| /* |
| * QEMU ESP/NCR53C9x emulation |
| * |
| * Copyright (c) 2005-2006 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include "vl.h" |
| |
| /* debug ESP card */ |
| //#define DEBUG_ESP |
| |
| /* |
| * On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O), also |
| * produced as NCR89C100. See |
| * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt |
| * and |
| * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt |
| */ |
| |
| #ifdef DEBUG_ESP |
| #define DPRINTF(fmt, args...) \ |
| do { printf("ESP: " fmt , ##args); } while (0) |
| #else |
| #define DPRINTF(fmt, args...) |
| #endif |
| |
| #define ESP_MAXREG 0x3f |
| #define TI_BUFSZ 32 |
| /* The HBA is ID 7, so for simplicitly limit to 7 devices. */ |
| #define ESP_MAX_DEVS 7 |
| |
| typedef struct ESPState ESPState; |
| |
| struct ESPState { |
| BlockDriverState **bd; |
| uint8_t rregs[ESP_MAXREG]; |
| uint8_t wregs[ESP_MAXREG]; |
| int32_t ti_size; |
| uint32_t ti_rptr, ti_wptr; |
| uint8_t ti_buf[TI_BUFSZ]; |
| int sense; |
| int dma; |
| SCSIDevice *scsi_dev[MAX_DISKS]; |
| SCSIDevice *current_dev; |
| uint8_t cmdbuf[TI_BUFSZ]; |
| int cmdlen; |
| int do_cmd; |
| |
| /* The amount of data left in the current DMA transfer. */ |
| uint32_t dma_left; |
| /* The size of the current DMA transfer. Zero if no transfer is in |
| progress. */ |
| uint32_t dma_counter; |
| uint8_t *async_buf; |
| uint32_t async_len; |
| void *dma_opaque; |
| }; |
| |
| #define STAT_DO 0x00 |
| #define STAT_DI 0x01 |
| #define STAT_CD 0x02 |
| #define STAT_ST 0x03 |
| #define STAT_MI 0x06 |
| #define STAT_MO 0x07 |
| |
| #define STAT_TC 0x10 |
| #define STAT_PE 0x20 |
| #define STAT_GE 0x40 |
| #define STAT_IN 0x80 |
| |
| #define INTR_FC 0x08 |
| #define INTR_BS 0x10 |
| #define INTR_DC 0x20 |
| #define INTR_RST 0x80 |
| |
| #define SEQ_0 0x0 |
| #define SEQ_CD 0x4 |
| |
| static int get_cmd(ESPState *s, uint8_t *buf) |
| { |
| uint32_t dmalen; |
| int target; |
| |
| dmalen = s->rregs[0] | (s->rregs[1] << 8); |
| target = s->wregs[4] & 7; |
| DPRINTF("get_cmd: len %d target %d\n", dmalen, target); |
| if (s->dma) { |
| espdma_memory_read(s->dma_opaque, buf, dmalen); |
| } else { |
| buf[0] = 0; |
| memcpy(&buf[1], s->ti_buf, dmalen); |
| dmalen++; |
| } |
| |
| s->ti_size = 0; |
| s->ti_rptr = 0; |
| s->ti_wptr = 0; |
| |
| if (s->current_dev) { |
| /* Started a new command before the old one finished. Cancel it. */ |
| scsi_cancel_io(s->current_dev, 0); |
| s->async_len = 0; |
| } |
| |
| if (target >= MAX_DISKS || !s->scsi_dev[target]) { |
| // No such drive |
| s->rregs[4] = STAT_IN; |
| s->rregs[5] = INTR_DC; |
| s->rregs[6] = SEQ_0; |
| espdma_raise_irq(s->dma_opaque); |
