|  | /* | 
|  | * Copyright (C) 2018, Emilio G. Cota <cota@braap.org> | 
|  | * | 
|  | * License: GNU GPL, version 2 or later. | 
|  | *   See the COPYING file in the top-level directory. | 
|  | */ | 
|  | #include <inttypes.h> | 
|  | #include <assert.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  | #include <unistd.h> | 
|  | #include <stdio.h> | 
|  | #include <glib.h> | 
|  |  | 
|  | /* | 
|  | * plugins should not include anything from QEMU aside from the | 
|  | * API header. However as this is a test plugin to exercise the | 
|  | * internals of QEMU and we want to avoid needless code duplication we | 
|  | * do so here. bswap.h is pretty self-contained although it needs a | 
|  | * few things provided by compiler.h. | 
|  | */ | 
|  | #include <compiler.h> | 
|  | #include <bswap.h> | 
|  | #include <qemu-plugin.h> | 
|  |  | 
|  | QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION; | 
|  |  | 
|  | typedef struct { | 
|  | uint64_t mem_count; | 
|  | uint64_t io_count; | 
|  | } CPUCount; | 
|  |  | 
|  | typedef struct { | 
|  | uint64_t vaddr; | 
|  | const char *sym; | 
|  | } InsnInfo; | 
|  |  | 
|  | /* | 
|  | * For the "memory" system test we need to track accesses to | 
|  | * individual regions. We mirror the data written to the region and | 
|  | * then check when it is read that it matches up. | 
|  | * | 
|  | * We do this as regions rather than pages to save on complications | 
|  | * with page crossing and the fact the test only cares about the | 
|  | * test_data region. | 
|  | */ | 
|  | static uint64_t region_size = 4096 * 4; | 
|  | static uint64_t region_mask; | 
|  |  | 
|  | typedef struct { | 
|  | uint64_t region_address; | 
|  | uint64_t reads; | 
|  | uint64_t writes; | 
|  | uint8_t *data; | 
|  | /* Did we see every write and read with correct values? */ | 
|  | bool     seen_all; | 
|  | } RegionInfo; | 
|  |  | 
|  | static struct qemu_plugin_scoreboard *counts; | 
|  | static qemu_plugin_u64 mem_count; | 
|  | static qemu_plugin_u64 io_count; | 
|  | static bool do_inline, do_callback, do_print_accesses, do_region_summary; | 
|  | static bool do_haddr; | 
|  | static enum qemu_plugin_mem_rw rw = QEMU_PLUGIN_MEM_RW; | 
|  |  | 
|  |  | 
|  | static GMutex lock; | 
|  | static GHashTable *regions; | 
|  |  | 
|  | static gint addr_order(gconstpointer a, gconstpointer b) | 
|  | { | 
|  | RegionInfo *na = (RegionInfo *) a; | 
|  | RegionInfo *nb = (RegionInfo *) b; | 
|  |  | 
|  | return na->region_address > nb->region_address ? 1 : -1; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void plugin_exit(qemu_plugin_id_t id, void *p) | 
|  | { | 
|  | g_autoptr(GString) out = g_string_new(""); | 
|  |  | 
|  | if (do_inline || do_callback) { | 
|  | g_string_printf(out, "mem accesses: %" PRIu64 "\n", | 
|  | qemu_plugin_u64_sum(mem_count)); | 
|  | } | 
|  | if (do_haddr) { | 
|  | g_string_append_printf(out, "io accesses: %" PRIu64 "\n", | 
|  | qemu_plugin_u64_sum(io_count)); | 
|  | } | 
|  | qemu_plugin_outs(out->str); | 
|  |  | 
|  |  | 
|  | if (do_region_summary) { | 
|  | GList *counts = g_hash_table_get_values(regions); | 
|  |  | 
|  | counts = g_list_sort(counts, addr_order); | 
|  |  | 
|  | g_string_printf(out, "Region Base, Reads, Writes, Seen all\n"); | 
|  |  | 
|  | if (counts && g_list_next(counts)) { | 
|  | for (/* counts */; counts; counts = counts->next) { | 
