| /* |
| * Core code for QEMU e1000e emulation |
| * |
| * Software developer's manuals: |
| * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf |
| * |
| * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com) |
| * Developed by Daynix Computing LTD (http://www.daynix.com) |
| * |
| * Authors: |
| * Dmitry Fleytman <dmitry@daynix.com> |
| * Leonid Bloch <leonid@daynix.com> |
| * Yan Vugenfirer <yan@daynix.com> |
| * |
| * Based on work done by: |
| * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. |
| * Copyright (c) 2008 Qumranet |
| * Based on work done by: |
| * Copyright (c) 2007 Dan Aloni |
| * Copyright (c) 2004 Antony T Curtis |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/log.h" |
| #include "net/net.h" |
| #include "net/tap.h" |
| #include "hw/pci/msi.h" |
| #include "hw/pci/msix.h" |
| #include "sysemu/runstate.h" |
| |
| #include "net_tx_pkt.h" |
| #include "net_rx_pkt.h" |
| |
| #include "e1000x_common.h" |
| #include "e1000e_core.h" |
| |
| #include "trace.h" |
| |
| #define E1000E_MIN_XITR (500) /* No more then 7813 interrupts per |
| second according to spec 10.2.4.2 */ |
| #define E1000E_MAX_TX_FRAGS (64) |
| |
| static inline void |
| e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val); |
| |
| static inline void |
| e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp) |
| { |
| if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) { |
| trace_e1000e_wrn_no_ts_support(); |
| } |
| } |
| |
| static inline void |
| e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length) |
| { |
| if (cmd_and_length & E1000_TXD_CMD_SNAP) { |
| trace_e1000e_wrn_no_snap_support(); |
| } |
| } |
| |
| static inline void |
| e1000e_raise_legacy_irq(E1000ECore *core) |
| { |
| trace_e1000e_irq_legacy_notify(true); |
| e1000x_inc_reg_if_not_full(core->mac, IAC); |
| pci_set_irq(core->owner, 1); |
| } |
| |
| static inline void |
| e1000e_lower_legacy_irq(E1000ECore *core) |
| { |
| trace_e1000e_irq_legacy_notify(false); |
| pci_set_irq(core->owner, 0); |
| } |
| |
| static inline void |
| e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer) |
| { |
| int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] * |
| timer->delay_resolution_ns; |
| |
| trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns); |
| |
| timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns); |
| |
| timer->running = true; |
| } |
| |
| static void |
| e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer) |
| { |
| if (timer->running) { |
| e1000e_intrmgr_rearm_timer(timer); |
| } |
| } |
| |
| static void |
| e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer) |
| { |
| if (timer->running) { |
| timer_del(timer->timer); |
| } |
| } |
| |
| static inline void |
| e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer) |
| { |
| if (timer->running) { |
| timer_del(timer->timer); |
| timer->running = false; |
| } |
| } |
| |
| static inline void |
| e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core) |
| { |
| trace_e1000e_irq_fire_delayed_interrupts(); |
| e1000e_set_interrupt_cause(core, 0); |
| } |
| |
| static void |
| e1000e_intrmgr_on_timer(void *opaque) |
| { |
| E1000IntrDelayTimer *timer = opaque; |
| |
| trace_e1000e_irq_throttling_timer(timer->delay_reg << 2); |
| |
| timer->running = false; |
| e1000e_intrmgr_fire_delayed_interrupts(timer->core); |
| } |
| |
| static void |
| e1000e_intrmgr_on_throttling_timer(void *opaque) |
| { |
| E1000IntrDelayTimer *timer = opaque; |
| |
| assert(!msix_enabled(timer->core->owner)); |
| |
| timer->running = false; |
| |
| if (!timer->core->itr_intr_pending) { |
| trace_e1000e_irq_throttling_no_pending_interrupts(); |
| return; |
| } |
| |
| if (msi_enabled(timer->core->owner)) { |
| trace_e1000e_irq_msi_notify_postponed(); |
| e1000e_set_interrupt_cause(timer->core, 0); |
| } else { |
| trace_e1000e_irq_legacy_notify_postponed(); |
| e1000e_set_interrupt_cause(timer->core, 0); |
| } |
| } |
| |
| static void |
| e1000e_intrmgr_on_msix_throttling_timer(void *opaque) |
| { |
| E1000IntrDelayTimer *timer = opaque; |
| int idx = timer - &timer->core->eitr[0]; |
| |
| assert(msix_enabled(timer->core->owner)); |
| |
| timer->running = false; |
| |
| if (!timer->core->eitr_intr_pending[idx]) { |
| trace_e1000e_irq_throttling_no_pending_vec(idx); |
| return; |
| } |
| |
| trace_e1000e_irq_msix_notify_postponed_vec(idx); |
| msix_notify(timer->core->owner, idx); |
| } |
| |
| static void |
| e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create) |
| { |
| int i; |
| |
| core->radv.delay_reg = RADV; |
| core->rdtr.delay_reg = RDTR; |
| core->raid.delay_reg = RAID; |
| core->tadv.delay_reg = TADV; |
| core->tidv.delay_reg = TIDV; |
| |
| core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; |
| core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; |
| core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; |
| core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; |
| core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; |
| |
| core->radv.core = core; |
| core->rdtr.core = core; |
| core->raid.core = core; |
| core->tadv.core = core; |
| core->tidv.core = core; |
| |
| core->itr.core = core; |
| core->itr.delay_reg = ITR; |
| core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES; |
| |
| for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { |
| core->eitr[i].core = core; |
| core->eitr[i].delay_reg = EITR + i; |
| core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES; |
| } |
| |
| if (!create) { |
| return; |
| } |
| |
| core->radv.timer = |
| timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv); |
| core->rdtr.timer = |
| timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr); |
| core->raid.timer = |
| timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid); |
| |
| core->tadv.timer = |
| timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv); |
| core->tidv.timer = |
| timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv); |
| |
| core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, |
| e1000e_intrmgr_on_throttling_timer, |
| &core->itr); |
| |
| for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { |
| core->eitr[i].timer = |
| timer_new_ns(QEMU_CLOCK_VIRTUAL, |
| e1000e_intrmgr_on_msix_throttling_timer, |
| &core->eitr[i]); |
| } |
| } |
| |
| static inline void |
| e1000e_intrmgr_stop_delay_timers(E1000ECore *core) |
| { |
| e1000e_intrmgr_stop_timer(&core->radv); |
| e1000e_intrmgr_stop_timer(&core->rdtr); |
| e1000e_intrmgr_stop_timer(&core->raid); |
| e1000e_intrmgr_stop_timer(&core->tidv); |
| e1000e_intrmgr_stop_timer(&core->tadv); |
| } |
| |
| static bool |
| e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes) |
| { |
| uint32_t delayable_causes; |
| uint32_t rdtr = core->mac[RDTR]; |
| uint32_t radv = core->mac[RADV]; |
| uint32_t raid = core->mac[RAID]; |
| |
| if (msix_enabled(core->owner)) { |
| return false; |
| } |
| |
| delayable_causes = E1000_ICR_RXQ0 | |
| E1000_ICR_RXQ1 | |
| E1000_ICR_RXT0; |
| |
| if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) { |
| delayable_causes |= E1000_ICR_ACK; |
| } |
| |
| /* Clean up all causes that may be delayed */ |
| core->delayed_causes |= *causes & delayable_causes; |
| *causes &= ~delayable_causes; |
| |
| /* Check if delayed RX interrupts disabled by client |
| or if there are causes that cannot be delayed */ |
| if ((rdtr == 0) || (*causes != 0)) { |
| return false; |
| } |
| |
| /* Check if delayed RX ACK interrupts disabled by client |
| and there is an ACK packet received */ |
| if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) { |
| return false; |
| } |
| |
| /* All causes delayed */ |
| e1000e_intrmgr_rearm_timer(&core->rdtr); |
| |
| if (!core->radv.running && (radv != 0)) { |
| e1000e_intrmgr_rearm_timer(&core->radv); |
| } |
| |
| if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) { |
| e1000e_intrmgr_rearm_timer(&core->raid); |
| } |
| |
| return true; |
| } |
| |
| static bool |
| e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes) |
| { |
| static const uint32_t delayable_causes = E1000_ICR_TXQ0 | |
| E1000_ICR_TXQ1 | |
| E1000_ICR_TXQE | |
| E1000_ICR_TXDW; |
| |
| if (msix_enabled(core->owner)) { |
| return false; |
| } |
| |
| /* Clean up all causes that may be delayed */ |
| core->delayed_causes |= *causes & delayable_causes; |
| *causes &= ~delayable_causes; |
| |
| /* If there are causes that cannot be delayed */ |
| if (*causes != 0) { |
| return false; |
| } |
| |
| /* All causes delayed */ |
| e1000e_intrmgr_rearm_timer(&core->tidv); |
| |
| if (!core->tadv.running && (core->mac[TADV] != 0)) { |
| e1000e_intrmgr_rearm_timer(&core->tadv); |
| } |
| |
| return true; |
| } |
| |
| static uint32_t |
| e1000e_intmgr_collect_delayed_causes(E1000ECore *core) |
| { |
| uint32_t res; |
| |
| if (msix_enabled(core->owner)) { |
| assert(core->delayed_causes == 0); |
| return 0; |
| } |
| |
| res = core->delayed_causes; |
| core->delayed_causes = 0; |
| |
| e1000e_intrmgr_stop_delay_timers(core); |
| |
| return res; |
| } |
| |
| static void |
| e1000e_intrmgr_fire_all_timers(E1000ECore *core) |
| { |
| int i; |
| uint32_t val = e1000e_intmgr_collect_delayed_causes(core); |
| |
| trace_e1000e_irq_adding_delayed_causes(val, core->mac[ICR]); |
| core->mac[ICR] |= val; |
| |
| if (core->itr.running) { |
| timer_del(core->itr.timer); |
| e1000e_intrmgr_on_throttling_timer(&core->itr); |
| } |
| |
| for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { |
| if (core->eitr[i].running) { |
| timer_del(core->eitr[i].timer); |
| e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]); |
| } |
| } |
| } |
| |
| static void |
| e1000e_intrmgr_resume(E1000ECore *core) |
| { |
| int i; |
| |
| e1000e_intmgr_timer_resume(&core->radv); |
| e1000e_intmgr_timer_resume(&core->rdtr); |
| e1000e_intmgr_timer_resume(&core->raid); |
| e1000e_intmgr_timer_resume(&core->tidv); |
| e1000e_intmgr_timer_resume(&core->tadv); |
| |
| e1000e_intmgr_timer_resume(&core->itr); |
| |
| for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { |
| e1000e_intmgr_timer_resume(&core->eitr[i]); |
| } |
| } |
| |
| static void |
| e1000e_intrmgr_pause(E1000ECore *core) |
| { |
| int i; |
| |
| e1000e_intmgr_timer_pause(&core->radv); |
| e1000e_intmgr_timer_pause(&core->rdtr); |
| e1000e_intmgr_timer_pause(&core->raid); |
| e1000e_intmgr_timer_pause(&core->tidv); |
| e1000e_intmgr_timer_pause(&core->tadv); |
| |
| e1000e_intmgr_timer_pause(&core->itr); |
| |
| for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { |
| e1000e_intmgr_timer_pause(&core->eitr[i]); |
| } |
| } |
| |
| static void |
| e1000e_intrmgr_reset(E1000ECore *core) |
| { |
| int i; |
| |
| core->delayed_causes = 0; |
| |
| e1000e_intrmgr_stop_delay_timers(core); |
| |
| e1000e_intrmgr_stop_timer(&core->itr); |
| |
| for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { |
| e1000e_intrmgr_stop_timer(&core->eitr[i]); |
| } |
| } |
| |
| static void |
| e1000e_intrmgr_pci_unint(E1000ECore *core) |
| { |
| int i; |
| |
| timer_del(core->radv.timer); |
| timer_free(core->radv.timer); |
| timer_del(core->rdtr.timer); |
| timer_free(core->rdtr.timer); |
| timer_del(core->raid.timer); |
| timer_free(core->raid.timer); |
| |
| timer_del(core->tadv.timer); |
| timer_free(core->tadv.timer); |
| timer_del(core->tidv.timer); |
| timer_free(core->tidv.timer); |
| |
| timer_del(core->itr.timer); |
| timer_free(core->itr.timer); |
| |
| for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { |
| timer_del(core->eitr[i].timer); |
| timer_free(core->eitr[i].timer); |
| } |
| } |
| |
| static void |
| e1000e_intrmgr_pci_realize(E1000ECore *core) |
| { |
| e1000e_intrmgr_initialize_all_timers(core, true); |
| } |
| |
| static inline bool |
| e1000e_rx_csum_enabled(E1000ECore *core) |
| { |
| return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true; |
| } |
| |
| static inline bool |
| e1000e_rx_use_legacy_descriptor(E1000ECore *core) |
| { |
| return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true; |
| } |
| |
| static inline bool |
| e1000e_rx_use_ps_descriptor(E1000ECore *core) |
| { |
