| /* |
| * TI OMAP general purpose memory controller emulation. |
| * |
| * Copyright (C) 2007-2009 Nokia Corporation |
| * Original code written by Andrzej Zaborowski <andrew@openedhand.com> |
| * Enhancements for OMAP3 and NAND support written by Juha Riihimäki |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 or |
| * (at your option) any later version of the License. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "hw/hw.h" |
| #include "hw/block/flash.h" |
| #include "hw/arm/omap.h" |
| #include "exec/memory.h" |
| #include "exec/address-spaces.h" |
| |
| /* General-Purpose Memory Controller */ |
| struct omap_gpmc_s { |
| qemu_irq irq; |
| qemu_irq drq; |
| MemoryRegion iomem; |
| int accept_256; |
| |
| uint8_t revision; |
| uint8_t sysconfig; |
| uint16_t irqst; |
| uint16_t irqen; |
| uint16_t lastirq; |
| uint16_t timeout; |
| uint16_t config; |
| struct omap_gpmc_cs_file_s { |
| uint32_t config[7]; |
| MemoryRegion *iomem; |
| MemoryRegion container; |
| MemoryRegion nandiomem; |
| DeviceState *dev; |
| } cs_file[8]; |
| int ecc_cs; |
| int ecc_ptr; |
| uint32_t ecc_cfg; |
| ECCState ecc[9]; |
| struct prefetch { |
| uint32_t config1; /* GPMC_PREFETCH_CONFIG1 */ |
| uint32_t transfercount; /* GPMC_PREFETCH_CONFIG2:TRANSFERCOUNT */ |
| int startengine; /* GPMC_PREFETCH_CONTROL:STARTENGINE */ |
| int fifopointer; /* GPMC_PREFETCH_STATUS:FIFOPOINTER */ |
| int count; /* GPMC_PREFETCH_STATUS:COUNTVALUE */ |
| MemoryRegion iomem; |
| uint8_t fifo[64]; |
| } prefetch; |
| }; |
| |
| #define OMAP_GPMC_8BIT 0 |
| #define OMAP_GPMC_16BIT 1 |
| #define OMAP_GPMC_NOR 0 |
| #define OMAP_GPMC_NAND 2 |
| |
| static int omap_gpmc_devtype(struct omap_gpmc_cs_file_s *f) |
| { |
| return (f->config[0] >> 10) & 3; |
| } |
| |
| static int omap_gpmc_devsize(struct omap_gpmc_cs_file_s *f) |
| { |
| /* devsize field is really 2 bits but we ignore the high |
| * bit to ensure consistent behaviour if the guest sets |
| * it (values 2 and 3 are reserved in the TRM) |
| */ |
| return (f->config[0] >> 12) & 1; |
| } |
| |
| /* Extract the chip-select value from the prefetch config1 register */ |
| static int prefetch_cs(uint32_t config1) |
| { |
| return (config1 >> 24) & 7; |
| } |
| |
| static int prefetch_threshold(uint32_t config1) |
| { |
| return (config1 >> 8) & 0x7f; |
| } |
| |
| static void omap_gpmc_int_update(struct omap_gpmc_s *s) |
| { |
| /* The TRM is a bit unclear, but it seems to say that |
| * the TERMINALCOUNTSTATUS bit is set only on the |
| * transition when the prefetch engine goes from |
| * active to inactive, whereas the FIFOEVENTSTATUS |
| * bit is held high as long as the fifo has at |
| * least THRESHOLD bytes available. |
| * So we do the latter here, but TERMINALCOUNTSTATUS |
| * is set elsewhere. |
| */ |
| if (s->prefetch.fifopointer >= prefetch_threshold(s->prefetch.config1)) { |
| s->irqst |= 1; |
| } |
| if ((s->irqen & s->irqst) != s->lastirq) { |
| s->lastirq = s->irqen & s->irqst; |
| qemu_set_irq(s->irq, s->lastirq); |
| } |
| } |
| |
| static void omap_gpmc_dma_update(struct omap_gpmc_s *s, int value) |
| { |
| if (s->prefetch.config1 & 4) { |
| qemu_set_irq(s->drq, value); |
| } |
| } |
| |
| /* Access functions for when a NAND-like device is mapped into memory: |
| * all addresses in the region behave like accesses to the relevant |
