| /* |
| * Emulation of Linux signals |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| #include "qemu.h" |
| #include "signal-common.h" |
| #include "linux-user/trace.h" |
| |
| /* Size of dummy stack frame allocated when calling signal handler. |
| See arch/powerpc/include/asm/ptrace.h. */ |
| #if defined(TARGET_PPC64) |
| #define SIGNAL_FRAMESIZE 128 |
| #else |
| #define SIGNAL_FRAMESIZE 64 |
| #endif |
| |
| /* See arch/powerpc/include/asm/ucontext.h. Only used for 32-bit PPC; |
| on 64-bit PPC, sigcontext and mcontext are one and the same. */ |
| struct target_mcontext { |
| target_ulong mc_gregs[48]; |
| /* Includes fpscr. */ |
| uint64_t mc_fregs[33]; |
| |
| #if defined(TARGET_PPC64) |
| /* Pointer to the vector regs */ |
| target_ulong v_regs; |
| /* |
| * On ppc64, this mcontext structure is naturally *unaligned*, |
| * or rather it is aligned on a 8 bytes boundary but not on |
| * a 16 byte boundary. This pad fixes it up. This is why we |
| * cannot use ppc_avr_t, which would force alignment. This is |
| * also why the vector regs are referenced in the ABI by the |
| * v_regs pointer above so any amount of padding can be added here. |
| */ |
| target_ulong pad; |
| /* VSCR and VRSAVE are saved separately. Also reserve space for VSX. */ |
| struct { |
| uint64_t altivec[34 + 16][2]; |
| } mc_vregs; |
| #else |
| target_ulong mc_pad[2]; |
| |
| /* We need to handle Altivec and SPE at the same time, which no |
| kernel needs to do. Fortunately, the kernel defines this bit to |
| be Altivec-register-large all the time, rather than trying to |
| twiddle it based on the specific platform. */ |
| union { |
| /* SPE vector registers. One extra for SPEFSCR. */ |
| uint32_t spe[33]; |
| /* |
| * Altivec vector registers. One extra for VRSAVE. |
| * On ppc32, we are already aligned to 16 bytes. We could |
| * use ppc_avr_t, but choose to share the same type as ppc64. |
| */ |
| uint64_t altivec[33][2]; |
| } mc_vregs; |
| #endif |
| }; |
| |
| /* See arch/powerpc/include/asm/sigcontext.h. */ |
| struct target_sigcontext { |
| target_ulong _unused[4]; |
| int32_t signal; |
| #if defined(TARGET_PPC64) |
| int32_t pad0; |
| #endif |
| target_ulong handler; |
| target_ulong oldmask; |
| target_ulong regs; /* struct pt_regs __user * */ |
| #if defined(TARGET_PPC64) |
| struct target_mcontext mcontext; |
| #endif |
| }; |
| |
| /* Indices for target_mcontext.mc_gregs, below. |
| See arch/powerpc/include/asm/ptrace.h for details. */ |
| enum { |
| TARGET_PT_R0 = 0, |
| TARGET_PT_R1 = 1, |
| TARGET_PT_R2 = 2, |
| TARGET_PT_R3 = 3, |
| TARGET_PT_R4 = 4, |
| TARGET_PT_R5 = 5, |
| TARGET_PT_R6 = 6, |
| TARGET_PT_R7 = 7, |
| TARGET_PT_R8 = 8, |
| TARGET_PT_R9 = 9, |
| TARGET_PT_R10 = 10, |
| TARGET_PT_R11 = 11, |
| TARGET_PT_R12 = 12, |
| TARGET_PT_R13 = 13, |
| TARGET_PT_R14 = 14, |
| TARGET_PT_R15 = 15, |
| TARGET_PT_R16 = 16, |
| TARGET_PT_R17 = 17, |
| TARGET_PT_R18 = 18, |
| TARGET_PT_R19 = 19, |
| TARGET_PT_R20 = 20, |
| TARGET_PT_R21 = 21, |