| return !e1000e_rx_use_legacy_descriptor(core) && |
| (core->mac[RCTL] & E1000_RCTL_DTYP_PS); |
| } |
| |
| static inline bool |
| e1000e_rss_enabled(E1000ECore *core) |
| { |
| return E1000_MRQC_ENABLED(core->mac[MRQC]) && |
| !e1000e_rx_csum_enabled(core) && |
| !e1000e_rx_use_legacy_descriptor(core); |
| } |
| |
| typedef struct E1000E_RSSInfo_st { |
| bool enabled; |
| uint32_t hash; |
| uint32_t queue; |
| uint32_t type; |
| } E1000E_RSSInfo; |
| |
| static uint32_t |
| e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt) |
| { |
| bool isip4, isip6, isudp, istcp; |
| |
| assert(e1000e_rss_enabled(core)); |
| |
| net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp); |
| |
| if (isip4) { |
| bool fragment = net_rx_pkt_get_ip4_info(pkt)->fragment; |
| |
| trace_e1000e_rx_rss_ip4(fragment, istcp, core->mac[MRQC], |
| E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]), |
| E1000_MRQC_EN_IPV4(core->mac[MRQC])); |
| |
| if (!fragment && istcp && E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) { |
| return E1000_MRQ_RSS_TYPE_IPV4TCP; |
| } |
| |
| if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) { |
| return E1000_MRQ_RSS_TYPE_IPV4; |
| } |
| } else if (isip6) { |
| eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt); |
| |
| bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS; |
| bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS; |
| |
| /* |
| * Following two traces must not be combined because resulting |
| * event will have 11 arguments totally and some trace backends |
| * (at least "ust") have limitation of maximum 10 arguments per |
| * event. Events with more arguments fail to compile for |
| * backends like these. |
| */ |
| trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]); |
| trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, istcp, |
| ip6info->has_ext_hdrs, |
| ip6info->rss_ex_dst_valid, |
| ip6info->rss_ex_src_valid, |
| core->mac[MRQC], |
| E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]), |
| E1000_MRQC_EN_IPV6EX(core->mac[MRQC]), |
| E1000_MRQC_EN_IPV6(core->mac[MRQC])); |
| |
| if ((!ex_dis || !ip6info->has_ext_hdrs) && |
| (!new_ex_dis || !(ip6info->rss_ex_dst_valid || |
| ip6info->rss_ex_src_valid))) { |
| |
| if (istcp && !ip6info->fragment && |
| E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) { |
| return E1000_MRQ_RSS_TYPE_IPV6TCP; |
| } |
| |
| if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) { |
| return E1000_MRQ_RSS_TYPE_IPV6EX; |
| } |
| |
| } |
| |
| if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) { |
| return E1000_MRQ_RSS_TYPE_IPV6; |
| } |
| |
| } |
| |
| return E1000_MRQ_RSS_TYPE_NONE; |
| } |
| |
| static uint32_t |
| e1000e_rss_calc_hash(E1000ECore *core, |
| struct NetRxPkt *pkt, |
| E1000E_RSSInfo *info) |
| { |
| NetRxPktRssType type; |
| |
| assert(e1000e_rss_enabled(core)); |
| |
| switch (info->type) { |
| case E1000_MRQ_RSS_TYPE_IPV4: |
| type = NetPktRssIpV4; |
| break; |
| case E1000_MRQ_RSS_TYPE_IPV4TCP: |
| type = NetPktRssIpV4Tcp; |
| break; |
| case E1000_MRQ_RSS_TYPE_IPV6TCP: |
| type = NetPktRssIpV6TcpEx; |
| break; |
| case E1000_MRQ_RSS_TYPE_IPV6: |
| type = NetPktRssIpV6; |
| break; |
| case E1000_MRQ_RSS_TYPE_IPV6EX: |
| type = NetPktRssIpV6Ex; |
| break; |
| default: |
| assert(false); |
| return 0; |
| } |
| |
| return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]); |
| } |
| |
| static void |
| e1000e_rss_parse_packet(E1000ECore *core, |
| struct NetRxPkt *pkt, |
| E1000E_RSSInfo *info) |
| { |
| trace_e1000e_rx_rss_started(); |
| |
| if (!e1000e_rss_enabled(core)) { |
| info->enabled = false; |
| info->hash = 0; |
| info->queue = 0; |
| info->type = 0; |
| trace_e1000e_rx_rss_disabled(); |
| return; |
| } |
| |
| info->enabled = true; |
| |
| info->type = e1000e_rss_get_hash_type(core, pkt); |
| |
| trace_e1000e_rx_rss_type(info->type); |
| |
| if (info->type == E1000_MRQ_RSS_TYPE_NONE) { |
| info->hash = 0; |
| info->queue = 0; |
| return; |
| } |
| |
| info->hash = e1000e_rss_calc_hash(core, pkt, info); |
| info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash); |
| } |
| |
| static void |
| e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx) |
| { |
| if (tx->props.tse && tx->cptse) { |
| net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss); |
| net_tx_pkt_update_ip_checksums(tx->tx_pkt); |
| e1000x_inc_reg_if_not_full(core->mac, TSCTC); |
| return; |
| } |
| |
| if (tx->sum_needed & E1000_TXD_POPTS_TXSM) { |
| net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0); |
| } |
| |
| if (tx->sum_needed & E1000_TXD_POPTS_IXSM) { |
| net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt); |
| } |
| } |
| |
| static bool |
| e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index) |
| { |
| int target_queue = MIN(core->max_queue_num, queue_index); |
| NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue); |
| |
| e1000e_setup_tx_offloads(core, tx); |
| |
| net_tx_pkt_dump(tx->tx_pkt); |
| |
| if ((core->phy[0][PHY_CTRL] & MII_CR_LOOPBACK) || |
| ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) { |
| return net_tx_pkt_send_loopback(tx->tx_pkt, queue); |
| } else { |
| return net_tx_pkt_send(tx->tx_pkt, queue); |
| } |
| } |
| |
| static void |
| e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt) |
| { |
| static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511, |
| PTC1023, PTC1522 }; |
| |
| size_t tot_len = net_tx_pkt_get_total_len(tx_pkt); |
| |
| e1000x_increase_size_stats(core->mac, PTCregs, tot_len); |
| e1000x_inc_reg_if_not_full(core->mac, TPT); |
| e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len); |
| |
| switch (net_tx_pkt_get_packet_type(tx_pkt)) { |
| case ETH_PKT_BCAST: |
| e1000x_inc_reg_if_not_full(core->mac, BPTC); |
| break; |
| case ETH_PKT_MCAST: |
| e1000x_inc_reg_if_not_full(core->mac, MPTC); |
| break; |
| case ETH_PKT_UCAST: |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| core->mac[GPTC] = core->mac[TPT]; |
| core->mac[GOTCL] = core->mac[TOTL]; |
| core->mac[GOTCH] = core->mac[TOTH]; |
| } |
| |
| static void |
| e1000e_process_tx_desc(E1000ECore *core, |
| struct e1000e_tx *tx, |
| struct e1000_tx_desc *dp, |
| int queue_index) |
| { |
| uint32_t txd_lower = le32_to_cpu(dp->lower.data); |
| uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D); |
| unsigned int split_size = txd_lower & 0xffff; |
| uint64_t addr; |
| struct e1000_context_desc *xp = (struct e1000_context_desc *)dp; |
| bool eop = txd_lower & E1000_TXD_CMD_EOP; |
| |
| if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */ |
| e1000x_read_tx_ctx_descr(xp, &tx->props); |
| e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length)); |
| return; |
| } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) { |
| /* data descriptor */ |
| tx->sum_needed = le32_to_cpu(dp->upper.data) >> 8; |
| tx->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0; |
| e1000e_process_ts_option(core, dp); |
| } else { |
| /* legacy descriptor */ |
| e1000e_process_ts_option(core, dp); |
| tx->cptse = 0; |
| } |
| |
| addr = le64_to_cpu(dp->buffer_addr); |
| |
| if (!tx->skip_cp) { |
| if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, addr, split_size)) { |
| tx->skip_cp = true; |
| } |
| } |
| |
| if (eop) { |
| if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) { |
| if (e1000x_vlan_enabled(core->mac) && |
| e1000x_is_vlan_txd(txd_lower)) { |
| net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt, |
| le16_to_cpu(dp->upper.fields.special), core->vet); |
| } |
| if (e1000e_tx_pkt_send(core, tx, queue_index)) { |
| e1000e_on_tx_done_update_stats(core, tx->tx_pkt); |
| } |
| } |
| |
| tx->skip_cp = false; |
| net_tx_pkt_reset(tx->tx_pkt); |
| |
| tx->sum_needed = 0; |
| tx->cptse = 0; |
| } |
| } |
| |
| static inline uint32_t |
| e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx) |
| { |
| if (!msix_enabled(core->owner)) { |
| return E1000_ICR_TXDW; |
| } |
| |
| return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1; |
| } |
| |
| static inline uint32_t |
| e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx, |
| bool min_threshold_hit) |
| { |
| if (!msix_enabled(core->owner)) { |
| return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0); |
| } |
| |
| return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1; |
| } |
| |
| static uint32_t |
| e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base, |
| struct e1000_tx_desc *dp, bool *ide, int queue_idx) |
| { |
| uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data); |
| |
| if (!(txd_lower & E1000_TXD_CMD_RS) && |
| !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) { |
| return 0; |
| } |
| |
| *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false; |
| |
| txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD; |
| |
| dp->upper.data = cpu_to_le32(txd_upper); |
| pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp), |
| &dp->upper, sizeof(dp->upper)); |
| return e1000e_tx_wb_interrupt_cause(core, queue_idx); |
| } |
| |
| typedef struct E1000E_RingInfo_st { |
| int dbah; |
| int dbal; |
| int dlen; |
| int dh; |
| int dt; |
| int idx; |
| } E1000E_RingInfo; |
| |
| static inline bool |
| e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r) |
| { |
| return core->mac[r->dh] == core->mac[r->dt] || |
| core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN; |
| } |
| |
| static inline uint64_t |
| e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r) |
| { |
| uint64_t bah = core->mac[r->dbah]; |
| uint64_t bal = core->mac[r->dbal]; |
| |
| return (bah << 32) + bal; |
| } |
| |
| static inline uint64_t |
| e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r) |
| { |
| return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh]; |
| } |
| |
| static inline void |
| e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count) |
| { |
| core->mac[r->dh] += count; |
| |
| if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) { |
| core->mac[r->dh] = 0; |
| } |
| } |
| |
| static inline uint32_t |
| e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r) |
| { |
| trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen], |
| core->mac[r->dh], core->mac[r->dt]); |
| |
| if (core->mac[r->dh] <= core->mac[r->dt]) { |
| return core->mac[r->dt] - core->mac[r->dh]; |
| } |
| |
| if (core->mac[r->dh] > core->mac[r->dt]) { |
| return core->mac[r->dlen] / E1000_RING_DESC_LEN + |
| core->mac[r->dt] - core->mac[r->dh]; |
| } |
| |
| g_assert_not_reached(); |
| return 0; |
| } |
| |
| static inline bool |
| e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r) |
| { |
| return core->mac[r->dlen] > 0; |
| } |
| |
| static inline uint32_t |
| e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r) |
| { |
| return core->mac[r->dlen]; |
| } |
| |
| typedef struct E1000E_TxRing_st { |
| const E1000E_RingInfo *i; |
| struct e1000e_tx *tx; |
| } E1000E_TxRing; |
| |
| static inline int |
| e1000e_mq_queue_idx(int base_reg_idx, int reg_idx) |
| { |
| return (reg_idx - base_reg_idx) / (0x100 >> 2); |
| } |
| |
| static inline void |
| e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx) |
| { |
| static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = { |
| { TDBAH, TDBAL, TDLEN, TDH, TDT, 0 }, |
| { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 } |
| }; |
| |
| assert(idx < ARRAY_SIZE(i)); |
| |
| txr->i = &i[idx]; |
| txr->tx = &core->tx[idx]; |
| } |
| |
| typedef struct E1000E_RxRing_st { |
| const E1000E_RingInfo *i; |
| } E1000E_RxRing; |
| |
| static inline void |
| e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx) |
| { |
| static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = { |
| { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 }, |
| { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 } |
| }; |
| |
| assert(idx < ARRAY_SIZE(i)); |
| |
| rxr->i = &i[idx]; |
| } |
| |
| static void |
| e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr) |
| { |
| dma_addr_t base; |
| struct e1000_tx_desc desc; |
| bool ide = false; |
| const E1000E_RingInfo *txi = txr->i; |
| uint32_t cause = E1000_ICS_TXQE; |
| |
| if (!(core->mac[TCTL] & E1000_TCTL_EN)) { |
