blob: f4e89203c1a6e3b051fd7185cbf01ec9bae9684a [file] [log] [blame]
/*
* QEMU NVM Express Controller
*
* Copyright (c) 2012, Intel Corporation
*
* Written by Keith Busch <keith.busch@intel.com>
*
* This code is licensed under the GNU GPL v2 or later.
*/
/**
* Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
*
* https://nvmexpress.org/developers/nvme-specification/
*
*
* Notes on coding style
* ---------------------
* While QEMU coding style prefers lowercase hexadecimals in constants, the
* NVMe subsystem use this format from the NVMe specifications in the comments
* (i.e. 'h' suffix instead of '0x' prefix).
*
* Usage
* -----
* See docs/system/nvme.rst for extensive documentation.
*
* Add options:
* -drive file=<file>,if=none,id=<drive_id>
* -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
* -device nvme,serial=<serial>,id=<bus_name>, \
* cmb_size_mb=<cmb_size_mb[optional]>, \
* [pmrdev=<mem_backend_file_id>,] \
* max_ioqpairs=<N[optional]>, \
* aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
* mdts=<N[optional]>,vsl=<N[optional]>, \
* zoned.zasl=<N[optional]>, \
* zoned.auto_transition=<on|off[optional]>, \
* sriov_max_vfs=<N[optional]> \
* sriov_vq_flexible=<N[optional]> \
* sriov_vi_flexible=<N[optional]> \
* sriov_max_vi_per_vf=<N[optional]> \
* sriov_max_vq_per_vf=<N[optional]> \
* atomic.dn=<on|off[optional]>, \
* atomic.awun<N[optional]>, \
* atomic.awupf<N[optional]>, \
* subsys=<subsys_id>
* -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
* zoned=<true|false[optional]>, \
* subsys=<subsys_id>,shared=<true|false[optional]>, \
* detached=<true|false[optional]>, \
* zoned.zone_size=<N[optional]>, \
* zoned.zone_capacity=<N[optional]>, \
* zoned.descr_ext_size=<N[optional]>, \
* zoned.max_active=<N[optional]>, \
* zoned.max_open=<N[optional]>, \
* zoned.cross_read=<true|false[optional]>
*
* Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
* offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
* device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
* always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
*
* Enabling pmr emulation can be achieved by pointing to memory-backend-file.
* For example:
* -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
* size=<size> .... -device nvme,...,pmrdev=<mem_id>
*
* The PMR will use BAR 4/5 exclusively.
*
* To place controller(s) and namespace(s) to a subsystem, then provide
* nvme-subsys device as above.
*
* nvme subsystem device parameters
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* - `nqn`
* This parameter provides the `<nqn_id>` part of the string
* `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
* of subsystem controllers. Note that `<nqn_id>` should be unique per
* subsystem, but this is not enforced by QEMU. If not specified, it will
* default to the value of the `id` parameter (`<subsys_id>`).
*
* nvme device parameters
* ~~~~~~~~~~~~~~~~~~~~~~
* - `subsys`
* Specifying this parameter attaches the controller to the subsystem and
* the SUBNQN field in the controller will report the NQN of the subsystem
* device. This also enables multi controller capability represented in
* Identify Controller data structure in CMIC (Controller Multi-path I/O and
* Namespace Sharing Capabilities).
*
* - `aerl`
* The Asynchronous Event Request Limit (AERL). Indicates the maximum number
* of concurrently outstanding Asynchronous Event Request commands support
* by the controller. This is a 0's based value.
*
* - `aer_max_queued`
* This is the maximum number of events that the device will enqueue for
* completion when there are no outstanding AERs. When the maximum number of
* enqueued events are reached, subsequent events will be dropped.
*
* - `mdts`
* Indicates the maximum data transfer size for a command that transfers data
* between host-accessible memory and the controller. The value is specified
* as a power of two (2^n) and is in units of the minimum memory page size
* (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
*
* - `vsl`
* Indicates the maximum data size limit for the Verify command. Like `mdts`,
* this value is specified as a power of two (2^n) and is in units of the
* minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
* KiB).
*
* - `zoned.zasl`
* Indicates the maximum data transfer size for the Zone Append command. Like
* `mdts`, the value is specified as a power of two (2^n) and is in units of
* the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
* defaulting to the value of `mdts`).
*
* - `zoned.auto_transition`
* Indicates if zones in zone state implicitly opened can be automatically
* transitioned to zone state closed for resource management purposes.
* Defaults to 'on'.
*
* - `sriov_max_vfs`
* Indicates the maximum number of PCIe virtual functions supported
* by the controller. The default value is 0. Specifying a non-zero value
* enables reporting of both SR-IOV and ARI capabilities by the NVMe device.
* Virtual function controllers will not report SR-IOV capability.
*
* NOTE: Single Root I/O Virtualization support is experimental.
* All the related parameters may be subject to change.
*
* - `sriov_vq_flexible`
* Indicates the total number of flexible queue resources assignable to all
* the secondary controllers. Implicitly sets the number of primary
* controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`.
*
* - `sriov_vi_flexible`
* Indicates the total number of flexible interrupt resources assignable to
* all the secondary controllers. Implicitly sets the number of primary
* controller's private resources to `(msix_qsize - sriov_vi_flexible)`.
*
* - `sriov_max_vi_per_vf`
* Indicates the maximum number of virtual interrupt resources assignable
* to a secondary controller. The default 0 resolves to
* `(sriov_vi_flexible / sriov_max_vfs)`.
*
* - `sriov_max_vq_per_vf`
* Indicates the maximum number of virtual queue resources assignable to
* a secondary controller. The default 0 resolves to
* `(sriov_vq_flexible / sriov_max_vfs)`.
*
* nvme namespace device parameters
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* - `shared`
* When the parent nvme device (as defined explicitly by the 'bus' parameter
* or implicitly by the most recently defined NvmeBus) is linked to an
* nvme-subsys device, the namespace will be attached to all controllers in
* the subsystem. If set to 'off' (the default), the namespace will remain a
* private namespace and may only be attached to a single controller at a
* time.
*
* - `detached`
* This parameter is only valid together with the `subsys` parameter. If left
* at the default value (`false/off`), the namespace will be attached to all
* controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
* namespace will be available in the subsystem but not attached to any
* controllers.
*
* Setting `zoned` to true selects Zoned Command Set at the namespace.
* In this case, the following namespace properties are available to configure
* zoned operation:
* zoned.zone_size=<zone size in bytes, default: 128MiB>
* The number may be followed by K, M, G as in kilo-, mega- or giga-.
*
* zoned.zone_capacity=<zone capacity in bytes, default: zone size>
* The value 0 (default) forces zone capacity to be the same as zone
* size. The value of this property may not exceed zone size.
*
* zoned.descr_ext_size=<zone descriptor extension size, default 0>
* This value needs to be specified in 64B units. If it is zero,
* namespace(s) will not support zone descriptor extensions.
*
* zoned.max_active=<Maximum Active Resources (zones), default: 0>
* The default value means there is no limit to the number of
* concurrently active zones.
*
* zoned.max_open=<Maximum Open Resources (zones), default: 0>
* The default value means there is no limit to the number of
* concurrently open zones.
*
* zoned.cross_read=<enable RAZB, default: false>
* Setting this property to true enables Read Across Zone Boundaries.