| * GPMC_NAND_DATA_i register (which is actually implemented to call these) |
| */ |
| static uint64_t omap_nand_read(void *opaque, hwaddr addr, |
| unsigned size) |
| { |
| struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque; |
| uint64_t v; |
| nand_setpins(f->dev, 0, 0, 0, 1, 0); |
| switch (omap_gpmc_devsize(f)) { |
| case OMAP_GPMC_8BIT: |
| v = nand_getio(f->dev); |
| if (size == 1) { |
| return v; |
| } |
| v |= (nand_getio(f->dev) << 8); |
| if (size == 2) { |
| return v; |
| } |
| v |= (nand_getio(f->dev) << 16); |
| v |= (nand_getio(f->dev) << 24); |
| return v; |
| case OMAP_GPMC_16BIT: |
| v = nand_getio(f->dev); |
| if (size == 1) { |
| /* 8 bit read from 16 bit device : probably a guest bug */ |
| return v & 0xff; |
| } |
| if (size == 2) { |
| return v; |
| } |
| v |= (nand_getio(f->dev) << 16); |
| return v; |
| default: |
| abort(); |
| } |
| } |
| |
| static void omap_nand_setio(DeviceState *dev, uint64_t value, |
| int nandsize, int size) |
| { |
| /* Write the specified value to the NAND device, respecting |
| * both size of the NAND device and size of the write access. |
| */ |
| switch (nandsize) { |
| case OMAP_GPMC_8BIT: |
| switch (size) { |
| case 1: |
| nand_setio(dev, value & 0xff); |
| break; |
| case 2: |
| nand_setio(dev, value & 0xff); |
| nand_setio(dev, (value >> 8) & 0xff); |
| break; |
| case 4: |
| default: |
| nand_setio(dev, value & 0xff); |
| nand_setio(dev, (value >> 8) & 0xff); |
| nand_setio(dev, (value >> 16) & 0xff); |
| nand_setio(dev, (value >> 24) & 0xff); |
| break; |
| } |
| break; |
| case OMAP_GPMC_16BIT: |
| switch (size) { |
| case 1: |
| /* writing to a 16bit device with 8bit access is probably a guest |
| * bug; pass the value through anyway. |
| */ |
| case 2: |
| nand_setio(dev, value & 0xffff); |
| break; |
| case 4: |
| default: |
| nand_setio(dev, value & 0xffff); |
| nand_setio(dev, (value >> 16) & 0xffff); |
| break; |
| } |
| break; |
| } |
| } |
| |
| static void omap_nand_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size) |
| { |
| struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque; |
| nand_setpins(f->dev, 0, 0, 0, 1, 0); |
| omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size); |
| } |
| |
| static const MemoryRegionOps omap_nand_ops = { |
| .read = omap_nand_read, |
| .write = omap_nand_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }; |
| |
| static void fill_prefetch_fifo(struct omap_gpmc_s *s) |
| { |
| /* Fill the prefetch FIFO by reading data from NAND. |
| * We do this synchronously, unlike the hardware which |
| * will do this asynchronously. We refill when the |
| * FIFO has THRESHOLD bytes free, and we always refill |
| * as much data as possible starting at the top end |
| * of the FIFO. |
| * (We have to refill at THRESHOLD rather than waiting |
| * for the FIFO to empty to allow for the case where |
| * the FIFO size isn't an exact multiple of THRESHOLD |
| * and we're doing DMA transfers.) |
| * This means we never need to handle wrap-around in |
| * the fifo-reading code, and the next byte of data |
| * to read is always fifo[63 - fifopointer]. |
| */ |
| int fptr; |
| int cs = prefetch_cs(s->prefetch.config1); |
| int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0); |
| int bytes; |