| TARGET_PT_R22 = 22, |
| TARGET_PT_R23 = 23, |
| TARGET_PT_R24 = 24, |
| TARGET_PT_R25 = 25, |
| TARGET_PT_R26 = 26, |
| TARGET_PT_R27 = 27, |
| TARGET_PT_R28 = 28, |
| TARGET_PT_R29 = 29, |
| TARGET_PT_R30 = 30, |
| TARGET_PT_R31 = 31, |
| TARGET_PT_NIP = 32, |
| TARGET_PT_MSR = 33, |
| TARGET_PT_ORIG_R3 = 34, |
| TARGET_PT_CTR = 35, |
| TARGET_PT_LNK = 36, |
| TARGET_PT_XER = 37, |
| TARGET_PT_CCR = 38, |
| /* Yes, there are two registers with #39. One is 64-bit only. */ |
| TARGET_PT_MQ = 39, |
| TARGET_PT_SOFTE = 39, |
| TARGET_PT_TRAP = 40, |
| TARGET_PT_DAR = 41, |
| TARGET_PT_DSISR = 42, |
| TARGET_PT_RESULT = 43, |
| TARGET_PT_REGS_COUNT = 44 |
| }; |
| |
| |
| struct target_ucontext { |
| target_ulong tuc_flags; |
| target_ulong tuc_link; /* ucontext_t __user * */ |
| struct target_sigaltstack tuc_stack; |
| #if !defined(TARGET_PPC64) |
| int32_t tuc_pad[7]; |
| target_ulong tuc_regs; /* struct mcontext __user * |
| points to uc_mcontext field */ |
| #endif |
| target_sigset_t tuc_sigmask; |
| #if defined(TARGET_PPC64) |
| target_sigset_t unused[15]; /* Allow for uc_sigmask growth */ |
| struct target_sigcontext tuc_sigcontext; |
| #else |
| int32_t tuc_maskext[30]; |
| int32_t tuc_pad2[3]; |
| struct target_mcontext tuc_mcontext; |
| #endif |
| }; |
| |
| /* See arch/powerpc/kernel/signal_32.c. */ |
| struct target_sigframe { |
| struct target_sigcontext sctx; |
| struct target_mcontext mctx; |
| int32_t abigap[56]; |
| }; |
| |
| #if defined(TARGET_PPC64) |
| |
| #define TARGET_TRAMP_SIZE 6 |
| |
| struct target_rt_sigframe { |
| /* sys_rt_sigreturn requires the ucontext be the first field */ |
| struct target_ucontext uc; |
| target_ulong _unused[2]; |
| uint32_t trampoline[TARGET_TRAMP_SIZE]; |
| target_ulong pinfo; /* struct siginfo __user * */ |
| target_ulong puc; /* void __user * */ |
| struct target_siginfo info; |
| /* 64 bit ABI allows for 288 bytes below sp before decrementing it. */ |
| char abigap[288]; |
| } __attribute__((aligned(16))); |
| |
| #else |
| |
| struct target_rt_sigframe { |
| struct target_siginfo info; |
| struct target_ucontext uc; |
| int32_t abigap[56]; |
| }; |
| |
| #endif |
| |
| #if defined(TARGET_PPC64) |
| |
| struct target_func_ptr { |
| target_ulong entry; |
| target_ulong toc; |
| }; |
| |
| #endif |
| |
| /* We use the mc_pad field for the signal return trampoline. */ |
| #define tramp mc_pad |
| |
| /* See arch/powerpc/kernel/signal.c. */ |
| static target_ulong get_sigframe(struct target_sigaction *ka, |
| CPUPPCState *env, |
| int frame_size) |
| { |
| target_ulong oldsp; |
| |
| oldsp = target_sigsp(get_sp_from_cpustate(env), ka); |
| |
| return (oldsp - frame_size) & ~0xFUL; |
| } |
| |
| #if ((defined(TARGET_WORDS_BIGENDIAN) && defined(HOST_WORDS_BIGENDIAN)) || \ |
| (!defined(HOST_WORDS_BIGENDIAN) && !defined(TARGET_WORDS_BIGENDIAN))) |
| #define PPC_VEC_HI 0 |
| #define PPC_VEC_LO 1 |
| #else |
| #define PPC_VEC_HI 1 |
| #define PPC_VEC_LO 0 |
| #endif |
| |
| |