| return 0; |
| } |
| s->current_dev = s->scsi_dev[target]; |
| return dmalen; |
| } |
| |
| static void do_cmd(ESPState *s, uint8_t *buf) |
| { |
| int32_t datalen; |
| int lun; |
| |
| DPRINTF("do_cmd: busid 0x%x\n", buf[0]); |
| lun = buf[0] & 7; |
| datalen = scsi_send_command(s->current_dev, 0, &buf[1], lun); |
| s->ti_size = datalen; |
| if (datalen != 0) { |
| s->rregs[4] = STAT_IN | STAT_TC; |
| s->dma_left = 0; |
| s->dma_counter = 0; |
| if (datalen > 0) { |
| s->rregs[4] |= STAT_DI; |
| scsi_read_data(s->current_dev, 0); |
| } else { |
| s->rregs[4] |= STAT_DO; |
| scsi_write_data(s->current_dev, 0); |
| } |
| } |
| s->rregs[5] = INTR_BS | INTR_FC; |
| s->rregs[6] = SEQ_CD; |
| espdma_raise_irq(s->dma_opaque); |
| } |
| |
| static void handle_satn(ESPState *s) |
| { |
| uint8_t buf[32]; |
| int len; |
| |
| len = get_cmd(s, buf); |
| if (len) |
| do_cmd(s, buf); |
| } |
| |
| static void handle_satn_stop(ESPState *s) |
| { |
| s->cmdlen = get_cmd(s, s->cmdbuf); |
| if (s->cmdlen) { |
| DPRINTF("Set ATN & Stop: cmdlen %d\n", s->cmdlen); |
| s->do_cmd = 1; |
| s->rregs[4] = STAT_IN | STAT_TC | STAT_CD; |
| s->rregs[5] = INTR_BS | INTR_FC; |
| s->rregs[6] = SEQ_CD; |
| espdma_raise_irq(s->dma_opaque); |
| } |
| } |
| |
| static void write_response(ESPState *s) |
| { |
| DPRINTF("Transfer status (sense=%d)\n", s->sense); |
| s->ti_buf[0] = s->sense; |
| s->ti_buf[1] = 0; |
| if (s->dma) { |
| espdma_memory_write(s->dma_opaque, s->ti_buf, 2); |
| s->rregs[4] = STAT_IN | STAT_TC | STAT_ST; |
| s->rregs[5] = INTR_BS | INTR_FC; |
| s->rregs[6] = SEQ_CD; |
| } else { |
| s->ti_size = 2; |
| s->ti_rptr = 0; |
| s->ti_wptr = 0; |
| s->rregs[7] = 2; |
| } |
| espdma_raise_irq(s->dma_opaque); |
| } |
| |
| static void esp_dma_done(ESPState *s) |
| { |
| s->rregs[4] |= STAT_IN | STAT_TC; |
| s->rregs[5] = INTR_BS; |
| s->rregs[6] = 0; |
| s->rregs[7] = 0; |
| s->rregs[0] = 0; |
| s->rregs[1] = 0; |
| espdma_raise_irq(s->dma_opaque); |
| } |
| |
| static void esp_do_dma(ESPState *s) |
| { |
| uint32_t len; |
| int to_device; |
| |
| to_device = (s->ti_size < 0); |
| len = s->dma_left; |
| if (s->do_cmd) { |
| DPRINTF("command len %d + %d\n", s->cmdlen, len); |
| espdma_memory_read(s->dma_opaque, &s->cmdbuf[s->cmdlen], len); |
| s->ti_size = 0; |
| s->cmdlen = 0; |
| s->do_cmd = 0; |
| do_cmd(s, s->cmdbuf); |
| return; |
| } |
| if (s->async_len == 0) { |
| /* Defer until data is available. */ |
| return; |
| } |
| if (len > s->async_len) { |
| len = s->async_len; |
| } |
| if (to_device) { |
| espdma_memory_read(s->dma_opaque, s->async_buf, len); |
| } else { |
| espdma_memory_write(s->dma_opaque, s->async_buf, len); |
| } |
| s->dma_left -= len; |