| /* Don't believe the bit of the OMAP TRM that says that COUNTVALUE |
| * and TRANSFERCOUNT are in units of 16 bit words for 16 bit NAND. |
| * Instead believe the bit that says it is always a byte count. |
| */ |
| bytes = 64 - s->prefetch.fifopointer; |
| if (bytes > s->prefetch.count) { |
| bytes = s->prefetch.count; |
| } |
| s->prefetch.count -= bytes; |
| s->prefetch.fifopointer += bytes; |
| fptr = 64 - s->prefetch.fifopointer; |
| /* Move the existing data in the FIFO so it sits just |
| * before what we're about to read in |
| */ |
| while (fptr < (64 - bytes)) { |
| s->prefetch.fifo[fptr] = s->prefetch.fifo[fptr + bytes]; |
| fptr++; |
| } |
| while (fptr < 64) { |
| if (is16bit) { |
| uint32_t v = omap_nand_read(&s->cs_file[cs], 0, 2); |
| s->prefetch.fifo[fptr++] = v & 0xff; |
| s->prefetch.fifo[fptr++] = (v >> 8) & 0xff; |
| } else { |
| s->prefetch.fifo[fptr++] = omap_nand_read(&s->cs_file[cs], 0, 1); |
| } |
| } |
| if (s->prefetch.startengine && (s->prefetch.count == 0)) { |
| /* This was the final transfer: raise TERMINALCOUNTSTATUS */ |
| s->irqst |= 2; |
| s->prefetch.startengine = 0; |
| } |
| /* If there are any bytes in the FIFO at this point then |
| * we must raise a DMA request (either this is a final part |
| * transfer, or we filled the FIFO in which case we certainly |
| * have THRESHOLD bytes available) |
| */ |
| if (s->prefetch.fifopointer != 0) { |
| omap_gpmc_dma_update(s, 1); |
| } |
| omap_gpmc_int_update(s); |
| } |
| |
| /* Access functions for a NAND-like device when the prefetch/postwrite |
| * engine is enabled -- all addresses in the region behave alike: |
| * data is read or written to the FIFO. |
| */ |
| static uint64_t omap_gpmc_prefetch_read(void *opaque, hwaddr addr, |
| unsigned size) |
| { |
| struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque; |
| uint32_t data; |
| if (s->prefetch.config1 & 1) { |
| /* The TRM doesn't define the behaviour if you read from the |
| * FIFO when the prefetch engine is in write mode. We choose |
| * to always return zero. |
| */ |
| return 0; |
| } |
| /* Note that trying to read an empty fifo repeats the last byte */ |
| if (s->prefetch.fifopointer) { |
| s->prefetch.fifopointer--; |
| } |
| data = s->prefetch.fifo[63 - s->prefetch.fifopointer]; |
| if (s->prefetch.fifopointer == |
| (64 - prefetch_threshold(s->prefetch.config1))) { |
| /* We've drained THRESHOLD bytes now. So deassert the |
| * DMA request, then refill the FIFO (which will probably |
| * assert it again.) |
| */ |
| omap_gpmc_dma_update(s, 0); |
| fill_prefetch_fifo(s); |
| } |
| omap_gpmc_int_update(s); |
| return data; |
| } |
| |
| static void omap_gpmc_prefetch_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size) |
| { |
| struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque; |
| int cs = prefetch_cs(s->prefetch.config1); |
| if ((s->prefetch.config1 & 1) == 0) { |
| /* The TRM doesn't define the behaviour of writing to the |
| * FIFO when the prefetch engine is in read mode. We |
| * choose to ignore the write. |
| */ |
| return; |
| } |
| if (s->prefetch.count == 0) { |
| /* The TRM doesn't define the behaviour of writing to the |
| * FIFO if the transfer is complete. We choose to ignore. |
| */ |
| return; |
| } |
| /* The only reason we do any data buffering in postwrite |