| trace_e1000e_tx_disabled(); |
| return; |
| } |
| |
| while (!e1000e_ring_empty(core, txi)) { |
| base = e1000e_ring_head_descr(core, txi); |
| |
| pci_dma_read(core->owner, base, &desc, sizeof(desc)); |
| |
| trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr, |
| desc.lower.data, desc.upper.data); |
| |
| e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx); |
| cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx); |
| |
| e1000e_ring_advance(core, txi, 1); |
| } |
| |
| if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) { |
| e1000e_set_interrupt_cause(core, cause); |
| } |
| } |
| |
| static bool |
| e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r, |
| size_t total_size) |
| { |
| uint32_t bufs = e1000e_ring_free_descr_num(core, r); |
| |
| trace_e1000e_rx_has_buffers(r->idx, bufs, total_size, |
| core->rx_desc_buf_size); |
| |
| return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) * |
| core->rx_desc_buf_size; |
| } |
| |
| void |
| e1000e_start_recv(E1000ECore *core) |
| { |
| int i; |
| |
| trace_e1000e_rx_start_recv(); |
| |
| for (i = 0; i <= core->max_queue_num; i++) { |
| qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i)); |
| } |
| } |
| |
| bool |
| e1000e_can_receive(E1000ECore *core) |
| { |
| int i; |
| |
| if (!e1000x_rx_ready(core->owner, core->mac)) { |
| return false; |
| } |
| |
| for (i = 0; i < E1000E_NUM_QUEUES; i++) { |
| E1000E_RxRing rxr; |
| |
| e1000e_rx_ring_init(core, &rxr, i); |
| if (e1000e_ring_enabled(core, rxr.i) && |
| e1000e_has_rxbufs(core, rxr.i, 1)) { |
| trace_e1000e_rx_can_recv(); |
| return true; |
| } |
| } |
| |
| trace_e1000e_rx_can_recv_rings_full(); |
| return false; |
| } |
| |
| ssize_t |
| e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size) |
| { |
| const struct iovec iov = { |
| .iov_base = (uint8_t *)buf, |
| .iov_len = size |
| }; |
| |
| return e1000e_receive_iov(core, &iov, 1); |
| } |
| |
| static inline bool |
| e1000e_rx_l3_cso_enabled(E1000ECore *core) |
| { |
| return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD); |
| } |
| |
| static inline bool |
| e1000e_rx_l4_cso_enabled(E1000ECore *core) |
| { |
| return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD); |
| } |
| |
| static bool |
| e1000e_receive_filter(E1000ECore *core, const uint8_t *buf, int size) |
| { |
| uint32_t rctl = core->mac[RCTL]; |
| |
| if (e1000x_is_vlan_packet(buf, core->vet) && |
| e1000x_vlan_rx_filter_enabled(core->mac)) { |
| uint16_t vid = lduw_be_p(buf + 14); |
| uint32_t vfta = ldl_le_p((uint32_t *)(core->mac + VFTA) + |
| ((vid >> 5) & 0x7f)); |
| if ((vfta & (1 << (vid & 0x1f))) == 0) { |
| trace_e1000e_rx_flt_vlan_mismatch(vid); |
| return false; |
| } else { |
| trace_e1000e_rx_flt_vlan_match(vid); |
| } |
| } |
| |
| switch (net_rx_pkt_get_packet_type(core->rx_pkt)) { |
| case ETH_PKT_UCAST: |
| if (rctl & E1000_RCTL_UPE) { |
| return true; /* promiscuous ucast */ |
| } |
| break; |
| |
| case ETH_PKT_BCAST: |
| if (rctl & E1000_RCTL_BAM) { |
| return true; /* broadcast enabled */ |
| } |
| break; |
| |
| case ETH_PKT_MCAST: |
| if (rctl & E1000_RCTL_MPE) { |
| return true; /* promiscuous mcast */ |
| } |
| break; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| |
| return e1000x_rx_group_filter(core->mac, buf); |
| } |
| |
| static inline void |
| e1000e_read_lgcy_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr) |
| { |
| struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc; |
| *buff_addr = le64_to_cpu(d->buffer_addr); |
| } |
| |
| static inline void |
| e1000e_read_ext_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr) |
| { |
| union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc; |
| *buff_addr = le64_to_cpu(d->read.buffer_addr); |
| } |
| |
| static inline void |
| e1000e_read_ps_rx_descr(E1000ECore *core, uint8_t *desc, |
| hwaddr (*buff_addr)[MAX_PS_BUFFERS]) |
| { |
| int i; |
| union e1000_rx_desc_packet_split *d = |
| (union e1000_rx_desc_packet_split *) desc; |
| |
| for (i = 0; i < MAX_PS_BUFFERS; i++) { |
| (*buff_addr)[i] = le64_to_cpu(d->read.buffer_addr[i]); |
| } |
| |
| trace_e1000e_rx_desc_ps_read((*buff_addr)[0], (*buff_addr)[1], |
| (*buff_addr)[2], (*buff_addr)[3]); |
| } |
| |
| static inline void |
| e1000e_read_rx_descr(E1000ECore *core, uint8_t *desc, |
| hwaddr (*buff_addr)[MAX_PS_BUFFERS]) |
| { |
| if (e1000e_rx_use_legacy_descriptor(core)) { |
| e1000e_read_lgcy_rx_descr(core, desc, &(*buff_addr)[0]); |
| (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0; |
| } else { |
| if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) { |
| e1000e_read_ps_rx_descr(core, desc, buff_addr); |
| } else { |
| e1000e_read_ext_rx_descr(core, desc, &(*buff_addr)[0]); |
| (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0; |
| } |
| } |
| } |
| |
| static void |
| e1000e_verify_csum_in_sw(E1000ECore *core, |
| struct NetRxPkt *pkt, |
| uint32_t *status_flags, |
| bool istcp, bool isudp) |
| { |
| bool csum_valid; |
| uint32_t csum_error; |
| |
| if (e1000e_rx_l3_cso_enabled(core)) { |
| if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) { |
| trace_e1000e_rx_metadata_l3_csum_validation_failed(); |
| } else { |
| csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE; |
| *status_flags |= E1000_RXD_STAT_IPCS | csum_error; |
| } |
| } else { |
| trace_e1000e_rx_metadata_l3_cso_disabled(); |
| } |
| |
| if (!e1000e_rx_l4_cso_enabled(core)) { |
| trace_e1000e_rx_metadata_l4_cso_disabled(); |
| return; |
| } |
| |
| if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) { |
| trace_e1000e_rx_metadata_l4_csum_validation_failed(); |
| return; |
| } |
| |
| csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE; |
| |
| if (istcp) { |
| *status_flags |= E1000_RXD_STAT_TCPCS | |
| csum_error; |
| } else if (isudp) { |
| *status_flags |= E1000_RXD_STAT_TCPCS | |
| E1000_RXD_STAT_UDPCS | |
| csum_error; |
| } |
| } |
| |
| static inline bool |
| e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt) |
| { |
| if (!net_rx_pkt_is_tcp_ack(rx_pkt)) { |
| return false; |
| } |
| |
| if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) { |
| return !net_rx_pkt_has_tcp_data(rx_pkt); |
| } |
| |
| return true; |
| } |
| |
| static void |
| e1000e_build_rx_metadata(E1000ECore *core, |
| struct NetRxPkt *pkt, |
| bool is_eop, |
| const E1000E_RSSInfo *rss_info, |
| uint32_t *rss, uint32_t *mrq, |
| uint32_t *status_flags, |
| uint16_t *ip_id, |
| uint16_t *vlan_tag) |
| { |
| struct virtio_net_hdr *vhdr; |
| bool isip4, isip6, istcp, isudp; |
| uint32_t pkt_type; |
| |
| *status_flags = E1000_RXD_STAT_DD; |
| |
| /* No additional metadata needed for non-EOP descriptors */ |
| if (!is_eop) { |
| goto func_exit; |
| } |
| |
| *status_flags |= E1000_RXD_STAT_EOP; |
| |
| net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp); |
| trace_e1000e_rx_metadata_protocols(isip4, isip6, isudp, istcp); |
| |
| /* VLAN state */ |
| if (net_rx_pkt_is_vlan_stripped(pkt)) { |
| *status_flags |= E1000_RXD_STAT_VP; |
| *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt)); |
| trace_e1000e_rx_metadata_vlan(*vlan_tag); |
| } |
| |
| /* Packet parsing results */ |
| if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) { |
| if (rss_info->enabled) { |
| *rss = cpu_to_le32(rss_info->hash); |
| *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8)); |
| trace_e1000e_rx_metadata_rss(*rss, *mrq); |
| } |
| } else if (isip4) { |
| *status_flags |= E1000_RXD_STAT_IPIDV; |
| *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt)); |
| trace_e1000e_rx_metadata_ip_id(*ip_id); |
| } |
| |
| if (istcp && e1000e_is_tcp_ack(core, pkt)) { |
| *status_flags |= E1000_RXD_STAT_ACK; |
| trace_e1000e_rx_metadata_ack(); |
| } |
| |
| if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) { |
| trace_e1000e_rx_metadata_ipv6_filtering_disabled(); |
| pkt_type = E1000_RXD_PKT_MAC; |
| } else if (istcp || isudp) { |
| pkt_type = isip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP; |
| } else if (isip4 || isip6) { |
| pkt_type = isip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6; |
| } else { |
| pkt_type = E1000_RXD_PKT_MAC; |
| } |
| |
| *status_flags |= E1000_RXD_PKT_TYPE(pkt_type); |
| trace_e1000e_rx_metadata_pkt_type(pkt_type); |
| |
| /* RX CSO information */ |
| if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) { |
| trace_e1000e_rx_metadata_ipv6_sum_disabled(); |
| goto func_exit; |
| } |
| |
| if (!net_rx_pkt_has_virt_hdr(pkt)) { |
| trace_e1000e_rx_metadata_no_virthdr(); |
| e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp); |
| goto func_exit; |
| } |
| |
| vhdr = net_rx_pkt_get_vhdr(pkt); |
| |
| if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) && |
| !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) { |
| trace_e1000e_rx_metadata_virthdr_no_csum_info(); |
| e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp); |
| goto func_exit; |
| } |
| |
| if (e1000e_rx_l3_cso_enabled(core)) { |
| *status_flags |= isip4 ? E1000_RXD_STAT_IPCS : 0; |
| } else { |
| trace_e1000e_rx_metadata_l3_cso_disabled(); |
| } |
| |
| if (e1000e_rx_l4_cso_enabled(core)) { |
| if (istcp) { |
| *status_flags |= E1000_RXD_STAT_TCPCS; |
| } else if (isudp) { |
| *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS; |
| } |
| } else { |
| trace_e1000e_rx_metadata_l4_cso_disabled(); |
| } |
| |
| trace_e1000e_rx_metadata_status_flags(*status_flags); |
| |
| func_exit: |
| *status_flags = cpu_to_le32(*status_flags); |
| } |
| |
| static inline void |
| e1000e_write_lgcy_rx_descr(E1000ECore *core, uint8_t *desc, |
| struct NetRxPkt *pkt, |
| const E1000E_RSSInfo *rss_info, |
| uint16_t length) |
| { |
| uint32_t status_flags, rss, mrq; |
| uint16_t ip_id; |
| |
| struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc; |
| |
| assert(!rss_info->enabled); |
| |
| d->length = cpu_to_le16(length); |
| d->csum = 0; |
| |
| e1000e_build_rx_metadata(core, pkt, pkt != NULL, |
| rss_info, |
| &rss, &mrq, |
| &status_flags, &ip_id, |
| &d->special); |
| d->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24); |
| d->status = (uint8_t) le32_to_cpu(status_flags); |
| d->special = 0; |
| } |
| |
| static inline void |
| e1000e_write_ext_rx_descr(E1000ECore *core, uint8_t *desc, |
| struct NetRxPkt *pkt, |
| const E1000E_RSSInfo *rss_info, |
| uint16_t length) |
| { |
| union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc; |
| |
| memset(&d->wb, 0, sizeof(d->wb)); |
| |
| d->wb.upper.length = cpu_to_le16(length); |
| |
| e1000e_build_rx_metadata(core, pkt, pkt != NULL, |
| rss_info, |
| &d->wb.lower.hi_dword.rss, |
| &d->wb.lower.mrq, |
| &d->wb.upper.status_error, |
| &d->wb.lower.hi_dword.csum_ip.ip_id, |
| &d->wb.upper.vlan); |
| } |
| |
| static inline void |
| e1000e_write_ps_rx_descr(E1000ECore *core, uint8_t *desc, |
| struct NetRxPkt *pkt, |
| const E1000E_RSSInfo *rss_info, |
| size_t ps_hdr_len, |
| uint16_t(*written)[MAX_PS_BUFFERS]) |
| { |
| int i; |
| union e1000_rx_desc_packet_split *d = |
| (union e1000_rx_desc_packet_split *) desc; |
| |
| memset(&d->wb, 0, sizeof(d->wb)); |
| |
| d->wb.middle.length0 = cpu_to_le16((*written)[0]); |
| |
| for (i = 0; i < PS_PAGE_BUFFERS; i++) { |
| d->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]); |
| } |
| |
| e1000e_build_rx_metadata(core, pkt, pkt != NULL, |
| rss_info, |
| &d->wb.lower.hi_dword.rss, |
| &d->wb.lower.mrq, |
| &d->wb.middle.status_error, |
| &d->wb.lower.hi_dword.csum_ip.ip_id, |
| &d->wb.middle.vlan); |
| |
| d->wb.upper.header_status = |
| cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0)); |
| |
| trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1], |
| (*written)[2], (*written)[3]); |
| } |
| |
| static inline void |
| e1000e_write_rx_descr(E1000ECore *core, uint8_t *desc, |
| struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info, |
| size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS]) |
| { |
| if (e1000e_rx_use_legacy_descriptor(core)) { |
| assert(ps_hdr_len == 0); |
| e1000e_write_lgcy_rx_descr(core, desc, pkt, rss_info, (*written)[0]); |
| } else { |
| if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) { |
