| /* |
| * Win32 implementation for mutex/cond/thread functions |
| * |
| * Copyright Red Hat, Inc. 2010 |
| * |
| * Author: |
| * Paolo Bonzini <pbonzini@redhat.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| #include "qemu/osdep.h" |
| #include "qemu-common.h" |
| #include "qemu/thread.h" |
| #include "qemu/notify.h" |
| #include <process.h> |
| |
| static bool name_threads; |
| |
| void qemu_thread_naming(bool enable) |
| { |
| /* But note we don't actually name them on Windows yet */ |
| name_threads = enable; |
| |
| fprintf(stderr, "qemu: thread naming not supported on this host\n"); |
| } |
| |
| static void error_exit(int err, const char *msg) |
| { |
| char *pstr; |
| |
| FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER, |
| NULL, err, 0, (LPTSTR)&pstr, 2, NULL); |
| fprintf(stderr, "qemu: %s: %s\n", msg, pstr); |
| LocalFree(pstr); |
| abort(); |
| } |
| |
| void qemu_mutex_init(QemuMutex *mutex) |
| { |
| mutex->owner = 0; |
| InitializeCriticalSection(&mutex->lock); |
| } |
| |
| void qemu_mutex_destroy(QemuMutex *mutex) |
| { |
| assert(mutex->owner == 0); |
| DeleteCriticalSection(&mutex->lock); |
| } |
| |
| void qemu_mutex_lock(QemuMutex *mutex) |
| { |
| EnterCriticalSection(&mutex->lock); |
| |
| /* Win32 CRITICAL_SECTIONs are recursive. Assert that we're not |
| * using them as such. |
| */ |
| assert(mutex->owner == 0); |
| mutex->owner = GetCurrentThreadId(); |
| } |
| |
| int qemu_mutex_trylock(QemuMutex *mutex) |
| { |
| int owned; |
| |
| owned = TryEnterCriticalSection(&mutex->lock); |
| if (owned) { |
| assert(mutex->owner == 0); |
| mutex->owner = GetCurrentThreadId(); |
| } |
| return !owned; |
| } |
| |
| void qemu_mutex_unlock(QemuMutex *mutex) |
| { |
| assert(mutex->owner == GetCurrentThreadId()); |
| mutex->owner = 0; |
| LeaveCriticalSection(&mutex->lock); |
| } |
| |
| void qemu_rec_mutex_init(QemuRecMutex *mutex) |
| { |
| InitializeCriticalSection(&mutex->lock); |
| } |
| |
| void qemu_rec_mutex_destroy(QemuRecMutex *mutex) |
| { |
| DeleteCriticalSection(&mutex->lock); |
| } |
| |
| void qemu_rec_mutex_lock(QemuRecMutex *mutex) |
| { |
| EnterCriticalSection(&mutex->lock); |
| } |
| |
| int qemu_rec_mutex_trylock(QemuRecMutex *mutex) |
| { |
| return !TryEnterCriticalSection(&mutex->lock); |
| } |
| |
| void qemu_rec_mutex_unlock(QemuRecMutex *mutex) |
| { |
| LeaveCriticalSection(&mutex->lock); |
| } |
| |
| void qemu_cond_init(QemuCond *cond) |
| { |
| memset(cond, 0, sizeof(*cond)); |
| |
| cond->sema = CreateSemaphore(NULL, 0, LONG_MAX, NULL); |
| if (!cond->sema) { |
| error_exit(GetLastError(), __func__); |
| } |
| cond->continue_event = CreateEvent(NULL, /* security */ |
| FALSE, /* auto-reset */ |
| FALSE, /* not signaled */ |
| NULL); /* name */ |
| if (!cond->continue_event) { |
| error_exit(GetLastError(), __func__); |
| } |
| } |
| |
| void qemu_cond_destroy(QemuCond *cond) |
| { |
| BOOL result; |
| result = CloseHandle(cond->continue_event); |
| if (!result) { |
| error_exit(GetLastError(), __func__); |
| } |
| cond->continue_event = 0; |
| result = CloseHandle(cond->sema); |
| if (!result) { |
| error_exit(GetLastError(), __func__); |
| } |
| cond->sema = 0; |
| } |
| |
| void qemu_cond_signal(QemuCond *cond) |
| { |
| DWORD result; |
| |
| /* |
| * Signal only when there are waiters. cond->waiters is |