*/
#include "qemu/osdep.h"
#include "qemu/cutils.h"
#include "qemu/error-report.h"
#include "qemu/log.h"
#include "qemu/units.h"
#include "qemu/range.h"
#include "qapi/error.h"
#include "qapi/visitor.h"
#include "sysemu/sysemu.h"
#include "sysemu/block-backend.h"
#include "sysemu/hostmem.h"
#include "hw/pci/msix.h"
#include "hw/pci/pcie_sriov.h"
#include "sysemu/spdm-socket.h"
#include "migration/vmstate.h"
#include "nvme.h"
#include "dif.h"
#include "trace.h"
#define NVME_MAX_IOQPAIRS 0xffff
#define NVME_DB_SIZE 4
#define NVME_SPEC_VER 0x00010400
#define NVME_CMB_BIR 2
#define NVME_PMR_BIR 4
#define NVME_TEMPERATURE 0x143
#define NVME_TEMPERATURE_WARNING 0x157
#define NVME_TEMPERATURE_CRITICAL 0x175
#define NVME_NUM_FW_SLOTS 1
#define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
#define NVME_VF_RES_GRANULARITY 1
#define NVME_VF_OFFSET 0x1
#define NVME_VF_STRIDE 1
#define NVME_GUEST_ERR(trace, fmt, ...) \
do { \
(trace_##trace)(__VA_ARGS__); \
qemu_log_mask(LOG_GUEST_ERROR, #trace \
" in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
} while (0)
static const bool nvme_feature_support[NVME_FID_MAX] = {
[NVME_ARBITRATION] = true,
[NVME_POWER_MANAGEMENT] = true,
[NVME_TEMPERATURE_THRESHOLD] = true,
[NVME_ERROR_RECOVERY] = true,
[NVME_VOLATILE_WRITE_CACHE] = true,
[NVME_NUMBER_OF_QUEUES] = true,
[NVME_INTERRUPT_COALESCING] = true,
[NVME_INTERRUPT_VECTOR_CONF] = true,
[NVME_WRITE_ATOMICITY] = true,
[NVME_ASYNCHRONOUS_EVENT_CONF] = true,
[NVME_TIMESTAMP] = true,
[NVME_HOST_BEHAVIOR_SUPPORT] = true,
[NVME_COMMAND_SET_PROFILE] = true,
[NVME_FDP_MODE] = true,
[NVME_FDP_EVENTS] = true,
};
static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
[NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE,
[NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
[NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE,
[NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE,
[NVME_WRITE_ATOMICITY] = NVME_FEAT_CAP_CHANGE,
[NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE,
[NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE,
[NVME_HOST_BEHAVIOR_SUPPORT] = NVME_FEAT_CAP_CHANGE,
[NVME_COMMAND_SET_PROFILE] = NVME_FEAT_CAP_CHANGE,
[NVME_FDP_MODE] = NVME_FEAT_CAP_CHANGE,
[NVME_FDP_EVENTS] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
};
static const uint32_t nvme_cse_acs[256] = {
[NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
[NVME_ADM_CMD_VIRT_MNGMT] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_DBBUF_CONFIG] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_ADM_CMD_DIRECTIVE_RECV] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_DIRECTIVE_SEND] = NVME_CMD_EFF_CSUPP,
};
static const uint32_t nvme_cse_iocs_none[256];
static const uint32_t nvme_cse_iocs_nvm[256] = {
[NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
[NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
[NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
[NVME_CMD_IO_MGMT_RECV] = NVME_CMD_EFF_CSUPP,
[NVME_CMD_IO_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
};
static const uint32_t nvme_cse_iocs_zoned[256] = {
[NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
[NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
[NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
[NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP,
};
static void nvme_process_sq(void *opaque);
static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst);
static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n);
static uint16_t nvme_sqid(NvmeRequest *req)
{
return le16_to_cpu(req->sq->sqid);
}
static inline uint16_t nvme_make_pid(NvmeNamespace *ns, uint16_t rg,
uint16_t ph)
{
uint16_t rgif = ns->endgrp->fdp.rgif;
if (!rgif) {
return ph;
}
return (rg << (16 - rgif)) | ph;
}
static inline bool nvme_ph_valid(NvmeNamespace *ns, uint16_t ph)
{
return ph < ns->fdp.nphs;
}
static inline bool nvme_rg_valid(NvmeEnduranceGroup *endgrp, uint16_t rg)
{
return rg < endgrp->fdp.nrg;
}
static inline uint16_t nvme_pid2ph(NvmeNamespace *ns, uint16_t pid)
{
uint16_t rgif = ns->endgrp->fdp.rgif;
if (!rgif) {
return pid;
}
return pid & ((1 << (15 - rgif)) - 1);
}
static inline uint16_t nvme_pid2rg(NvmeNamespace *ns, uint16_t pid)
{
uint16_t rgif = ns->endgrp->fdp.rgif;
if (!rgif) {
return 0;
}
return pid >> (16 - rgif);
}
static inline bool nvme_parse_pid(NvmeNamespace *ns, uint16_t pid,
uint16_t *ph, uint16_t *rg)
{
*rg = nvme_pid2rg(ns, pid);
*ph = nvme_pid2ph(ns, pid);
return nvme_ph_valid(ns, *ph) && nvme_rg_valid(ns->endgrp, *rg);
}
static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
NvmeZoneState state)
{
if (QTAILQ_IN_USE(zone, entry)) {
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
break;
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
break;
case NVME_ZONE_STATE_CLOSED:
QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
break;
case NVME_ZONE_STATE_FULL:
QTAILQ_REMOVE(&ns->full_zones, zone, entry);
default:
;
}
}
nvme_set_zone_state(zone, state);
switch (state) {
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
break;
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
break;
case NVME_ZONE_STATE_CLOSED:
QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
break;
case NVME_ZONE_STATE_FULL:
QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
case NVME_ZONE_STATE_READ_ONLY:
break;
default:
zone->d.za = 0;
}
}
static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act,
uint32_t opn, uint32_t zrwa)
{
if (ns->params.max_active_zones != 0 &&
ns->nr_active_zones + act > ns->params.max_active_zones) {
trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
}
if (ns->params.max_open_zones != 0 &&
ns->nr_open_zones + opn > ns->params.max_open_zones) {
trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
}
if (zrwa > ns->zns.numzrwa) {
return NVME_NOZRWA | NVME_DNR;
}
return NVME_SUCCESS;
}
/*
* Check if we can open a zone without exceeding open/active limits.
* AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
*/
static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
{
return nvme_zns_check_resources(ns, act, opn, 0);
}
static NvmeFdpEvent *nvme_fdp_alloc_event(NvmeCtrl *n, NvmeFdpEventBuffer *ebuf)
{
NvmeFdpEvent *ret = NULL;
bool is_full = ebuf->next == ebuf->start && ebuf->nelems;
ret = &ebuf->events[ebuf->next++];
if (unlikely(ebuf->next == NVME_FDP_MAX_EVENTS)) {
ebuf->next = 0;
}
if (is_full) {
ebuf->start = ebuf->next;
} else {
ebuf->nelems++;
}
memset(ret, 0, sizeof(NvmeFdpEvent));
ret->timestamp = nvme_get_timestamp(n);
return ret;
}
static inline int log_event(NvmeRuHandle *ruh, uint8_t event_type)
{
return (ruh->event_filter >> nvme_fdp_evf_shifts[event_type]) & 0x1;
}
static bool nvme_update_ruh(NvmeCtrl *n, NvmeNamespace *ns, uint16_t pid)
{
NvmeEnduranceGroup *endgrp = ns->endgrp;
NvmeRuHandle *ruh;
NvmeReclaimUnit *ru;
NvmeFdpEvent *e = NULL;
uint16_t ph, rg, ruhid;
if (!nvme_parse_pid(ns, pid, &ph, &rg)) {
return false;
}
ruhid = ns->fdp.phs[ph];
ruh = &endgrp->fdp.ruhs[ruhid];
ru = &ruh->rus[rg];
if (ru->ruamw) {
if (log_event(ruh, FDP_EVT_RU_NOT_FULLY_WRITTEN)) {
e = nvme_fdp_alloc_event(n, &endgrp->fdp.host_events);
e->type = FDP_EVT_RU_NOT_FULLY_WRITTEN;
e->flags = FDPEF_PIV | FDPEF_NSIDV | FDPEF_LV;
e->pid = cpu_to_le16(pid);
e->nsid = cpu_to_le32(ns->params.nsid);
e->rgid = cpu_to_le16(rg);
e->ruhid = cpu_to_le16(ruhid);
}
/* log (eventual) GC overhead of prematurely swapping the RU */
nvme_fdp_stat_inc(&endgrp->fdp.mbmw, nvme_l2b(ns, ru->ruamw));
}
ru->ruamw = ruh->ruamw;
return true;
}
static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
{
hwaddr hi, lo;
if (!n->cmb.cmse) {
return false;
}
lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
hi = lo + int128_get64(n->cmb.mem.size);
return addr >= lo && addr < hi;
}
static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
{
hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
return &n->cmb.buf[addr - base];
}
static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
{
hwaddr hi;
if (!n->pmr.cmse) {
return false;
}
hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
return addr >= n->pmr.cba && addr < hi;
}
static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
{
return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
}
static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr)
{
hwaddr hi, lo;
/*
* The purpose of this check is to guard against invalid "local" access to
* the iomem (i.e. controller registers). Thus, we check against the range
* covered by the 'bar0' MemoryRegion since that is currently composed of
* two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however,
* that if the device model is ever changed to allow the CMB to be located
* in BAR0 as well, then this must be changed.
*/
lo = n->bar0.addr;
hi = lo + int128_get64(n->bar0.size);
return addr >= lo && addr < hi;
}
static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
{
hwaddr hi = addr + size - 1;
if (hi < addr) {
return 1;
}
if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
memcpy(buf, nvme_addr_to_cmb(n, addr), size);
return 0;
}
if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
memcpy(buf, nvme_addr_to_pmr(n, addr), size);
return 0;
}
return pci_dma_read(PCI_DEVICE(n), addr, buf, size);
}
static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size)
{
hwaddr hi = addr + size - 1;
if (hi < addr) {
return 1;
}
if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
memcpy(nvme_addr_to_cmb(n, addr), buf, size);
return 0;
}
if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
memcpy(nvme_addr_to_pmr(n, addr), buf, size);
return 0;
}
return pci_dma_write(PCI_DEVICE(n), addr, buf, size);
}
static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
{
return nsid &&
(nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
}
static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
{
return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
}
static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
{
return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
}
static void nvme_inc_cq_tail(NvmeCQueue *cq)
{
cq->tail++;
if (cq->tail >= cq->size) {
cq->tail = 0;
cq->phase = !cq->phase;
}
}
static void nvme_inc_sq_head(NvmeSQueue *sq)
{
sq->head = (sq->head + 1) % sq->size;
}
static uint8_t nvme_cq_full(NvmeCQueue *cq)
{
return (cq->tail + 1) % cq->size == cq->head;
}
static uint8_t nvme_sq_empty(NvmeSQueue *sq)
{
return sq->head == sq->tail;
}
static void nvme_irq_check(NvmeCtrl *n)
{
PCIDevice *pci = PCI_DEVICE(n);
uint32_t intms = ldl_le_p(&n->bar.intms);
if (msix_enabled(pci)) {
return;
}
if (~intms & n->irq_status) {
pci_irq_assert(pci);
} else {
pci_irq_deassert(pci);
}
}
static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
{
PCIDevice *pci = PCI_DEVICE(n);
if (cq->irq_enabled) {
if (msix_enabled(pci)) {
trace_pci_nvme_irq_msix(cq->vector);
msix_notify(pci, cq->vector);
} else {
trace_pci_nvme_irq_pin();
assert(cq->vector < 32);
n->irq_status |= 1 << cq->vector;
nvme_irq_check(n);
}
} else {
trace_pci_nvme_irq_masked();
}
}
static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
{
if (cq->irq_enabled) {
if (msix_enabled(PCI_DEVICE(n))) {
return;
} else {
assert(cq->vector < 32);
if (!n->cq_pending) {
n->irq_status &= ~(1 << cq->vector);
}
nvme_irq_check(n);
}
}
}
static void nvme_req_clear(NvmeRequest *req)
{
req->ns = NULL;
req->opaque = NULL;
req->aiocb = NULL;
memset(&req->cqe, 0x0, sizeof(req->cqe));
req->status = NVME_SUCCESS;
}
static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
{
if (dma) {
pci_dma_sglist_init(&sg->qsg, PCI_DEVICE(n), 0);
sg->flags = NVME_SG_DMA;
} else {
qemu_iovec_init(&sg->iov, 0);
}
sg->flags |= NVME_SG_ALLOC;
}
static inline void nvme_sg_unmap(NvmeSg *sg)
{
if (!(sg->flags & NVME_SG_ALLOC)) {
return;
}
if (sg->flags & NVME_SG_DMA) {
qemu_sglist_destroy(&sg->qsg);
} else {
qemu_iovec_destroy(&sg->iov);
}
memset(sg, 0x0, sizeof(*sg));
}
/*
* When metadata is transferred as extended LBAs, the DPTR mapped into `sg`
* holds both data and metadata. This function splits the data and metadata
* into two separate QSG/IOVs.