| e1000e_write_ps_rx_descr(core, desc, pkt, rss_info, |
| ps_hdr_len, written); |
| } else { |
| assert(ps_hdr_len == 0); |
| e1000e_write_ext_rx_descr(core, desc, pkt, rss_info, |
| (*written)[0]); |
| } |
| } |
| } |
| |
| typedef struct e1000e_ba_state_st { |
| uint16_t written[MAX_PS_BUFFERS]; |
| uint8_t cur_idx; |
| } e1000e_ba_state; |
| |
| static inline void |
| e1000e_write_hdr_to_rx_buffers(E1000ECore *core, |
| hwaddr (*ba)[MAX_PS_BUFFERS], |
| e1000e_ba_state *bastate, |
| const char *data, |
| dma_addr_t data_len) |
| { |
| assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]); |
| |
| pci_dma_write(core->owner, (*ba)[0] + bastate->written[0], data, data_len); |
| bastate->written[0] += data_len; |
| |
| bastate->cur_idx = 1; |
| } |
| |
| static void |
| e1000e_write_to_rx_buffers(E1000ECore *core, |
| hwaddr (*ba)[MAX_PS_BUFFERS], |
| e1000e_ba_state *bastate, |
| const char *data, |
| dma_addr_t data_len) |
| { |
| while (data_len > 0) { |
| uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx]; |
| uint32_t cur_buf_bytes_left = cur_buf_len - |
| bastate->written[bastate->cur_idx]; |
| uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left); |
| |
| trace_e1000e_rx_desc_buff_write(bastate->cur_idx, |
| (*ba)[bastate->cur_idx], |
| bastate->written[bastate->cur_idx], |
| data, |
| bytes_to_write); |
| |
| pci_dma_write(core->owner, |
| (*ba)[bastate->cur_idx] + bastate->written[bastate->cur_idx], |
| data, bytes_to_write); |
| |
| bastate->written[bastate->cur_idx] += bytes_to_write; |
| data += bytes_to_write; |
| data_len -= bytes_to_write; |
| |
| if (bastate->written[bastate->cur_idx] == cur_buf_len) { |
| bastate->cur_idx++; |
| } |
| |
| assert(bastate->cur_idx < MAX_PS_BUFFERS); |
| } |
| } |
| |
| static void |
| e1000e_update_rx_stats(E1000ECore *core, |
| size_t data_size, |
| size_t data_fcs_size) |
| { |
| e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size); |
| |
| switch (net_rx_pkt_get_packet_type(core->rx_pkt)) { |
| case ETH_PKT_BCAST: |
| e1000x_inc_reg_if_not_full(core->mac, BPRC); |
| break; |
| |
| case ETH_PKT_MCAST: |
| e1000x_inc_reg_if_not_full(core->mac, MPRC); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| static inline bool |
| e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi) |
| { |
| return e1000e_ring_free_descr_num(core, rxi) == |
| e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift; |
| } |
| |
| static bool |
| e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len) |
| { |
| bool isip4, isip6, isudp, istcp; |
| bool fragment; |
| |
| if (!e1000e_rx_use_ps_descriptor(core)) { |
| return false; |
| } |
| |
| net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp); |
| |
| if (isip4) { |
| fragment = net_rx_pkt_get_ip4_info(pkt)->fragment; |
| } else if (isip6) { |
| fragment = net_rx_pkt_get_ip6_info(pkt)->fragment; |
| } else { |
| return false; |
| } |
| |
| if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) { |
| return false; |
| } |
| |
| if (!fragment && (isudp || istcp)) { |
| *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt); |
| } else { |
| *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt); |
| } |
| |
| if ((*hdr_len > core->rxbuf_sizes[0]) || |
| (*hdr_len > net_rx_pkt_get_total_len(pkt))) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void |
| e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt, |
| const E1000E_RxRing *rxr, |
| const E1000E_RSSInfo *rss_info) |
| { |
| PCIDevice *d = core->owner; |
| dma_addr_t base; |
| uint8_t desc[E1000_MAX_RX_DESC_LEN]; |
| size_t desc_size; |
| size_t desc_offset = 0; |
| size_t iov_ofs = 0; |
| |
| struct iovec *iov = net_rx_pkt_get_iovec(pkt); |
| size_t size = net_rx_pkt_get_total_len(pkt); |
| size_t total_size = size + e1000x_fcs_len(core->mac); |
| const E1000E_RingInfo *rxi; |
| size_t ps_hdr_len = 0; |
| bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len); |
| bool is_first = true; |
| |
| rxi = rxr->i; |
| |
| do { |
| hwaddr ba[MAX_PS_BUFFERS]; |
| e1000e_ba_state bastate = { { 0 } }; |
| bool is_last = false; |
| |
| desc_size = total_size - desc_offset; |
| |
| if (desc_size > core->rx_desc_buf_size) { |
| desc_size = core->rx_desc_buf_size; |
| } |
| |
| if (e1000e_ring_empty(core, rxi)) { |
| return; |
| } |
| |
| base = e1000e_ring_head_descr(core, rxi); |
| |
| pci_dma_read(d, base, &desc, core->rx_desc_len); |
| |
| trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len); |
| |
| e1000e_read_rx_descr(core, desc, &ba); |
| |
| if (ba[0]) { |
| if (desc_offset < size) { |
| static const uint32_t fcs_pad; |
| size_t iov_copy; |
| size_t copy_size = size - desc_offset; |
| if (copy_size > core->rx_desc_buf_size) { |
| copy_size = core->rx_desc_buf_size; |
| } |
| |
| /* For PS mode copy the packet header first */ |
| if (do_ps) { |
| if (is_first) { |
| size_t ps_hdr_copied = 0; |
| do { |
| iov_copy = MIN(ps_hdr_len - ps_hdr_copied, |
| iov->iov_len - iov_ofs); |
| |
| e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate, |
| iov->iov_base, iov_copy); |
| |
| copy_size -= iov_copy; |
| ps_hdr_copied += iov_copy; |
| |
| iov_ofs += iov_copy; |
| if (iov_ofs == iov->iov_len) { |
| iov++; |
| iov_ofs = 0; |
| } |
| } while (ps_hdr_copied < ps_hdr_len); |
| |
| is_first = false; |
| } else { |
| /* Leave buffer 0 of each descriptor except first */ |
| /* empty as per spec 7.1.5.1 */ |
| e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate, |
| NULL, 0); |
| } |
| } |
| |
| /* Copy packet payload */ |
| while (copy_size) { |
| iov_copy = MIN(copy_size, iov->iov_len - iov_ofs); |
| |
| e1000e_write_to_rx_buffers(core, &ba, &bastate, |
| iov->iov_base + iov_ofs, iov_copy); |
| |
| copy_size -= iov_copy; |
| iov_ofs += iov_copy; |
| if (iov_ofs == iov->iov_len) { |
| iov++; |
| iov_ofs = 0; |
| } |
| } |
| |
| if (desc_offset + desc_size >= total_size) { |
| /* Simulate FCS checksum presence in the last descriptor */ |
| e1000e_write_to_rx_buffers(core, &ba, &bastate, |
| (const char *) &fcs_pad, e1000x_fcs_len(core->mac)); |
| } |
| } |
| desc_offset += desc_size; |
| if (desc_offset >= total_size) { |
| is_last = true; |
| } |
| } else { /* as per intel docs; skip descriptors with null buf addr */ |
| trace_e1000e_rx_null_descriptor(); |
| } |
| |
| e1000e_write_rx_descr(core, desc, is_last ? core->rx_pkt : NULL, |
| rss_info, do_ps ? ps_hdr_len : 0, &bastate.written); |
| pci_dma_write(d, base, &desc, core->rx_desc_len); |
| |
| e1000e_ring_advance(core, rxi, |
| core->rx_desc_len / E1000_MIN_RX_DESC_LEN); |
| |
| } while (desc_offset < total_size); |
| |
| e1000e_update_rx_stats(core, size, total_size); |
| } |
| |
| static inline void |
| e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt) |
| { |
| if (net_rx_pkt_has_virt_hdr(pkt)) { |
| struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt); |
| |
| if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) { |
| net_rx_pkt_fix_l4_csum(pkt); |
| } |
| } |
| } |
| |
| ssize_t |
| e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt) |
| { |
| static const int maximum_ethernet_hdr_len = (14 + 4); |
| /* Min. octets in an ethernet frame sans FCS */ |
| static const int min_buf_size = 60; |
| |
| uint32_t n = 0; |
| uint8_t min_buf[min_buf_size]; |
| struct iovec min_iov; |
| uint8_t *filter_buf; |
| size_t size, orig_size; |
| size_t iov_ofs = 0; |
| E1000E_RxRing rxr; |
| E1000E_RSSInfo rss_info; |
| size_t total_size; |
| ssize_t retval; |
| bool rdmts_hit; |
| |
| trace_e1000e_rx_receive_iov(iovcnt); |
| |
| if (!e1000x_hw_rx_enabled(core->mac)) { |
| return -1; |
| } |
| |
| /* Pull virtio header in */ |
| if (core->has_vnet) { |
| net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt); |
| iov_ofs = sizeof(struct virtio_net_hdr); |
| } |
| |
| filter_buf = iov->iov_base + iov_ofs; |
| orig_size = iov_size(iov, iovcnt); |
| size = orig_size - iov_ofs; |
| |
| /* Pad to minimum Ethernet frame length */ |
| if (size < sizeof(min_buf)) { |
| iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size); |
| memset(&min_buf[size], 0, sizeof(min_buf) - size); |
| e1000x_inc_reg_if_not_full(core->mac, RUC); |
| min_iov.iov_base = filter_buf = min_buf; |
| min_iov.iov_len = size = sizeof(min_buf); |
| iovcnt = 1; |
| iov = &min_iov; |
| iov_ofs = 0; |
| } else if (iov->iov_len < maximum_ethernet_hdr_len) { |
| /* This is very unlikely, but may happen. */ |
| iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len); |
| filter_buf = min_buf; |
| } |
| |
| /* Discard oversized packets if !LPE and !SBP. */ |
| if (e1000x_is_oversized(core->mac, size)) { |
| return orig_size; |
| } |
| |
| net_rx_pkt_set_packet_type(core->rx_pkt, |
| get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf))); |
| |
| if (!e1000e_receive_filter(core, filter_buf, size)) { |
| trace_e1000e_rx_flt_dropped(); |
| return orig_size; |
| } |
| |
| net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs, |
| e1000x_vlan_enabled(core->mac), core->vet); |
| |
| e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info); |
| e1000e_rx_ring_init(core, &rxr, rss_info.queue); |
| |
| trace_e1000e_rx_rss_dispatched_to_queue(rxr.i->idx); |
| |
| total_size = net_rx_pkt_get_total_len(core->rx_pkt) + |
| e1000x_fcs_len(core->mac); |
| |
| if (e1000e_has_rxbufs(core, rxr.i, total_size)) { |
| e1000e_rx_fix_l4_csum(core, core->rx_pkt); |
| |
| e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info); |
| |
| retval = orig_size; |
| |
| /* Perform small receive detection (RSRPD) */ |
| if (total_size < core->mac[RSRPD]) { |
| n |= E1000_ICS_SRPD; |
| } |
| |
| /* Perform ACK receive detection */ |
| if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) && |
| (e1000e_is_tcp_ack(core, core->rx_pkt))) { |
| n |= E1000_ICS_ACK; |
| } |
| |
| /* Check if receive descriptor minimum threshold hit */ |
| rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i); |
| n |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit); |
| |
| trace_e1000e_rx_written_to_guest(n); |
| } else { |
| n |= E1000_ICS_RXO; |
| retval = 0; |
| |
| trace_e1000e_rx_not_written_to_guest(n); |
| } |
| |
| if (!e1000e_intrmgr_delay_rx_causes(core, &n)) { |
| trace_e1000e_rx_interrupt_set(n); |
| e1000e_set_interrupt_cause(core, n); |
| } else { |
| trace_e1000e_rx_interrupt_delayed(n); |
| } |
| |
| return retval; |
| } |
| |
| static inline bool |
| e1000e_have_autoneg(E1000ECore *core) |
| { |
| return core->phy[0][PHY_CTRL] & MII_CR_AUTO_NEG_EN; |
| } |
| |
| static void e1000e_update_flowctl_status(E1000ECore *core) |
| { |
| if (e1000e_have_autoneg(core) && |
| core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE) { |
| trace_e1000e_link_autoneg_flowctl(true); |
| core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE; |
| } else { |
| trace_e1000e_link_autoneg_flowctl(false); |
| } |
| } |
| |
| static inline void |
| e1000e_link_down(E1000ECore *core) |
| { |
| e1000x_update_regs_on_link_down(core->mac, core->phy[0]); |
| e1000e_update_flowctl_status(core); |
| } |
| |
| static inline void |
| e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val) |
| { |
| /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */ |
| core->phy[0][PHY_CTRL] = val & ~(0x3f | |
| MII_CR_RESET | |
| MII_CR_RESTART_AUTO_NEG); |
| |
| if ((val & MII_CR_RESTART_AUTO_NEG) && |
| e1000e_have_autoneg(core)) { |
| e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer); |
| } |
| } |
| |
| static void |
| e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val) |
| { |
| core->phy[0][PHY_OEM_BITS] = val & ~BIT(10); |
| |
| if (val & BIT(10)) { |
| e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer); |
| } |
| } |
| |
| static void |
| e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val) |
| { |
| core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK; |
| } |
| |
| void |
| e1000e_core_set_link_status(E1000ECore *core) |
| { |
| NetClientState *nc = qemu_get_queue(core->owner_nic); |
| uint32_t old_status = core->mac[STATUS]; |
| |
| trace_e1000e_link_status_changed(nc->link_down ? false : true); |
| |
| if (nc->link_down) { |
| e1000x_update_regs_on_link_down(core->mac, core->phy[0]); |
| } else { |
