreter_fd = -1; /* avoid warning */ | 
|  | abi_ulong load_addr; | 
|  | int i; | 
|  | struct elf_phdr *elf_ppnt; | 
|  | struct elf_phdr *elf_phdata; | 
|  | abi_ulong elf_brk; | 
|  | int error, retval; | 
|  | char *elf_interpreter; | 
|  | abi_ulong baddr, elf_entry, et_dyn_addr, interp_load_addr = 0; | 
|  | abi_ulong reloc_func_desc = 0; | 
|  |  | 
|  | load_addr = 0; | 
|  | elf_ex = *((struct elfhdr *) bprm->buf);          /* exec-header */ | 
|  | bswap_ehdr(&elf_ex); | 
|  |  | 
|  | /* First of all, some simple consistency checks */ | 
|  | if ((elf_ex.e_type != ET_EXEC && elf_ex.e_type != ET_DYN) || | 
|  | (!elf_check_arch(elf_ex.e_machine))) { | 
|  | return -ENOEXEC; | 
|  | } | 
|  |  | 
|  | bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p); | 
|  | bprm->p = copy_elf_strings(bprm->envc, bprm->envp, bprm->page, bprm->p); | 
|  | bprm->p = copy_elf_strings(bprm->argc, bprm->argv, bprm->page, bprm->p); | 
|  | if (!bprm->p) { | 
|  | retval = -E2BIG; | 
|  | } | 
|  |  | 
|  | /* Now read in all of the header information */ | 
|  | elf_phdata = (struct elf_phdr *)malloc(elf_ex.e_phentsize * elf_ex.e_phnum); | 
|  | if (elf_phdata == NULL) { | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | retval = lseek(bprm->fd, elf_ex.e_phoff, SEEK_SET); | 
|  | if (retval > 0) { | 
|  | retval = read(bprm->fd, (char *)elf_phdata, | 
|  | elf_ex.e_phentsize * elf_ex.e_phnum); | 
|  | } | 
|  |  | 
|  | if (retval < 0) { | 
|  | perror("load_elf_binary"); | 
|  | exit(-1); | 
|  | free(elf_phdata); | 
|  | return -errno; | 
|  | } | 
|  |  | 
|  | bswap_phdr(elf_phdata, elf_ex.e_phnum); | 
|  | elf_ppnt = elf_phdata; | 
|  |  | 
|  | elf_brk = 0; | 
|  |  | 
|  |  | 
|  | elf_interpreter = NULL; | 
|  | for (i = 0; i < elf_ex.e_phnum; i++) { | 
|  | if (elf_ppnt->p_type == PT_INTERP) { | 
|  | if (elf_interpreter != NULL) { | 
|  | free(elf_phdata); | 
|  | free(elf_interpreter); | 
|  | close(bprm->fd); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | elf_interpreter = (char *)malloc(elf_ppnt->p_filesz); | 
|  | if (elf_interpreter == NULL) { | 
|  | free(elf_phdata); | 
|  | close(bprm->fd); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | retval = lseek(bprm->fd, elf_ppnt->p_offset, SEEK_SET); | 
|  | if (retval >= 0) { | 
|  | retval = read(bprm->fd, elf_interpreter, elf_ppnt->p_filesz); | 
|  | } | 
|  | if (retval < 0) { | 
|  | perror("load_elf_binary2"); | 
|  | exit(-1); | 
|  | } | 
|  |  | 
|  | if (retval >= 0) { | 
|  | retval = open(path(elf_interpreter), O_RDONLY); | 
|  | if (retval >= 0) { | 
|  | interpreter_fd = retval; | 
|  | } else { | 
|  | perror(elf_interpreter); | 
|  | exit(-1); | 
|  | /* retval = -errno; */ | 
|  | } | 
|  | } | 
|  |  | 
|  | if (retval >= 0) { | 
|  | retval = lseek(interpreter_fd, 0, SEEK_SET); | 
|  | if (retval >= 0) { | 
|  | retval = read(interpreter_fd, bprm->buf, 128); | 
|  | } | 
|  | } | 
|  | if (retval >= 0) { | 
|  | interp_elf_ex = *((struct elfhdr *) bprm->buf); | 
|  | } | 
|  | if (retval < 0) { | 
|  | perror("load_elf_binary3"); | 
|  | exit(-1); | 
|  | free(elf_phdata); | 
|  | free(elf_interpreter); | 
|  | close(bprm->fd); | 
|  | return retval; | 
|  | } | 
|  | } | 
|  | elf_ppnt++; | 
|  | } | 
|  |  | 
|  | /* Some simple consistency checks for the interpreter */ | 