| * mode is if we are talking to a 16 bit NAND device, in |
| * which case we need to buffer the first byte of the |
| * 16 bit word until the other byte arrives. |
| */ |
| int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0); |
| if (is16bit) { |
| /* fifopointer alternates between 64 (waiting for first |
| * byte of word) and 63 (waiting for second byte) |
| */ |
| if (s->prefetch.fifopointer == 64) { |
| s->prefetch.fifo[0] = value; |
| s->prefetch.fifopointer--; |
| } else { |
| value = (value << 8) | s->prefetch.fifo[0]; |
| omap_nand_write(&s->cs_file[cs], 0, value, 2); |
| s->prefetch.count--; |
| s->prefetch.fifopointer = 64; |
| } |
| } else { |
| /* Just write the byte : fifopointer remains 64 at all times */ |
| omap_nand_write(&s->cs_file[cs], 0, value, 1); |
| s->prefetch.count--; |
| } |
| if (s->prefetch.count == 0) { |
| /* Final transfer: raise TERMINALCOUNTSTATUS */ |
| s->irqst |= 2; |
| s->prefetch.startengine = 0; |
| } |
| omap_gpmc_int_update(s); |
| } |
| |
| static const MemoryRegionOps omap_prefetch_ops = { |
| .read = omap_gpmc_prefetch_read, |
| .write = omap_gpmc_prefetch_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| .impl.min_access_size = 1, |
| .impl.max_access_size = 1, |
| }; |
| |
| static MemoryRegion *omap_gpmc_cs_memregion(struct omap_gpmc_s *s, int cs) |
| { |
| /* Return the MemoryRegion* to map/unmap for this chipselect */ |
| struct omap_gpmc_cs_file_s *f = &s->cs_file[cs]; |
| if (omap_gpmc_devtype(f) == OMAP_GPMC_NOR) { |
| return f->iomem; |
| } |
| if ((s->prefetch.config1 & 0x80) && |
| (prefetch_cs(s->prefetch.config1) == cs)) { |
| /* The prefetch engine is enabled for this CS: map the FIFO */ |
| return &s->prefetch.iomem; |
| } |
| return &f->nandiomem; |
| } |
| |
| static void omap_gpmc_cs_map(struct omap_gpmc_s *s, int cs) |
| { |
| struct omap_gpmc_cs_file_s *f = &s->cs_file[cs]; |
| uint32_t mask = (f->config[6] >> 8) & 0xf; |
| uint32_t base = f->config[6] & 0x3f; |
| uint32_t size; |
| |
| if (!f->iomem && !f->dev) { |
| return; |
| } |
| |
| if (!(f->config[6] & (1 << 6))) { |
| /* Do nothing unless CSVALID */ |
| return; |
| } |
| |
| /* TODO: check for overlapping regions and report access errors */ |
| if (mask != 0x8 && mask != 0xc && mask != 0xe && mask != 0xf |
| && !(s->accept_256 && !mask)) { |
| fprintf(stderr, "%s: invalid chip-select mask address (0x%x)\n", |
| __func__, mask); |
| } |
| |
| base <<= 24; |
| size = (0x0fffffff & ~(mask << 24)) + 1; |
| /* TODO: rather than setting the size of the mapping (which should be |
| * constant), the mask should cause wrapping of the address space, so |
| * that the same memory becomes accessible at every <i>size</i> bytes |
| * starting from <i>base</i>. */ |
| memory_region_init(&f->container, "omap-gpmc-file", size); |
| memory_region_add_subregion(&f->container, 0, |
| omap_gpmc_cs_memregion(s, cs)); |
| memory_region_add_subregion(get_system_memory(), base, |
| &f->container); |
| } |
| |
| static void omap_gpmc_cs_unmap(struct omap_gpmc_s *s, int cs) |
| { |
| struct omap_gpmc_cs_file_s *f = &s->cs_file[cs]; |
| if (!(f->config[6] & (1 << 6))) { |
| /* Do nothing unless CSVALID */ |
| return; |
| } |
| if (!f->iomem && !f->dev) { |
| return; |
| } |