| if (e1000e_have_autoneg(core) && |
| !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { |
| e1000x_restart_autoneg(core->mac, core->phy[0], |
| core->autoneg_timer); |
| } else { |
| e1000x_update_regs_on_link_up(core->mac, core->phy[0]); |
| e1000e_start_recv(core); |
| } |
| } |
| |
| if (core->mac[STATUS] != old_status) { |
| e1000e_set_interrupt_cause(core, E1000_ICR_LSC); |
| } |
| } |
| |
| static void |
| e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val) |
| { |
| trace_e1000e_core_ctrl_write(index, val); |
| |
| /* RST is self clearing */ |
| core->mac[CTRL] = val & ~E1000_CTRL_RST; |
| core->mac[CTRL_DUP] = core->mac[CTRL]; |
| |
| trace_e1000e_link_set_params( |
| !!(val & E1000_CTRL_ASDE), |
| (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT, |
| !!(val & E1000_CTRL_FRCSPD), |
| !!(val & E1000_CTRL_FRCDPX), |
| !!(val & E1000_CTRL_RFCE), |
| !!(val & E1000_CTRL_TFCE)); |
| |
| if (val & E1000_CTRL_RST) { |
| trace_e1000e_core_ctrl_sw_reset(); |
| e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac); |
| } |
| |
| if (val & E1000_CTRL_PHY_RST) { |
| trace_e1000e_core_ctrl_phy_reset(); |
| core->mac[STATUS] |= E1000_STATUS_PHYRA; |
| } |
| } |
| |
| static void |
| e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val) |
| { |
| trace_e1000e_rx_set_rfctl(val); |
| |
| if (!(val & E1000_RFCTL_ISCSI_DIS)) { |
| trace_e1000e_wrn_iscsi_filtering_not_supported(); |
| } |
| |
| if (!(val & E1000_RFCTL_NFSW_DIS)) { |
| trace_e1000e_wrn_nfsw_filtering_not_supported(); |
| } |
| |
| if (!(val & E1000_RFCTL_NFSR_DIS)) { |
| trace_e1000e_wrn_nfsr_filtering_not_supported(); |
| } |
| |
| core->mac[RFCTL] = val; |
| } |
| |
| static void |
| e1000e_calc_per_desc_buf_size(E1000ECore *core) |
| { |
| int i; |
| core->rx_desc_buf_size = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) { |
| core->rx_desc_buf_size += core->rxbuf_sizes[i]; |
| } |
| } |
| |
| static void |
| e1000e_parse_rxbufsize(E1000ECore *core) |
| { |
| uint32_t rctl = core->mac[RCTL]; |
| |
| memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes)); |
| |
| if (rctl & E1000_RCTL_DTYP_MASK) { |
| uint32_t bsize; |
| |
| bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK; |
| core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128; |
| |
| bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK; |
| core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024; |
| |
| bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK; |
| core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024; |
| |
| bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK; |
| core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024; |
| } else if (rctl & E1000_RCTL_FLXBUF_MASK) { |
| int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK; |
| core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024; |
| } else { |
| core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl); |
| } |
| |
| trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1], |
| core->rxbuf_sizes[2], core->rxbuf_sizes[3]); |
| |
| e1000e_calc_per_desc_buf_size(core); |
| } |
| |
| static void |
| e1000e_calc_rxdesclen(E1000ECore *core) |
| { |
| if (e1000e_rx_use_legacy_descriptor(core)) { |
| core->rx_desc_len = sizeof(struct e1000_rx_desc); |
| } else { |
| if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) { |
| core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split); |
| } else { |
| core->rx_desc_len = sizeof(union e1000_rx_desc_extended); |
| } |
| } |
| trace_e1000e_rx_desc_len(core->rx_desc_len); |
| } |
| |
| static void |
| e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val) |
| { |
| core->mac[RCTL] = val; |
| trace_e1000e_rx_set_rctl(core->mac[RCTL]); |
| |
| if (val & E1000_RCTL_EN) { |
| e1000e_parse_rxbufsize(core); |
| e1000e_calc_rxdesclen(core); |
| core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 + |
| E1000_RING_DESC_LEN_SHIFT; |
| |
| e1000e_start_recv(core); |
| } |
| } |
| |
| static |
| void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE]) |
| (E1000ECore *, int, uint16_t) = { |
| [0] = { |
| [PHY_CTRL] = e1000e_set_phy_ctrl, |
| [PHY_PAGE] = e1000e_set_phy_page, |
| [PHY_OEM_BITS] = e1000e_set_phy_oem_bits |
| } |
| }; |
| |
| static inline void |
| e1000e_clear_ims_bits(E1000ECore *core, uint32_t bits) |
| { |
| trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits); |
| core->mac[IMS] &= ~bits; |
| } |
| |
| static inline bool |
| e1000e_postpone_interrupt(bool *interrupt_pending, |
| E1000IntrDelayTimer *timer) |
| { |
| if (timer->running) { |
| trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2); |
| |
| *interrupt_pending = true; |
| return true; |
| } |
| |
| if (timer->core->mac[timer->delay_reg] != 0) { |
| e1000e_intrmgr_rearm_timer(timer); |
| } |
| |
| return false; |
| } |
| |
| static inline bool |
| e1000e_itr_should_postpone(E1000ECore *core) |
| { |
| return e1000e_postpone_interrupt(&core->itr_intr_pending, &core->itr); |
| } |
| |
| static inline bool |
| e1000e_eitr_should_postpone(E1000ECore *core, int idx) |
| { |
| return e1000e_postpone_interrupt(&core->eitr_intr_pending[idx], |
| &core->eitr[idx]); |
| } |
| |
| static void |
| e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg) |
| { |
| uint32_t effective_eiac; |
| |
| if (E1000_IVAR_ENTRY_VALID(int_cfg)) { |
| uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg); |
| if (vec < E1000E_MSIX_VEC_NUM) { |
| if (!e1000e_eitr_should_postpone(core, vec)) { |
| trace_e1000e_irq_msix_notify_vec(vec); |
| msix_notify(core->owner, vec); |
| } |
| } else { |
| trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg); |
| } |
| } else { |
| trace_e1000e_wrn_msix_invalid(cause, int_cfg); |
| } |
| |
| if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) { |
| trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause); |
| core->mac[IAM] &= ~cause; |
| } |
| |
| trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]); |
| |
| effective_eiac = core->mac[EIAC] & cause; |
| |
| core->mac[ICR] &= ~effective_eiac; |
| core->msi_causes_pending &= ~effective_eiac; |
| |
| if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) { |
| core->mac[IMS] &= ~effective_eiac; |
| } |
| } |
| |
| static void |
| e1000e_msix_notify(E1000ECore *core, uint32_t causes) |
| { |
| if (causes & E1000_ICR_RXQ0) { |
| e1000e_msix_notify_one(core, E1000_ICR_RXQ0, |
| E1000_IVAR_RXQ0(core->mac[IVAR])); |
| } |
| |
| if (causes & E1000_ICR_RXQ1) { |
| e1000e_msix_notify_one(core, E1000_ICR_RXQ1, |
| E1000_IVAR_RXQ1(core->mac[IVAR])); |
| } |
| |
| if (causes & E1000_ICR_TXQ0) { |
| e1000e_msix_notify_one(core, E1000_ICR_TXQ0, |
| E1000_IVAR_TXQ0(core->mac[IVAR])); |
| } |
| |
| if (causes & E1000_ICR_TXQ1) { |
| e1000e_msix_notify_one(core, E1000_ICR_TXQ1, |
| E1000_IVAR_TXQ1(core->mac[IVAR])); |
| } |
| |
| if (causes & E1000_ICR_OTHER) { |
| e1000e_msix_notify_one(core, E1000_ICR_OTHER, |
| E1000_IVAR_OTHER(core->mac[IVAR])); |
| } |
| } |
| |
| static void |
| e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg) |
| { |
| if (E1000_IVAR_ENTRY_VALID(int_cfg)) { |
| uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg); |
| if (vec < E1000E_MSIX_VEC_NUM) { |
| trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec); |
| msix_clr_pending(core->owner, vec); |
| } else { |
| trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg); |
| } |
| } else { |
| trace_e1000e_wrn_msix_invalid(cause, int_cfg); |
| } |
| } |
| |
| static void |
| e1000e_msix_clear(E1000ECore *core, uint32_t causes) |
| { |
| if (causes & E1000_ICR_RXQ0) { |
| e1000e_msix_clear_one(core, E1000_ICR_RXQ0, |
| E1000_IVAR_RXQ0(core->mac[IVAR])); |
| } |
| |
| if (causes & E1000_ICR_RXQ1) { |
| e1000e_msix_clear_one(core, E1000_ICR_RXQ1, |
| E1000_IVAR_RXQ1(core->mac[IVAR])); |
| } |
| |
| if (causes & E1000_ICR_TXQ0) { |
| e1000e_msix_clear_one(core, E1000_ICR_TXQ0, |
| E1000_IVAR_TXQ0(core->mac[IVAR])); |
| } |
| |
| if (causes & E1000_ICR_TXQ1) { |
| e1000e_msix_clear_one(core, E1000_ICR_TXQ1, |
| E1000_IVAR_TXQ1(core->mac[IVAR])); |
| } |
| |
| if (causes & E1000_ICR_OTHER) { |
| e1000e_msix_clear_one(core, E1000_ICR_OTHER, |
| E1000_IVAR_OTHER(core->mac[IVAR])); |
| } |
| } |
| |
| static inline void |
| e1000e_fix_icr_asserted(E1000ECore *core) |
| { |
| core->mac[ICR] &= ~E1000_ICR_ASSERTED; |
| if (core->mac[ICR]) { |
| core->mac[ICR] |= E1000_ICR_ASSERTED; |
| } |
| |
| trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]); |
| } |
| |
| static void |
| e1000e_send_msi(E1000ECore *core, bool msix) |
| { |
| uint32_t causes = core->mac[ICR] & core->mac[IMS] & ~E1000_ICR_ASSERTED; |
| |
| core->msi_causes_pending &= causes; |
| causes ^= core->msi_causes_pending; |
| if (causes == 0) { |
| return; |
| } |
| core->msi_causes_pending |= causes; |
| |
| if (msix) { |
| e1000e_msix_notify(core, causes); |
| } else { |
| if (!e1000e_itr_should_postpone(core)) { |
| trace_e1000e_irq_msi_notify(causes); |
| msi_notify(core->owner, 0); |
| } |
| } |
| } |
| |
| static void |
| e1000e_update_interrupt_state(E1000ECore *core) |
| { |
| bool interrupts_pending; |
| bool is_msix = msix_enabled(core->owner); |
| |
| /* Set ICR[OTHER] for MSI-X */ |
| if (is_msix) { |
| if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) { |
| core->mac[ICR] |= E1000_ICR_OTHER; |
| trace_e1000e_irq_add_msi_other(core->mac[ICR]); |
| } |
| } |
| |
| e1000e_fix_icr_asserted(core); |
| |
| /* |
| * Make sure ICR and ICS registers have the same value. |
| * The spec says that the ICS register is write-only. However in practice, |
| * on real hardware ICS is readable, and for reads it has the same value as |
| * ICR (except that ICS does not have the clear on read behaviour of ICR). |
| * |
| * The VxWorks PRO/1000 driver uses this behaviour. |
| */ |
| core->mac[ICS] = core->mac[ICR]; |
| |
| interrupts_pending = (core->mac[IMS] & core->mac[ICR]) ? true : false; |
| if (!interrupts_pending) { |
| core->msi_causes_pending = 0; |
| } |
| |
| trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS], |
| core->mac[ICR], core->mac[IMS]); |
| |
| if (is_msix || msi_enabled(core->owner)) { |
| if (interrupts_pending) { |
| e1000e_send_msi(core, is_msix); |
| } |
| } else { |
| if (interrupts_pending) { |
| if (!e1000e_itr_should_postpone(core)) { |
| e1000e_raise_legacy_irq(core); |
| } |
| } else { |
| e1000e_lower_legacy_irq(core); |
| } |
| } |
| } |
| |
| static void |
| e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val) |
| { |
| trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]); |
| |
| val |= e1000e_intmgr_collect_delayed_causes(core); |
| core->mac[ICR] |= val; |
| |
| trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]); |
| |
| e1000e_update_interrupt_state(core); |
| } |
| |
| static inline void |
| e1000e_autoneg_timer(void *opaque) |
| { |
| E1000ECore *core = opaque; |
| if (!qemu_get_queue(core->owner_nic)->link_down) { |
| e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]); |
| e1000e_start_recv(core); |
| |
| e1000e_update_flowctl_status(core); |
| /* signal link status change to the guest */ |
| e1000e_set_interrupt_cause(core, E1000_ICR_LSC); |
| } |
| } |
| |
| static inline uint16_t |
| e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr) |
| { |
| uint16_t index = (addr & 0x1ffff) >> 2; |
| return index + (mac_reg_access[index] & 0xfffe); |
| } |
| |
| static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = { |
| [0] = { |
| [PHY_CTRL] = PHY_ANYPAGE | PHY_RW, |
| [PHY_STATUS] = PHY_ANYPAGE | PHY_R, |
| [PHY_ID1] = PHY_ANYPAGE | PHY_R, |
| [PHY_ID2] = PHY_ANYPAGE | PHY_R, |
| [PHY_AUTONEG_ADV] = PHY_ANYPAGE | PHY_RW, |
| [PHY_LP_ABILITY] = PHY_ANYPAGE | PHY_R, |
| [PHY_AUTONEG_EXP] = PHY_ANYPAGE | PHY_R, |
| [PHY_NEXT_PAGE_TX] = PHY_ANYPAGE | PHY_RW, |
| [PHY_LP_NEXT_PAGE] = PHY_ANYPAGE | PHY_R, |
| [PHY_1000T_CTRL] = PHY_ANYPAGE | PHY_RW, |
| [PHY_1000T_STATUS] = PHY_ANYPAGE | PHY_R, |
| [PHY_EXT_STATUS] = PHY_ANYPAGE | PHY_R, |
| [PHY_PAGE] = PHY_ANYPAGE | PHY_RW, |
| |
| [PHY_COPPER_CTRL1] = PHY_RW, |
| [PHY_COPPER_STAT1] = PHY_R, |
| [PHY_COPPER_CTRL3] = PHY_RW, |
| [PHY_RX_ERR_CNTR] = PHY_R, |
| [PHY_OEM_BITS] = PHY_RW, |