*/
static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
NvmeSg *mdata)
{
NvmeSg *dst = data;
uint32_t trans_len, count = ns->lbasz;
uint64_t offset = 0;
bool dma = sg->flags & NVME_SG_DMA;
size_t sge_len;
size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
int sg_idx = 0;
assert(sg->flags & NVME_SG_ALLOC);
while (sg_len) {
sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
trans_len = MIN(sg_len, count);
trans_len = MIN(trans_len, sge_len - offset);
if (dst) {
if (dma) {
qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
trans_len);
} else {
qemu_iovec_add(&dst->iov,
sg->iov.iov[sg_idx].iov_base + offset,
trans_len);
}
}
sg_len -= trans_len;
count -= trans_len;
offset += trans_len;
if (count == 0) {
dst = (dst == data) ? mdata : data;
count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
}
if (sge_len == offset) {
offset = 0;
sg_idx++;
}
}
}
static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
size_t len)
{
if (!len) {
return NVME_SUCCESS;
}
trace_pci_nvme_map_addr_cmb(addr, len);
if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
return NVME_DATA_TRAS_ERROR;
}
qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
return NVME_SUCCESS;
}
static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
size_t len)
{
if (!len) {
return NVME_SUCCESS;
}
if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
return NVME_DATA_TRAS_ERROR;
}
qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
return NVME_SUCCESS;
}
static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
{
bool cmb = false, pmr = false;
if (!len) {
return NVME_SUCCESS;
}
trace_pci_nvme_map_addr(addr, len);
if (nvme_addr_is_iomem(n, addr)) {
return NVME_DATA_TRAS_ERROR;
}
if (nvme_addr_is_cmb(n, addr)) {
cmb = true;
} else if (nvme_addr_is_pmr(n, addr)) {
pmr = true;
}
if (cmb || pmr) {
if (sg->flags & NVME_SG_DMA) {
return NVME_INVALID_USE_OF_CMB | NVME_DNR;
}
if (sg->iov.niov + 1 > IOV_MAX) {
goto max_mappings_exceeded;
}
if (cmb) {
return nvme_map_addr_cmb(n, &sg->iov, addr, len);
} else {
return nvme_map_addr_pmr(n, &sg->iov, addr, len);
}
}
if (!(sg->flags & NVME_SG_DMA)) {
return NVME_INVALID_USE_OF_CMB | NVME_DNR;
}
if (sg->qsg.nsg + 1 > IOV_MAX) {
goto max_mappings_exceeded;
}
qemu_sglist_add(&sg->qsg, addr, len);
return NVME_SUCCESS;
max_mappings_exceeded:
NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings,
"number of mappings exceed 1024");
return NVME_INTERNAL_DEV_ERROR | NVME_DNR;
}
static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
{
return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
}
static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
uint64_t prp2, uint32_t len)
{
hwaddr trans_len = n->page_size - (prp1 % n->page_size);
trans_len = MIN(len, trans_len);
int num_prps = (len >> n->page_bits) + 1;
uint16_t status;
int ret;
trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
status = nvme_map_addr(n, sg, prp1, trans_len);
if (status) {
goto unmap;
}
len -= trans_len;
if (len) {
if (len > n->page_size) {
g_autofree uint64_t *prp_list = g_new(uint64_t, n->max_prp_ents);
uint32_t nents, prp_trans;
int i = 0;
/*
* The first PRP list entry, pointed to by PRP2 may contain offset.
* Hence, we need to calculate the number of entries in based on
* that offset.
*/
nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
if (ret) {
trace_pci_nvme_err_addr_read(prp2);
status = NVME_DATA_TRAS_ERROR;
goto unmap;
}
while (len != 0) {
uint64_t prp_ent = le64_to_cpu(prp_list[i]);
if (i == nents - 1 && len > n->page_size) {
if (unlikely(prp_ent & (n->page_size - 1))) {
trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
goto unmap;
}
i = 0;
nents = (len + n->page_size - 1) >> n->page_bits;
nents = MIN(nents, n->max_prp_ents);
prp_trans = nents * sizeof(uint64_t);
ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
prp_trans);
if (ret) {
trace_pci_nvme_err_addr_read(prp_ent);
status = NVME_DATA_TRAS_ERROR;
goto unmap;
}
prp_ent = le64_to_cpu(prp_list[i]);
}
if (unlikely(prp_ent & (n->page_size - 1))) {
trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
goto unmap;
}
trans_len = MIN(len, n->page_size);
status = nvme_map_addr(n, sg, prp_ent, trans_len);
if (status) {
goto unmap;
}
len -= trans_len;
i++;
}
} else {
if (unlikely(prp2 & (n->page_size - 1))) {
trace_pci_nvme_err_invalid_prp2_align(prp2);
status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
goto unmap;
}
status = nvme_map_addr(n, sg, prp2, len);
if (status) {
goto unmap;
}
}
}
return NVME_SUCCESS;
unmap:
nvme_sg_unmap(sg);
return status;
}
/*
* Map 'nsgld' data descriptors from 'segment'. The function will subtract the
* number of bytes mapped in len.
*/
static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
NvmeSglDescriptor *segment, uint64_t nsgld,
size_t *len, NvmeCmd *cmd)
{
dma_addr_t addr, trans_len;
uint32_t dlen;
uint16_t status;
for (int i = 0; i < nsgld; i++) {
uint8_t type = NVME_SGL_TYPE(segment[i].type);
switch (type) {
case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
break;
case NVME_SGL_DESCR_TYPE_SEGMENT:
case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
default:
return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
}
dlen = le32_to_cpu(segment[i].len);
if (!dlen) {
continue;
}
if (*len == 0) {
/*
* All data has been mapped, but the SGL contains additional
* segments and/or descriptors. The controller might accept
* ignoring the rest of the SGL.
*/
uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
break;
}
trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
}
trans_len = MIN(*len, dlen);
addr = le64_to_cpu(segment[i].addr);
if (UINT64_MAX - addr < dlen) {
return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
}
status = nvme_map_addr(n, sg, addr, trans_len);
if (status) {
return status;
}
*len -= trans_len;
}
return NVME_SUCCESS;
}
static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
size_t len, NvmeCmd *cmd)
{
/*
* Read the segment in chunks of 256 descriptors (one 4k page) to avoid
* dynamically allocating a potentially huge SGL. The spec allows the SGL
* to be larger (as in number of bytes required to describe the SGL
* descriptors and segment chain) than the command transfer size, so it is
* not bounded by MDTS.
*/
#define SEG_CHUNK_SIZE 256
NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
uint64_t nsgld;
uint32_t seg_len;
uint16_t status;
hwaddr addr;
int ret;
sgld = &sgl;
addr = le64_to_cpu(sgl.addr);
trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
/*
* If the entire transfer can be described with a single data block it can
* be mapped directly.
*/
if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
if (status) {
goto unmap;
}
goto out;
}
for (;;) {
switch (NVME_SGL_TYPE(sgld->type)) {
case NVME_SGL_DESCR_TYPE_SEGMENT:
case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
break;
default:
return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
}
seg_len = le32_to_cpu(sgld->len);
/* check the length of the (Last) Segment descriptor */
if (!seg_len || seg_len & 0xf) {
return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
}
if (UINT64_MAX - addr < seg_len) {
return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
}
nsgld = seg_len / sizeof(NvmeSglDescriptor);
while (nsgld > SEG_CHUNK_SIZE) {
if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
trace_pci_nvme_err_addr_read(addr);
status = NVME_DATA_TRAS_ERROR;
goto unmap;
}
status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
&len, cmd);
if (status) {
goto unmap;
}
nsgld -= SEG_CHUNK_SIZE;
addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
}
ret = nvme_addr_read(n, addr, segment, nsgld *
sizeof(NvmeSglDescriptor));
if (ret) {
trace_pci_nvme_err_addr_read(addr);
status = NVME_DATA_TRAS_ERROR;
goto unmap;
}
last_sgld = &segment[nsgld - 1];
/*
* If the segment ends with a Data Block, then we are done.
*/
if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
if (status) {
goto unmap;
}
goto out;
}
/*
* If the last descriptor was not a Data Block, then the current
* segment must not be a Last Segment.
*/
if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
goto unmap;
}
sgld = last_sgld;
addr = le64_to_cpu(sgld->addr);
/*
* Do not map the last descriptor; it will be a Segment or Last Segment
* descriptor and is handled by the next iteration.