| memory_region_del_subregion(get_system_memory(), &f->container); |
| memory_region_del_subregion(&f->container, omap_gpmc_cs_memregion(s, cs)); |
| memory_region_destroy(&f->container); |
| } |
| |
| void omap_gpmc_reset(struct omap_gpmc_s *s) |
| { |
| int i; |
| |
| s->sysconfig = 0; |
| s->irqst = 0; |
| s->irqen = 0; |
| omap_gpmc_int_update(s); |
| for (i = 0; i < 8; i++) { |
| /* This has to happen before we change any of the config |
| * used to determine which memory regions are mapped or unmapped. |
| */ |
| omap_gpmc_cs_unmap(s, i); |
| } |
| s->timeout = 0; |
| s->config = 0xa00; |
| s->prefetch.config1 = 0x00004000; |
| s->prefetch.transfercount = 0x00000000; |
| s->prefetch.startengine = 0; |
| s->prefetch.fifopointer = 0; |
| s->prefetch.count = 0; |
| for (i = 0; i < 8; i ++) { |
| s->cs_file[i].config[1] = 0x101001; |
| s->cs_file[i].config[2] = 0x020201; |
| s->cs_file[i].config[3] = 0x10031003; |
| s->cs_file[i].config[4] = 0x10f1111; |
| s->cs_file[i].config[5] = 0; |
| s->cs_file[i].config[6] = 0xf00 | (i ? 0 : 1 << 6); |
| |
| s->cs_file[i].config[6] = 0xf00; |
| /* In theory we could probe attached devices for some CFG1 |
| * bits here, but we just retain them across resets as they |
| * were set initially by omap_gpmc_attach(). |
| */ |
| if (i == 0) { |
| s->cs_file[i].config[0] &= 0x00433e00; |
| s->cs_file[i].config[6] |= 1 << 6; /* CSVALID */ |
| omap_gpmc_cs_map(s, i); |
| } else { |
| s->cs_file[i].config[0] &= 0x00403c00; |
| } |
| } |
| s->ecc_cs = 0; |
| s->ecc_ptr = 0; |
| s->ecc_cfg = 0x3fcff000; |
| for (i = 0; i < 9; i ++) |
| ecc_reset(&s->ecc[i]); |
| } |
| |
| static int gpmc_wordaccess_only(hwaddr addr) |
| { |
| /* Return true if the register offset is to a register that |
| * only permits word width accesses. |
| * Non-word accesses are only OK for GPMC_NAND_DATA/ADDRESS/COMMAND |
| * for any chipselect. |
| */ |
| if (addr >= 0x60 && addr <= 0x1d4) { |
| int cs = (addr - 0x60) / 0x30; |
| addr -= cs * 0x30; |
| if (addr >= 0x7c && addr < 0x88) { |
| /* GPMC_NAND_COMMAND, GPMC_NAND_ADDRESS, GPMC_NAND_DATA */ |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| static uint64_t omap_gpmc_read(void *opaque, hwaddr addr, |
| unsigned size) |
| { |
| struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque; |
| int cs; |
| struct omap_gpmc_cs_file_s *f; |
| |
| if (size != 4 && gpmc_wordaccess_only(addr)) { |
| return omap_badwidth_read32(opaque, addr); |
| } |
| |
| switch (addr) { |
| case 0x000: /* GPMC_REVISION */ |
| return s->revision; |
| |
| case 0x010: /* GPMC_SYSCONFIG */ |
| return s->sysconfig; |
| |
| case 0x014: /* GPMC_SYSSTATUS */ |
| return 1; /* RESETDONE */ |
| |
| case 0x018: /* GPMC_IRQSTATUS */ |
| return s->irqst; |
| |
| case 0x01c: /* GPMC_IRQENABLE */ |
| return s->irqen; |
| |
| case 0x040: /* GPMC_TIMEOUT_CONTROL */ |
| return s->timeout; |
| |
| case 0x044: /* GPMC_ERR_ADDRESS */ |
| case 0x048: /* GPMC_ERR_TYPE */ |
| return 0; |
| |
| case 0x050: /* GPMC_CONFIG */ |
| return s->config; |
| |
| case 0x054: /* GPMC_STATUS */ |
| return 0x001; |
| |
| case 0x060 ... 0x1d4: |
| cs = (addr - 0x060) / 0x30; |
| addr -= cs * 0x30; |
| f = s->cs_file + cs; |
| switch (addr) { |
| case 0x60: /* GPMC_CONFIG1 */ |
| return f->config[0]; |
| case 0x64: /* GPMC_CONFIG2 */ |
| return f->config[1]; |