| [PHY_BIAS_1] = PHY_RW, |
| [PHY_BIAS_2] = PHY_RW, |
| [PHY_COPPER_INT_ENABLE] = PHY_RW, |
| [PHY_COPPER_STAT2] = PHY_R, |
| [PHY_COPPER_CTRL2] = PHY_RW |
| }, |
| [2] = { |
| [PHY_MAC_CTRL1] = PHY_RW, |
| [PHY_MAC_INT_ENABLE] = PHY_RW, |
| [PHY_MAC_STAT] = PHY_R, |
| [PHY_MAC_CTRL2] = PHY_RW |
| }, |
| [3] = { |
| [PHY_LED_03_FUNC_CTRL1] = PHY_RW, |
| [PHY_LED_03_POL_CTRL] = PHY_RW, |
| [PHY_LED_TIMER_CTRL] = PHY_RW, |
| [PHY_LED_45_CTRL] = PHY_RW |
| }, |
| [5] = { |
| [PHY_1000T_SKEW] = PHY_R, |
| [PHY_1000T_SWAP] = PHY_R |
| }, |
| [6] = { |
| [PHY_CRC_COUNTERS] = PHY_R |
| } |
| }; |
| |
| static bool |
| e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr, |
| char cap, uint8_t *page) |
| { |
| *page = |
| (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0 |
| : core->phy[0][PHY_PAGE]; |
| |
| if (*page >= E1000E_PHY_PAGES) { |
| return false; |
| } |
| |
| return e1000e_phy_regcap[*page][addr] & cap; |
| } |
| |
| static void |
| e1000e_phy_reg_write(E1000ECore *core, uint8_t page, |
| uint32_t addr, uint16_t data) |
| { |
| assert(page < E1000E_PHY_PAGES); |
| assert(addr < E1000E_PHY_PAGE_SIZE); |
| |
| if (e1000e_phyreg_writeops[page][addr]) { |
| e1000e_phyreg_writeops[page][addr](core, addr, data); |
| } else { |
| core->phy[page][addr] = data; |
| } |
| } |
| |
| static void |
| e1000e_set_mdic(E1000ECore *core, int index, uint32_t val) |
| { |
| uint32_t data = val & E1000_MDIC_DATA_MASK; |
| uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); |
| uint8_t page; |
| |
| if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */ |
| val = core->mac[MDIC] | E1000_MDIC_ERROR; |
| } else if (val & E1000_MDIC_OP_READ) { |
| if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) { |
| trace_e1000e_core_mdic_read_unhandled(page, addr); |
| val |= E1000_MDIC_ERROR; |
| } else { |
| val = (val ^ data) | core->phy[page][addr]; |
| trace_e1000e_core_mdic_read(page, addr, val); |
| } |
| } else if (val & E1000_MDIC_OP_WRITE) { |
| if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) { |
| trace_e1000e_core_mdic_write_unhandled(page, addr); |
| val |= E1000_MDIC_ERROR; |
| } else { |
| trace_e1000e_core_mdic_write(page, addr, data); |
| e1000e_phy_reg_write(core, page, addr, data); |
| } |
| } |
| core->mac[MDIC] = val | E1000_MDIC_READY; |
| |
| if (val & E1000_MDIC_INT_EN) { |
| e1000e_set_interrupt_cause(core, E1000_ICR_MDAC); |
| } |
| } |
| |
| static void |
| e1000e_set_rdt(E1000ECore *core, int index, uint32_t val) |
| { |
| core->mac[index] = val & 0xffff; |
| trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val); |
| e1000e_start_recv(core); |
| } |
| |
| static void |
| e1000e_set_status(E1000ECore *core, int index, uint32_t val) |
| { |
| if ((val & E1000_STATUS_PHYRA) == 0) { |
| core->mac[index] &= ~E1000_STATUS_PHYRA; |
| } |
| } |
| |
| static void |
| e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val) |
| { |
| trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK), |
| !!(val & E1000_CTRL_EXT_SPD_BYPS)); |
| |
| /* Zero self-clearing bits */ |
| val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST); |
| core->mac[CTRL_EXT] = val; |
| } |
| |
| static void |
| e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val) |
| { |
| int i; |
| |
| core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK; |
| |
| if (!msix_enabled(core->owner)) { |
| return; |
| } |
| |
| for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { |
| if (core->mac[PBACLR] & BIT(i)) { |
| msix_clr_pending(core->owner, i); |
| } |
| } |
| } |
| |
| static void |
| e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val) |
| { |
| core->mac[FCRTH] = val & 0xFFF8; |
| } |
| |
| static void |
| e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val) |
| { |
| core->mac[FCRTL] = val & 0x8000FFF8; |
| } |
| |
| static inline void |
| e1000e_set_16bit(E1000ECore *core, int index, uint32_t val) |
| { |
| core->mac[index] = val & 0xffff; |
| } |
| |
| static void |
| e1000e_set_12bit(E1000ECore *core, int index, uint32_t val) |
| { |
| core->mac[index] = val & 0xfff; |
| } |
| |
| static void |
| e1000e_set_vet(E1000ECore *core, int index, uint32_t val) |
| { |
| core->mac[VET] = val & 0xffff; |
| core->vet = le16_to_cpu(core->mac[VET]); |
| trace_e1000e_vlan_vet(core->vet); |
| } |
| |
| static void |
| e1000e_set_dlen(E1000ECore *core, int index, uint32_t val) |
| { |
| core->mac[index] = val & E1000_XDLEN_MASK; |
| } |
| |
| static void |
| e1000e_set_dbal(E1000ECore *core, int index, uint32_t val) |
| { |
| core->mac[index] = val & E1000_XDBAL_MASK; |
| } |
| |
| static void |
| e1000e_set_tctl(E1000ECore *core, int index, uint32_t val) |
| { |
| E1000E_TxRing txr; |
| core->mac[index] = val; |
| |
| if (core->mac[TARC0] & E1000_TARC_ENABLE) { |
| e1000e_tx_ring_init(core, &txr, 0); |
| e1000e_start_xmit(core, &txr); |
| } |
| |
| if (core->mac[TARC1] & E1000_TARC_ENABLE) { |
| e1000e_tx_ring_init(core, &txr, 1); |
| e1000e_start_xmit(core, &txr); |
| } |
| } |
| |
| static void |
| e1000e_set_tdt(E1000ECore *core, int index, uint32_t val) |
| { |
| E1000E_TxRing txr; |
| int qidx = e1000e_mq_queue_idx(TDT, index); |
| uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1; |
| |
| core->mac[index] = val & 0xffff; |
| |
| if (core->mac[tarc_reg] & E1000_TARC_ENABLE) { |
| e1000e_tx_ring_init(core, &txr, qidx); |
| e1000e_start_xmit(core, &txr); |
| } |
| } |
| |
| static void |
| e1000e_set_ics(E1000ECore *core, int index, uint32_t val) |
| { |
| trace_e1000e_irq_write_ics(val); |
| e1000e_set_interrupt_cause(core, val); |
| } |
| |
| static void |
| e1000e_set_icr(E1000ECore *core, int index, uint32_t val) |
| { |
| uint32_t icr = 0; |
| if ((core->mac[ICR] & E1000_ICR_ASSERTED) && |
| (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) { |
| trace_e1000e_irq_icr_process_iame(); |
| e1000e_clear_ims_bits(core, core->mac[IAM]); |
| } |
| |
| icr = core->mac[ICR] & ~val; |
| /* Windows driver expects that the "receive overrun" bit and other |
| * ones to be cleared when the "Other" bit (#24) is cleared. |
| */ |
| icr = (val & E1000_ICR_OTHER) ? (icr & ~E1000_ICR_OTHER_CAUSES) : icr; |
| trace_e1000e_irq_icr_write(val, core->mac[ICR], icr); |
| core->mac[ICR] = icr; |
| e1000e_update_interrupt_state(core); |
| } |
| |
| static void |
| e1000e_set_imc(E1000ECore *core, int index, uint32_t val) |
| { |
| trace_e1000e_irq_ims_clear_set_imc(val); |
| e1000e_clear_ims_bits(core, val); |
| e1000e_update_interrupt_state(core); |
| } |
| |
| static void |
| e1000e_set_ims(E1000ECore *core, int index, uint32_t val) |
| { |
| static const uint32_t ims_ext_mask = |
| E1000_IMS_RXQ0 | E1000_IMS_RXQ1 | |
| E1000_IMS_TXQ0 | E1000_IMS_TXQ1 | |
| E1000_IMS_OTHER; |
| |
| static const uint32_t ims_valid_mask = |
| E1000_IMS_TXDW | E1000_IMS_TXQE | E1000_IMS_LSC | |
| E1000_IMS_RXDMT0 | E1000_IMS_RXO | E1000_IMS_RXT0 | |
| E1000_IMS_MDAC | E1000_IMS_TXD_LOW | E1000_IMS_SRPD | |
| E1000_IMS_ACK | E1000_IMS_MNG | E1000_IMS_RXQ0 | |
| E1000_IMS_RXQ1 | E1000_IMS_TXQ0 | E1000_IMS_TXQ1 | |
| E1000_IMS_OTHER; |
| |
| uint32_t valid_val = val & ims_valid_mask; |
| |
| trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val); |
| core->mac[IMS] |= valid_val; |
| |
| if ((valid_val & ims_ext_mask) && |
| (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) && |
| msix_enabled(core->owner)) { |
| e1000e_msix_clear(core, valid_val); |
| } |
| |
| if ((valid_val == ims_valid_mask) && |
| (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) { |
| trace_e1000e_irq_fire_all_timers(val); |
| e1000e_intrmgr_fire_all_timers(core); |
| } |
| |
| e1000e_update_interrupt_state(core); |
| } |
| |
| static void |
| e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val) |
| { |
| e1000e_set_16bit(core, index, val); |
| |
| if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) { |
| trace_e1000e_irq_rdtr_fpd_running(); |
| e1000e_intrmgr_fire_delayed_interrupts(core); |
| } else { |
| trace_e1000e_irq_rdtr_fpd_not_running(); |
| } |
| } |
| |
| static void |
| e1000e_set_tidv(E1000ECore *core, int index, uint32_t val) |
| { |
| e1000e_set_16bit(core, index, val); |
| |
| if ((val & E1000_TIDV_FPD) && (core->tidv.running)) { |
| trace_e1000e_irq_tidv_fpd_running(); |
| e1000e_intrmgr_fire_delayed_interrupts(core); |
| } else { |
| trace_e1000e_irq_tidv_fpd_not_running(); |
| } |
| } |
| |
| static uint32_t |
| e1000e_mac_readreg(E1000ECore *core, int index) |
| { |
| return core->mac[index]; |
| } |
| |
| static uint32_t |
| e1000e_mac_ics_read(E1000ECore *core, int index) |
| { |
| trace_e1000e_irq_read_ics(core->mac[ICS]); |
| return core->mac[ICS]; |
| } |
| |
| static uint32_t |
| e1000e_mac_ims_read(E1000ECore *core, int index) |
| { |
| trace_e1000e_irq_read_ims(core->mac[IMS]); |
| return core->mac[IMS]; |
| } |
| |
| #define E1000E_LOW_BITS_READ_FUNC(num) \ |
| static uint32_t \ |
| e1000e_mac_low##num##_read(E1000ECore *core, int index) \ |
| { \ |
| return core->mac[index] & (BIT(num) - 1); \ |
| } \ |
| |
| #define E1000E_LOW_BITS_READ(num) \ |
| e1000e_mac_low##num##_read |
| |
| E1000E_LOW_BITS_READ_FUNC(4); |
| E1000E_LOW_BITS_READ_FUNC(6); |
| E1000E_LOW_BITS_READ_FUNC(11); |
| E1000E_LOW_BITS_READ_FUNC(13); |
| E1000E_LOW_BITS_READ_FUNC(16); |
| |
| static uint32_t |
| e1000e_mac_swsm_read(E1000ECore *core, int index) |
| { |
| uint32_t val = core->mac[SWSM]; |
| core->mac[SWSM] = val | 1; |
| return val; |
| } |
| |
| static uint32_t |
| e1000e_mac_itr_read(E1000ECore *core, int index) |
| { |
| return core->itr_guest_value; |
| } |
| |
| static uint32_t |
| e1000e_mac_eitr_read(E1000ECore *core, int index) |
| { |
| return core->eitr_guest_value[index - EITR]; |
| } |
| |
| static uint32_t |
| e1000e_mac_icr_read(E1000ECore *core, int index) |
| { |
| uint32_t ret = core->mac[ICR]; |
| trace_e1000e_irq_icr_read_entry(ret); |
| |
| if (core->mac[IMS] == 0) { |
| trace_e1000e_irq_icr_clear_zero_ims(); |
| core->mac[ICR] = 0; |
| } |
| |
| if ((core->mac[ICR] & E1000_ICR_ASSERTED) && |
| (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) { |
| trace_e1000e_irq_icr_clear_iame(); |
| core->mac[ICR] = 0; |
| trace_e1000e_irq_icr_process_iame(); |
| e1000e_clear_ims_bits(core, core->mac[IAM]); |
| } |
| |
| trace_e1000e_irq_icr_read_exit(core->mac[ICR]); |
| e1000e_update_interrupt_state(core); |
| return ret; |
| } |
| |
| static uint32_t |
| e1000e_mac_read_clr4(E1000ECore *core, int index) |
| { |
| uint32_t ret = core->mac[index]; |
| |
| core->mac[index] = 0; |
| return ret; |
| } |
| |
| static uint32_t |
| e1000e_mac_read_clr8(E1000ECore *core, int index) |
| { |
| uint32_t ret = core->mac[index]; |
| |
| core->mac[index] = 0; |
| core->mac[index - 1] = 0; |
| return ret; |
| } |
| |
| static uint32_t |
| e1000e_get_ctrl(E1000ECore *core, int index) |
| { |
| uint32_t val = core->mac[CTRL]; |
| |
| trace_e1000e_link_read_params( |
| !!(val & E1000_CTRL_ASDE), |
| (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT, |
| !!(val & E1000_CTRL_FRCSPD), |
| !!(val & E1000_CTRL_FRCDPX), |
| !!(val & E1000_CTRL_RFCE), |
| !!(val & E1000_CTRL_TFCE)); |
| |
| return val; |
| } |
| |
| static uint32_t |
| e1000e_get_status(E1000ECore *core, int index) |
| { |
| uint32_t res = core->mac[STATUS]; |
| |
| if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) { |
| res |= E1000_STATUS_GIO_MASTER_ENABLE; |
| } |
| |
| if (core->mac[CTRL] & E1000_CTRL_FRCDPX) { |
| res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0; |
| } else { |
| res |= E1000_STATUS_FD; |
| } |
| |
| if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) || |
| (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) { |
| switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) { |
| case E1000_CTRL_SPD_10: |
| res |= E1000_STATUS_SPEED_10; |
| break; |
| case E1000_CTRL_SPD_100: |
| res |= E1000_STATUS_SPEED_100; |
| break; |
| case E1000_CTRL_SPD_1000: |
| default: |
| res |= E1000_STATUS_SPEED_1000; |
| break; |
| } |
| } else { |
| res |= E1000_STATUS_SPEED_1000; |
| } |
| |
| trace_e1000e_link_status( |
| !!(res & E1000_STATUS_LU), |
| !!(res & E1000_STATUS_FD), |