|  | if (elf_interpreter) { | 
|  | if (interp_elf_ex.e_ident[0] != 0x7f || | 
|  | strncmp((char *)&interp_elf_ex.e_ident[1], "ELF", 3) != 0) { | 
|  | free(elf_interpreter); | 
|  | free(elf_phdata); | 
|  | close(bprm->fd); | 
|  | return -ELIBBAD; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * OK, we are done with that, now set up the arg stuff, and then start this | 
|  | * sucker up | 
|  | */ | 
|  | if (!bprm->p) { | 
|  | free(elf_interpreter); | 
|  | free(elf_phdata); | 
|  | close(bprm->fd); | 
|  | return -E2BIG; | 
|  | } | 
|  |  | 
|  | /* OK, This is the point of no return */ | 
|  | info->end_data = 0; | 
|  | info->end_code = 0; | 
|  | elf_entry = (abi_ulong) elf_ex.e_entry; | 
|  |  | 
|  | /* XXX Join this with PT_INTERP search? */ | 
|  | baddr = 0; | 
|  | for (i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) { | 
|  | if (elf_ppnt->p_type != PT_LOAD) { | 
|  | continue; | 
|  | } | 
|  | baddr = elf_ppnt->p_vaddr; | 
|  | break; | 
|  | } | 
|  |  | 
|  | et_dyn_addr = 0; | 
|  | if (elf_ex.e_type == ET_DYN && baddr == 0) { | 
|  | et_dyn_addr = ELF_ET_DYN_LOAD_ADDR; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do this so that we can load the interpreter, if need be.  We will | 
|  | * change some of these later | 
|  | */ | 
|  | info->rss = 0; | 
|  | setup_arg_pages(bprm, info, &bprm->p, &bprm->stringp); | 
|  | info->start_stack = bprm->p; | 
|  |  | 
|  | info->elf_flags = elf_ex.e_flags; | 
|  |  | 
|  | error = load_elf_sections(&elf_ex, elf_phdata, bprm->fd, et_dyn_addr, | 
|  | &load_addr); | 
|  | for (i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) { | 
|  | if (elf_ppnt->p_type != PT_LOAD) { | 
|  | continue; | 
|  | } | 
|  | if (elf_ppnt->p_memsz > elf_ppnt->p_filesz) | 
|  | elf_brk = MAX(elf_brk, et_dyn_addr + elf_ppnt->p_vaddr + | 
|  | elf_ppnt->p_memsz); | 
|  | } | 
|  | if (error != 0) { | 
|  | perror("load_elf_sections"); | 
|  | exit(-1); | 
|  | } | 
|  |  | 
|  | if (elf_interpreter) { | 
|  | elf_entry = load_elf_interp(&interp_elf_ex, interpreter_fd, | 
|  | &interp_load_addr); | 
|  | reloc_func_desc = interp_load_addr; | 
|  |  | 
|  | close(interpreter_fd); | 
|  | free(elf_interpreter); | 
|  |  | 
|  | if (elf_entry == ~((abi_ulong)0UL)) { | 
|  | printf("Unable to load interpreter\n"); | 
|  | free(elf_phdata); | 
|  | exit(-1); | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | interp_load_addr = et_dyn_addr; | 
|  | elf_entry += interp_load_addr; | 
|  | } | 
|  |  | 
|  | free(elf_phdata); | 
|  |  | 
|  | if (qemu_log_enabled()) { | 
|  | load_symbols(&elf_ex, bprm->fd); | 
|  | } | 
|  |  | 
|  | close(bprm->fd); | 
|  |  | 
|  | bprm->p = target_create_elf_tables(bprm->p, bprm->argc, bprm->envc, | 
|  | bprm->stringp, &elf_ex, load_addr, | 
|  | et_dyn_addr, interp_load_addr, info); | 
|  | info->load_addr = reloc_func_desc; | 
|  | info->brk = elf_brk; | 
|  | info->start_stack = bprm->p; | 
|  | info->load_bias = 0; | 
|  |  | 
|  | info->entry = elf_entry; | 
|  |  | 
|  | #ifdef USE_ELF_CORE_DUMP | 
|  | bprm->core_dump = &elf_core_dump; | 
|  | #else | 
|  | bprm->core_dump = NULL; | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) | 
|  | { | 
|  |  | 
|  | target_thread_init(regs, infop); | 
|  | } |