| #include "exec.h" |
| |
| //#define DEBUG_PCALL |
| //#define DEBUG_MMU |
| |
| void raise_exception(int tt) |
| { |
| env->exception_index = tt; |
| cpu_loop_exit(); |
| } |
| |
| #ifdef USE_INT_TO_FLOAT_HELPERS |
| void do_fitos(void) |
| { |
| FT0 = (float) *((int32_t *)&FT1); |
| } |
| |
| void do_fitod(void) |
| { |
| DT0 = (double) *((int32_t *)&FT1); |
| } |
| #endif |
| |
| void do_fabss(void) |
| { |
| FT0 = float32_abs(FT1); |
| } |
| |
| #ifdef TARGET_SPARC64 |
| void do_fabsd(void) |
| { |
| DT0 = float64_abs(DT1); |
| } |
| #endif |
| |
| void do_fsqrts(void) |
| { |
| FT0 = float32_sqrt(FT1, &env->fp_status); |
| } |
| |
| void do_fsqrtd(void) |
| { |
| DT0 = float64_sqrt(DT1, &env->fp_status); |
| } |
| |
| #define FS 0 |
| void do_fcmps (void) |
| { |
| env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); |
| if (isnan(FT0) || isnan(FT1)) { |
| T0 = (FSR_FCC1 | FSR_FCC0) << FS; |
| if (env->fsr & FSR_NVM) { |
| env->fsr |= T0; |
| raise_exception(TT_FP_EXCP); |
| } else { |
| env->fsr |= FSR_NVA; |
| } |
| } else if (FT0 < FT1) { |
| T0 = FSR_FCC0 << FS; |
| } else if (FT0 > FT1) { |
| T0 = FSR_FCC1 << FS; |
| } else { |
| T0 = 0; |
| } |
| env->fsr |= T0; |
| } |
| |
| void do_fcmpd (void) |
| { |
| env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); |
| if (isnan(DT0) || isnan(DT1)) { |
| T0 = (FSR_FCC1 | FSR_FCC0) << FS; |
| if (env->fsr & FSR_NVM) { |
| env->fsr |= T0; |
| raise_exception(TT_FP_EXCP); |
| } else { |
| env->fsr |= FSR_NVA; |
| } |
| } else if (DT0 < DT1) { |
| T0 = FSR_FCC0 << FS; |
| } else if (DT0 > DT1) { |
| T0 = FSR_FCC1 << FS; |
| } else { |
| T0 = 0; |
| } |
| env->fsr |= T0; |
| } |
| |
| #ifdef TARGET_SPARC64 |
| #undef FS |
| #define FS 22 |
| void do_fcmps_fcc1 (void) |
| { |
| env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); |
| if (isnan(FT0) || isnan(FT1)) { |
| T0 = (FSR_FCC1 | FSR_FCC0) << FS; |
| if (env->fsr & FSR_NVM) { |
| env->fsr |= T0; |
| raise_exception(TT_FP_EXCP); |
| } else { |
| env->fsr |= FSR_NVA; |
| } |
| } else if (FT0 < FT1) { |
| T0 = FSR_FCC0 << FS; |
| } else if (FT0 > FT1) { |
| T0 = FSR_FCC1 << FS; |
| } else { |
| T0 = 0; |
| } |
| env->fsr |= T0; |
| } |
| |
| void do_fcmpd_fcc1 (void) |
| { |
| env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); |
| if (isnan(DT0) || isnan(DT1)) { |
| T0 = (FSR_FCC1 | FSR_FCC0) << FS; |
| if (env->fsr & FSR_NVM) { |
| env->fsr |= T0; |
| raise_exception(TT_FP_EXCP); |
| } else { |
| env->fsr |= FSR_NVA; |
| } |
| } else if (DT0 < DT1) { |
| T0 = FSR_FCC0 << FS; |
| } else if (DT0 > DT1) { |
| T0 = FSR_FCC1 << FS; |
| } else { |
| T0 = 0; |
| } |
| env->fsr |= T0; |
| } |
| |
| #undef FS |
| #define FS 24 |
| void do_fcmps_fcc2 (void) |
| { |
| env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); |
| if (isnan(FT0) || isnan(FT1)) { |
| T0 = (FSR_FCC1 | FSR_FCC0) << FS; |
| if (env->fsr & FSR_NVM) { |
| env->fsr |= T0; |
| raise_exception(TT_FP_EXCP); |