| static void save_user_regs(CPUPPCState *env, struct target_mcontext *frame) |
| { |
| target_ulong msr = env->msr; |
| int i; |
| target_ulong ccr = 0; |
| |
| /* In general, the kernel attempts to be intelligent about what it |
| needs to save for Altivec/FP/SPE registers. We don't care that |
| much, so we just go ahead and save everything. */ |
| |
| /* Save general registers. */ |
| for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { |
| __put_user(env->gpr[i], &frame->mc_gregs[i]); |
| } |
| __put_user(env->nip, &frame->mc_gregs[TARGET_PT_NIP]); |
| __put_user(env->ctr, &frame->mc_gregs[TARGET_PT_CTR]); |
| __put_user(env->lr, &frame->mc_gregs[TARGET_PT_LNK]); |
| __put_user(env->xer, &frame->mc_gregs[TARGET_PT_XER]); |
| |
| for (i = 0; i < ARRAY_SIZE(env->crf); i++) { |
| ccr |= env->crf[i] << (32 - ((i + 1) * 4)); |
| } |
| __put_user(ccr, &frame->mc_gregs[TARGET_PT_CCR]); |
| |
| /* Save Altivec registers if necessary. */ |
| if (env->insns_flags & PPC_ALTIVEC) { |
| uint32_t *vrsave; |
| for (i = 0; i < 32; i++) { |
| ppc_avr_t *avr = cpu_avr_ptr(env, i); |
| ppc_avr_t *vreg = (ppc_avr_t *)&frame->mc_vregs.altivec[i]; |
| |
| __put_user(avr->u64[PPC_VEC_HI], &vreg->u64[0]); |
| __put_user(avr->u64[PPC_VEC_LO], &vreg->u64[1]); |
| } |
| /* Set MSR_VR in the saved MSR value to indicate that |
| frame->mc_vregs contains valid data. */ |
| msr |= MSR_VR; |
| #if defined(TARGET_PPC64) |
| vrsave = (uint32_t *)&frame->mc_vregs.altivec[33]; |
| /* 64-bit needs to put a pointer to the vectors in the frame */ |
| __put_user(h2g(frame->mc_vregs.altivec), &frame->v_regs); |
| #else |
| vrsave = (uint32_t *)&frame->mc_vregs.altivec[32]; |
| #endif |
| __put_user((uint32_t)env->spr[SPR_VRSAVE], vrsave); |
| } |
| |
| #if defined(TARGET_PPC64) |
| /* Save VSX second halves */ |
| if (env->insns_flags2 & PPC2_VSX) { |
| uint64_t *vsregs = (uint64_t *)&frame->mc_vregs.altivec[34]; |
| for (i = 0; i < 32; i++) { |
| uint64_t *vsrl = cpu_vsrl_ptr(env, i); |
| __put_user(*vsrl, &vsregs[i]); |
| } |
| } |
| #endif |
| |
| /* Save floating point registers. */ |
| if (env->insns_flags & PPC_FLOAT) { |
| for (i = 0; i < 32; i++) { |
| uint64_t *fpr = cpu_fpr_ptr(env, i); |
| __put_user(*fpr, &frame->mc_fregs[i]); |
| } |
| __put_user((uint64_t) env->fpscr, &frame->mc_fregs[32]); |
| } |
| |
| #if !defined(TARGET_PPC64) |
| /* Save SPE registers. The kernel only saves the high half. */ |
| if (env->insns_flags & PPC_SPE) { |
| for (i = 0; i < ARRAY_SIZE(env->gprh); i++) { |
| __put_user(env->gprh[i], &frame->mc_vregs.spe[i]); |
| } |
| /* Set MSR_SPE in the saved MSR value to indicate that |
| frame->mc_vregs contains valid data. */ |
| msr |= MSR_SPE; |
| __put_user(env->spe_fscr, &frame->mc_vregs.spe[32]); |
| } |
| #endif |
| |
| /* Store MSR. */ |
| __put_user(msr, &frame->mc_gregs[TARGET_PT_MSR]); |
| } |
| |
| static void encode_trampoline(int sigret, uint32_t *tramp) |
| { |
| /* Set up the sigreturn trampoline: li r0,sigret; sc. */ |
| if (sigret) { |
