| /* |
| * Bitmap Module |
| * |
| * Stolen from linux/src/lib/bitmap.c |
| * |
| * Copyright (C) 2010 Corentin Chary |
| * |
| * This source code is licensed under the GNU General Public License, |
| * Version 2. |
| */ |
| |
| #include "qemu/bitops.h" |
| #include "qemu/bitmap.h" |
| |
| /* |
| * bitmaps provide an array of bits, implemented using an an |
| * array of unsigned longs. The number of valid bits in a |
| * given bitmap does _not_ need to be an exact multiple of |
| * BITS_PER_LONG. |
| * |
| * The possible unused bits in the last, partially used word |
| * of a bitmap are 'don't care'. The implementation makes |
| * no particular effort to keep them zero. It ensures that |
| * their value will not affect the results of any operation. |
| * The bitmap operations that return Boolean (bitmap_empty, |
| * for example) or scalar (bitmap_weight, for example) results |
| * carefully filter out these unused bits from impacting their |
| * results. |
| * |
| * These operations actually hold to a slightly stronger rule: |
| * if you don't input any bitmaps to these ops that have some |
| * unused bits set, then they won't output any set unused bits |
| * in output bitmaps. |
| * |
| * The byte ordering of bitmaps is more natural on little |
| * endian architectures. |
| */ |
| |
| int slow_bitmap_empty(const unsigned long *bitmap, int bits) |
| { |
| int k, lim = bits/BITS_PER_LONG; |
| |
| for (k = 0; k < lim; ++k) { |
| if (bitmap[k]) { |
| return 0; |
| } |
| } |
| if (bits % BITS_PER_LONG) { |
| if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) { |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| int slow_bitmap_full(const unsigned long *bitmap, int bits) |
| { |
| int k, lim = bits/BITS_PER_LONG; |
| |
| for (k = 0; k < lim; ++k) { |
| if (~bitmap[k]) { |
| return 0; |
| } |
| } |
| |
| if (bits % BITS_PER_LONG) { |
| if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) { |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| int slow_bitmap_equal(const unsigned long *bitmap1, |
| const unsigned long *bitmap2, int bits) |
| { |
| int k, lim = bits/BITS_PER_LONG; |
| |
| for (k = 0; k < lim; ++k) { |
| if (bitmap1[k] != bitmap2[k]) { |
| return 0; |
| } |
| } |
| |
| if (bits % BITS_PER_LONG) { |
| if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) { |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| void slow_bitmap_complement(unsigned long *dst, const unsigned long *src, |
| int bits) |
| { |
| int k, lim = bits/BITS_PER_LONG; |
| |
| for (k = 0; k < lim; ++k) { |
| dst[k] = ~src[k]; |
| } |
| |
| if (bits % BITS_PER_LONG) { |
| dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits); |
| } |
| } |
| |
| int slow_bitmap_and(unsigned long *dst, const unsigned long *bitmap1, |
| const unsigned long *bitmap2, int bits) |
| { |
| int k; |
| int nr = BITS_TO_LONGS(bits); |
| unsigned long result = 0; |
| |
| for (k = 0; k < nr; k++) { |
| result |= (dst[k] = bitmap1[k] & bitmap2[k]); |
| } |
| return result != 0; |
| } |
| |
| void slow_bitmap_or(unsigned long *dst, const unsigned long *bitmap1, |
| const unsigned long *bitmap2, int bits) |
| { |
| int k; |
| int nr = BITS_TO_LONGS(bits); |
| |
| for (k = 0; k < nr; k++) { |
| dst[k] = bitmap1[k] | bitmap2[k]; |
| } |
| } |
| |
| void slow_bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, |
| const unsigned long *bitmap2, int bits) |
| { |
| int k; |
| int nr = BITS_TO_LONGS(bits); |
| |
| for (k = 0; k < nr; k++) { |
| dst[k] = bitmap1[k] ^ bitmap2[k]; |
| } |
| } |
| |
| int slow_bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, |
| const unsigned long *bitmap2, int bits) |
| { |
| int k; |
| int nr = BITS_TO_LONGS(bits); |
| unsigned long result = 0; |
| |
| for (k = 0; k < nr; k++) { |
| result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); |
| } |
| return result != 0; |
| } |
| |
| #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) % BITS_PER_LONG)) |
| |
| void bitmap_set(unsigned long *map, int start, int nr) |
| { |
| unsigned long *p = map + BIT_WORD(start); |
| const int size = start + nr; |
| int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); |
| unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); |
| |
| while (nr - bits_to_set >= 0) { |
| *p |= mask_to_set; |
| nr -= bits_to_set; |
| bits_to_set = BITS_PER_LONG; |
| mask_to_set = ~0UL; |
| p++; |
| } |
| if (nr) { |
| mask_to_set &= BITMAP_LAST_WORD_MASK(size); |
| *p |= mask_to_set; |
| } |
| } |
| |
| void bitmap_clear(unsigned long *map, int start, int nr) |
| { |
| unsigned long *p = map + BIT_WORD(start); |
| const int size = start + nr; |
| int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); |
| unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); |
| |
| while (nr - bits_to_clear >= 0) { |
| *p &= ~mask_to_clear; |
| nr -= bits_to_clear; |
| bits_to_clear = BITS_PER_LONG; |
| mask_to_clear = ~0UL; |
| p++; |
| } |
| if (nr) { |
| mask_to_clear &= BITMAP_LAST_WORD_MASK(size); |
| *p &= ~mask_to_clear; |
| } |
| } |
| |
| #define ALIGN_MASK(x,mask) (((x)+(mask))&~(mask)) |
| |
| /** |
| * bitmap_find_next_zero_area - find a contiguous aligned zero area |
| * @map: The address to base the search on |
| * @size: The bitmap size in bits |
| * @start: The bitnumber to start searching at |
| * @nr: The number of zeroed bits we're looking for |
| * @align_mask: Alignment mask for zero area |
| * |
| * The @align_mask should be one less than a power of 2; the effect is that |
| * the bit offset of all zero areas this function finds is multiples of that |
| * power of 2. A @align_mask of 0 means no alignment is required. |
| */ |
| unsigned long bitmap_find_next_zero_area(unsigned long *map, |
| unsigned long size, |
| unsigned long start, |
| unsigned int nr, |
| unsigned long align_mask) |
| { |
| unsigned long index, end, i; |
| again: |
| index = find_next_zero_bit(map, size, start); |
| |
| /* Align allocation */ |
| index = ALIGN_MASK(index, align_mask); |
| |
| end = index + nr; |
| if (end > size) { |
| return end; |
| } |
| i = find_next_bit(map, end, index); |
| if (i < end) { |
| start = i + 1; |
| goto again; |
| } |
| return index; |
| } |
| |
| int slow_bitmap_intersects(const unsigned long *bitmap1, |
| const unsigned long *bitmap2, int bits) |
| { |
| int k, lim = bits/BITS_PER_LONG; |
| |
| for (k = 0; k < lim; ++k) { |
| if (bitmap1[k] & bitmap2[k]) { |
| return 1; |
| } |
| } |
| |
| if (bits % BITS_PER_LONG) { |
| if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) { |
| return 1; |
| } |
| } |
| return 0; |
| } |