| } else { |
| env->fsr |= FSR_NVA; |
| } |
| } else if (FT0 < FT1) { |
| T0 = FSR_FCC0 << FS; |
| } else if (FT0 > FT1) { |
| T0 = FSR_FCC1 << FS; |
| } else { |
| T0 = 0; |
| } |
| env->fsr |= T0; |
| } |
| |
| void do_fcmpd_fcc2 (void) |
| { |
| env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); |
| if (isnan(DT0) || isnan(DT1)) { |
| T0 = (FSR_FCC1 | FSR_FCC0) << FS; |
| if (env->fsr & FSR_NVM) { |
| env->fsr |= T0; |
| raise_exception(TT_FP_EXCP); |
| } else { |
| env->fsr |= FSR_NVA; |
| } |
| } else if (DT0 < DT1) { |
| T0 = FSR_FCC0 << FS; |
| } else if (DT0 > DT1) { |
| T0 = FSR_FCC1 << FS; |
| } else { |
| T0 = 0; |
| } |
| env->fsr |= T0; |
| } |
| |
| #undef FS |
| #define FS 26 |
| void do_fcmps_fcc3 (void) |
| { |
| env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); |
| if (isnan(FT0) || isnan(FT1)) { |
| T0 = (FSR_FCC1 | FSR_FCC0) << FS; |
| if (env->fsr & FSR_NVM) { |
| env->fsr |= T0; |
| raise_exception(TT_FP_EXCP); |
| } else { |
| env->fsr |= FSR_NVA; |
| } |
| } else if (FT0 < FT1) { |
| T0 = FSR_FCC0 << FS; |
| } else if (FT0 > FT1) { |
| T0 = FSR_FCC1 << FS; |
| } else { |
| T0 = 0; |
| } |
| env->fsr |= T0; |
| } |
| |
| void do_fcmpd_fcc3 (void) |
| { |
| env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); |
| if (isnan(DT0) || isnan(DT1)) { |
| T0 = (FSR_FCC1 | FSR_FCC0) << FS; |
| if (env->fsr & FSR_NVM) { |
| env->fsr |= T0; |
| raise_exception(TT_FP_EXCP); |
| } else { |
| env->fsr |= FSR_NVA; |
| } |
| } else if (DT0 < DT1) { |
| T0 = FSR_FCC0 << FS; |
| } else if (DT0 > DT1) { |
| T0 = FSR_FCC1 << FS; |
| } else { |
| T0 = 0; |
| } |
| env->fsr |= T0; |
| } |
| #undef FS |
| #endif |
| |
| #ifndef TARGET_SPARC64 |
| void helper_ld_asi(int asi, int size, int sign) |
| { |
| uint32_t ret = 0; |
| |
| switch (asi) { |
| case 3: /* MMU probe */ |
| { |
| int mmulev; |
| |
| mmulev = (T0 >> 8) & 15; |
| if (mmulev > 4) |
| ret = 0; |
| else { |
| ret = mmu_probe(env, T0, mmulev); |
| //bswap32s(&ret); |
| } |
| #ifdef DEBUG_MMU |
| printf("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret); |
| #endif |
| } |
| break; |
| case 4: /* read MMU regs */ |
| { |
| int reg = (T0 >> 8) & 0xf; |
| |
| ret = env->mmuregs[reg]; |
| if (reg == 3) /* Fault status cleared on read */ |
| env->mmuregs[reg] = 0; |
| #ifdef DEBUG_MMU |
| printf("mmu_read: reg[%d] = 0x%08x\n", reg, ret); |
| #endif |
| } |
| break; |
| case 0x20 ... 0x2f: /* MMU passthrough */ |
| cpu_physical_memory_read(T0, (void *) &ret, size); |
| if (size == 4) |
| tswap32s(&ret); |
| else if (size == 2) |
| tswap16s((uint16_t *)&ret); |
| break; |
| default: |
| ret = 0; |
| break; |
| } |
| T1 = ret; |
| } |
| |
| void helper_st_asi(int asi, int size, int sign) |
| { |
| switch(asi) { |
| case 3: /* MMU flush */ |
| { |
| int mmulev; |
| |
| mmulev = (T0 >> 8) & 15; |
| #ifdef DEBUG_MMU |
| printf("mmu flush level %d\n", mmulev); |
| #endif |
| switch (mmulev) { |
| case 0: // flush page |
