| /* SPDX-License-Identifier: GPL-2.0-or-later */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/interval-tree.h" |
| #include "qemu/atomic.h" |
| |
| /* |
| * Red Black Trees. |
| * |
| * For now, don't expose Linux Red-Black Trees separately, but retain the |
| * separate type definitions to keep the implementation sane, and allow |
| * the possibility of separating them later. |
| * |
| * Derived from include/linux/rbtree_augmented.h and its dependencies. |
| */ |
| |
| /* |
| * red-black trees properties: https://en.wikipedia.org/wiki/Rbtree |
| * |
| * 1) A node is either red or black |
| * 2) The root is black |
| * 3) All leaves (NULL) are black |
| * 4) Both children of every red node are black |
| * 5) Every simple path from root to leaves contains the same number |
| * of black nodes. |
| * |
| * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two |
| * consecutive red nodes in a path and every red node is therefore followed by |
| * a black. So if B is the number of black nodes on every simple path (as per |
| * 5), then the longest possible path due to 4 is 2B. |
| * |
| * We shall indicate color with case, where black nodes are uppercase and red |
| * nodes will be lowercase. Unknown color nodes shall be drawn as red within |
| * parentheses and have some accompanying text comment. |
| * |
| * Notes on lockless lookups: |
| * |
| * All stores to the tree structure (rb_left and rb_right) must be done using |
| * WRITE_ONCE [qatomic_set for QEMU]. And we must not inadvertently cause |
| * (temporary) loops in the tree structure as seen in program order. |
| * |
| * These two requirements will allow lockless iteration of the tree -- not |
| * correct iteration mind you, tree rotations are not atomic so a lookup might |
| * miss entire subtrees. |
| * |
| * But they do guarantee that any such traversal will only see valid elements |
| * and that it will indeed complete -- does not get stuck in a loop. |
| * |
| * It also guarantees that if the lookup returns an element it is the 'correct' |
| * one. But not returning an element does _NOT_ mean it's not present. |
| * |
| * NOTE: |
| * |
| * Stores to __rb_parent_color are not important for simple lookups so those |
| * are left undone as of now. Nor did I check for loops involving parent |
| * pointers. |
| */ |
| |
| typedef enum RBColor |
| { |
| RB_RED, |
| RB_BLACK, |
| } RBColor; |
| |
| typedef struct RBAugmentCallbacks { |
| void (*propagate)(RBNode *node, RBNode *stop); |
| void (*copy)(RBNode *old, RBNode *new); |
| void (*rotate)(RBNode *old, RBNode *new); |
| } RBAugmentCallbacks; |
| |
| static inline RBNode *rb_parent(const RBNode *n) |
| { |
| return (RBNode *)(n->rb_parent_color & ~1); |
| } |
| |
| static inline RBNode *rb_red_parent(const RBNode *n) |
| { |
| return (RBNode *)n->rb_parent_color; |
| } |
| |
| static inline RBColor pc_color(uintptr_t pc) |
| { |
| return (RBColor)(pc & 1); |
| } |
| |
| static inline bool pc_is_red(uintptr_t pc) |
| { |
| return pc_color(pc) == RB_RED; |
| } |
| |
| static inline bool pc_is_black(uintptr_t pc) |
| { |
| return !pc_is_red(pc); |
| } |
| |
| static inline RBColor rb_color(const RBNode *n) |
| { |
| return pc_color(n->rb_parent_color); |
| } |
| |
| static inline bool rb_is_red(const RBNode *n) |
| { |
| return pc_is_red(n->rb_parent_color); |
| } |
| |
| static inline bool rb_is_black(const RBNode *n) |