|  | RegionInfo *ri = (RegionInfo *) counts->data; | 
|  |  | 
|  | g_string_append_printf(out, | 
|  | "0x%016"PRIx64", " | 
|  | "%"PRId64", %"PRId64", %s\n", | 
|  | ri->region_address, | 
|  | ri->reads, | 
|  | ri->writes, | 
|  | ri->seen_all ? "true" : "false"); | 
|  | } | 
|  | } | 
|  | qemu_plugin_outs(out->str); | 
|  | } | 
|  |  | 
|  | qemu_plugin_scoreboard_free(counts); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the region tracking info for the access. We split up accesses | 
|  | * that span regions even though the plugin infrastructure will deliver | 
|  | * it as a single access. | 
|  | */ | 
|  | static void update_region_info(uint64_t region, uint64_t offset, | 
|  | qemu_plugin_meminfo_t meminfo, | 
|  | qemu_plugin_mem_value value, | 
|  | unsigned size) | 
|  | { | 
|  | bool be = qemu_plugin_mem_is_big_endian(meminfo); | 
|  | bool is_store = qemu_plugin_mem_is_store(meminfo); | 
|  | RegionInfo *ri; | 
|  | bool unseen_data = false; | 
|  |  | 
|  | g_assert(offset + size <= region_size); | 
|  |  | 
|  | g_mutex_lock(&lock); | 
|  | ri = (RegionInfo *) g_hash_table_lookup(regions, ®ion); | 
|  |  | 
|  | if (!ri) { | 
|  | ri = g_new0(RegionInfo, 1); | 
|  | ri->region_address = region; | 
|  | ri->data = g_malloc0(region_size); | 
|  | ri->seen_all = true; | 
|  | g_hash_table_insert(regions, &ri->region_address, ri); | 
|  | } | 
|  |  | 
|  | if (is_store) { | 
|  | ri->writes++; | 
|  | } else { | 
|  | ri->reads++; | 
|  | } | 
|  |  | 
|  | switch (value.type) { | 
|  | case QEMU_PLUGIN_MEM_VALUE_U8: | 
|  | if (is_store) { | 
|  | ri->data[offset] = value.data.u8; | 
|  | } else if (ri->data[offset] != value.data.u8) { | 
|  | unseen_data = true; | 
|  | } | 
|  | break; | 
|  | case QEMU_PLUGIN_MEM_VALUE_U16: | 
|  | { | 
|  | uint16_t *p = (uint16_t *) &ri->data[offset]; | 
|  | if (is_store) { | 
|  | if (be) { | 
|  | stw_be_p(p, value.data.u16); | 
|  | } else { | 
|  | stw_le_p(p, value.data.u16); | 
|  | } | 
|  | } else { | 
|  | uint16_t val = be ? lduw_be_p(p) : lduw_le_p(p); | 
|  | unseen_data = val != value.data.u16; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case QEMU_PLUGIN_MEM_VALUE_U32: | 
|  | { | 
|  | uint32_t *p = (uint32_t *) &ri->data[offset]; | 
|  | if (is_store) { | 
|  | if (be) { | 
|  | stl_be_p(p, value.data.u32); | 
|  | } else { | 
|  | stl_le_p(p, value.data.u32); | 
|  | } | 
|  | } else { | 
|  | uint32_t val = be ? ldl_be_p(p) : ldl_le_p(p); | 
|  | unseen_data = val != value.data.u32; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case QEMU_PLUGIN_MEM_VALUE_U64: | 
|  | { | 
|  | uint64_t *p = (uint64_t *) &ri->data[offset]; | 
|  | if (is_store) { | 
|  | if (be) { | 
|  | stq_be_p(p, value.data.u64); | 
|  | } else { | 
|  | stq_le_p(p, value.data.u64); | 
|  | } | 
|  | } else { | 
|  | uint64_t val = be ? ldq_be_p(p) : ldq_le_p(p); | 
|  | unseen_data = val != value.data.u64; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case QEMU_PLUGIN_MEM_VALUE_U128: | 
|  | /* non in test so skip */ | 
|  | break; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is expected for regions initialised by QEMU (.text etc) but we | 
|  | * expect to see all data read and written to the test_data region | 
|  | * of the memory test. | 
|  | */ | 
|  | if (unseen_data && ri->seen_all) { | 
|  | g_autoptr(GString) error = g_string_new("Warning: "); | 
|  | g_string_append_printf(error, "0x%016"PRIx64":%"PRId64 | 