| tlb_flush_page(env, T0 & 0xfffff000); |
| break; |
| case 1: // flush segment (256k) |
| case 2: // flush region (16M) |
| case 3: // flush context (4G) |
| case 4: // flush entire |
| tlb_flush(env, 1); |
| break; |
| default: |
| break; |
| } |
| #ifdef DEBUG_MMU |
| dump_mmu(env); |
| #endif |
| return; |
| } |
| case 4: /* write MMU regs */ |
| { |
| int reg = (T0 >> 8) & 0xf; |
| uint32_t oldreg; |
| |
| oldreg = env->mmuregs[reg]; |
| switch(reg) { |
| case 0: |
| env->mmuregs[reg] &= ~(MMU_E | MMU_NF); |
| env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF); |
| // Mappings generated during no-fault mode or MMU |
| // disabled mode are invalid in normal mode |
| if (oldreg != env->mmuregs[reg]) |
| tlb_flush(env, 1); |
| break; |
| case 2: |
| env->mmuregs[reg] = T1; |
| if (oldreg != env->mmuregs[reg]) { |
| /* we flush when the MMU context changes because |
| QEMU has no MMU context support */ |
| tlb_flush(env, 1); |
| } |
| break; |
| case 3: |
| case 4: |
| break; |
| default: |
| env->mmuregs[reg] = T1; |
| break; |
| } |
| #ifdef DEBUG_MMU |
| if (oldreg != env->mmuregs[reg]) { |
| printf("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]); |
| } |
| dump_mmu(env); |
| #endif |
| return; |
| } |
| case 0x17: /* Block copy, sta access */ |
| { |
| // value (T1) = src |
| // address (T0) = dst |
| // copy 32 bytes |
| uint32_t src = T1, dst = T0; |
| uint8_t temp[32]; |
| |
| tswap32s(&src); |
| |
| cpu_physical_memory_read(src, (void *) &temp, 32); |
| cpu_physical_memory_write(dst, (void *) &temp, 32); |
| } |
| return; |
| case 0x1f: /* Block fill, stda access */ |
| { |
| // value (T1, T2) |
| // address (T0) = dst |
| // fill 32 bytes |
| int i; |
| uint32_t dst = T0; |
| uint64_t val; |
| |
| val = (((uint64_t)T1) << 32) | T2; |
| tswap64s(&val); |
| |
| for (i = 0; i < 32; i += 8, dst += 8) { |
| cpu_physical_memory_write(dst, (void *) &val, 8); |
| } |
| } |
| return; |
| case 0x20 ... 0x2f: /* MMU passthrough */ |
| { |
| uint32_t temp = T1; |
| if (size == 4) |
| tswap32s(&temp); |
| else if (size == 2) |
| tswap16s((uint16_t *)&temp); |
| cpu_physical_memory_write(T0, (void *) &temp, size); |
| } |
| return; |
| default: |
| return; |
| } |
| } |
| |
| #else |
| |
| void helper_ld_asi(int asi, int size, int sign) |
| { |
| uint64_t ret = 0; |
| |
| if (asi < 0x80 && (env->pstate & PS_PRIV) == 0) |
| raise_exception(TT_PRIV_ACT); |
| |
| switch (asi) { |
| case 0x14: // Bypass |
| case 0x15: // Bypass, non-cacheable |
| { |
| cpu_physical_memory_read(T0, (void *) &ret, size); |
| if (size == 8) |
| tswap64s(&ret); |
| if (size == 4) |
| tswap32s((uint32_t *)&ret); |
| else if (size == 2) |
| tswap16s((uint16_t *)&ret); |
| break; |
| } |
| case 0x04: // Nucleus |
| case 0x0c: // Nucleus Little Endian (LE) |
| case 0x10: // As if user primary |
| case 0x11: // As if user secondary |
| case 0x18: // As if user primary LE |
| case 0x19: // As if user secondary LE |