| { |
| return pc_is_black(n->rb_parent_color); |
| } |
| |
| static inline void rb_set_black(RBNode *n) |
| { |
| n->rb_parent_color |= RB_BLACK; |
| } |
| |
| static inline void rb_set_parent_color(RBNode *n, RBNode *p, RBColor color) |
| { |
| n->rb_parent_color = (uintptr_t)p | color; |
| } |
| |
| static inline void rb_set_parent(RBNode *n, RBNode *p) |
| { |
| rb_set_parent_color(n, p, rb_color(n)); |
| } |
| |
| static inline void rb_link_node(RBNode *node, RBNode *parent, RBNode **rb_link) |
| { |
| node->rb_parent_color = (uintptr_t)parent; |
| node->rb_left = node->rb_right = NULL; |
| |
| qatomic_set(rb_link, node); |
| } |
| |
| static RBNode *rb_next(RBNode *node) |
| { |
| RBNode *parent; |
| |
| /* OMIT: if empty node, return null. */ |
| |
| /* |
| * If we have a right-hand child, go down and then left as far as we can. |
| */ |
| if (node->rb_right) { |
| node = node->rb_right; |
| while (node->rb_left) { |
| node = node->rb_left; |
| } |
| return node; |
| } |
| |
| /* |
| * No right-hand children. Everything down and left is smaller than us, |
| * so any 'next' node must be in the general direction of our parent. |
| * Go up the tree; any time the ancestor is a right-hand child of its |
| * parent, keep going up. First time it's a left-hand child of its |
| * parent, said parent is our 'next' node. |
| */ |
| while ((parent = rb_parent(node)) && node == parent->rb_right) { |
| node = parent; |
| } |
| |
| return parent; |
| } |
| |
| static inline void rb_change_child(RBNode *old, RBNode *new, |
| RBNode *parent, RBRoot *root) |
| { |
| if (!parent) { |
| qatomic_set(&root->rb_node, new); |
| } else if (parent->rb_left == old) { |
| qatomic_set(&parent->rb_left, new); |
| } else { |
| qatomic_set(&parent->rb_right, new); |
| } |
| } |
| |
| static inline void rb_rotate_set_parents(RBNode *old, RBNode *new, |
| RBRoot *root, RBColor color) |
| { |
| RBNode *parent = rb_parent(old); |
| |
| new->rb_parent_color = old->rb_parent_color; |
| rb_set_parent_color(old, new, color); |
| rb_change_child(old, new, parent, root); |
| } |
| |
| static void rb_insert_augmented(RBNode *node, RBRoot *root, |
| const RBAugmentCallbacks *augment) |
| { |
| RBNode *parent = rb_red_parent(node), *gparent, *tmp; |
| |
| while (true) { |
| /* |
| * Loop invariant: node is red. |
| */ |
| if (unlikely(!parent)) { |
| /* |
| * The inserted node is root. Either this is the first node, or |
| * we recursed at Case 1 below and are no longer violating 4). |
| */ |
| rb_set_parent_color(node, NULL, RB_BLACK); |
| break; |
| } |
| |
| /* |
| * If there is a black parent, we are done. Otherwise, take some |
| * corrective action as, per 4), we don't want a red root or two |
| * consecutive red nodes. |
| */ |
| if (rb_is_black(parent)) { |
| break; |
| } |
| |
| gparent = rb_red_parent(parent); |
| |
| tmp = gparent->rb_right; |
| if (parent != tmp) { /* parent == gparent->rb_left */ |
| if (tmp && rb_is_red(tmp)) { |
| /* |
| * Case 1 - node's uncle is red (color flips). |
| * |
| * G g |
| * / \ / \ |
| * p u --> P U |
| * / / |
| * n n |
| * |
| * However, since g's parent might be red, and 4) does not |
| * allow this, we need to recurse at g. |
| */ |
| rb_set_parent_color(tmp, gparent, RB_BLACK); |
| rb_set_parent_color(parent, gparent, RB_BLACK); |
| node = gparent; |
| parent = rb_parent(node); |