|  | " read an un-instrumented value\n", | 
|  | region, offset); | 
|  | qemu_plugin_outs(error->str); | 
|  | ri->seen_all = false; | 
|  | } | 
|  |  | 
|  | g_mutex_unlock(&lock); | 
|  | } | 
|  |  | 
|  | static void vcpu_mem(unsigned int cpu_index, qemu_plugin_meminfo_t meminfo, | 
|  | uint64_t vaddr, void *udata) | 
|  | { | 
|  | if (do_haddr) { | 
|  | struct qemu_plugin_hwaddr *hwaddr; | 
|  | hwaddr = qemu_plugin_get_hwaddr(meminfo, vaddr); | 
|  | if (qemu_plugin_hwaddr_is_io(hwaddr)) { | 
|  | qemu_plugin_u64_add(io_count, cpu_index, 1); | 
|  | } else { | 
|  | qemu_plugin_u64_add(mem_count, cpu_index, 1); | 
|  | } | 
|  | } else { | 
|  | qemu_plugin_u64_add(mem_count, cpu_index, 1); | 
|  | } | 
|  |  | 
|  | if (do_region_summary) { | 
|  | uint64_t region = vaddr & ~region_mask; | 
|  | uint64_t offset = vaddr & region_mask; | 
|  | qemu_plugin_mem_value value = qemu_plugin_mem_get_value(meminfo); | 
|  | unsigned size = 1 << qemu_plugin_mem_size_shift(meminfo); | 
|  |  | 
|  | update_region_info(region, offset, meminfo, value, size); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void print_access(unsigned int cpu_index, qemu_plugin_meminfo_t meminfo, | 
|  | uint64_t vaddr, void *udata) | 
|  | { | 
|  | InsnInfo *insn_info = udata; | 
|  | unsigned size = 8 << qemu_plugin_mem_size_shift(meminfo); | 
|  | const char *type = qemu_plugin_mem_is_store(meminfo) ? "store" : "load"; | 
|  | qemu_plugin_mem_value value = qemu_plugin_mem_get_value(meminfo); | 
|  | uint64_t hwaddr = | 
|  | qemu_plugin_hwaddr_phys_addr(qemu_plugin_get_hwaddr(meminfo, vaddr)); | 
|  | g_autoptr(GString) out = g_string_new(""); | 
|  | g_string_printf(out, | 
|  | "0x%"PRIx64",%s,0x%"PRIx64",0x%"PRIx64",%d,%s,", | 
|  | insn_info->vaddr, insn_info->sym, | 
|  | vaddr, hwaddr, size, type); | 
|  | switch (value.type) { | 
|  | case QEMU_PLUGIN_MEM_VALUE_U8: | 
|  | g_string_append_printf(out, "0x%02"PRIx8, value.data.u8); | 
|  | break; | 
|  | case QEMU_PLUGIN_MEM_VALUE_U16: | 
|  | g_string_append_printf(out, "0x%04"PRIx16, value.data.u16); | 
|  | break; | 
|  | case QEMU_PLUGIN_MEM_VALUE_U32: | 
|  | g_string_append_printf(out, "0x%08"PRIx32, value.data.u32); | 
|  | break; | 
|  | case QEMU_PLUGIN_MEM_VALUE_U64: | 
|  | g_string_append_printf(out, "0x%016"PRIx64, value.data.u64); | 
|  | break; | 
|  | case QEMU_PLUGIN_MEM_VALUE_U128: | 
|  | g_string_append_printf(out, "0x%016"PRIx64"%016"PRIx64, | 
|  | value.data.u128.high, value.data.u128.low); | 
|  | break; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | g_string_append_printf(out, "\n"); | 
|  | qemu_plugin_outs(out->str); | 
|  | } | 
|  |  | 
|  | static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb) | 
|  | { | 
|  | size_t n = qemu_plugin_tb_n_insns(tb); | 
|  | size_t i; | 
|  |  | 
|  | for (i = 0; i < n; i++) { | 
|  | struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i); | 
|  |  | 
|  | if (do_inline) { | 
|  | qemu_plugin_register_vcpu_mem_inline_per_vcpu( | 
|  | insn, rw, | 
|  | QEMU_PLUGIN_INLINE_ADD_U64, | 
|  | mem_count, 1); | 
|  | } | 
|  | if (do_callback || do_region_summary) { | 
|  | qemu_plugin_register_vcpu_mem_cb(insn, vcpu_mem, | 
|  | QEMU_PLUGIN_CB_NO_REGS, | 
|  | rw, NULL); | 
|  | } | 
|  | if (do_print_accesses) { | 
|  | /* we leak this pointer, to avoid locking to keep track of it */ | 