| case 0x1c: // Bypass LE |
| case 0x1d: // Bypass, non-cacheable LE |
| case 0x24: // Nucleus quad LDD 128 bit atomic |
| case 0x2c: // Nucleus quad LDD 128 bit atomic |
| case 0x4a: // UPA config |
| case 0x82: // Primary no-fault |
| case 0x83: // Secondary no-fault |
| case 0x88: // Primary LE |
| case 0x89: // Secondary LE |
| case 0x8a: // Primary no-fault LE |
| case 0x8b: // Secondary no-fault LE |
| // XXX |
| break; |
| case 0x45: // LSU |
| ret = env->lsu; |
| break; |
| case 0x50: // I-MMU regs |
| { |
| int reg = (T0 >> 3) & 0xf; |
| |
| ret = env->immuregs[reg]; |
| break; |
| } |
| case 0x51: // I-MMU 8k TSB pointer |
| case 0x52: // I-MMU 64k TSB pointer |
| case 0x55: // I-MMU data access |
| // XXX |
| break; |
| case 0x56: // I-MMU tag read |
| { |
| unsigned int i; |
| |
| for (i = 0; i < 64; i++) { |
| // Valid, ctx match, vaddr match |
| if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 && |
| env->itlb_tag[i] == T0) { |
| ret = env->itlb_tag[i]; |
| break; |
| } |
| } |
| break; |
| } |
| case 0x58: // D-MMU regs |
| { |
| int reg = (T0 >> 3) & 0xf; |
| |
| ret = env->dmmuregs[reg]; |
| break; |
| } |
| case 0x5e: // D-MMU tag read |
| { |
| unsigned int i; |
| |
| for (i = 0; i < 64; i++) { |
| // Valid, ctx match, vaddr match |
| if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 && |
| env->dtlb_tag[i] == T0) { |
| ret = env->dtlb_tag[i]; |
| break; |
| } |
| } |
| break; |
| } |
| case 0x59: // D-MMU 8k TSB pointer |
| case 0x5a: // D-MMU 64k TSB pointer |
| case 0x5b: // D-MMU data pointer |
| case 0x5d: // D-MMU data access |
| case 0x48: // Interrupt dispatch, RO |
| case 0x49: // Interrupt data receive |
| case 0x7f: // Incoming interrupt vector, RO |
| // XXX |
| break; |
| case 0x54: // I-MMU data in, WO |
| case 0x57: // I-MMU demap, WO |
| case 0x5c: // D-MMU data in, WO |
| case 0x5f: // D-MMU demap, WO |
| case 0x77: // Interrupt vector, WO |
| default: |
| ret = 0; |
| break; |
| } |
| T1 = ret; |
| } |
| |
| void helper_st_asi(int asi, int size, int sign) |
| { |
| if (asi < 0x80 && (env->pstate & PS_PRIV) == 0) |
| raise_exception(TT_PRIV_ACT); |
| |
| switch(asi) { |
| case 0x14: // Bypass |
| case 0x15: // Bypass, non-cacheable |
| { |
| target_ulong temp = T1; |
| if (size == 8) |
| tswap64s(&temp); |
| else if (size == 4) |
| tswap32s((uint32_t *)&temp); |
| else if (size == 2) |
| tswap16s((uint16_t *)&temp); |
| cpu_physical_memory_write(T0, (void *) &temp, size); |
| } |
| return; |
| case 0x04: // Nucleus |
| case 0x0c: // Nucleus Little Endian (LE) |
| case 0x10: // As if user primary |
| case 0x11: // As if user secondary |
| case 0x18: // As if user primary LE |
| case 0x19: // As if user secondary LE |
| case 0x1c: // Bypass LE |
| case 0x1d: // Bypass, non-cacheable LE |
| case 0x24: // Nucleus quad LDD 128 bit atomic |
| case 0x2c: // Nucleus quad LDD 128 bit atomic |
| case 0x4a: // UPA config |
| case 0x88: // Primary LE |