| * incremented by pthread_cond_wait under the external lock, |
| * so we are safe about that. |
| */ |
| if (cond->waiters == 0) { |
| return; |
| } |
| |
| /* |
| * Waiting threads decrement it outside the external lock, but |
| * only if another thread is executing pthread_cond_broadcast and |
| * has the mutex. So, it also cannot be decremented concurrently |
| * with this particular access. |
| */ |
| cond->target = cond->waiters - 1; |
| result = SignalObjectAndWait(cond->sema, cond->continue_event, |
| INFINITE, FALSE); |
| if (result == WAIT_ABANDONED || result == WAIT_FAILED) { |
| error_exit(GetLastError(), __func__); |
| } |
| } |
| |
| void qemu_cond_broadcast(QemuCond *cond) |
| { |
| BOOLEAN result; |
| /* |
| * As in pthread_cond_signal, access to cond->waiters and |
| * cond->target is locked via the external mutex. |
| */ |
| if (cond->waiters == 0) { |
| return; |
| } |
| |
| cond->target = 0; |
| result = ReleaseSemaphore(cond->sema, cond->waiters, NULL); |
| if (!result) { |
| error_exit(GetLastError(), __func__); |
| } |
| |
| /* |
| * At this point all waiters continue. Each one takes its |
| * slice of the semaphore. Now it's our turn to wait: Since |
| * the external mutex is held, no thread can leave cond_wait, |
| * yet. For this reason, we can be sure that no thread gets |
| * a chance to eat *more* than one slice. OTOH, it means |
| * that the last waiter must send us a wake-up. |
| */ |
| WaitForSingleObject(cond->continue_event, INFINITE); |
| } |
| |
| void qemu_cond_wait(QemuCond *cond, QemuMutex *mutex) |
| { |
| /* |
| * This access is protected under the mutex. |
| */ |
| cond->waiters++; |
| |
| /* |
| * Unlock external mutex and wait for signal. |
| * NOTE: we've held mutex locked long enough to increment |
| * waiters count above, so there's no problem with |
| * leaving mutex unlocked before we wait on semaphore. |
| */ |
| qemu_mutex_unlock(mutex); |
| WaitForSingleObject(cond->sema, INFINITE); |
| |
| /* Now waiters must rendez-vous with the signaling thread and |
| * let it continue. For cond_broadcast this has heavy contention |
| * and triggers thundering herd. So goes life. |
| * |
| * Decrease waiters count. The mutex is not taken, so we have |
| * to do this atomically. |
| * |
| * All waiters contend for the mutex at the end of this function |
| * until the signaling thread relinquishes it. To ensure |
| * each waiter consumes exactly one slice of the semaphore, |
| * the signaling thread stops until it is told by the last |
| * waiter that it can go on. |
| */ |
| if (InterlockedDecrement(&cond->waiters) == cond->target) { |
| SetEvent(cond->continue_event); |
| } |
| |
| qemu_mutex_lock(mutex); |
| } |
| |
| void qemu_sem_init(QemuSemaphore *sem, int init) |
| { |
| /* Manual reset. */ |
| sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL); |
| } |
| |
| void qemu_sem_destroy(QemuSemaphore *sem) |
| { |
| CloseHandle(sem->sema); |
| } |
| |
| void qemu_sem_post(QemuSemaphore *sem) |
| { |
| ReleaseSemaphore(sem->sema, 1, NULL); |
| } |
| |
| int qemu_sem_timedwait(QemuSemaphore *sem, int ms) |
| { |
| int rc = WaitForSingleObject(sem->sema, ms); |
| if (rc == WAIT_OBJECT_0) { |
| return 0; |
| } |
| if (rc != WAIT_TIMEOUT) { |
| error_exit(GetLastError(), __func__); |
| } |
| return -1; |
| } |
| |
| void qemu_sem_wait(QemuSemaphore *sem) |