| s->async_buf += len; |
| s->async_len -= len; |
| if (to_device) |
| s->ti_size += len; |
| else |
| s->ti_size -= len; |
| if (s->async_len == 0) { |
| if (to_device) { |
| // ti_size is negative |
| scsi_write_data(s->current_dev, 0); |
| } else { |
| scsi_read_data(s->current_dev, 0); |
| /* If there is still data to be read from the device then |
| complete the DMA operation immeriately. Otherwise defer |
| until the scsi layer has completed. */ |
| if (s->dma_left == 0 && s->ti_size > 0) { |
| esp_dma_done(s); |
| } |
| } |
| } else { |
| /* Partially filled a scsi buffer. Complete immediately. */ |
| esp_dma_done(s); |
| } |
| } |
| |
| static void esp_command_complete(void *opaque, int reason, uint32_t tag, |
| uint32_t arg) |
| { |
| ESPState *s = (ESPState *)opaque; |
| |
| if (reason == SCSI_REASON_DONE) { |
| DPRINTF("SCSI Command complete\n"); |
| if (s->ti_size != 0) |
| DPRINTF("SCSI command completed unexpectedly\n"); |
| s->ti_size = 0; |
| s->dma_left = 0; |
| s->async_len = 0; |
| if (arg) |
| DPRINTF("Command failed\n"); |
| s->sense = arg; |
| s->rregs[4] = STAT_ST; |
| esp_dma_done(s); |
| s->current_dev = NULL; |
| } else { |
| DPRINTF("transfer %d/%d\n", s->dma_left, s->ti_size); |
| s->async_len = arg; |
| s->async_buf = scsi_get_buf(s->current_dev, 0); |
| if (s->dma_left) { |
| esp_do_dma(s); |
| } else if (s->dma_counter != 0 && s->ti_size <= 0) { |
| /* If this was the last part of a DMA transfer then the |
| completion interrupt is deferred to here. */ |
| esp_dma_done(s); |
| } |
| } |
| } |
| |
| static void handle_ti(ESPState *s) |
| { |
| uint32_t dmalen, minlen; |
| |
| dmalen = s->rregs[0] | (s->rregs[1] << 8); |
| if (dmalen==0) { |
| dmalen=0x10000; |
| } |
| s->dma_counter = dmalen; |
| |
| if (s->do_cmd) |
| minlen = (dmalen < 32) ? dmalen : 32; |
| else if (s->ti_size < 0) |
| minlen = (dmalen < -s->ti_size) ? dmalen : -s->ti_size; |
| else |
| minlen = (dmalen < s->ti_size) ? dmalen : s->ti_size; |
| DPRINTF("Transfer Information len %d\n", minlen); |
| if (s->dma) { |
| s->dma_left = minlen; |
| s->rregs[4] &= ~STAT_TC; |
| esp_do_dma(s); |
| } else if (s->do_cmd) { |
| DPRINTF("command len %d\n", s->cmdlen); |
| s->ti_size = 0; |
| s->cmdlen = 0; |
| s->do_cmd = 0; |
| do_cmd(s, s->cmdbuf); |
| return; |
| } |
| } |
| |
| void esp_reset(void *opaque) |
| { |
| ESPState *s = opaque; |
| |
| memset(s->rregs, 0, ESP_MAXREG); |
| memset(s->wregs, 0, ESP_MAXREG); |
| s->rregs[0x0e] = 0x4; // Indicate fas100a |
| s->ti_size = 0; |
| s->ti_rptr = 0; |
| s->ti_wptr = 0; |
| s->dma = 0; |
| s->do_cmd = 0; |
| } |
| |
| static uint32_t esp_mem_readb(void *opaque, target_phys_addr_t addr) |
| { |