| case 0x89: // Secondary LE |
| // XXX |
| return; |
| case 0x45: // LSU |
| { |
| uint64_t oldreg; |
| |
| oldreg = env->lsu; |
| env->lsu = T1 & (DMMU_E | IMMU_E); |
| // Mappings generated during D/I MMU disabled mode are |
| // invalid in normal mode |
| if (oldreg != env->lsu) { |
| #ifdef DEBUG_MMU |
| printf("LSU change: 0x%llx -> 0x%llx\n", oldreg, env->lsu); |
| dump_mmu(env); |
| #endif |
| tlb_flush(env, 1); |
| } |
| return; |
| } |
| case 0x50: // I-MMU regs |
| { |
| int reg = (T0 >> 3) & 0xf; |
| uint64_t oldreg; |
| |
| oldreg = env->immuregs[reg]; |
| switch(reg) { |
| case 0: // RO |
| case 4: |
| return; |
| case 1: // Not in I-MMU |
| case 2: |
| case 7: |
| case 8: |
| return; |
| case 3: // SFSR |
| if ((T1 & 1) == 0) |
| T1 = 0; // Clear SFSR |
| break; |
| case 5: // TSB access |
| case 6: // Tag access |
| default: |
| break; |
| } |
| env->immuregs[reg] = T1; |
| #ifdef DEBUG_MMU |
| if (oldreg != env->immuregs[reg]) { |
| printf("mmu change reg[%d]: 0x%08llx -> 0x%08llx\n", reg, oldreg, env->immuregs[reg]); |
| } |
| dump_mmu(env); |
| #endif |
| return; |
| } |
| case 0x54: // I-MMU data in |
| { |
| unsigned int i; |
| |
| // Try finding an invalid entry |
| for (i = 0; i < 64; i++) { |
| if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) { |
| env->itlb_tag[i] = env->immuregs[6]; |
| env->itlb_tte[i] = T1; |
| return; |
| } |
| } |
| // Try finding an unlocked entry |
| for (i = 0; i < 64; i++) { |
| if ((env->itlb_tte[i] & 0x40) == 0) { |
| env->itlb_tag[i] = env->immuregs[6]; |
| env->itlb_tte[i] = T1; |
| return; |
| } |
| } |
| // error state? |
| return; |
| } |
| case 0x55: // I-MMU data access |
| { |
| unsigned int i = (T0 >> 3) & 0x3f; |
| |
| env->itlb_tag[i] = env->immuregs[6]; |
| env->itlb_tte[i] = T1; |
| return; |
| } |
| case 0x57: // I-MMU demap |
| // XXX |
| return; |
| case 0x58: // D-MMU regs |
| { |
| int reg = (T0 >> 3) & 0xf; |
| uint64_t oldreg; |
| |
| oldreg = env->dmmuregs[reg]; |
| switch(reg) { |
| case 0: // RO |
| case 4: |
| return; |
| case 3: // SFSR |
| if ((T1 & 1) == 0) { |
| T1 = 0; // Clear SFSR, Fault address |
| env->dmmuregs[4] = 0; |
| } |
| env->dmmuregs[reg] = T1; |
| break; |
| case 1: // Primary context |
| case 2: // Secondary context |
| case 5: // TSB access |
| case 6: // Tag access |
| case 7: // Virtual Watchpoint |
| case 8: // Physical Watchpoint |
| default: |
| break; |
| } |
| env->dmmuregs[reg] = T1; |
| #ifdef DEBUG_MMU |
| if (oldreg != env->dmmuregs[reg]) { |
| printf("mmu change reg[%d]: 0x%08llx -> 0x%08llx\n", reg, oldreg, env->dmmuregs[reg]); |
| } |
| dump_mmu(env); |
| #endif |
| return; |
| } |
| case 0x5c: // D-MMU data in |
| { |
| unsigned int i; |
| |
| // Try finding an invalid entry |
| for (i = 0; i < 64; i++) { |
| if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) { |
| env->dtlb_tag[i] = env->dmmuregs[6]; |
| env->dtlb_tte[i] = T1; |
| return; |
| } |
| } |