| rb_set_parent_color(node, parent, RB_RED); |
| continue; |
| } |
| |
| tmp = parent->rb_right; |
| if (node == tmp) { |
| /* |
| * Case 2 - node's uncle is black and node is |
| * the parent's right child (left rotate at parent). |
| * |
| * G G |
| * / \ / \ |
| * p U --> n U |
| * \ / |
| * n p |
| * |
| * This still leaves us in violation of 4), the |
| * continuation into Case 3 will fix that. |
| */ |
| tmp = node->rb_left; |
| qatomic_set(&parent->rb_right, tmp); |
| qatomic_set(&node->rb_left, parent); |
| if (tmp) { |
| rb_set_parent_color(tmp, parent, RB_BLACK); |
| } |
| rb_set_parent_color(parent, node, RB_RED); |
| augment->rotate(parent, node); |
| parent = node; |
| tmp = node->rb_right; |
| } |
| |
| /* |
| * Case 3 - node's uncle is black and node is |
| * the parent's left child (right rotate at gparent). |
| * |
| * G P |
| * / \ / \ |
| * p U --> n g |
| * / \ |
| * n U |
| */ |
| qatomic_set(&gparent->rb_left, tmp); /* == parent->rb_right */ |
| qatomic_set(&parent->rb_right, gparent); |
| if (tmp) { |
| rb_set_parent_color(tmp, gparent, RB_BLACK); |
| } |
| rb_rotate_set_parents(gparent, parent, root, RB_RED); |
| augment->rotate(gparent, parent); |
| break; |
| } else { |
| tmp = gparent->rb_left; |
| if (tmp && rb_is_red(tmp)) { |
| /* Case 1 - color flips */ |
| rb_set_parent_color(tmp, gparent, RB_BLACK); |
| rb_set_parent_color(parent, gparent, RB_BLACK); |
| node = gparent; |
| parent = rb_parent(node); |
| rb_set_parent_color(node, parent, RB_RED); |
| continue; |
| } |
| |
| tmp = parent->rb_left; |
| if (node == tmp) { |
| /* Case 2 - right rotate at parent */ |
| tmp = node->rb_right; |
| qatomic_set(&parent->rb_left, tmp); |
| qatomic_set(&node->rb_right, parent); |
| if (tmp) { |
| rb_set_parent_color(tmp, parent, RB_BLACK); |
| } |
| rb_set_parent_color(parent, node, RB_RED); |
| augment->rotate(parent, node); |
| parent = node; |
| tmp = node->rb_left; |
| } |
| |
| /* Case 3 - left rotate at gparent */ |
| qatomic_set(&gparent->rb_right, tmp); /* == parent->rb_left */ |
| qatomic_set(&parent->rb_left, gparent); |
| if (tmp) { |
| rb_set_parent_color(tmp, gparent, RB_BLACK); |
| } |
| rb_rotate_set_parents(gparent, parent, root, RB_RED); |
| augment->rotate(gparent, parent); |
| break; |
| } |
| } |
| } |
| |
| static void rb_insert_augmented_cached(RBNode *node, |
| RBRootLeftCached *root, bool newleft, |
| const RBAugmentCallbacks *augment) |
| { |
| if (newleft) { |
| root->rb_leftmost = node; |
| } |
| rb_insert_augmented(node, &root->rb_root, augment); |
| } |
| |
| static void rb_erase_color(RBNode *parent, RBRoot *root, |
| const RBAugmentCallbacks *augment) |
| { |
| RBNode *node = NULL, *sibling, *tmp1, *tmp2; |
| |
| while (true) { |
| /* |
| * Loop invariants: |
| * - node is black (or NULL on first iteration) |
| * - node is not the root (parent is not NULL) |
| * - All leaf paths going through parent and node have a |
| * black node count that is 1 lower than other leaf paths. |
| */ |
| sibling = parent->rb_right; |
| if (node != sibling) { /* node == parent->rb_left */ |
| if (rb_is_red(sibling)) { |
| /* |
| * Case 1 - left rotate at parent |
| * |
| * P S |
| * / \ / \ |
| * N s --> p Sr |
| * / \ / \ |
| * Sl Sr N Sl |
| */ |
| tmp1 = sibling->rb_left; |
| qatomic_set(&parent->rb_right, tmp1); |
| qatomic_set(&sibling->rb_left, parent); |