| case 0x68: /* GPMC_CONFIG3 */ |
| return f->config[2]; |
| case 0x6c: /* GPMC_CONFIG4 */ |
| return f->config[3]; |
| case 0x70: /* GPMC_CONFIG5 */ |
| return f->config[4]; |
| case 0x74: /* GPMC_CONFIG6 */ |
| return f->config[5]; |
| case 0x78: /* GPMC_CONFIG7 */ |
| return f->config[6]; |
| case 0x84 ... 0x87: /* GPMC_NAND_DATA */ |
| if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) { |
| return omap_nand_read(f, 0, size); |
| } |
| return 0; |
| } |
| break; |
| |
| case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */ |
| return s->prefetch.config1; |
| case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */ |
| return s->prefetch.transfercount; |
| case 0x1ec: /* GPMC_PREFETCH_CONTROL */ |
| return s->prefetch.startengine; |
| case 0x1f0: /* GPMC_PREFETCH_STATUS */ |
| /* NB: The OMAP3 TRM is inconsistent about whether the GPMC |
| * FIFOTHRESHOLDSTATUS bit should be set when |
| * FIFOPOINTER > FIFOTHRESHOLD or when it is >= FIFOTHRESHOLD. |
| * Apparently the underlying functional spec from which the TRM was |
| * created states that the behaviour is ">=", and this also |
| * makes more conceptual sense. |
| */ |
| return (s->prefetch.fifopointer << 24) | |
| ((s->prefetch.fifopointer >= |
| ((s->prefetch.config1 >> 8) & 0x7f) ? 1 : 0) << 16) | |
| s->prefetch.count; |
| |
| case 0x1f4: /* GPMC_ECC_CONFIG */ |
| return s->ecc_cs; |
| case 0x1f8: /* GPMC_ECC_CONTROL */ |
| return s->ecc_ptr; |
| case 0x1fc: /* GPMC_ECC_SIZE_CONFIG */ |
| return s->ecc_cfg; |
| case 0x200 ... 0x220: /* GPMC_ECC_RESULT */ |
| cs = (addr & 0x1f) >> 2; |
| /* TODO: check correctness */ |
| return |
| ((s->ecc[cs].cp & 0x07) << 0) | |
| ((s->ecc[cs].cp & 0x38) << 13) | |
| ((s->ecc[cs].lp[0] & 0x1ff) << 3) | |
| ((s->ecc[cs].lp[1] & 0x1ff) << 19); |
| |
| case 0x230: /* GPMC_TESTMODE_CTRL */ |
| return 0; |
| case 0x234: /* GPMC_PSA_LSB */ |
| case 0x238: /* GPMC_PSA_MSB */ |
| return 0x00000000; |
| } |
| |
| OMAP_BAD_REG(addr); |
| return 0; |
| } |
| |
| static void omap_gpmc_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size) |
| { |
| struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque; |
| int cs; |
| struct omap_gpmc_cs_file_s *f; |
| |
| if (size != 4 && gpmc_wordaccess_only(addr)) { |
| return omap_badwidth_write32(opaque, addr, value); |
| } |
| |
| switch (addr) { |
| case 0x000: /* GPMC_REVISION */ |
| case 0x014: /* GPMC_SYSSTATUS */ |
| case 0x054: /* GPMC_STATUS */ |
| case 0x1f0: /* GPMC_PREFETCH_STATUS */ |
| case 0x200 ... 0x220: /* GPMC_ECC_RESULT */ |
| case 0x234: /* GPMC_PSA_LSB */ |
| case 0x238: /* GPMC_PSA_MSB */ |
| OMAP_RO_REG(addr); |
| break; |
| |
| case 0x010: /* GPMC_SYSCONFIG */ |
| if ((value >> 3) == 0x3) |
| fprintf(stderr, "%s: bad SDRAM idle mode %"PRIi64"\n", |
| __FUNCTION__, value >> 3); |
| if (value & 2) |
| omap_gpmc_reset(s); |
| s->sysconfig = value & 0x19; |
| break; |
| |
| case 0x018: /* GPMC_IRQSTATUS */ |
| s->irqst &= ~value; |
| omap_gpmc_int_update(s); |
| break; |
| |
| case 0x01c: /* GPMC_IRQENABLE */ |
| s->irqen = value & 0xf03; |
| omap_gpmc_int_update(s); |
| break; |
| |
| case 0x040: /* GPMC_TIMEOUT_CONTROL */ |
| s->timeout = value & 0x1ff1; |
| break; |
| |
| case 0x044: /* GPMC_ERR_ADDRESS */ |
| case 0x048: /* GPMC_ERR_TYPE */ |
| break; |
| |
| case 0x050: /* GPMC_CONFIG */ |