| // Try finding an unlocked entry |
| for (i = 0; i < 64; i++) { |
| if ((env->dtlb_tte[i] & 0x40) == 0) { |
| env->dtlb_tag[i] = env->dmmuregs[6]; |
| env->dtlb_tte[i] = T1; |
| return; |
| } |
| } |
| // error state? |
| return; |
| } |
| case 0x5d: // D-MMU data access |
| { |
| unsigned int i = (T0 >> 3) & 0x3f; |
| |
| env->dtlb_tag[i] = env->dmmuregs[6]; |
| env->dtlb_tte[i] = T1; |
| return; |
| } |
| case 0x5f: // D-MMU demap |
| case 0x49: // Interrupt data receive |
| // XXX |
| return; |
| case 0x51: // I-MMU 8k TSB pointer, RO |
| case 0x52: // I-MMU 64k TSB pointer, RO |
| case 0x56: // I-MMU tag read, RO |
| case 0x59: // D-MMU 8k TSB pointer, RO |
| case 0x5a: // D-MMU 64k TSB pointer, RO |
| case 0x5b: // D-MMU data pointer, RO |
| case 0x5e: // D-MMU tag read, RO |
| case 0x48: // Interrupt dispatch, RO |
| case 0x7f: // Incoming interrupt vector, RO |
| case 0x82: // Primary no-fault, RO |
| case 0x83: // Secondary no-fault, RO |
| case 0x8a: // Primary no-fault LE, RO |
| case 0x8b: // Secondary no-fault LE, RO |
| default: |
| return; |
| } |
| } |
| |
| #endif |
| |
| #ifndef TARGET_SPARC64 |
| void helper_rett() |
| { |
| unsigned int cwp; |
| |
| env->psret = 1; |
| cwp = (env->cwp + 1) & (NWINDOWS - 1); |
| if (env->wim & (1 << cwp)) { |
| raise_exception(TT_WIN_UNF); |
| } |
| set_cwp(cwp); |
| env->psrs = env->psrps; |
| } |
| #endif |
| |
| void helper_ldfsr(void) |
| { |
| int rnd_mode; |
| switch (env->fsr & FSR_RD_MASK) { |
| case FSR_RD_NEAREST: |
| rnd_mode = float_round_nearest_even; |
| break; |
| default: |
| case FSR_RD_ZERO: |
| rnd_mode = float_round_to_zero; |
| break; |
| case FSR_RD_POS: |
| rnd_mode = float_round_up; |
| break; |
| case FSR_RD_NEG: |
| rnd_mode = float_round_down; |
| break; |
| } |
| set_float_rounding_mode(rnd_mode, &env->fp_status); |
| } |
| |
| void cpu_get_fp64(uint64_t *pmant, uint16_t *pexp, double f) |
| { |
| int exptemp; |
| |
| *pmant = ldexp(frexp(f, &exptemp), 53); |
| *pexp = exptemp; |
| } |
| |
| double cpu_put_fp64(uint64_t mant, uint16_t exp) |
| { |
| return ldexp((double) mant, exp - 53); |
| } |
| |
| void helper_debug() |
| { |
| env->exception_index = EXCP_DEBUG; |
| cpu_loop_exit(); |
| } |
| |
| #ifndef TARGET_SPARC64 |
| void do_wrpsr() |
| { |
| PUT_PSR(env, T0); |
| } |
| |
| void do_rdpsr() |
| { |
| T0 = GET_PSR(env); |
| } |
| |
| #else |
| |
| void do_popc() |
| { |
| T0 = (T1 & 0x5555555555555555ULL) + ((T1 >> 1) & 0x5555555555555555ULL); |
| T0 = (T0 & 0x3333333333333333ULL) + ((T0 >> 2) & 0x3333333333333333ULL); |
| T0 = (T0 & 0x0f0f0f0f0f0f0f0fULL) + ((T0 >> 4) & 0x0f0f0f0f0f0f0f0fULL); |
| T0 = (T0 & 0x00ff00ff00ff00ffULL) + ((T0 >> 8) & 0x00ff00ff00ff00ffULL); |
| T0 = (T0 & 0x0000ffff0000ffffULL) + ((T0 >> 16) & 0x0000ffff0000ffffULL); |
| T0 = (T0 & 0x00000000ffffffffULL) + ((T0 >> 32) & 0x00000000ffffffffULL); |
| } |
| |
| static inline uint64_t *get_gregset(uint64_t pstate) |
| { |
| switch (pstate) { |