| { |
| if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) { |
| error_exit(GetLastError(), __func__); |
| } |
| } |
| |
| /* Wrap a Win32 manual-reset event with a fast userspace path. The idea |
| * is to reset the Win32 event lazily, as part of a test-reset-test-wait |
| * sequence. Such a sequence is, indeed, how QemuEvents are used by |
| * RCU and other subsystems! |
| * |
| * Valid transitions: |
| * - free->set, when setting the event |
| * - busy->set, when setting the event, followed by SetEvent |
| * - set->free, when resetting the event |
| * - free->busy, when waiting |
| * |
| * set->busy does not happen (it can be observed from the outside but |
| * it really is set->free->busy). |
| * |
| * busy->free provably cannot happen; to enforce it, the set->free transition |
| * is done with an OR, which becomes a no-op if the event has concurrently |
| * transitioned to free or busy (and is faster than cmpxchg). |
| */ |
| |
| #define EV_SET 0 |
| #define EV_FREE 1 |
| #define EV_BUSY -1 |
| |
| void qemu_event_init(QemuEvent *ev, bool init) |
| { |
| /* Manual reset. */ |
| ev->event = CreateEvent(NULL, TRUE, TRUE, NULL); |
| ev->value = (init ? EV_SET : EV_FREE); |
| } |
| |
| void qemu_event_destroy(QemuEvent *ev) |
| { |
| CloseHandle(ev->event); |
| } |
| |
| void qemu_event_set(QemuEvent *ev) |
| { |
| /* qemu_event_set has release semantics, but because it *loads* |
| * ev->value we need a full memory barrier here. |
| */ |
| smp_mb(); |
| if (atomic_read(&ev->value) != EV_SET) { |
| if (atomic_xchg(&ev->value, EV_SET) == EV_BUSY) { |
| /* There were waiters, wake them up. */ |
| SetEvent(ev->event); |
| } |
| } |
| } |
| |
| void qemu_event_reset(QemuEvent *ev) |
| { |
| unsigned value; |
| |
| value = atomic_read(&ev->value); |
| smp_mb_acquire(); |
| if (value == EV_SET) { |
| /* If there was a concurrent reset (or even reset+wait), |
| * do nothing. Otherwise change EV_SET->EV_FREE. |
| */ |
| atomic_or(&ev->value, EV_FREE); |
| } |
| } |
| |
| void qemu_event_wait(QemuEvent *ev) |
| { |
| unsigned value; |
| |
| value = atomic_read(&ev->value); |
| smp_mb_acquire(); |
| if (value != EV_SET) { |
| if (value == EV_FREE) { |
| /* qemu_event_set is not yet going to call SetEvent, but we are |
| * going to do another check for EV_SET below when setting EV_BUSY. |
| * At that point it is safe to call WaitForSingleObject. |
| */ |
| ResetEvent(ev->event); |
| |
| /* Tell qemu_event_set that there are waiters. No need to retry |
| * because there cannot be a concurent busy->free transition. |
| * After the CAS, the event will be either set or busy. |
| */ |
| if (atomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) { |
| value = EV_SET; |
| } else { |
| value = EV_BUSY; |
| } |
| } |
| if (value == EV_BUSY) { |
| WaitForSingleObject(ev->event, INFINITE); |
| } |
| } |
| } |
| |
| struct QemuThreadData { |
| /* Passed to win32_start_routine. */ |
| void *(*start_routine)(void *); |
| void *arg; |
| short mode; |
| NotifierList exit; |
| |
| /* Only used for joinable threads. */ |
| bool exited; |
| void *ret; |
| CRITICAL_SECTION cs; |
| }; |
| |
| static bool atexit_registered; |
| static NotifierList main_thread_exit; |
| |
| static __thread QemuThreadData *qemu_thread_data; |
| |
| static void run_main_thread_exit(void) |
| { |