| (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT, |
| (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT); |
| |
| return res; |
| } |
| |
| static uint32_t |
| e1000e_get_tarc(E1000ECore *core, int index) |
| { |
| return core->mac[index] & ((BIT(11) - 1) | |
| BIT(27) | |
| BIT(28) | |
| BIT(29) | |
| BIT(30)); |
| } |
| |
| static void |
| e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val) |
| { |
| core->mac[index] = val; |
| } |
| |
| static void |
| e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val) |
| { |
| uint32_t macaddr[2]; |
| |
| core->mac[index] = val; |
| |
| macaddr[0] = cpu_to_le32(core->mac[RA]); |
| macaddr[1] = cpu_to_le32(core->mac[RA + 1]); |
| qemu_format_nic_info_str(qemu_get_queue(core->owner_nic), |
| (uint8_t *) macaddr); |
| |
| trace_e1000e_mac_set_sw(MAC_ARG(macaddr)); |
| } |
| |
| static void |
| e1000e_set_eecd(E1000ECore *core, int index, uint32_t val) |
| { |
| static const uint32_t ro_bits = E1000_EECD_PRES | |
| E1000_EECD_AUTO_RD | |
| E1000_EECD_SIZE_EX_MASK; |
| |
| core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits); |
| } |
| |
| static void |
| e1000e_set_eerd(E1000ECore *core, int index, uint32_t val) |
| { |
| uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK; |
| uint32_t flags = 0; |
| uint32_t data = 0; |
| |
| if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) { |
| data = core->eeprom[addr]; |
| flags = E1000_EERW_DONE; |
| } |
| |
| core->mac[EERD] = flags | |
| (addr << E1000_EERW_ADDR_SHIFT) | |
| (data << E1000_EERW_DATA_SHIFT); |
| } |
| |
| static void |
| e1000e_set_eewr(E1000ECore *core, int index, uint32_t val) |
| { |
| uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK; |
| uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK; |
| uint32_t flags = 0; |
| |
| if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) { |
| core->eeprom[addr] = data; |
| flags = E1000_EERW_DONE; |
| } |
| |
| core->mac[EERD] = flags | |
| (addr << E1000_EERW_ADDR_SHIFT) | |
| (data << E1000_EERW_DATA_SHIFT); |
| } |
| |
| static void |
| e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val) |
| { |
| core->mac[RXDCTL] = core->mac[RXDCTL1] = val; |
| } |
| |
| static void |
| e1000e_set_itr(E1000ECore *core, int index, uint32_t val) |
| { |
| uint32_t interval = val & 0xffff; |
| |
| trace_e1000e_irq_itr_set(val); |
| |
| core->itr_guest_value = interval; |
| core->mac[index] = MAX(interval, E1000E_MIN_XITR); |
| } |
| |
| static void |
| e1000e_set_eitr(E1000ECore *core, int index, uint32_t val) |
| { |
| uint32_t interval = val & 0xffff; |
| uint32_t eitr_num = index - EITR; |
| |
| trace_e1000e_irq_eitr_set(eitr_num, val); |
| |
| core->eitr_guest_value[eitr_num] = interval; |
| core->mac[index] = MAX(interval, E1000E_MIN_XITR); |
| } |
| |
| static void |
| e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val) |
| { |
| if (core->mac[RCTL] & E1000_RCTL_DTYP_MASK) { |
| |
| if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "e1000e: PSRCTL.BSIZE0 cannot be zero"); |
| return; |
| } |
| |
| if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "e1000e: PSRCTL.BSIZE1 cannot be zero"); |
| return; |
| } |
| } |
| |
| core->mac[PSRCTL] = val; |
| } |
| |
| static void |
| e1000e_update_rx_offloads(E1000ECore *core) |
| { |
| int cso_state = e1000e_rx_l4_cso_enabled(core); |
| |
| trace_e1000e_rx_set_cso(cso_state); |
| |
| if (core->has_vnet) { |
| qemu_set_offload(qemu_get_queue(core->owner_nic)->peer, |
| cso_state, 0, 0, 0, 0); |
| } |
| } |
| |
| static void |
| e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val) |
| { |
| core->mac[RXCSUM] = val; |
| e1000e_update_rx_offloads(core); |
| } |
| |
| static void |
| e1000e_set_gcr(E1000ECore *core, int index, uint32_t val) |
| { |
| uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS; |
| core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits; |
| } |
| |
| #define e1000e_getreg(x) [x] = e1000e_mac_readreg |
| typedef uint32_t (*readops)(E1000ECore *, int); |
| static const readops e1000e_macreg_readops[] = { |
| e1000e_getreg(PBA), |
| e1000e_getreg(WUFC), |
| e1000e_getreg(MANC), |
| e1000e_getreg(TOTL), |
| e1000e_getreg(RDT0), |
| e1000e_getreg(RDBAH0), |
| e1000e_getreg(TDBAL1), |
| e1000e_getreg(RDLEN0), |
| e1000e_getreg(RDH1), |
| e1000e_getreg(LATECOL), |
| e1000e_getreg(SEQEC), |
| e1000e_getreg(XONTXC), |
| e1000e_getreg(WUS), |
| e1000e_getreg(GORCL), |
| e1000e_getreg(MGTPRC), |
| e1000e_getreg(EERD), |
| e1000e_getreg(EIAC), |
| e1000e_getreg(PSRCTL), |
| e1000e_getreg(MANC2H), |
| e1000e_getreg(RXCSUM), |
| e1000e_getreg(GSCL_3), |
| e1000e_getreg(GSCN_2), |
| e1000e_getreg(RSRPD), |
| e1000e_getreg(RDBAL1), |
| e1000e_getreg(FCAH), |
| e1000e_getreg(FCRTH), |
| e1000e_getreg(FLOP), |
| e1000e_getreg(FLASHT), |
| e1000e_getreg(RXSTMPH), |
| e1000e_getreg(TXSTMPL), |
| e1000e_getreg(TIMADJL), |
| e1000e_getreg(TXDCTL), |
| e1000e_getreg(RDH0), |
| e1000e_getreg(TDT1), |
| e1000e_getreg(TNCRS), |
| e1000e_getreg(RJC), |
| e1000e_getreg(IAM), |
| e1000e_getreg(GSCL_2), |
| e1000e_getreg(RDBAH1), |
| e1000e_getreg(FLSWDATA), |
| e1000e_getreg(RXSATRH), |
| e1000e_getreg(TIPG), |
| e1000e_getreg(FLMNGCTL), |
| e1000e_getreg(FLMNGCNT), |
| e1000e_getreg(TSYNCTXCTL), |
| e1000e_getreg(EXTCNF_SIZE), |
| e1000e_getreg(EXTCNF_CTRL), |
| e1000e_getreg(EEMNGDATA), |
| e1000e_getreg(CTRL_EXT), |
| e1000e_getreg(SYSTIMH), |
| e1000e_getreg(EEMNGCTL), |
| e1000e_getreg(FLMNGDATA), |
| e1000e_getreg(TSYNCRXCTL), |
| e1000e_getreg(TDH), |
| e1000e_getreg(LEDCTL), |
| e1000e_getreg(STATUS), |
| e1000e_getreg(TCTL), |
| e1000e_getreg(TDBAL), |
| e1000e_getreg(TDLEN), |
| e1000e_getreg(TDH1), |
| e1000e_getreg(RADV), |
| e1000e_getreg(ECOL), |
| e1000e_getreg(DC), |
| e1000e_getreg(RLEC), |
| e1000e_getreg(XOFFTXC), |
| e1000e_getreg(RFC), |
| e1000e_getreg(RNBC), |
| e1000e_getreg(MGTPTC), |
| e1000e_getreg(TIMINCA), |
| e1000e_getreg(RXCFGL), |
| e1000e_getreg(MFUTP01), |
| e1000e_getreg(FACTPS), |
| e1000e_getreg(GSCL_1), |
| e1000e_getreg(GSCN_0), |
| e1000e_getreg(GCR2), |
| e1000e_getreg(RDT1), |
| e1000e_getreg(PBACLR), |
| e1000e_getreg(FCTTV), |
| e1000e_getreg(EEWR), |
| e1000e_getreg(FLSWCTL), |
| e1000e_getreg(RXDCTL1), |
| e1000e_getreg(RXSATRL), |
| e1000e_getreg(SYSTIML), |
| e1000e_getreg(RXUDP), |
| e1000e_getreg(TORL), |
| e1000e_getreg(TDLEN1), |
| e1000e_getreg(MCC), |
| e1000e_getreg(WUC), |
| e1000e_getreg(EECD), |
| e1000e_getreg(MFUTP23), |
| e1000e_getreg(RAID), |
| e1000e_getreg(FCRTV), |
| e1000e_getreg(TXDCTL1), |
| e1000e_getreg(RCTL), |
| e1000e_getreg(TDT), |
| e1000e_getreg(MDIC), |
| e1000e_getreg(FCRUC), |
| e1000e_getreg(VET), |
| e1000e_getreg(RDBAL0), |
| e1000e_getreg(TDBAH1), |
| e1000e_getreg(RDTR), |
| e1000e_getreg(SCC), |
| e1000e_getreg(COLC), |
| e1000e_getreg(CEXTERR), |
| e1000e_getreg(XOFFRXC), |
| e1000e_getreg(IPAV), |
| e1000e_getreg(GOTCL), |
| e1000e_getreg(MGTPDC), |
| e1000e_getreg(GCR), |
| e1000e_getreg(IVAR), |
| e1000e_getreg(POEMB), |
| e1000e_getreg(MFVAL), |
| e1000e_getreg(FUNCTAG), |
| e1000e_getreg(GSCL_4), |
| e1000e_getreg(GSCN_3), |
| e1000e_getreg(MRQC), |
| e1000e_getreg(RDLEN1), |
| e1000e_getreg(FCT), |
| e1000e_getreg(FLA), |
| e1000e_getreg(FLOL), |
| e1000e_getreg(RXDCTL), |
| e1000e_getreg(RXSTMPL), |
| e1000e_getreg(TXSTMPH), |
| e1000e_getreg(TIMADJH), |
| e1000e_getreg(FCRTL), |
| e1000e_getreg(TDBAH), |
| e1000e_getreg(TADV), |
| e1000e_getreg(XONRXC), |
| e1000e_getreg(TSCTFC), |
| e1000e_getreg(RFCTL), |
| e1000e_getreg(GSCN_1), |
| e1000e_getreg(FCAL), |
| e1000e_getreg(FLSWCNT), |
| |
| [TOTH] = e1000e_mac_read_clr8, |
| [GOTCH] = e1000e_mac_read_clr8, |
| [PRC64] = e1000e_mac_read_clr4, |
| [PRC255] = e1000e_mac_read_clr4, |
| [PRC1023] = e1000e_mac_read_clr4, |
| [PTC64] = e1000e_mac_read_clr4, |
| [PTC255] = e1000e_mac_read_clr4, |
| [PTC1023] = e1000e_mac_read_clr4, |
| [GPRC] = e1000e_mac_read_clr4, |
| [TPT] = e1000e_mac_read_clr4, |
| [RUC] = e1000e_mac_read_clr4, |
| [BPRC] = e1000e_mac_read_clr4, |
| [MPTC] = e1000e_mac_read_clr4, |
| [IAC] = e1000e_mac_read_clr4, |
| [ICR] = e1000e_mac_icr_read, |
| [RDFH] = E1000E_LOW_BITS_READ(13), |
| [RDFHS] = E1000E_LOW_BITS_READ(13), |
| [RDFPC] = E1000E_LOW_BITS_READ(13), |
| [TDFH] = E1000E_LOW_BITS_READ(13), |
| [TDFHS] = E1000E_LOW_BITS_READ(13), |
| [STATUS] = e1000e_get_status, |
| [TARC0] = e1000e_get_tarc, |
| [PBS] = E1000E_LOW_BITS_READ(6), |
| [ICS] = e1000e_mac_ics_read, |
| [AIT] = E1000E_LOW_BITS_READ(16), |
| [TORH] = e1000e_mac_read_clr8, |
| [GORCH] = e1000e_mac_read_clr8, |
| [PRC127] = e1000e_mac_read_clr4, |
| [PRC511] = e1000e_mac_read_clr4, |
| [PRC1522] = e1000e_mac_read_clr4, |
| [PTC127] = e1000e_mac_read_clr4, |
| [PTC511] = e1000e_mac_read_clr4, |
| [PTC1522] = e1000e_mac_read_clr4, |
| [GPTC] = e1000e_mac_read_clr4, |
| [TPR] = e1000e_mac_read_clr4, |
| [ROC] = e1000e_mac_read_clr4, |
| [MPRC] = e1000e_mac_read_clr4, |
| [BPTC] = e1000e_mac_read_clr4, |
| [TSCTC] = e1000e_mac_read_clr4, |
| [ITR] = e1000e_mac_itr_read, |
| [RDFT] = E1000E_LOW_BITS_READ(13), |
| [RDFTS] = E1000E_LOW_BITS_READ(13), |
| [TDFPC] = E1000E_LOW_BITS_READ(13), |
| [TDFT] = E1000E_LOW_BITS_READ(13), |
| [TDFTS] = E1000E_LOW_BITS_READ(13), |
| [CTRL] = e1000e_get_ctrl, |
| [TARC1] = e1000e_get_tarc, |
| [SWSM] = e1000e_mac_swsm_read, |
| [IMS] = e1000e_mac_ims_read, |
| |
| [CRCERRS ... MPC] = e1000e_mac_readreg, |
| [IP6AT ... IP6AT + 3] = e1000e_mac_readreg, |
| [IP4AT ... IP4AT + 6] = e1000e_mac_readreg, |
| [RA ... RA + 31] = e1000e_mac_readreg, |
| [WUPM ... WUPM + 31] = e1000e_mac_readreg, |
| [MTA ... MTA + 127] = e1000e_mac_readreg, |
| [VFTA ... VFTA + 127] = e1000e_mac_readreg, |
| [FFMT ... FFMT + 254] = E1000E_LOW_BITS_READ(4), |
| [FFVT ... FFVT + 254] = e1000e_mac_readreg, |
| [MDEF ... MDEF + 7] = e1000e_mac_readreg, |
| [FFLT ... FFLT + 10] = E1000E_LOW_BITS_READ(11), |
| [FTFT ... FTFT + 254] = e1000e_mac_readreg, |
| [PBM ... PBM + 10239] = e1000e_mac_readreg, |
| [RETA ... RETA + 31] = e1000e_mac_readreg, |
| [RSSRK ... RSSRK + 31] = e1000e_mac_readreg, |
| [MAVTV0 ... MAVTV3] = e1000e_mac_readreg, |
| [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read |
| }; |
| enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) }; |
| |
| #define e1000e_putreg(x) [x] = e1000e_mac_writereg |
| typedef void (*writeops)(E1000ECore *, int, uint32_t); |
| static const writeops e1000e_macreg_writeops[] = { |
| e1000e_putreg(PBA), |
| e1000e_putreg(SWSM), |
| e1000e_putreg(WUFC), |
| e1000e_putreg(RDBAH1), |
| e1000e_putreg(TDBAH), |
| e1000e_putreg(TXDCTL), |
| e1000e_putreg(RDBAH0), |
| e1000e_putreg(LEDCTL), |
| e1000e_putreg(FCAL), |
| e1000e_putreg(FCRUC), |
| e1000e_putreg(AIT), |
| e1000e_putreg(TDFH), |
| e1000e_putreg(TDFT), |
| e1000e_putreg(TDFHS), |
| e1000e_putreg(TDFTS), |
| e1000e_putreg(TDFPC), |
| e1000e_putreg(WUC), |
| e1000e_putreg(WUS), |
| e1000e_putreg(RDFH), |
| e1000e_putreg(RDFT), |
| e1000e_putreg(RDFHS), |
| e1000e_putreg(RDFTS), |
| e1000e_putreg(RDFPC), |
| e1000e_putreg(IPAV), |
| e1000e_putreg(TDBAH1), |
| e1000e_putreg(TIMINCA), |
| e1000e_putreg(IAM), |
| e1000e_putreg(EIAC), |
| e1000e_putreg(IVAR), |
| e1000e_putreg(TARC0), |
| e1000e_putreg(TARC1), |
| e1000e_putreg(FLSWDATA), |
| e1000e_putreg(POEMB), |
| e1000e_putreg(PBS), |
| e1000e_putreg(MFUTP01), |
| e1000e_putreg(MFUTP23), |
| e1000e_putreg(MANC), |
| e1000e_putreg(MANC2H), |
| e1000e_putreg(MFVAL), |
| e1000e_putreg(EXTCNF_CTRL), |
| e1000e_putreg(FACTPS), |
| e1000e_putreg(FUNCTAG), |
| e1000e_putreg(GSCL_1), |
| e1000e_putreg(GSCL_2), |
| e1000e_putreg(GSCL_3), |
| e1000e_putreg(GSCL_4), |
| e1000e_putreg(GSCN_0), |
| e1000e_putreg(GSCN_1), |
| e1000e_putreg(GSCN_2), |
| e1000e_putreg(GSCN_3), |
| e1000e_putreg(GCR2), |
| e1000e_putreg(MRQC), |
| e1000e_putreg(FLOP), |
| e1000e_putreg(FLOL), |
| e1000e_putreg(FLSWCTL), |
| e1000e_putreg(FLSWCNT), |
| e1000e_putreg(FLA), |
| e1000e_putreg(RXDCTL1), |
| e1000e_putreg(TXDCTL1), |
| e1000e_putreg(TIPG), |
| e1000e_putreg(RXSTMPH), |
| e1000e_putreg(RXSTMPL), |
| e1000e_putreg(RXSATRL), |
| e1000e_putreg(RXSATRH), |
| e1000e_putreg(TXSTMPL), |
| e1000e_putreg(TXSTMPH), |