| __put_user(0x38000000 | sigret, &tramp[0]); |
| __put_user(0x44000002, &tramp[1]); |
| } |
| } |
| |
| static void restore_user_regs(CPUPPCState *env, |
| struct target_mcontext *frame, int sig) |
| { |
| target_ulong save_r2 = 0; |
| target_ulong msr; |
| target_ulong ccr; |
| |
| int i; |
| |
| if (!sig) { |
| save_r2 = env->gpr[2]; |
| } |
| |
| /* Restore general registers. */ |
| for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { |
| __get_user(env->gpr[i], &frame->mc_gregs[i]); |
| } |
| __get_user(env->nip, &frame->mc_gregs[TARGET_PT_NIP]); |
| __get_user(env->ctr, &frame->mc_gregs[TARGET_PT_CTR]); |
| __get_user(env->lr, &frame->mc_gregs[TARGET_PT_LNK]); |
| __get_user(env->xer, &frame->mc_gregs[TARGET_PT_XER]); |
| __get_user(ccr, &frame->mc_gregs[TARGET_PT_CCR]); |
| |
| for (i = 0; i < ARRAY_SIZE(env->crf); i++) { |
| env->crf[i] = (ccr >> (32 - ((i + 1) * 4))) & 0xf; |
| } |
| |
| if (!sig) { |
| env->gpr[2] = save_r2; |
| } |
| /* Restore MSR. */ |
| __get_user(msr, &frame->mc_gregs[TARGET_PT_MSR]); |
| |
| /* If doing signal return, restore the previous little-endian mode. */ |
| if (sig) |
| env->msr = (env->msr & ~(1ull << MSR_LE)) | (msr & (1ull << MSR_LE)); |
| |
| /* Restore Altivec registers if necessary. */ |
| if (env->insns_flags & PPC_ALTIVEC) { |
| ppc_avr_t *v_regs; |
| uint32_t *vrsave; |
| #if defined(TARGET_PPC64) |
| uint64_t v_addr; |
| /* 64-bit needs to recover the pointer to the vectors from the frame */ |
| __get_user(v_addr, &frame->v_regs); |
| v_regs = g2h(v_addr); |
| #else |
| v_regs = (ppc_avr_t *)frame->mc_vregs.altivec; |
| #endif |
| for (i = 0; i < 32; i++) { |
| ppc_avr_t *avr = cpu_avr_ptr(env, i); |
| ppc_avr_t *vreg = &v_regs[i]; |
| |
| __get_user(avr->u64[PPC_VEC_HI], &vreg->u64[0]); |
| __get_user(avr->u64[PPC_VEC_LO], &vreg->u64[1]); |
| } |
| /* Set MSR_VEC in the saved MSR value to indicate that |
| frame->mc_vregs contains valid data. */ |
| #if defined(TARGET_PPC64) |
| vrsave = (uint32_t *)&v_regs[33]; |
| #else |
| vrsave = (uint32_t *)&v_regs[32]; |
| #endif |
| __get_user(env->spr[SPR_VRSAVE], vrsave); |
| } |
| |
| #if defined(TARGET_PPC64) |
| /* Restore VSX second halves */ |
| if (env->insns_flags2 & PPC2_VSX) { |
| uint64_t *vsregs = (uint64_t *)&frame->mc_vregs.altivec[34]; |
| for (i = 0; i < 32; i++) { |
| uint64_t *vsrl = cpu_vsrl_ptr(env, i); |
| __get_user(*vsrl, &vsregs[i]); |
| } |
| } |
| #endif |
| |
| /* Restore floating point registers. */ |
| if (env->insns_flags & PPC_FLOAT) { |
| uint64_t fpscr; |
| for (i = 0; i < 32; i++) { |
| uint64_t *fpr = cpu_fpr_ptr(env, i); |
| __get_user(*fpr, &frame->mc_fregs[i]); |
| } |
| __get_user(fpscr, &frame->mc_fregs[32]); |
| env->fpscr = (uint32_t) fpscr; |
| } |
| |
| #if !defined(TARGET_PPC64) |
| /* Save SPE registers. The kernel only saves the high half. */ |
| if (env->insns_flags & PPC_SPE) { |
| for (i = 0; i < ARRAY_SIZE(env->gprh); i++) { |
| __get_user(env->gprh[i], &frame->mc_vregs.spe[i]); |
| } |