| s->config = value & 0xf13; |
| break; |
| |
| case 0x060 ... 0x1d4: |
| cs = (addr - 0x060) / 0x30; |
| addr -= cs * 0x30; |
| f = s->cs_file + cs; |
| switch (addr) { |
| case 0x60: /* GPMC_CONFIG1 */ |
| f->config[0] = value & 0xffef3e13; |
| break; |
| case 0x64: /* GPMC_CONFIG2 */ |
| f->config[1] = value & 0x001f1f8f; |
| break; |
| case 0x68: /* GPMC_CONFIG3 */ |
| f->config[2] = value & 0x001f1f8f; |
| break; |
| case 0x6c: /* GPMC_CONFIG4 */ |
| f->config[3] = value & 0x1f8f1f8f; |
| break; |
| case 0x70: /* GPMC_CONFIG5 */ |
| f->config[4] = value & 0x0f1f1f1f; |
| break; |
| case 0x74: /* GPMC_CONFIG6 */ |
| f->config[5] = value & 0x00000fcf; |
| break; |
| case 0x78: /* GPMC_CONFIG7 */ |
| if ((f->config[6] ^ value) & 0xf7f) { |
| omap_gpmc_cs_unmap(s, cs); |
| f->config[6] = value & 0x00000f7f; |
| omap_gpmc_cs_map(s, cs); |
| } |
| break; |
| case 0x7c ... 0x7f: /* GPMC_NAND_COMMAND */ |
| if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) { |
| nand_setpins(f->dev, 1, 0, 0, 1, 0); /* CLE */ |
| omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size); |
| } |
| break; |
| case 0x80 ... 0x83: /* GPMC_NAND_ADDRESS */ |
| if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) { |
| nand_setpins(f->dev, 0, 1, 0, 1, 0); /* ALE */ |
| omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size); |
| } |
| break; |
| case 0x84 ... 0x87: /* GPMC_NAND_DATA */ |
| if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) { |
| omap_nand_write(f, 0, value, size); |
| } |
| break; |
| default: |
| goto bad_reg; |
| } |
| break; |
| |
| case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */ |
| if (!s->prefetch.startengine) { |
| uint32_t newconfig1 = value & 0x7f8f7fbf; |
| uint32_t changed; |
| changed = newconfig1 ^ s->prefetch.config1; |
| if (changed & (0x80 | 0x7000000)) { |
| /* Turning the engine on or off, or mapping it somewhere else. |
| * cs_map() and cs_unmap() check the prefetch config and |
| * overall CSVALID bits, so it is sufficient to unmap-and-map |
| * both the old cs and the new one. Note that we adhere to |
| * the "unmap/change config/map" order (and not unmap twice |
| * if newcs == oldcs), otherwise we'll try to delete the wrong |
| * memory region. |
| */ |
| int oldcs = prefetch_cs(s->prefetch.config1); |
| int newcs = prefetch_cs(newconfig1); |
| omap_gpmc_cs_unmap(s, oldcs); |
| if (oldcs != newcs) { |
| omap_gpmc_cs_unmap(s, newcs); |
| } |
| s->prefetch.config1 = newconfig1; |
| omap_gpmc_cs_map(s, oldcs); |
| if (oldcs != newcs) { |
| omap_gpmc_cs_map(s, newcs); |
| } |
| } else { |
| s->prefetch.config1 = newconfig1; |
| } |
| } |
| break; |
| |
| case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */ |
| if (!s->prefetch.startengine) { |
| s->prefetch.transfercount = value & 0x3fff; |
| } |
| break; |
| |
| case 0x1ec: /* GPMC_PREFETCH_CONTROL */ |
| if (s->prefetch.startengine != (value & 1)) { |
| s->prefetch.startengine = value & 1; |
| if (s->prefetch.startengine) { |
| /* Prefetch engine start */ |
| s->prefetch.count = s->prefetch.transfercount; |
| if (s->prefetch.config1 & 1) { |
| /* Write */ |
| s->prefetch.fifopointer = 64; |
| } else { |
| /* Read */ |
| s->prefetch.fifopointer = 0; |
| fill_prefetch_fifo(s); |
| } |
| } else { |