|  | InsnInfo *insn_info = g_malloc(sizeof(InsnInfo)); | 
|  | const char *sym = qemu_plugin_insn_symbol(insn); | 
|  | insn_info->sym = sym ? sym : ""; | 
|  | insn_info->vaddr = qemu_plugin_insn_vaddr(insn); | 
|  | qemu_plugin_register_vcpu_mem_cb(insn, print_access, | 
|  | QEMU_PLUGIN_CB_NO_REGS, | 
|  | rw, (void *) insn_info); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | QEMU_PLUGIN_EXPORT int qemu_plugin_install(qemu_plugin_id_t id, | 
|  | const qemu_info_t *info, | 
|  | int argc, char **argv) | 
|  | { | 
|  |  | 
|  | for (int i = 0; i < argc; i++) { | 
|  | char *opt = argv[i]; | 
|  | g_auto(GStrv) tokens = g_strsplit(opt, "=", 2); | 
|  |  | 
|  | if (g_strcmp0(tokens[0], "haddr") == 0) { | 
|  | if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &do_haddr)) { | 
|  | fprintf(stderr, "boolean argument parsing failed: %s\n", opt); | 
|  | return -1; | 
|  | } | 
|  | } else if (g_strcmp0(tokens[0], "track") == 0) { | 
|  | if (g_strcmp0(tokens[1], "r") == 0) { | 
|  | rw = QEMU_PLUGIN_MEM_R; | 
|  | } else if (g_strcmp0(tokens[1], "w") == 0) { | 
|  | rw = QEMU_PLUGIN_MEM_W; | 
|  | } else if (g_strcmp0(tokens[1], "rw") == 0) { | 
|  | rw = QEMU_PLUGIN_MEM_RW; | 
|  | } else { | 
|  | fprintf(stderr, "invalid value for argument track: %s\n", opt); | 
|  | return -1; | 
|  | } | 
|  | } else if (g_strcmp0(tokens[0], "inline") == 0) { | 
|  | if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &do_inline)) { | 
|  | fprintf(stderr, "boolean argument parsing failed: %s\n", opt); | 
|  | return -1; | 
|  | } | 
|  | } else if (g_strcmp0(tokens[0], "callback") == 0) { | 
|  | if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &do_callback)) { | 
|  | fprintf(stderr, "boolean argument parsing failed: %s\n", opt); | 
|  | return -1; | 
|  | } | 
|  | } else if (g_strcmp0(tokens[0], "print-accesses") == 0) { | 
|  | if (!qemu_plugin_bool_parse(tokens[0], tokens[1], | 
|  | &do_print_accesses)) { | 
|  | fprintf(stderr, "boolean argument parsing failed: %s\n", opt); | 
|  | return -1; | 
|  | } | 
|  | } else if (g_strcmp0(tokens[0], "region-summary") == 0) { | 
|  | if (!qemu_plugin_bool_parse(tokens[0], tokens[1], | 
|  | &do_region_summary)) { | 
|  | fprintf(stderr, "boolean argument parsing failed: %s\n", opt); | 
|  | return -1; | 
|  | } | 
|  | } else { | 
|  | fprintf(stderr, "option parsing failed: %s\n", opt); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (do_inline && do_callback) { | 
|  | fprintf(stderr, | 
|  | "can't enable inline and callback counting at the same time\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (do_print_accesses) { | 
|  | g_autoptr(GString) out = g_string_new(""); | 
|  | g_string_printf(out, | 
|  | "insn_vaddr,insn_symbol,mem_vaddr,mem_hwaddr," | 
|  | "access_size,access_type,mem_value\n"); | 
|  | qemu_plugin_outs(out->str); | 
|  | } | 
|  |  | 
|  | if (do_region_summary) { | 
|  | region_mask = (region_size - 1); | 
|  | regions = g_hash_table_new(g_int64_hash, g_int64_equal); | 
|  | } | 
|  |  | 
|  | counts = qemu_plugin_scoreboard_new(sizeof(CPUCount)); | 
|  | mem_count = qemu_plugin_scoreboard_u64_in_struct( | 
|  | counts, CPUCount, mem_count); | 
|  | io_count = qemu_plugin_scoreboard_u64_in_struct(counts, CPUCount, io_count); | 
|  | qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans); | 
|  | qemu_plugin_register_atexit_cb(id, plugin_exit, NULL); | 
|  | return 0; | 
|  | } |