| rb_set_parent_color(tmp1, parent, RB_BLACK); |
| rb_rotate_set_parents(parent, sibling, root, RB_RED); |
| augment->rotate(parent, sibling); |
| sibling = tmp1; |
| } |
| tmp1 = sibling->rb_right; |
| if (!tmp1 || rb_is_black(tmp1)) { |
| tmp2 = sibling->rb_left; |
| if (!tmp2 || rb_is_black(tmp2)) { |
| /* |
| * Case 2 - sibling color flip |
| * (p could be either color here) |
| * |
| * (p) (p) |
| * / \ / \ |
| * N S --> N s |
| * / \ / \ |
| * Sl Sr Sl Sr |
| * |
| * This leaves us violating 5) which |
| * can be fixed by flipping p to black |
| * if it was red, or by recursing at p. |
| * p is red when coming from Case 1. |
| */ |
| rb_set_parent_color(sibling, parent, RB_RED); |
| if (rb_is_red(parent)) { |
| rb_set_black(parent); |
| } else { |
| node = parent; |
| parent = rb_parent(node); |
| if (parent) { |
| continue; |
| } |
| } |
| break; |
| } |
| /* |
| * Case 3 - right rotate at sibling |
| * (p could be either color here) |
| * |
| * (p) (p) |
| * / \ / \ |
| * N S --> N sl |
| * / \ \ |
| * sl Sr S |
| * \ |
| * Sr |
| * |
| * Note: p might be red, and then bot |
| * p and sl are red after rotation (which |
| * breaks property 4). This is fixed in |
| * Case 4 (in rb_rotate_set_parents() |
| * which set sl the color of p |
| * and set p RB_BLACK) |
| * |
| * (p) (sl) |
| * / \ / \ |
| * N sl --> P S |
| * \ / \ |
| * S N Sr |
| * \ |
| * Sr |
| */ |
| tmp1 = tmp2->rb_right; |
| qatomic_set(&sibling->rb_left, tmp1); |
| qatomic_set(&tmp2->rb_right, sibling); |
| qatomic_set(&parent->rb_right, tmp2); |
| if (tmp1) { |
| rb_set_parent_color(tmp1, sibling, RB_BLACK); |
| } |
| augment->rotate(sibling, tmp2); |
| tmp1 = sibling; |
| sibling = tmp2; |
| } |
| /* |
| * Case 4 - left rotate at parent + color flips |
| * (p and sl could be either color here. |
| * After rotation, p becomes black, s acquires |
| * p's color, and sl keeps its color) |
| * |
| * (p) (s) |
| * / \ / \ |
| * N S --> P Sr |
| * / \ / \ |
| * (sl) sr N (sl) |
| */ |
| tmp2 = sibling->rb_left; |
| qatomic_set(&parent->rb_right, tmp2); |
| qatomic_set(&sibling->rb_left, parent); |
| rb_set_parent_color(tmp1, sibling, RB_BLACK); |
| if (tmp2) { |
| rb_set_parent(tmp2, parent); |
| } |
| rb_rotate_set_parents(parent, sibling, root, RB_BLACK); |
| augment->rotate(parent, sibling); |
| break; |
| } else { |
| sibling = parent->rb_left; |
| if (rb_is_red(sibling)) { |
| /* Case 1 - right rotate at parent */ |
| tmp1 = sibling->rb_right; |
| qatomic_set(&parent->rb_left, tmp1); |
| qatomic_set(&sibling->rb_right, parent); |
| rb_set_parent_color(tmp1, parent, RB_BLACK); |
| rb_rotate_set_parents(parent, sibling, root, RB_RED); |
| augment->rotate(parent, sibling); |
| sibling = tmp1; |
| } |
| tmp1 = sibling->rb_left; |
| if (!tmp1 || rb_is_black(tmp1)) { |
| tmp2 = sibling->rb_right; |
| if (!tmp2 || rb_is_black(tmp2)) { |
| /* Case 2 - sibling color flip */ |
| rb_set_parent_color(sibling, parent, RB_RED); |
| if (rb_is_red(parent)) { |
| rb_set_black(parent); |
| } else { |
| node = parent; |
| parent = rb_parent(node); |
| if (parent) { |
| continue; |
| } |
| } |
| break; |
| } |
| /* Case 3 - left rotate at sibling */ |
| tmp1 = tmp2->rb_left; |
| qatomic_set(&sibling->rb_right, tmp1); |
| qatomic_set(&tmp2->rb_left, sibling); |
| qatomic_set(&parent->rb_left, tmp2); |
| if (tmp1) { |
| rb_set_parent_color(tmp1, sibling, RB_BLACK); |
| } |