| ESPState *s = opaque; |
| uint32_t saddr; |
| |
| saddr = (addr & ESP_MAXREG) >> 2; |
| DPRINTF("read reg[%d]: 0x%2.2x\n", saddr, s->rregs[saddr]); |
| switch (saddr) { |
| case 2: |
| // FIFO |
| if (s->ti_size > 0) { |
| s->ti_size--; |
| if ((s->rregs[4] & 6) == 0) { |
| /* Data in/out. */ |
| fprintf(stderr, "esp: PIO data read not implemented\n"); |
| s->rregs[2] = 0; |
| } else { |
| s->rregs[2] = s->ti_buf[s->ti_rptr++]; |
| } |
| espdma_raise_irq(s->dma_opaque); |
| } |
| if (s->ti_size == 0) { |
| s->ti_rptr = 0; |
| s->ti_wptr = 0; |
| } |
| break; |
| case 5: |
| // interrupt |
| // Clear interrupt/error status bits |
| s->rregs[4] &= ~(STAT_IN | STAT_GE | STAT_PE); |
| espdma_clear_irq(s->dma_opaque); |
| break; |
| default: |
| break; |
| } |
| return s->rregs[saddr]; |
| } |
| |
| static void esp_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) |
| { |
| ESPState *s = opaque; |
| uint32_t saddr; |
| |
| saddr = (addr & ESP_MAXREG) >> 2; |
| DPRINTF("write reg[%d]: 0x%2.2x -> 0x%2.2x\n", saddr, s->wregs[saddr], val); |
| switch (saddr) { |
| case 0: |
| case 1: |
| s->rregs[4] &= ~STAT_TC; |
| break; |
| case 2: |
| // FIFO |
| if (s->do_cmd) { |
| s->cmdbuf[s->cmdlen++] = val & 0xff; |
| } else if ((s->rregs[4] & 6) == 0) { |
| uint8_t buf; |
| buf = val & 0xff; |
| s->ti_size--; |
| fprintf(stderr, "esp: PIO data write not implemented\n"); |
| } else { |
| s->ti_size++; |
| s->ti_buf[s->ti_wptr++] = val & 0xff; |
| } |
| break; |
| case 3: |
| s->rregs[saddr] = val; |
| // Command |
| if (val & 0x80) { |
| s->dma = 1; |
| /* Reload DMA counter. */ |
| s->rregs[0] = s->wregs[0]; |
| s->rregs[1] = s->wregs[1]; |
| } else { |
| s->dma = 0; |
| } |
| switch(val & 0x7f) { |
| case 0: |
| DPRINTF("NOP (%2.2x)\n", val); |
| break; |
| case 1: |
| DPRINTF("Flush FIFO (%2.2x)\n", val); |
| //s->ti_size = 0; |
| s->rregs[5] = INTR_FC; |
| s->rregs[6] = 0; |
| break; |
| case 2: |
| DPRINTF("Chip reset (%2.2x)\n", val); |
| esp_reset(s); |
| break; |
| case 3: |
| DPRINTF("Bus reset (%2.2x)\n", val); |
| s->rregs[5] = INTR_RST; |
| if (!(s->wregs[8] & 0x40)) { |
| espdma_raise_irq(s->dma_opaque); |
| } |
| break; |
| case 0x10: |
| handle_ti(s); |
| break; |
| case 0x11: |
| DPRINTF("Initiator Command Complete Sequence (%2.2x)\n", val); |
| write_response(s); |
| break; |
| case 0x12: |
| DPRINTF("Message Accepted (%2.2x)\n", val); |
| write_response(s); |
| s->rregs[5] = INTR_DC; |
| s->rregs[6] = 0; |
| break; |
| case 0x1a: |
| DPRINTF("Set ATN (%2.2x)\n", val); |
| break; |
| case 0x42: |
| DPRINTF("Set ATN (%2.2x)\n", val); |
| handle_satn(s); |
| break; |
| case 0x43: |
| DPRINTF("Set ATN & stop (%2.2x)\n", val); |