*/
status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
if (status) {
goto unmap;
}
}
out:
/* if there is any residual left in len, the SGL was too short */
if (len) {
status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
goto unmap;
}
return NVME_SUCCESS;
unmap:
nvme_sg_unmap(sg);
return status;
}
uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
NvmeCmd *cmd)
{
uint64_t prp1, prp2;
switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
case NVME_PSDT_PRP:
prp1 = le64_to_cpu(cmd->dptr.prp1);
prp2 = le64_to_cpu(cmd->dptr.prp2);
return nvme_map_prp(n, sg, prp1, prp2, len);
case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
case NVME_PSDT_SGL_MPTR_SGL:
return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
default:
return NVME_INVALID_FIELD;
}
}
static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
NvmeCmd *cmd)
{
int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
hwaddr mptr = le64_to_cpu(cmd->mptr);
uint16_t status;
if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
NvmeSglDescriptor sgl;
if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
return NVME_DATA_TRAS_ERROR;
}
status = nvme_map_sgl(n, sg, sgl, len, cmd);
if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
}
return status;
}
nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
status = nvme_map_addr(n, sg, mptr, len);
if (status) {
nvme_sg_unmap(sg);
}
return status;
}
static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
size_t len = nvme_l2b(ns, nlb);
uint16_t status;
if (nvme_ns_ext(ns) &&
!(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
NvmeSg sg;
len += nvme_m2b(ns, nlb);
status = nvme_map_dptr(n, &sg, len, &req->cmd);
if (status) {
return status;
}
nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
nvme_sg_split(&sg, ns, &req->sg, NULL);
nvme_sg_unmap(&sg);
return NVME_SUCCESS;
}
return nvme_map_dptr(n, &req->sg, len, &req->cmd);
}
static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
size_t len = nvme_m2b(ns, nlb);
uint16_t status;
if (nvme_ns_ext(ns)) {
NvmeSg sg;
len += nvme_l2b(ns, nlb);
status = nvme_map_dptr(n, &sg, len, &req->cmd);
if (status) {
return status;
}
nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
nvme_sg_split(&sg, ns, NULL, &req->sg);
nvme_sg_unmap(&sg);
return NVME_SUCCESS;
}
return nvme_map_mptr(n, &req->sg, len, &req->cmd);
}
static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
uint32_t len, uint32_t bytes,
int32_t skip_bytes, int64_t offset,
NvmeTxDirection dir)
{
hwaddr addr;
uint32_t trans_len, count = bytes;
bool dma = sg->flags & NVME_SG_DMA;
int64_t sge_len;
int sg_idx = 0;
int ret;
assert(sg->flags & NVME_SG_ALLOC);
while (len) {
sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
if (sge_len - offset < 0) {
offset -= sge_len;
sg_idx++;
continue;
}
if (sge_len == offset) {
offset = 0;
sg_idx++;
continue;
}
trans_len = MIN(len, count);
trans_len = MIN(trans_len, sge_len - offset);
if (dma) {
addr = sg->qsg.sg[sg_idx].base + offset;
} else {
addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
}
if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
ret = nvme_addr_read(n, addr, ptr, trans_len);
} else {
ret = nvme_addr_write(n, addr, ptr, trans_len);
}
if (ret) {
return NVME_DATA_TRAS_ERROR;
}
ptr += trans_len;
len -= trans_len;
count -= trans_len;
offset += trans_len;
if (count == 0) {
count = bytes;
offset += skip_bytes;
}
}
return NVME_SUCCESS;
}
static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len,
NvmeTxDirection dir)
{
assert(sg->flags & NVME_SG_ALLOC);
if (sg->flags & NVME_SG_DMA) {
const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
dma_addr_t residual;
if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
dma_buf_write(ptr, len, &residual, &sg->qsg, attrs);
} else {
dma_buf_read(ptr, len, &residual, &sg->qsg, attrs);
}
if (unlikely(residual)) {
trace_pci_nvme_err_invalid_dma();
return NVME_INVALID_FIELD | NVME_DNR;
}
} else {
size_t bytes;
if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
} else {
bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
}
if (unlikely(bytes != len)) {
trace_pci_nvme_err_invalid_dma();
return NVME_INVALID_FIELD | NVME_DNR;
}
}
return NVME_SUCCESS;
}
static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len,
NvmeRequest *req)
{
uint16_t status;
status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
if (status) {
return status;
}
return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
}
static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len,
NvmeRequest *req)
{
uint16_t status;
status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
if (status) {
return status;
}
return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
}
uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
NvmeTxDirection dir, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
if (nvme_ns_ext(ns) &&
!(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
ns->lbaf.ms, 0, dir);
}
return nvme_tx(n, &req->sg, ptr, len, dir);
}
uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
NvmeTxDirection dir, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
uint16_t status;
if (nvme_ns_ext(ns)) {
return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
ns->lbasz, ns->lbasz, dir);
}
nvme_sg_unmap(&req->sg);
status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
if (status) {
return status;
}
return nvme_tx(n, &req->sg, ptr, len, dir);
}
static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
uint32_t align, BlockCompletionFunc *cb,
NvmeRequest *req)
{
assert(req->sg.flags & NVME_SG_ALLOC);
if (req->sg.flags & NVME_SG_DMA) {
req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, align, cb, req);
} else {
req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
}
}
static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
uint32_t align, BlockCompletionFunc *cb,
NvmeRequest *req)
{
assert(req->sg.flags & NVME_SG_ALLOC);
if (req->sg.flags & NVME_SG_DMA) {
req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, align, cb, req);
} else {
req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
}
}
static void nvme_update_cq_eventidx(const NvmeCQueue *cq)
{
trace_pci_nvme_update_cq_eventidx(cq->cqid, cq->head);
stl_le_pci_dma(PCI_DEVICE(cq->ctrl), cq->ei_addr, cq->head,
MEMTXATTRS_UNSPECIFIED);
}
static void nvme_update_cq_head(NvmeCQueue *cq)
{
ldl_le_pci_dma(PCI_DEVICE(cq->ctrl), cq->db_addr, &cq->head,
MEMTXATTRS_UNSPECIFIED);
trace_pci_nvme_update_cq_head(cq->cqid, cq->head);
}
static void nvme_post_cqes(void *opaque)
{
NvmeCQueue *cq = opaque;
NvmeCtrl *n = cq->ctrl;
NvmeRequest *req, *next;
bool pending = cq->head != cq->tail;
int ret;
QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
NvmeSQueue *sq;
hwaddr addr;
if (n->dbbuf_enabled) {
nvme_update_cq_eventidx(cq);
nvme_update_cq_head(cq);
}
if (nvme_cq_full(cq)) {
break;
}
sq = req->sq;
req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
req->cqe.sq_id = cpu_to_le16(sq->sqid);
req->cqe.sq_head = cpu_to_le16(sq->head);
addr = cq->dma_addr + (cq->tail << NVME_CQES);
ret = pci_dma_write(PCI_DEVICE(n), addr, (void *)&req->cqe,
sizeof(req->cqe));
if (ret) {
trace_pci_nvme_err_addr_write(addr);
trace_pci_nvme_err_cfs();
stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
break;
}
QTAILQ_REMOVE(&cq->req_list, req, entry);
nvme_inc_cq_tail(cq);
nvme_sg_unmap(&req->sg);
QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
}
if (cq->tail != cq->head) {
if (cq->irq_enabled && !pending) {
n->cq_pending++;
}
nvme_irq_assert(n, cq);
}
}
static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
{
assert(cq->cqid == req->sq->cqid);
trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
le32_to_cpu(req->cqe.result),
le32_to_cpu(req->cqe.dw1),
req->status);
if (req->status) {
trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
req->status, req->cmd.opcode);
}
QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
qemu_bh_schedule(cq->bh);
}
static void nvme_process_aers(void *opaque)
{
NvmeCtrl *n = opaque;
NvmeAsyncEvent *event, *next;
trace_pci_nvme_process_aers(n->aer_queued);
QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
NvmeRequest *req;
NvmeAerResult *result;
/* can't post cqe if there is nothing to complete */
if (!n->outstanding_aers) {
trace_pci_nvme_no_outstanding_aers();
break;
}
/* ignore if masked (cqe posted, but event not cleared) */
if (n->aer_mask & (1 << event->result.event_type)) {
trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
continue;
}
QTAILQ_REMOVE(&n->aer_queue, event, entry);
n->aer_queued--;
n->aer_mask |= 1 << event->result.event_type;
n->outstanding_aers--;
req = n->aer_reqs[n->outstanding_aers];
result = (NvmeAerResult *) &req->cqe.result;
result->event_type = event->result.event_type;
result->event_info = event->result.event_info;
result->log_page = event->result.log_page;
g_free(event);
trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
result->log_page);
nvme_enqueue_req_completion(&n->admin_cq, req);
}
}
static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
uint8_t event_info, uint8_t log_page)
{
NvmeAsyncEvent *event;
trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
if (n->aer_queued == n->params.aer_max_queued) {
trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
return;
}
event = g_new(NvmeAsyncEvent, 1);
event->result = (NvmeAerResult) {
.event_type = event_type,
.event_info = event_info,
.log_page = log_page,
};
QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
n->aer_queued++;
nvme_process_aers(n);
}
static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
{
uint8_t aer_info;
/* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
return;
}
switch (event) {
case NVME_SMART_SPARE:
aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
break;
case NVME_SMART_TEMPERATURE:
aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
break;
case NVME_SMART_RELIABILITY:
case NVME_SMART_MEDIA_READ_ONLY:
case NVME_SMART_FAILED_VOLATILE_MEDIA:
case NVME_SMART_PMR_UNRELIABLE:
aer_info = NVME_AER_INFO_SMART_RELIABILITY;
break;
default:
return;
}
nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
}
static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
{
NvmeAsyncEvent *event, *next;
n->aer_mask &= ~(1 << event_type);
QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
if (event->result.event_type == event_type) {
QTAILQ_REMOVE(&n->aer_queue, event, entry);
n->aer_queued--;
g_free(event);
}
}
}
static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
{
uint8_t mdts = n->params.mdts;
if (mdts && len > n->page_size << mdts) {
trace_pci_nvme_err_mdts(len);
return NVME_INVALID_FIELD | NVME_DNR;
}
return NVME_SUCCESS;
}
static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
uint32_t nlb)
{
uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
return NVME_LBA_RANGE | NVME_DNR;
}
return NVME_SUCCESS;
}
static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba,
uint32_t nlb, int flags)
{
BlockDriverState *bs = blk_bs(ns->blkconf.blk);
int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
int64_t offset = nvme_l2b(ns, slba);
int ret;
/*
* `pnum` holds the number of bytes after offset that shares the same
* allocation status as the byte at offset. If `pnum` is different from
* `bytes`, we should check the allocation status of the next range and
* continue this until all bytes have been checked.
*/
do {
bytes -= pnum;
ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
if (ret < 0) {
return ret;
}
trace_pci_nvme_block_status(offset, bytes, pnum, ret,
!!(ret & BDRV_BLOCK_ZERO));
if (!(ret & flags)) {
return 1;
}
offset += pnum;
} while (pnum != bytes);
return 0;
}
static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
uint32_t nlb)
{
int ret;
Error *err = NULL;
ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA);
if (ret) {
if (ret < 0) {
error_setg_errno(&err, -ret, "unable to get block status");
error_report_err(err);
return NVME_INTERNAL_DEV_ERROR;
}
return NVME_DULB;
}
return NVME_SUCCESS;
}
static void nvme_aio_err(NvmeRequest *req, int ret)
{
uint16_t status = NVME_SUCCESS;
Error *local_err = NULL;
switch (req->cmd.opcode) {
case NVME_CMD_READ:
status = NVME_UNRECOVERED_READ;
break;
case NVME_CMD_FLUSH:
case NVME_CMD_WRITE:
case NVME_CMD_WRITE_ZEROES:
case NVME_CMD_ZONE_APPEND:
case NVME_CMD_COPY:
status = NVME_WRITE_FAULT;
break;
default:
status = NVME_INTERNAL_DEV_ERROR;
break;
}
if (ret == -ECANCELED) {
status = NVME_CMD_ABORT_REQ;
}
trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
error_setg_errno(&local_err, -ret, "aio failed");
error_report_err(local_err);
/*
* Set the command status code to the first encountered error but allow a
* subsequent Internal Device Error to trump it.
*/
if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
return;
}
req->status = status;
}
static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
{
return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
slba / ns->zone_size;
}
static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
{
uint32_t zone_idx = nvme_zone_idx(ns, slba);
if (zone_idx >= ns->num_zones) {
return NULL;
}
return &ns->zone_array[zone_idx];
}
static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
{
uint64_t zslba = zone->d.zslba;
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EMPTY:
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
case NVME_ZONE_STATE_CLOSED:
return NVME_SUCCESS;
case NVME_ZONE_STATE_FULL:
trace_pci_nvme_err_zone_is_full(zslba);
return NVME_ZONE_FULL;
case NVME_ZONE_STATE_OFFLINE:
trace_pci_nvme_err_zone_is_offline(zslba);
return NVME_ZONE_OFFLINE;
case NVME_ZONE_STATE_READ_ONLY:
trace_pci_nvme_err_zone_is_read_only(zslba);
return NVME_ZONE_READ_ONLY;
default:
g_assert_not_reached();
}
return NVME_INTERNAL_DEV_ERROR;
}
static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
uint64_t slba, uint32_t nlb)
{
uint64_t zcap = nvme_zone_wr_boundary(zone);
uint16_t status;
status = nvme_check_zone_state_for_write(zone);
if (status) {
return status;
}
if (zone->d.za & NVME_ZA_ZRWA_VALID) {
uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas;
if (slba < zone->w_ptr || slba + nlb > ezrwa) {
trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr);
return NVME_ZONE_INVALID_WRITE;
}
} else {
if (unlikely(slba != zone->w_ptr)) {
trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba,
zone->w_ptr);
return NVME_ZONE_INVALID_WRITE;
}
}
if (unlikely((slba + nlb) > zcap)) {
trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
return NVME_ZONE_BOUNDARY_ERROR;
}
return NVME_SUCCESS;
}
static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
{
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EMPTY:
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
case NVME_ZONE_STATE_FULL:
case NVME_ZONE_STATE_CLOSED:
case NVME_ZONE_STATE_READ_ONLY:
return NVME_SUCCESS;
case NVME_ZONE_STATE_OFFLINE:
trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
return NVME_ZONE_OFFLINE;
default:
g_assert_not_reached();
}
return NVME_INTERNAL_DEV_ERROR;
}
static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
uint32_t nlb)
{
NvmeZone *zone;
uint64_t bndry, end;
uint16_t status;
zone = nvme_get_zone_by_slba(ns, slba);
assert(zone);
bndry = nvme_zone_rd_boundary(ns, zone);
end = slba + nlb;
status = nvme_check_zone_state_for_read(zone);
if (status) {
;
} else if (unlikely(end > bndry)) {
if (!ns->params.cross_zone_read) {
status = NVME_ZONE_BOUNDARY_ERROR;
} else {
/*
* Read across zone boundary - check that all subsequent
* zones that are being read have an appropriate state.