| __get_user(env->spe_fscr, &frame->mc_vregs.spe[32]); |
| } |
| #endif |
| } |
| |
| #if !defined(TARGET_PPC64) |
| void setup_frame(int sig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUPPCState *env) |
| { |
| struct target_sigframe *frame; |
| struct target_sigcontext *sc; |
| target_ulong frame_addr, newsp; |
| int err = 0; |
| |
| frame_addr = get_sigframe(ka, env, sizeof(*frame)); |
| trace_user_setup_frame(env, frame_addr); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 1)) |
| goto sigsegv; |
| sc = &frame->sctx; |
| |
| __put_user(ka->_sa_handler, &sc->handler); |
| __put_user(set->sig[0], &sc->oldmask); |
| __put_user(set->sig[1], &sc->_unused[3]); |
| __put_user(h2g(&frame->mctx), &sc->regs); |
| __put_user(sig, &sc->signal); |
| |
| /* Save user regs. */ |
| save_user_regs(env, &frame->mctx); |
| |
| /* Construct the trampoline code on the stack. */ |
| encode_trampoline(TARGET_NR_sigreturn, (uint32_t *)&frame->mctx.tramp); |
| |
| /* The kernel checks for the presence of a VDSO here. We don't |
| emulate a vdso, so use a sigreturn system call. */ |
| env->lr = (target_ulong) h2g(frame->mctx.tramp); |
| |
| /* Turn off all fp exceptions. */ |
| env->fpscr = 0; |
| |
| /* Create a stack frame for the caller of the handler. */ |
| newsp = frame_addr - SIGNAL_FRAMESIZE; |
| err |= put_user(env->gpr[1], newsp, target_ulong); |
| |
| if (err) |
| goto sigsegv; |
| |
| /* Set up registers for signal handler. */ |
| env->gpr[1] = newsp; |
| env->gpr[3] = sig; |
| env->gpr[4] = frame_addr + offsetof(struct target_sigframe, sctx); |
| |
| env->nip = (target_ulong) ka->_sa_handler; |
| |
| /* Signal handlers are entered in big-endian mode. */ |
| env->msr &= ~(1ull << MSR_LE); |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| return; |
| |
| sigsegv: |
| unlock_user_struct(frame, frame_addr, 1); |
| force_sigsegv(sig); |
| } |
| #endif /* !defined(TARGET_PPC64) */ |
| |
| void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUPPCState *env) |
| { |
| struct target_rt_sigframe *rt_sf; |
| uint32_t *trampptr = 0; |
| struct target_mcontext *mctx = 0; |
| target_ulong rt_sf_addr, newsp = 0; |
| int i, err = 0; |
| #if defined(TARGET_PPC64) |
| struct target_sigcontext *sc = 0; |
| #if !defined(TARGET_ABI32) |
| struct image_info *image = ((TaskState *)thread_cpu->opaque)->info; |
| #endif |
| #endif |
| |
| rt_sf_addr = get_sigframe(ka, env, sizeof(*rt_sf)); |
| if (!lock_user_struct(VERIFY_WRITE, rt_sf, rt_sf_addr, 1)) |
| goto sigsegv; |
| |
| tswap_siginfo(&rt_sf->info, info); |
| |
| __put_user(0, &rt_sf->uc.tuc_flags); |
| __put_user(0, &rt_sf->uc.tuc_link); |
| target_save_altstack(&rt_sf->uc.tuc_stack, env); |
| #if !defined(TARGET_PPC64) |
| __put_user(h2g (&rt_sf->uc.tuc_mcontext), |
| &rt_sf->uc.tuc_regs); |
| #endif |
| for(i = 0; i < TARGET_NSIG_WORDS; i++) { |
| __put_user(set->sig[i], &rt_sf->uc.tuc_sigmask.sig[i]); |
| } |
| |
| #if defined(TARGET_PPC64) |
| mctx = &rt_sf->uc.tuc_sigcontext.mcontext; |