| notifier_list_notify(&main_thread_exit, NULL); |
| } |
| |
| void qemu_thread_atexit_add(Notifier *notifier) |
| { |
| if (!qemu_thread_data) { |
| if (!atexit_registered) { |
| atexit_registered = true; |
| atexit(run_main_thread_exit); |
| } |
| notifier_list_add(&main_thread_exit, notifier); |
| } else { |
| notifier_list_add(&qemu_thread_data->exit, notifier); |
| } |
| } |
| |
| void qemu_thread_atexit_remove(Notifier *notifier) |
| { |
| notifier_remove(notifier); |
| } |
| |
| static unsigned __stdcall win32_start_routine(void *arg) |
| { |
| QemuThreadData *data = (QemuThreadData *) arg; |
| void *(*start_routine)(void *) = data->start_routine; |
| void *thread_arg = data->arg; |
| |
| qemu_thread_data = data; |
| qemu_thread_exit(start_routine(thread_arg)); |
| abort(); |
| } |
| |
| void qemu_thread_exit(void *arg) |
| { |
| QemuThreadData *data = qemu_thread_data; |
| |
| notifier_list_notify(&data->exit, NULL); |
| if (data->mode == QEMU_THREAD_JOINABLE) { |
| data->ret = arg; |
| EnterCriticalSection(&data->cs); |
| data->exited = true; |
| LeaveCriticalSection(&data->cs); |
| } else { |
| g_free(data); |
| } |
| _endthreadex(0); |
| } |
| |
| void *qemu_thread_join(QemuThread *thread) |
| { |
| QemuThreadData *data; |
| void *ret; |
| HANDLE handle; |
| |
| data = thread->data; |
| if (data->mode == QEMU_THREAD_DETACHED) { |
| return NULL; |
| } |
| |
| /* |
| * Because multiple copies of the QemuThread can exist via |
| * qemu_thread_get_self, we need to store a value that cannot |
| * leak there. The simplest, non racy way is to store the TID, |
| * discard the handle that _beginthreadex gives back, and |
| * get another copy of the handle here. |
| */ |
| handle = qemu_thread_get_handle(thread); |
| if (handle) { |
| WaitForSingleObject(handle, INFINITE); |
| CloseHandle(handle); |
| } |
| ret = data->ret; |
| DeleteCriticalSection(&data->cs); |
| g_free(data); |
| return ret; |
| } |
| |
| void qemu_thread_create(QemuThread *thread, const char *name, |
| void *(*start_routine)(void *), |
| void *arg, int mode) |
| { |
| HANDLE hThread; |
| struct QemuThreadData *data; |
| |
| data = g_malloc(sizeof *data); |
| data->start_routine = start_routine; |
| data->arg = arg; |
| data->mode = mode; |
| data->exited = false; |
| notifier_list_init(&data->exit); |
| |
| if (data->mode != QEMU_THREAD_DETACHED) { |
| InitializeCriticalSection(&data->cs); |
| } |
| |
| hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine, |
| data, 0, &thread->tid); |
| if (!hThread) { |
| error_exit(GetLastError(), __func__); |
| } |
| CloseHandle(hThread); |
| thread->data = data; |
| } |
| |
| void qemu_thread_get_self(QemuThread *thread) |
| { |
| thread->data = qemu_thread_data; |
| thread->tid = GetCurrentThreadId(); |
| } |
| |
| HANDLE qemu_thread_get_handle(QemuThread *thread) |
| { |
| QemuThreadData *data; |
| HANDLE handle; |
| |
| data = thread->data; |
| if (data->mode == QEMU_THREAD_DETACHED) { |
| return NULL; |
| } |
| |
| EnterCriticalSection(&data->cs); |
| if (!data->exited) { |
| handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME, FALSE, |
| thread->tid); |
| } else { |
| handle = NULL; |
| } |
| LeaveCriticalSection(&data->cs); |
| return handle; |
| } |
| |
| bool qemu_thread_is_self(QemuThread *thread) |
| { |
| return GetCurrentThreadId() == thread->tid; |
| } |