*/
do {
zone++;
status = nvme_check_zone_state_for_read(zone);
if (status) {
break;
}
} while (end > nvme_zone_rd_boundary(ns, zone));
}
}
return status;
}
static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
{
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_FULL:
return NVME_SUCCESS;
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
nvme_aor_dec_open(ns);
/* fallthrough */
case NVME_ZONE_STATE_CLOSED:
nvme_aor_dec_active(ns);
if (zone->d.za & NVME_ZA_ZRWA_VALID) {
zone->d.za &= ~NVME_ZA_ZRWA_VALID;
if (ns->params.numzrwa) {
ns->zns.numzrwa++;
}
}
/* fallthrough */
case NVME_ZONE_STATE_EMPTY:
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
return NVME_SUCCESS;
default:
return NVME_ZONE_INVAL_TRANSITION;
}
}
static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
{
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
nvme_aor_dec_open(ns);
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
/* fall through */
case NVME_ZONE_STATE_CLOSED:
return NVME_SUCCESS;
default:
return NVME_ZONE_INVAL_TRANSITION;
}
}
static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone)
{
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
nvme_aor_dec_open(ns);
/* fallthrough */
case NVME_ZONE_STATE_CLOSED:
nvme_aor_dec_active(ns);
if (zone->d.za & NVME_ZA_ZRWA_VALID) {
if (ns->params.numzrwa) {
ns->zns.numzrwa++;
}
}
/* fallthrough */
case NVME_ZONE_STATE_FULL:
zone->w_ptr = zone->d.zslba;
zone->d.wp = zone->w_ptr;
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
/* fallthrough */
case NVME_ZONE_STATE_EMPTY:
return NVME_SUCCESS;
default:
return NVME_ZONE_INVAL_TRANSITION;
}
}
static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
{
NvmeZone *zone;
if (ns->params.max_open_zones &&
ns->nr_open_zones == ns->params.max_open_zones) {
zone = QTAILQ_FIRST(&ns->imp_open_zones);
if (zone) {
/*
* Automatically close this implicitly open zone.
*/
QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
nvme_zrm_close(ns, zone);
}
}
}
enum {
NVME_ZRM_AUTO = 1 << 0,
NVME_ZRM_ZRWA = 1 << 1,
};
static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns,
NvmeZone *zone, int flags)
{
int act = 0;
uint16_t status;
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EMPTY:
act = 1;
/* fallthrough */
case NVME_ZONE_STATE_CLOSED:
if (n->params.auto_transition_zones) {
nvme_zrm_auto_transition_zone(ns);
}
status = nvme_zns_check_resources(ns, act, 1,
(flags & NVME_ZRM_ZRWA) ? 1 : 0);
if (status) {
return status;
}
if (act) {
nvme_aor_inc_active(ns);
}
nvme_aor_inc_open(ns);
if (flags & NVME_ZRM_AUTO) {
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
return NVME_SUCCESS;
}
/* fallthrough */
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
if (flags & NVME_ZRM_AUTO) {
return NVME_SUCCESS;
}
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
/* fallthrough */
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
if (flags & NVME_ZRM_ZRWA) {
ns->zns.numzrwa--;
zone->d.za |= NVME_ZA_ZRWA_VALID;
}
return NVME_SUCCESS;
default:
return NVME_ZONE_INVAL_TRANSITION;
}
}
static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns,
NvmeZone *zone)
{
return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO);
}
static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
uint32_t nlb)
{
zone->d.wp += nlb;
if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
nvme_zrm_finish(ns, zone);
}
}
static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone,
uint32_t nlbc)
{
uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg);
nlbc = nzrwafgs * ns->zns.zrwafg;
trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc);
zone->w_ptr += nlbc;
nvme_advance_zone_wp(ns, zone, nlbc);
}
static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
{
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
NvmeZone *zone;
uint64_t slba;
uint32_t nlb;
slba = le64_to_cpu(rw->slba);
nlb = le16_to_cpu(rw->nlb) + 1;
zone = nvme_get_zone_by_slba(ns, slba);
assert(zone);
if (zone->d.za & NVME_ZA_ZRWA_VALID) {
uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1;
uint64_t elba = slba + nlb - 1;
if (elba > ezrwa) {
nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa);
}
return;
}
nvme_advance_zone_wp(ns, zone, nlb);
}
static inline bool nvme_is_write(NvmeRequest *req)
{
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
return rw->opcode == NVME_CMD_WRITE ||
rw->opcode == NVME_CMD_ZONE_APPEND ||
rw->opcode == NVME_CMD_WRITE_ZEROES;
}
static void nvme_misc_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
trace_pci_nvme_misc_cb(nvme_cid(req));
if (ret) {
nvme_aio_err(req, ret);
}
nvme_enqueue_req_completion(nvme_cq(req), req);
}
void nvme_rw_complete_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
BlockAcctCookie *acct = &req->acct;
BlockAcctStats *stats = blk_get_stats(blk);
trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
if (ret) {
block_acct_failed(stats, acct);
nvme_aio_err(req, ret);
} else {
block_acct_done(stats, acct);
}
if (ns->params.zoned && nvme_is_write(req)) {
nvme_finalize_zoned_write(ns, req);
}
nvme_enqueue_req_completion(nvme_cq(req), req);
}
static void nvme_rw_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
if (ret) {
goto out;
}
if (ns->lbaf.ms) {
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
uint64_t offset = nvme_moff(ns, slba);
if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
size_t mlen = nvme_m2b(ns, nlb);
req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
BDRV_REQ_MAY_UNMAP,
nvme_rw_complete_cb, req);
return;
}
if (nvme_ns_ext(ns) || req->cmd.mptr) {
uint16_t status;
nvme_sg_unmap(&req->sg);
status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
if (status) {
ret = -EFAULT;
goto out;
}
if (req->cmd.opcode == NVME_CMD_READ) {
return nvme_blk_read(blk, offset, 1, nvme_rw_complete_cb, req);
}
return nvme_blk_write(blk, offset, 1, nvme_rw_complete_cb, req);
}
}
out:
nvme_rw_complete_cb(req, ret);
}
static void nvme_verify_cb(void *opaque, int ret)
{
NvmeBounceContext *ctx = opaque;
NvmeRequest *req = ctx->req;
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
BlockAcctCookie *acct = &req->acct;
BlockAcctStats *stats = blk_get_stats(blk);
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint64_t slba = le64_to_cpu(rw->slba);
uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
uint16_t apptag = le16_to_cpu(rw->apptag);