| default: |
| case 0: |
| return env->bgregs; |
| case PS_AG: |
| return env->agregs; |
| case PS_MG: |
| return env->mgregs; |
| case PS_IG: |
| return env->igregs; |
| } |
| } |
| |
| void do_wrpstate() |
| { |
| uint64_t new_pstate, pstate_regs, new_pstate_regs; |
| uint64_t *src, *dst; |
| |
| new_pstate = T0 & 0xf3f; |
| pstate_regs = env->pstate & 0xc01; |
| new_pstate_regs = new_pstate & 0xc01; |
| if (new_pstate_regs != pstate_regs) { |
| // Switch global register bank |
| src = get_gregset(new_pstate_regs); |
| dst = get_gregset(pstate_regs); |
| memcpy32(dst, env->gregs); |
| memcpy32(env->gregs, src); |
| } |
| env->pstate = new_pstate; |
| } |
| |
| void do_done(void) |
| { |
| env->tl--; |
| env->pc = env->tnpc[env->tl]; |
| env->npc = env->tnpc[env->tl] + 4; |
| PUT_CCR(env, env->tstate[env->tl] >> 32); |
| env->asi = (env->tstate[env->tl] >> 24) & 0xff; |
| env->pstate = (env->tstate[env->tl] >> 8) & 0xfff; |
| set_cwp(env->tstate[env->tl] & 0xff); |
| } |
| |
| void do_retry(void) |
| { |
| env->tl--; |
| env->pc = env->tpc[env->tl]; |
| env->npc = env->tnpc[env->tl]; |
| PUT_CCR(env, env->tstate[env->tl] >> 32); |
| env->asi = (env->tstate[env->tl] >> 24) & 0xff; |
| env->pstate = (env->tstate[env->tl] >> 8) & 0xfff; |
| set_cwp(env->tstate[env->tl] & 0xff); |
| } |
| #endif |
| |
| void set_cwp(int new_cwp) |
| { |
| /* put the modified wrap registers at their proper location */ |
| if (env->cwp == (NWINDOWS - 1)) |
| memcpy32(env->regbase, env->regbase + NWINDOWS * 16); |
| env->cwp = new_cwp; |
| /* put the wrap registers at their temporary location */ |
| if (new_cwp == (NWINDOWS - 1)) |
| memcpy32(env->regbase + NWINDOWS * 16, env->regbase); |
| env->regwptr = env->regbase + (new_cwp * 16); |
| REGWPTR = env->regwptr; |
| } |
| |
| void cpu_set_cwp(CPUState *env1, int new_cwp) |
| { |
| CPUState *saved_env; |
| #ifdef reg_REGWPTR |
| target_ulong *saved_regwptr; |
| #endif |
| |
| saved_env = env; |
| #ifdef reg_REGWPTR |
| saved_regwptr = REGWPTR; |
| #endif |
| env = env1; |
| set_cwp(new_cwp); |
| env = saved_env; |
| #ifdef reg_REGWPTR |
| REGWPTR = saved_regwptr; |
| #endif |
| } |
| |
| #ifdef TARGET_SPARC64 |
| void do_interrupt(int intno) |
| { |
| #ifdef DEBUG_PCALL |
| if (loglevel & CPU_LOG_INT) { |
| static int count; |
| fprintf(logfile, "%6d: v=%04x pc=%016llx npc=%016llx SP=%016llx\n", |
| count, intno, |
| env->pc, |
| env->npc, env->regwptr[6]); |
| cpu_dump_state(env, logfile, fprintf, 0); |
| #if 0 |
| { |
| int i; |
| uint8_t *ptr; |
| |
| fprintf(logfile, " code="); |
| ptr = (uint8_t *)env->pc; |
| for(i = 0; i < 16; i++) { |
| fprintf(logfile, " %02x", ldub(ptr + i)); |
| } |
| fprintf(logfile, "\n"); |
| } |
| #endif |
| count++; |
| } |
| #endif |
| #if !defined(CONFIG_USER_ONLY) |
| if (env->tl == MAXTL) { |
| cpu_abort(cpu_single_env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index); |
| return; |
| } |
| #endif |