| augment->rotate(sibling, tmp2); |
| tmp1 = sibling; |
| sibling = tmp2; |
| } |
| /* Case 4 - right rotate at parent + color flips */ |
| tmp2 = sibling->rb_right; |
| qatomic_set(&parent->rb_left, tmp2); |
| qatomic_set(&sibling->rb_right, parent); |
| rb_set_parent_color(tmp1, sibling, RB_BLACK); |
| if (tmp2) { |
| rb_set_parent(tmp2, parent); |
| } |
| rb_rotate_set_parents(parent, sibling, root, RB_BLACK); |
| augment->rotate(parent, sibling); |
| break; |
| } |
| } |
| } |
| |
| static void rb_erase_augmented(RBNode *node, RBRoot *root, |
| const RBAugmentCallbacks *augment) |
| { |
| RBNode *child = node->rb_right; |
| RBNode *tmp = node->rb_left; |
| RBNode *parent, *rebalance; |
| uintptr_t pc; |
| |
| if (!tmp) { |
| /* |
| * Case 1: node to erase has no more than 1 child (easy!) |
| * |
| * Note that if there is one child it must be red due to 5) |
| * and node must be black due to 4). We adjust colors locally |
| * so as to bypass rb_erase_color() later on. |
| */ |
| pc = node->rb_parent_color; |
| parent = rb_parent(node); |
| rb_change_child(node, child, parent, root); |
| if (child) { |
| child->rb_parent_color = pc; |
| rebalance = NULL; |
| } else { |
| rebalance = pc_is_black(pc) ? parent : NULL; |
| } |
| tmp = parent; |
| } else if (!child) { |
| /* Still case 1, but this time the child is node->rb_left */ |
| pc = node->rb_parent_color; |
| parent = rb_parent(node); |
| tmp->rb_parent_color = pc; |
| rb_change_child(node, tmp, parent, root); |
| rebalance = NULL; |
| tmp = parent; |
| } else { |
| RBNode *successor = child, *child2; |
| tmp = child->rb_left; |
| if (!tmp) { |
| /* |
| * Case 2: node's successor is its right child |
| * |
| * (n) (s) |
| * / \ / \ |
| * (x) (s) -> (x) (c) |
| * \ |
| * (c) |
| */ |
| parent = successor; |
| child2 = successor->rb_right; |
| |
| augment->copy(node, successor); |
| } else { |
| /* |
| * Case 3: node's successor is leftmost under |
| * node's right child subtree |
| * |
| * (n) (s) |
| * / \ / \ |
| * (x) (y) -> (x) (y) |
| * / / |
| * (p) (p) |
| * / / |
| * (s) (c) |
| * \ |
| * (c) |
| */ |
| do { |
| parent = successor; |
| successor = tmp; |
| tmp = tmp->rb_left; |
| } while (tmp); |
| child2 = successor->rb_right; |
| qatomic_set(&parent->rb_left, child2); |
| qatomic_set(&successor->rb_right, child); |
| rb_set_parent(child, successor); |
| |
| augment->copy(node, successor); |
| augment->propagate(parent, successor); |
| } |
| |
| tmp = node->rb_left; |
| qatomic_set(&successor->rb_left, tmp); |
| rb_set_parent(tmp, successor); |
| |
| pc = node->rb_parent_color; |
| tmp = rb_parent(node); |
| rb_change_child(node, successor, tmp, root); |
| |
| if (child2) { |
| rb_set_parent_color(child2, parent, RB_BLACK); |
| rebalance = NULL; |
| } else { |
| rebalance = rb_is_black(successor) ? parent : NULL; |
| } |
| successor->rb_parent_color = pc; |
| tmp = successor; |
| } |
| |
| augment->propagate(tmp, NULL); |
| |
| if (rebalance) { |
| rb_erase_color(rebalance, root, augment); |
| } |
| } |
| |
| static void rb_erase_augmented_cached(RBNode *node, RBRootLeftCached *root, |
| const RBAugmentCallbacks *augment) |
| { |
| if (root->rb_leftmost == node) { |
| root->rb_leftmost = rb_next(node); |
| } |
| rb_erase_augmented(node, &root->rb_root, augment); |
| } |
| |
| |
| /* |
| * Interval trees. |
| * |
| * Derived from lib/interval_tree.c and its dependencies, |