| /* Prefetch engine forcibly stopped. The TRM |
| * doesn't define the behaviour if you do this. |
| * We clear the prefetch count, which means that |
| * we permit no more writes, and don't read any |
| * more data from NAND. The CPU can still drain |
| * the FIFO of unread data. |
| */ |
| s->prefetch.count = 0; |
| } |
| omap_gpmc_int_update(s); |
| } |
| break; |
| |
| case 0x1f4: /* GPMC_ECC_CONFIG */ |
| s->ecc_cs = 0x8f; |
| break; |
| case 0x1f8: /* GPMC_ECC_CONTROL */ |
| if (value & (1 << 8)) |
| for (cs = 0; cs < 9; cs ++) |
| ecc_reset(&s->ecc[cs]); |
| s->ecc_ptr = value & 0xf; |
| if (s->ecc_ptr == 0 || s->ecc_ptr > 9) { |
| s->ecc_ptr = 0; |
| s->ecc_cs &= ~1; |
| } |
| break; |
| case 0x1fc: /* GPMC_ECC_SIZE_CONFIG */ |
| s->ecc_cfg = value & 0x3fcff1ff; |
| break; |
| case 0x230: /* GPMC_TESTMODE_CTRL */ |
| if (value & 7) |
| fprintf(stderr, "%s: test mode enable attempt\n", __FUNCTION__); |
| break; |
| |
| default: |
| bad_reg: |
| OMAP_BAD_REG(addr); |
| return; |
| } |
| } |
| |
| static const MemoryRegionOps omap_gpmc_ops = { |
| .read = omap_gpmc_read, |
| .write = omap_gpmc_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }; |
| |
| struct omap_gpmc_s *omap_gpmc_init(struct omap_mpu_state_s *mpu, |
| hwaddr base, |
| qemu_irq irq, qemu_irq drq) |
| { |
| int cs; |
| struct omap_gpmc_s *s = (struct omap_gpmc_s *) |
| g_malloc0(sizeof(struct omap_gpmc_s)); |
| |
| memory_region_init_io(&s->iomem, &omap_gpmc_ops, s, "omap-gpmc", 0x1000); |
| memory_region_add_subregion(get_system_memory(), base, &s->iomem); |
| |
| s->irq = irq; |
| s->drq = drq; |
| s->accept_256 = cpu_is_omap3630(mpu); |
| s->revision = cpu_class_omap3(mpu) ? 0x50 : 0x20; |
| s->lastirq = 0; |
| omap_gpmc_reset(s); |
| |
| /* We have to register a different IO memory handler for each |
| * chip select region in case a NAND device is mapped there. We |
| * make the region the worst-case size of 256MB and rely on the |
| * container memory region in cs_map to chop it down to the actual |
| * guest-requested size. |
| */ |
| for (cs = 0; cs < 8; cs++) { |
| memory_region_init_io(&s->cs_file[cs].nandiomem, |
| &omap_nand_ops, |
| &s->cs_file[cs], |
| "omap-nand", |
| 256 * 1024 * 1024); |
| } |
| |
| memory_region_init_io(&s->prefetch.iomem, &omap_prefetch_ops, s, |
| "omap-gpmc-prefetch", 256 * 1024 * 1024); |
| return s; |
| } |
| |
| void omap_gpmc_attach(struct omap_gpmc_s *s, int cs, MemoryRegion *iomem) |
| { |
| struct omap_gpmc_cs_file_s *f; |
| assert(iomem); |
| |
| if (cs < 0 || cs >= 8) { |
| fprintf(stderr, "%s: bad chip-select %i\n", __FUNCTION__, cs); |
| exit(-1); |
| } |
| f = &s->cs_file[cs]; |
| |
| omap_gpmc_cs_unmap(s, cs); |
| f->config[0] &= ~(0xf << 10); |
| f->iomem = iomem; |
| omap_gpmc_cs_map(s, cs); |
| } |
| |
| void omap_gpmc_attach_nand(struct omap_gpmc_s *s, int cs, DeviceState *nand) |
| { |
| struct omap_gpmc_cs_file_s *f; |
| assert(nand); |
| |
| if (cs < 0 || cs >= 8) { |
| fprintf(stderr, "%s: bad chip-select %i\n", __func__, cs); |
| exit(-1); |
| } |
| f = &s->cs_file[cs]; |
| |
| omap_gpmc_cs_unmap(s, cs); |
| f->config[0] &= ~(0xf << 10); |
| f->config[0] |= (OMAP_GPMC_NAND << 10); |
| f->dev = nand; |
| if (nand_getbuswidth(f->dev) == 16) { |
| f->config[0] |= OMAP_GPMC_16BIT << 12; |
| } |
| omap_gpmc_cs_map(s, cs); |
| } |