| e1000e_putreg(SYSTIML), |
| e1000e_putreg(SYSTIMH), |
| e1000e_putreg(TIMADJL), |
| e1000e_putreg(TIMADJH), |
| e1000e_putreg(RXUDP), |
| e1000e_putreg(RXCFGL), |
| e1000e_putreg(TSYNCRXCTL), |
| e1000e_putreg(TSYNCTXCTL), |
| e1000e_putreg(FLSWDATA), |
| e1000e_putreg(EXTCNF_SIZE), |
| e1000e_putreg(EEMNGCTL), |
| e1000e_putreg(RA), |
| |
| [TDH1] = e1000e_set_16bit, |
| [TDT1] = e1000e_set_tdt, |
| [TCTL] = e1000e_set_tctl, |
| [TDT] = e1000e_set_tdt, |
| [MDIC] = e1000e_set_mdic, |
| [ICS] = e1000e_set_ics, |
| [TDH] = e1000e_set_16bit, |
| [RDH0] = e1000e_set_16bit, |
| [RDT0] = e1000e_set_rdt, |
| [IMC] = e1000e_set_imc, |
| [IMS] = e1000e_set_ims, |
| [ICR] = e1000e_set_icr, |
| [EECD] = e1000e_set_eecd, |
| [RCTL] = e1000e_set_rx_control, |
| [CTRL] = e1000e_set_ctrl, |
| [RDTR] = e1000e_set_rdtr, |
| [RADV] = e1000e_set_16bit, |
| [TADV] = e1000e_set_16bit, |
| [ITR] = e1000e_set_itr, |
| [EERD] = e1000e_set_eerd, |
| [GCR] = e1000e_set_gcr, |
| [PSRCTL] = e1000e_set_psrctl, |
| [RXCSUM] = e1000e_set_rxcsum, |
| [RAID] = e1000e_set_16bit, |
| [RSRPD] = e1000e_set_12bit, |
| [TIDV] = e1000e_set_tidv, |
| [TDLEN1] = e1000e_set_dlen, |
| [TDLEN] = e1000e_set_dlen, |
| [RDLEN0] = e1000e_set_dlen, |
| [RDLEN1] = e1000e_set_dlen, |
| [TDBAL] = e1000e_set_dbal, |
| [TDBAL1] = e1000e_set_dbal, |
| [RDBAL0] = e1000e_set_dbal, |
| [RDBAL1] = e1000e_set_dbal, |
| [RDH1] = e1000e_set_16bit, |
| [RDT1] = e1000e_set_rdt, |
| [STATUS] = e1000e_set_status, |
| [PBACLR] = e1000e_set_pbaclr, |
| [CTRL_EXT] = e1000e_set_ctrlext, |
| [FCAH] = e1000e_set_16bit, |
| [FCT] = e1000e_set_16bit, |
| [FCTTV] = e1000e_set_16bit, |
| [FCRTV] = e1000e_set_16bit, |
| [FCRTH] = e1000e_set_fcrth, |
| [FCRTL] = e1000e_set_fcrtl, |
| [VET] = e1000e_set_vet, |
| [RXDCTL] = e1000e_set_rxdctl, |
| [FLASHT] = e1000e_set_16bit, |
| [EEWR] = e1000e_set_eewr, |
| [CTRL_DUP] = e1000e_set_ctrl, |
| [RFCTL] = e1000e_set_rfctl, |
| [RA + 1] = e1000e_mac_setmacaddr, |
| |
| [IP6AT ... IP6AT + 3] = e1000e_mac_writereg, |
| [IP4AT ... IP4AT + 6] = e1000e_mac_writereg, |
| [RA + 2 ... RA + 31] = e1000e_mac_writereg, |
| [WUPM ... WUPM + 31] = e1000e_mac_writereg, |
| [MTA ... MTA + 127] = e1000e_mac_writereg, |
| [VFTA ... VFTA + 127] = e1000e_mac_writereg, |
| [FFMT ... FFMT + 254] = e1000e_mac_writereg, |
| [FFVT ... FFVT + 254] = e1000e_mac_writereg, |
| [PBM ... PBM + 10239] = e1000e_mac_writereg, |
| [MDEF ... MDEF + 7] = e1000e_mac_writereg, |
| [FFLT ... FFLT + 10] = e1000e_mac_writereg, |
| [FTFT ... FTFT + 254] = e1000e_mac_writereg, |
| [RETA ... RETA + 31] = e1000e_mac_writereg, |
| [RSSRK ... RSSRK + 31] = e1000e_mac_writereg, |
| [MAVTV0 ... MAVTV3] = e1000e_mac_writereg, |
| [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr |
| }; |
| enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) }; |
| |
| enum { MAC_ACCESS_PARTIAL = 1 }; |
| |
| /* The array below combines alias offsets of the index values for the |
| * MAC registers that have aliases, with the indication of not fully |
| * implemented registers (lowest bit). This combination is possible |
| * because all of the offsets are even. */ |
| static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = { |
| /* Alias index offsets */ |
| [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802, |
| [RDH0_A] = 0x09bc, [RDT0_A] = 0x09bc, [RDTR_A] = 0x09c6, |
| [RDFH_A] = 0xe904, [RDFT_A] = 0xe904, |
| [TDH_A] = 0x0cf8, [TDT_A] = 0x0cf8, [TIDV_A] = 0x0cf8, |
| [TDFH_A] = 0xed00, [TDFT_A] = 0xed00, |
| [RA_A ... RA_A + 31] = 0x14f0, |
| [VFTA_A ... VFTA_A + 127] = 0x1400, |
| [RDBAL0_A ... RDLEN0_A] = 0x09bc, |
| [TDBAL_A ... TDLEN_A] = 0x0cf8, |
| /* Access options */ |
| [RDFH] = MAC_ACCESS_PARTIAL, [RDFT] = MAC_ACCESS_PARTIAL, |
| [RDFHS] = MAC_ACCESS_PARTIAL, [RDFTS] = MAC_ACCESS_PARTIAL, |
| [RDFPC] = MAC_ACCESS_PARTIAL, |
| [TDFH] = MAC_ACCESS_PARTIAL, [TDFT] = MAC_ACCESS_PARTIAL, |
| [TDFHS] = MAC_ACCESS_PARTIAL, [TDFTS] = MAC_ACCESS_PARTIAL, |
| [TDFPC] = MAC_ACCESS_PARTIAL, [EECD] = MAC_ACCESS_PARTIAL, |
| [PBM] = MAC_ACCESS_PARTIAL, [FLA] = MAC_ACCESS_PARTIAL, |
| [FCAL] = MAC_ACCESS_PARTIAL, [FCAH] = MAC_ACCESS_PARTIAL, |
| [FCT] = MAC_ACCESS_PARTIAL, [FCTTV] = MAC_ACCESS_PARTIAL, |
| [FCRTV] = MAC_ACCESS_PARTIAL, [FCRTL] = MAC_ACCESS_PARTIAL, |
| [FCRTH] = MAC_ACCESS_PARTIAL, [TXDCTL] = MAC_ACCESS_PARTIAL, |
| [TXDCTL1] = MAC_ACCESS_PARTIAL, |
| [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL |
| }; |
| |
| void |
| e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size) |
| { |
| uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr); |
| |
| if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) { |
| if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { |
| trace_e1000e_wrn_regs_write_trivial(index << 2); |
| } |
| trace_e1000e_core_write(index << 2, size, val); |
| e1000e_macreg_writeops[index](core, index, val); |
| } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) { |
| trace_e1000e_wrn_regs_write_ro(index << 2, size, val); |
| } else { |
| trace_e1000e_wrn_regs_write_unknown(index << 2, size, val); |
| } |
| } |
| |
| uint64_t |
| e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size) |
| { |
| uint64_t val; |
| uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr); |
| |
| if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) { |
| if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { |
| trace_e1000e_wrn_regs_read_trivial(index << 2); |
| } |
| val = e1000e_macreg_readops[index](core, index); |
| trace_e1000e_core_read(index << 2, size, val); |
| return val; |
| } else { |
| trace_e1000e_wrn_regs_read_unknown(index << 2, size); |
| } |
| return 0; |
| } |
| |
| static inline void |
| e1000e_autoneg_pause(E1000ECore *core) |
| { |
| timer_del(core->autoneg_timer); |
| } |
| |
| static void |
| e1000e_autoneg_resume(E1000ECore *core) |
| { |
| if (e1000e_have_autoneg(core) && |
| !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { |
| qemu_get_queue(core->owner_nic)->link_down = false; |
| timer_mod(core->autoneg_timer, |
| qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500); |
| } |
| } |
| |
| static void |
| e1000e_vm_state_change(void *opaque, int running, RunState state) |
| { |
| E1000ECore *core = opaque; |
| |
| if (running) { |
| trace_e1000e_vm_state_running(); |
| e1000e_intrmgr_resume(core); |
| e1000e_autoneg_resume(core); |
| } else { |
| trace_e1000e_vm_state_stopped(); |
| e1000e_autoneg_pause(core); |
| e1000e_intrmgr_pause(core); |
| } |
| } |
| |
| void |
| e1000e_core_pci_realize(E1000ECore *core, |
| const uint16_t *eeprom_templ, |
| uint32_t eeprom_size, |
| const uint8_t *macaddr) |
| { |
| int i; |
| |
| core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, |
| e1000e_autoneg_timer, core); |
| e1000e_intrmgr_pci_realize(core); |
| |
| core->vmstate = |
| qemu_add_vm_change_state_handler(e1000e_vm_state_change, core); |
| |
| for (i = 0; i < E1000E_NUM_QUEUES; i++) { |
| net_tx_pkt_init(&core->tx[i].tx_pkt, core->owner, |
| E1000E_MAX_TX_FRAGS, core->has_vnet); |
| } |
| |
| net_rx_pkt_init(&core->rx_pkt, core->has_vnet); |
| |
| e1000x_core_prepare_eeprom(core->eeprom, |
| eeprom_templ, |
| eeprom_size, |
| PCI_DEVICE_GET_CLASS(core->owner)->device_id, |
| macaddr); |
| e1000e_update_rx_offloads(core); |
| } |
| |
| void |
| e1000e_core_pci_uninit(E1000ECore *core) |
| { |
| int i; |
| |
| timer_del(core->autoneg_timer); |
| timer_free(core->autoneg_timer); |
| |
| e1000e_intrmgr_pci_unint(core); |
| |
| qemu_del_vm_change_state_handler(core->vmstate); |
| |
| for (i = 0; i < E1000E_NUM_QUEUES; i++) { |
| net_tx_pkt_reset(core->tx[i].tx_pkt); |
| net_tx_pkt_uninit(core->tx[i].tx_pkt); |
| } |
| |
| net_rx_pkt_uninit(core->rx_pkt); |
| } |
| |
| static const uint16_t |
| e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = { |
| [0] = { |
| [PHY_CTRL] = MII_CR_SPEED_SELECT_MSB | |
| MII_CR_FULL_DUPLEX | |
| MII_CR_AUTO_NEG_EN, |
| |
| [PHY_STATUS] = MII_SR_EXTENDED_CAPS | |
| MII_SR_LINK_STATUS | |
| MII_SR_AUTONEG_CAPS | |
| MII_SR_PREAMBLE_SUPPRESS | |
| MII_SR_EXTENDED_STATUS | |
| MII_SR_10T_HD_CAPS | |
| MII_SR_10T_FD_CAPS | |
| MII_SR_100X_HD_CAPS | |
| MII_SR_100X_FD_CAPS, |
| |
| [PHY_ID1] = 0x141, |
| [PHY_ID2] = E1000_PHY_ID2_82574x, |
| [PHY_AUTONEG_ADV] = 0xde1, |
| [PHY_LP_ABILITY] = 0x7e0, |
| [PHY_AUTONEG_EXP] = BIT(2), |
| [PHY_NEXT_PAGE_TX] = BIT(0) | BIT(13), |
| [PHY_1000T_CTRL] = BIT(8) | BIT(9) | BIT(10) | BIT(11), |
| [PHY_1000T_STATUS] = 0x3c00, |
| [PHY_EXT_STATUS] = BIT(12) | BIT(13), |
| |
| [PHY_COPPER_CTRL1] = BIT(5) | BIT(6) | BIT(8) | BIT(9) | |
| BIT(12) | BIT(13), |
| [PHY_COPPER_STAT1] = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15) |
| }, |
| [2] = { |
| [PHY_MAC_CTRL1] = BIT(3) | BIT(7), |
| [PHY_MAC_CTRL2] = BIT(1) | BIT(2) | BIT(6) | BIT(12) |
| }, |
| [3] = { |
| [PHY_LED_TIMER_CTRL] = BIT(0) | BIT(2) | BIT(14) |
| } |
| }; |
| |
| static const uint32_t e1000e_mac_reg_init[] = { |
| [PBA] = 0x00140014, |
| [LEDCTL] = BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18), |
| [EXTCNF_CTRL] = BIT(3), |
| [EEMNGCTL] = BIT(31), |
| [FLASHT] = 0x2, |
| [FLSWCTL] = BIT(30) | BIT(31), |
| [FLOL] = BIT(0), |
| [RXDCTL] = BIT(16), |
| [RXDCTL1] = BIT(16), |
| [TIPG] = 0x8 | (0x8 << 10) | (0x6 << 20), |
| [RXCFGL] = 0x88F7, |
| [RXUDP] = 0x319, |
| [CTRL] = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 | |
| E1000_CTRL_SPD_1000 | E1000_CTRL_SLU | |
| E1000_CTRL_ADVD3WUC, |
| [STATUS] = E1000_STATUS_ASDV_1000 | E1000_STATUS_LU, |
| [PSRCTL] = (2 << E1000_PSRCTL_BSIZE0_SHIFT) | |
| (4 << E1000_PSRCTL_BSIZE1_SHIFT) | |
| (4 << E1000_PSRCTL_BSIZE2_SHIFT), |
| [TARC0] = 0x3 | E1000_TARC_ENABLE, |
| [TARC1] = 0x3 | E1000_TARC_ENABLE, |
| [EECD] = E1000_EECD_AUTO_RD | E1000_EECD_PRES, |
| [EERD] = E1000_EERW_DONE, |
| [EEWR] = E1000_EERW_DONE, |
| [GCR] = E1000_L0S_ADJUST | |
| E1000_L1_ENTRY_LATENCY_MSB | |
| E1000_L1_ENTRY_LATENCY_LSB, |
| [TDFH] = 0x600, |
| [TDFT] = 0x600, |
| [TDFHS] = 0x600, |
| [TDFTS] = 0x600, |
| [POEMB] = 0x30D, |
| [PBS] = 0x028, |
| [MANC] = E1000_MANC_DIS_IP_CHK_ARP, |
| [FACTPS] = E1000_FACTPS_LAN0_ON | 0x20000000, |
| [SWSM] = 1, |
| [RXCSUM] = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD, |
| [ITR] = E1000E_MIN_XITR, |
| [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR, |
| }; |
| |
| void |
| e1000e_core_reset(E1000ECore *core) |
| { |
| int i; |
| |
| timer_del(core->autoneg_timer); |
| |
| e1000e_intrmgr_reset(core); |
| |
| memset(core->phy, 0, sizeof core->phy); |
| memmove(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init); |
| memset(core->mac, 0, sizeof core->mac); |
| memmove(core->mac, e1000e_mac_reg_init, sizeof e1000e_mac_reg_init); |
| |
| core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT; |
| |
| if (qemu_get_queue(core->owner_nic)->link_down) { |
| e1000e_link_down(core); |
| } |
| |
| e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac); |
| |
| for (i = 0; i < ARRAY_SIZE(core->tx); i++) { |
| net_tx_pkt_reset(core->tx[i].tx_pkt); |
| memset(&core->tx[i].props, 0, sizeof(core->tx[i].props)); |
| core->tx[i].skip_cp = false; |
| } |
| } |
| |
| void e1000e_core_pre_save(E1000ECore *core) |
| { |
| int i; |
| NetClientState *nc = qemu_get_queue(core->owner_nic); |
| |
| /* |
| * If link is down and auto-negotiation is supported and ongoing, |
| * complete auto-negotiation immediately. This allows us to look |
| * at MII_SR_AUTONEG_COMPLETE to infer link status on load. |
| */ |
| if (nc->link_down && e1000e_have_autoneg(core)) { |
| core->phy[0][PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE; |
| e1000e_update_flowctl_status(core); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(core->tx); i++) { |
| if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) { |
| core->tx[i].skip_cp = true; |
| } |
| } |
| } |
| |
| int |
| e1000e_core_post_load(E1000ECore *core) |
| { |
| NetClientState *nc = qemu_get_queue(core->owner_nic); |
| |
| /* nc.link_down can't be migrated, so infer link_down according |
| * to link status bit in core.mac[STATUS]. |
| */ |
| nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0; |
| |
| return 0; |
| } |