| * especially include/linux/interval_tree_generic.h. |
| */ |
| |
| #define rb_to_itree(N) container_of(N, IntervalTreeNode, rb) |
| |
| static bool interval_tree_compute_max(IntervalTreeNode *node, bool exit) |
| { |
| IntervalTreeNode *child; |
| uint64_t max = node->last; |
| |
| if (node->rb.rb_left) { |
| child = rb_to_itree(node->rb.rb_left); |
| if (child->subtree_last > max) { |
| max = child->subtree_last; |
| } |
| } |
| if (node->rb.rb_right) { |
| child = rb_to_itree(node->rb.rb_right); |
| if (child->subtree_last > max) { |
| max = child->subtree_last; |
| } |
| } |
| if (exit && node->subtree_last == max) { |
| return true; |
| } |
| node->subtree_last = max; |
| return false; |
| } |
| |
| static void interval_tree_propagate(RBNode *rb, RBNode *stop) |
| { |
| while (rb != stop) { |
| IntervalTreeNode *node = rb_to_itree(rb); |
| if (interval_tree_compute_max(node, true)) { |
| break; |
| } |
| rb = rb_parent(&node->rb); |
| } |
| } |
| |
| static void interval_tree_copy(RBNode *rb_old, RBNode *rb_new) |
| { |
| IntervalTreeNode *old = rb_to_itree(rb_old); |
| IntervalTreeNode *new = rb_to_itree(rb_new); |
| |
| new->subtree_last = old->subtree_last; |
| } |
| |
| static void interval_tree_rotate(RBNode *rb_old, RBNode *rb_new) |
| { |
| IntervalTreeNode *old = rb_to_itree(rb_old); |
| IntervalTreeNode *new = rb_to_itree(rb_new); |
| |
| new->subtree_last = old->subtree_last; |
| interval_tree_compute_max(old, false); |
| } |
| |
| static const RBAugmentCallbacks interval_tree_augment = { |
| .propagate = interval_tree_propagate, |
| .copy = interval_tree_copy, |
| .rotate = interval_tree_rotate, |
| }; |
| |
| /* Insert / remove interval nodes from the tree */ |
| void interval_tree_insert(IntervalTreeNode *node, IntervalTreeRoot *root) |
| { |
| RBNode **link = &root->rb_root.rb_node, *rb_parent = NULL; |
| uint64_t start = node->start, last = node->last; |
| IntervalTreeNode *parent; |
| bool leftmost = true; |
| |
| while (*link) { |
| rb_parent = *link; |
| parent = rb_to_itree(rb_parent); |
| |
| if (parent->subtree_last < last) { |
| parent->subtree_last = last; |
| } |
| if (start < parent->start) { |
| link = &parent->rb.rb_left; |
| } else { |
| link = &parent->rb.rb_right; |
| leftmost = false; |
| } |
| } |
| |
| node->subtree_last = last; |
| rb_link_node(&node->rb, rb_parent, link); |
| rb_insert_augmented_cached(&node->rb, root, leftmost, |
| &interval_tree_augment); |
| } |
| |
| void interval_tree_remove(IntervalTreeNode *node, IntervalTreeRoot *root) |
| { |
| rb_erase_augmented_cached(&node->rb, root, &interval_tree_augment); |
| } |
| |
| /* |
| * Iterate over intervals intersecting [start;last] |
| * |
| * Note that a node's interval intersects [start;last] iff: |
| * Cond1: node->start <= last |
| * and |
| * Cond2: start <= node->last |
| */ |
| |
| static IntervalTreeNode *interval_tree_subtree_search(IntervalTreeNode *node, |
| uint64_t start, |
| uint64_t last) |
| { |
| while (true) { |
| /* |
| * Loop invariant: start <= node->subtree_last |
| * (Cond2 is satisfied by one of the subtree nodes) |
| */ |
| if (node->rb.rb_left) { |
| IntervalTreeNode *left = rb_to_itree(node->rb.rb_left); |
| |
| if (start <= left->subtree_last) { |
| /* |
| * Some nodes in left subtree satisfy Cond2. |
| * Iterate to find the leftmost such node N. |
| * If it also satisfies Cond1, that's the |