| trampptr = &rt_sf->trampoline[0]; |
| |
| sc = &rt_sf->uc.tuc_sigcontext; |
| __put_user(h2g(mctx), &sc->regs); |
| __put_user(sig, &sc->signal); |
| #else |
| mctx = &rt_sf->uc.tuc_mcontext; |
| trampptr = (uint32_t *)&rt_sf->uc.tuc_mcontext.tramp; |
| #endif |
| |
| save_user_regs(env, mctx); |
| encode_trampoline(TARGET_NR_rt_sigreturn, trampptr); |
| |
| /* The kernel checks for the presence of a VDSO here. We don't |
| emulate a vdso, so use a sigreturn system call. */ |
| env->lr = (target_ulong) h2g(trampptr); |
| |
| /* Turn off all fp exceptions. */ |
| env->fpscr = 0; |
| |
| /* Create a stack frame for the caller of the handler. */ |
| newsp = rt_sf_addr - (SIGNAL_FRAMESIZE + 16); |
| err |= put_user(env->gpr[1], newsp, target_ulong); |
| |
| if (err) |
| goto sigsegv; |
| |
| /* Set up registers for signal handler. */ |
| env->gpr[1] = newsp; |
| env->gpr[3] = (target_ulong) sig; |
| env->gpr[4] = (target_ulong) h2g(&rt_sf->info); |
| env->gpr[5] = (target_ulong) h2g(&rt_sf->uc); |
| env->gpr[6] = (target_ulong) h2g(rt_sf); |
| |
| #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) |
| if (get_ppc64_abi(image) < 2) { |
| /* ELFv1 PPC64 function pointers are pointers to OPD entries. */ |
| struct target_func_ptr *handler = |
| (struct target_func_ptr *)g2h(ka->_sa_handler); |
| env->nip = tswapl(handler->entry); |
| env->gpr[2] = tswapl(handler->toc); |
| } else { |
| /* ELFv2 PPC64 function pointers are entry points. R12 must also be set. */ |
| env->gpr[12] = env->nip = ka->_sa_handler; |
| } |
| #else |
| env->nip = (target_ulong) ka->_sa_handler; |
| #endif |
| |
| /* Signal handlers are entered in big-endian mode. */ |
| env->msr &= ~(1ull << MSR_LE); |
| |
| unlock_user_struct(rt_sf, rt_sf_addr, 1); |
| return; |
| |
| sigsegv: |
| unlock_user_struct(rt_sf, rt_sf_addr, 1); |
| force_sigsegv(sig); |
| |
| } |
| |
| #if !defined(TARGET_PPC64) || defined(TARGET_ABI32) |
| long do_sigreturn(CPUPPCState *env) |
| { |
| struct target_sigcontext *sc = NULL; |
| struct target_mcontext *sr = NULL; |
| target_ulong sr_addr = 0, sc_addr; |
| sigset_t blocked; |
| target_sigset_t set; |
| |
| sc_addr = env->gpr[1] + SIGNAL_FRAMESIZE; |
| if (!lock_user_struct(VERIFY_READ, sc, sc_addr, 1)) |
| goto sigsegv; |
| |
| #if defined(TARGET_PPC64) |
| set.sig[0] = sc->oldmask + ((uint64_t)(sc->_unused[3]) << 32); |
| #else |
| __get_user(set.sig[0], &sc->oldmask); |
| __get_user(set.sig[1], &sc->_unused[3]); |
| #endif |
| target_to_host_sigset_internal(&blocked, &set); |
| set_sigmask(&blocked); |
| |
| __get_user(sr_addr, &sc->regs); |
| if (!lock_user_struct(VERIFY_READ, sr, sr_addr, 1)) |
| goto sigsegv; |
| restore_user_regs(env, sr, 1); |
| |
| unlock_user_struct(sr, sr_addr, 1); |
| unlock_user_struct(sc, sc_addr, 1); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| sigsegv: |
| unlock_user_struct(sr, sr_addr, 1); |
| unlock_user_struct(sc, sc_addr, 1); |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| #endif /* !defined(TARGET_PPC64) */ |