| env->tstate[env->tl] = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) | |
| ((env->pstate & 0xfff) << 8) | (env->cwp & 0xff); |
| env->tpc[env->tl] = env->pc; |
| env->tnpc[env->tl] = env->npc; |
| env->tt[env->tl] = intno; |
| env->pstate = PS_PEF | PS_PRIV | PS_AG; |
| env->tbr &= ~0x7fffULL; |
| env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5); |
| if (env->tl < MAXTL - 1) { |
| env->tl++; |
| } else { |
| env->pstate |= PS_RED; |
| if (env->tl != MAXTL) |
| env->tl++; |
| } |
| env->pc = env->tbr; |
| env->npc = env->pc + 4; |
| env->exception_index = 0; |
| } |
| #else |
| void do_interrupt(int intno) |
| { |
| int cwp; |
| |
| #ifdef DEBUG_PCALL |
| if (loglevel & CPU_LOG_INT) { |
| static int count; |
| fprintf(logfile, "%6d: v=%02x pc=%08x npc=%08x SP=%08x\n", |
| count, intno, |
| env->pc, |
| env->npc, env->regwptr[6]); |
| cpu_dump_state(env, logfile, fprintf, 0); |
| #if 0 |
| { |
| int i; |
| uint8_t *ptr; |
| |
| fprintf(logfile, " code="); |
| ptr = (uint8_t *)env->pc; |
| for(i = 0; i < 16; i++) { |
| fprintf(logfile, " %02x", ldub(ptr + i)); |
| } |
| fprintf(logfile, "\n"); |
| } |
| #endif |
| count++; |
| } |
| #endif |
| #if !defined(CONFIG_USER_ONLY) |
| if (env->psret == 0) { |
| cpu_abort(cpu_single_env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index); |
| return; |
| } |
| #endif |
| env->psret = 0; |
| cwp = (env->cwp - 1) & (NWINDOWS - 1); |
| set_cwp(cwp); |
| env->regwptr[9] = env->pc; |
| env->regwptr[10] = env->npc; |
| env->psrps = env->psrs; |
| env->psrs = 1; |
| env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4); |
| env->pc = env->tbr; |
| env->npc = env->pc + 4; |
| env->exception_index = 0; |
| } |
| #endif |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| #define MMUSUFFIX _mmu |
| #define GETPC() (__builtin_return_address(0)) |
| |
| #define SHIFT 0 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 1 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 2 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 3 |
| #include "softmmu_template.h" |
| |
| |
| /* try to fill the TLB and return an exception if error. If retaddr is |
| NULL, it means that the function was called in C code (i.e. not |
| from generated code or from helper.c) */ |
| /* XXX: fix it to restore all registers */ |
| void tlb_fill(target_ulong addr, int is_write, int is_user, void *retaddr) |
| { |
| TranslationBlock *tb; |
| int ret; |
| unsigned long pc; |
| CPUState *saved_env; |
| |
| /* XXX: hack to restore env in all cases, even if not called from |
| generated code */ |
| saved_env = env; |
| env = cpu_single_env; |
| |
| ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, is_user, 1); |
| if (ret) { |
| if (retaddr) { |
| /* now we have a real cpu fault */ |
| pc = (unsigned long)retaddr; |
| tb = tb_find_pc(pc); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc, (void *)T2); |
| } |
| } |
| cpu_loop_exit(); |
| } |
| env = saved_env; |
| } |
| |
| #endif |