| handle_satn_stop(s); |
| break; |
| default: |
| DPRINTF("Unhandled ESP command (%2.2x)\n", val); |
| break; |
| } |
| break; |
| case 4 ... 7: |
| break; |
| case 8: |
| s->rregs[saddr] = val; |
| break; |
| case 9 ... 10: |
| break; |
| case 11: |
| s->rregs[saddr] = val & 0x15; |
| break; |
| case 12 ... 15: |
| s->rregs[saddr] = val; |
| break; |
| default: |
| break; |
| } |
| s->wregs[saddr] = val; |
| } |
| |
| static CPUReadMemoryFunc *esp_mem_read[3] = { |
| esp_mem_readb, |
| esp_mem_readb, |
| esp_mem_readb, |
| }; |
| |
| static CPUWriteMemoryFunc *esp_mem_write[3] = { |
| esp_mem_writeb, |
| esp_mem_writeb, |
| esp_mem_writeb, |
| }; |
| |
| static void esp_save(QEMUFile *f, void *opaque) |
| { |
| ESPState *s = opaque; |
| |
| qemu_put_buffer(f, s->rregs, ESP_MAXREG); |
| qemu_put_buffer(f, s->wregs, ESP_MAXREG); |
| qemu_put_be32s(f, &s->ti_size); |
| qemu_put_be32s(f, &s->ti_rptr); |
| qemu_put_be32s(f, &s->ti_wptr); |
| qemu_put_buffer(f, s->ti_buf, TI_BUFSZ); |
| qemu_put_be32s(f, &s->dma); |
| } |
| |
| static int esp_load(QEMUFile *f, void *opaque, int version_id) |
| { |
| ESPState *s = opaque; |
| |
| if (version_id != 2) |
| return -EINVAL; // Cannot emulate 1 |
| |
| qemu_get_buffer(f, s->rregs, ESP_MAXREG); |
| qemu_get_buffer(f, s->wregs, ESP_MAXREG); |
| qemu_get_be32s(f, &s->ti_size); |
| qemu_get_be32s(f, &s->ti_rptr); |
| qemu_get_be32s(f, &s->ti_wptr); |
| qemu_get_buffer(f, s->ti_buf, TI_BUFSZ); |
| qemu_get_be32s(f, &s->dma); |
| |
| return 0; |
| } |
| |
| void esp_scsi_attach(void *opaque, BlockDriverState *bd, int id) |
| { |
| ESPState *s = (ESPState *)opaque; |
| |
| if (id < 0) { |
| for (id = 0; id < ESP_MAX_DEVS; id++) { |
| if (s->scsi_dev[id] == NULL) |
| break; |
| } |
| } |
| if (id >= ESP_MAX_DEVS) { |
| DPRINTF("Bad Device ID %d\n", id); |
| return; |
| } |
| if (s->scsi_dev[id]) { |
| DPRINTF("Destroying device %d\n", id); |
| scsi_disk_destroy(s->scsi_dev[id]); |
| } |
| DPRINTF("Attaching block device %d\n", id); |
| /* Command queueing is not implemented. */ |
| s->scsi_dev[id] = scsi_disk_init(bd, 0, esp_command_complete, s); |
| } |
| |
| void *esp_init(BlockDriverState **bd, uint32_t espaddr, void *dma_opaque) |
| { |
| ESPState *s; |
| int esp_io_memory; |
| |
| s = qemu_mallocz(sizeof(ESPState)); |
| if (!s) |
| return NULL; |
| |
| s->bd = bd; |
| s->dma_opaque = dma_opaque; |
| |
| esp_io_memory = cpu_register_io_memory(0, esp_mem_read, esp_mem_write, s); |
| cpu_register_physical_memory(espaddr, ESP_MAXREG*4, esp_io_memory); |
| |
| esp_reset(s); |
| |
| register_savevm("esp", espaddr, 2, esp_save, esp_load, s); |
| qemu_register_reset(esp_reset, s); |
| |
| return s; |
| } |