| |
| /* See arch/powerpc/kernel/signal_32.c. */ |
| static int do_setcontext(struct target_ucontext *ucp, CPUPPCState *env, int sig) |
| { |
| struct target_mcontext *mcp; |
| target_ulong mcp_addr; |
| sigset_t blocked; |
| target_sigset_t set; |
| |
| if (copy_from_user(&set, h2g(ucp) + offsetof(struct target_ucontext, tuc_sigmask), |
| sizeof (set))) |
| return 1; |
| |
| #if defined(TARGET_PPC64) |
| mcp_addr = h2g(ucp) + |
| offsetof(struct target_ucontext, tuc_sigcontext.mcontext); |
| #else |
| __get_user(mcp_addr, &ucp->tuc_regs); |
| #endif |
| |
| if (!lock_user_struct(VERIFY_READ, mcp, mcp_addr, 1)) |
| return 1; |
| |
| target_to_host_sigset_internal(&blocked, &set); |
| set_sigmask(&blocked); |
| restore_user_regs(env, mcp, sig); |
| |
| unlock_user_struct(mcp, mcp_addr, 1); |
| return 0; |
| } |
| |
| long do_rt_sigreturn(CPUPPCState *env) |
| { |
| struct target_rt_sigframe *rt_sf = NULL; |
| target_ulong rt_sf_addr; |
| |
| rt_sf_addr = env->gpr[1] + SIGNAL_FRAMESIZE + 16; |
| if (!lock_user_struct(VERIFY_READ, rt_sf, rt_sf_addr, 1)) |
| goto sigsegv; |
| |
| if (do_setcontext(&rt_sf->uc, env, 1)) |
| goto sigsegv; |
| |
| do_sigaltstack(rt_sf_addr |
| + offsetof(struct target_rt_sigframe, uc.tuc_stack), |
| 0, env->gpr[1]); |
| |
| unlock_user_struct(rt_sf, rt_sf_addr, 1); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| sigsegv: |
| unlock_user_struct(rt_sf, rt_sf_addr, 1); |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| |
| /* This syscall implements {get,set,swap}context for userland. */ |
| abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx, |
| abi_ulong unew_ctx, abi_long ctx_size) |
| { |
| struct target_ucontext *uctx; |
| struct target_mcontext *mctx; |
| |
| /* For ppc32, ctx_size is "reserved for future use". |
| * For ppc64, we do not yet support the VSX extension. |
| */ |
| if (ctx_size < sizeof(struct target_ucontext)) { |
| return -TARGET_EINVAL; |
| } |
| |
| if (uold_ctx) { |
| TaskState *ts = (TaskState *)thread_cpu->opaque; |
| |
| if (!lock_user_struct(VERIFY_WRITE, uctx, uold_ctx, 1)) { |
| return -TARGET_EFAULT; |
| } |
| |
| #ifdef TARGET_PPC64 |
| mctx = &uctx->tuc_sigcontext.mcontext; |
| #else |
| /* ??? The kernel aligns the pointer down here into padding, but |
| * in setup_rt_frame we don't. Be self-compatible for now. |
| */ |
| mctx = &uctx->tuc_mcontext; |
| __put_user(h2g(mctx), &uctx->tuc_regs); |
| #endif |
| |
| save_user_regs(env, mctx); |
| host_to_target_sigset(&uctx->tuc_sigmask, &ts->signal_mask); |
| |
| unlock_user_struct(uctx, uold_ctx, 1); |
| } |
| |
| if (unew_ctx) { |
| int err; |
| |
| if (!lock_user_struct(VERIFY_READ, uctx, unew_ctx, 1)) { |
| return -TARGET_EFAULT; |
| } |
| err = do_setcontext(uctx, env, 0); |
| unlock_user_struct(uctx, unew_ctx, 1); |
| |
| if (err) { |
| /* We cannot return to a partially updated context. */ |
| force_sig(TARGET_SIGSEGV); |
| } |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| |
| return 0; |
| } |