| * match we are looking for. Otherwise, there |
| * is no matching interval as nodes to the |
| * right of N can't satisfy Cond1 either. |
| */ |
| node = left; |
| continue; |
| } |
| } |
| if (node->start <= last) { /* Cond1 */ |
| if (start <= node->last) { /* Cond2 */ |
| return node; /* node is leftmost match */ |
| } |
| if (node->rb.rb_right) { |
| node = rb_to_itree(node->rb.rb_right); |
| if (start <= node->subtree_last) { |
| continue; |
| } |
| } |
| } |
| return NULL; /* no match */ |
| } |
| } |
| |
| IntervalTreeNode *interval_tree_iter_first(IntervalTreeRoot *root, |
| uint64_t start, uint64_t last) |
| { |
| IntervalTreeNode *node, *leftmost; |
| |
| if (!root->rb_root.rb_node) { |
| return NULL; |
| } |
| |
| /* |
| * Fastpath range intersection/overlap between A: [a0, a1] and |
| * B: [b0, b1] is given by: |
| * |
| * a0 <= b1 && b0 <= a1 |
| * |
| * ... where A holds the lock range and B holds the smallest |
| * 'start' and largest 'last' in the tree. For the later, we |
| * rely on the root node, which by augmented interval tree |
| * property, holds the largest value in its last-in-subtree. |
| * This allows mitigating some of the tree walk overhead for |
| * for non-intersecting ranges, maintained and consulted in O(1). |
| */ |
| node = rb_to_itree(root->rb_root.rb_node); |
| if (node->subtree_last < start) { |
| return NULL; |
| } |
| |
| leftmost = rb_to_itree(root->rb_leftmost); |
| if (leftmost->start > last) { |
| return NULL; |
| } |
| |
| return interval_tree_subtree_search(node, start, last); |
| } |
| |
| IntervalTreeNode *interval_tree_iter_next(IntervalTreeNode *node, |
| uint64_t start, uint64_t last) |
| { |
| RBNode *rb = node->rb.rb_right, *prev; |
| |
| while (true) { |
| /* |
| * Loop invariants: |
| * Cond1: node->start <= last |
| * rb == node->rb.rb_right |
| * |
| * First, search right subtree if suitable |
| */ |
| if (rb) { |
| IntervalTreeNode *right = rb_to_itree(rb); |
| |
| if (start <= right->subtree_last) { |
| return interval_tree_subtree_search(right, start, last); |
| } |
| } |
| |
| /* Move up the tree until we come from a node's left child */ |
| do { |
| rb = rb_parent(&node->rb); |
| if (!rb) { |
| return NULL; |
| } |
| prev = &node->rb; |
| node = rb_to_itree(rb); |
| rb = node->rb.rb_right; |
| } while (prev == rb); |
| |
| /* Check if the node intersects [start;last] */ |
| if (last < node->start) { /* !Cond1 */ |
| return NULL; |
| } |
| if (start <= node->last) { /* Cond2 */ |
| return node; |
| } |
| } |
| } |
| |
| /* Occasionally useful for calling from within the debugger. */ |
| #if 0 |
| static void debug_interval_tree_int(IntervalTreeNode *node, |
| const char *dir, int level) |
| { |
| printf("%4d %*s %s [%" PRIu64 ",%" PRIu64 "] subtree_last:%" PRIu64 "\n", |
| level, level + 1, dir, rb_is_red(&node->rb) ? "r" : "b", |
| node->start, node->last, node->subtree_last); |
| |
| if (node->rb.rb_left) { |
| debug_interval_tree_int(rb_to_itree(node->rb.rb_left), "<", level + 1); |
| } |
| if (node->rb.rb_right) { |
| debug_interval_tree_int(rb_to_itree(node->rb.rb_right), ">", level + 1); |
| } |
| } |
| |
| void debug_interval_tree(IntervalTreeNode *node); |
| void debug_interval_tree(IntervalTreeNode *node) |
| { |
| if (node) { |
| debug_interval_tree_int(node, "*", 0); |
| } else { |
| printf("null\n"); |
| } |
| } |
| #endif |