uint16_t appmask = le16_to_cpu(rw->appmask);
uint64_t reftag = le32_to_cpu(rw->reftag);
uint64_t cdw3 = le32_to_cpu(rw->cdw3);
uint16_t status;
reftag |= cdw3 << 32;
trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag);
if (ret) {
block_acct_failed(stats, acct);
nvme_aio_err(req, ret);
goto out;
}
block_acct_done(stats, acct);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
ctx->mdata.iov.size, slba);
if (status) {
req->status = status;
goto out;
}
req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
ctx->mdata.bounce, ctx->mdata.iov.size,
prinfo, slba, apptag, appmask, &reftag);
}
out:
qemu_iovec_destroy(&ctx->data.iov);
g_free(ctx->data.bounce);
qemu_iovec_destroy(&ctx->mdata.iov);
g_free(ctx->mdata.bounce);
g_free(ctx);
nvme_enqueue_req_completion(nvme_cq(req), req);
}
static void nvme_verify_mdata_in_cb(void *opaque, int ret)
{
NvmeBounceContext *ctx = opaque;
NvmeRequest *req = ctx->req;
NvmeNamespace *ns = req->ns;
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
size_t mlen = nvme_m2b(ns, nlb);
uint64_t offset = nvme_moff(ns, slba);
BlockBackend *blk = ns->blkconf.blk;
trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
if (ret) {
goto out;
}
ctx->mdata.bounce = g_malloc(mlen);
qemu_iovec_reset(&ctx->mdata.iov);
qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
nvme_verify_cb, ctx);
return;
out:
nvme_verify_cb(ctx, ret);
}
struct nvme_compare_ctx {
struct {
QEMUIOVector iov;
uint8_t *bounce;
} data;
struct {
QEMUIOVector iov;
uint8_t *bounce;
} mdata;
};
static void nvme_compare_mdata_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeNamespace *ns = req->ns;
NvmeCtrl *n = nvme_ctrl(req);
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
uint16_t apptag = le16_to_cpu(rw->apptag);
uint16_t appmask = le16_to_cpu(rw->appmask);
uint64_t reftag = le32_to_cpu(rw->reftag);
uint64_t cdw3 = le32_to_cpu(rw->cdw3);
struct nvme_compare_ctx *ctx = req->opaque;
g_autofree uint8_t *buf = NULL;
BlockBackend *blk = ns->blkconf.blk;
BlockAcctCookie *acct = &req->acct;
BlockAcctStats *stats = blk_get_stats(blk);
uint16_t status = NVME_SUCCESS;
reftag |= cdw3 << 32;
trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
if (ret) {
block_acct_failed(stats, acct);
nvme_aio_err(req, ret);
goto out;
}
buf = g_malloc(ctx->mdata.iov.size);
status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
NVME_TX_DIRECTION_TO_DEVICE, req);
if (status) {
req->status = status;
goto out;
}
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
uint64_t slba = le64_to_cpu(rw->slba);
uint8_t *bufp;
uint8_t *mbufp = ctx->mdata.bounce;
uint8_t *end = mbufp + ctx->mdata.iov.size;
int16_t pil = 0;
status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
ctx->mdata.bounce, ctx->mdata.iov.size, prinfo,
slba, apptag, appmask, &reftag);
if (status) {
req->status = status;
goto out;
}
/*
* When formatted with protection information, do not compare the DIF
* tuple.
*/
if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
pil = ns->lbaf.ms - nvme_pi_tuple_size(ns);
}
for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
req->status = NVME_CMP_FAILURE | NVME_DNR;
goto out;
}
}
goto out;
}
if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
req->status = NVME_CMP_FAILURE | NVME_DNR;
goto out;
}
block_acct_done(stats, acct);
out:
qemu_iovec_destroy(&ctx->data.iov);
g_free(ctx->data.bounce);
qemu_iovec_destroy(&ctx->mdata.iov);
g_free(ctx->mdata.bounce);
g_free(ctx);
nvme_enqueue_req_completion(nvme_cq(req), req);
}
static void nvme_compare_data_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeCtrl *n = nvme_ctrl(req);
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
BlockAcctCookie *acct = &req->acct;
BlockAcctStats *stats = blk_get_stats(blk);
struct nvme_compare_ctx *ctx = req->opaque;
g_autofree uint8_t *buf = NULL;
uint16_t status;
trace_pci_nvme_compare_data_cb(nvme_cid(req));
if (ret) {
block_acct_failed(stats, acct);
nvme_aio_err(req, ret);
goto out;
}
buf = g_malloc(ctx->data.iov.size);
status = nvme_bounce_data(n, buf, ctx->data.iov.size,
NVME_TX_DIRECTION_TO_DEVICE, req);
if (status) {
req->status = status;
goto out;
}
if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
req->status = NVME_CMP_FAILURE | NVME_DNR;
goto out;
}
if (ns->lbaf.ms) {
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
size_t mlen = nvme_m2b(ns, nlb);
uint64_t offset = nvme_moff(ns, slba);
ctx->mdata.bounce = g_malloc(mlen);
qemu_iovec_init(&ctx->mdata.iov, 1);
qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
nvme_compare_mdata_cb, req);
return;
}
block_acct_done(stats, acct);
out:
qemu_iovec_destroy(&ctx->data.iov);
g_free(ctx->data.bounce);
g_free(ctx);
nvme_enqueue_req_completion(nvme_cq(req), req);
}
typedef struct NvmeDSMAIOCB {
BlockAIOCB common;
BlockAIOCB *aiocb;
NvmeRequest *req;
int ret;
NvmeDsmRange *range;
unsigned int nr;
unsigned int idx;
} NvmeDSMAIOCB;
static void nvme_dsm_cancel(BlockAIOCB *aiocb)
{
NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common);
/* break nvme_dsm_cb loop */
iocb->idx = iocb->nr;
iocb->ret = -ECANCELED;
if (iocb->aiocb) {
blk_aio_cancel_async(iocb->aiocb);
iocb->aiocb = NULL;
} else {
/*
* We only reach this if nvme_dsm_cancel() has already been called or
* the command ran to completion.
*/
assert(iocb->idx == iocb->nr);
}
}
static const AIOCBInfo nvme_dsm_aiocb_info = {
.aiocb_size = sizeof(NvmeDSMAIOCB),
.cancel_async = nvme_dsm_cancel,
};
static void nvme_dsm_cb(void *opaque, int ret);
static void nvme_dsm_md_cb(void *opaque, int ret)
{
NvmeDSMAIOCB *iocb = opaque;
NvmeRequest *req = iocb->req;
NvmeNamespace *ns = req->ns;
NvmeDsmRange *range;
uint64_t slba;
uint32_t nlb;
if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
goto done;
}
range = &iocb->range[iocb->idx - 1];
slba = le64_to_cpu(range->slba);
nlb = le32_to_cpu(range->nlb);
/*
* Check that all block were discarded (zeroed); otherwise we do not zero
* the metadata.
*/
ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO);
if (ret) {
if (ret < 0) {
goto done;
}
nvme_dsm_cb(iocb, 0);
return;
}
iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba),
nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP,
nvme_dsm_cb, iocb);
return;
done:
nvme_dsm_cb(iocb, ret);
}
static void nvme_dsm_cb(void *opaque, int ret)
{
NvmeDSMAIOCB *iocb = opaque;
NvmeRequest *req = iocb->req;
NvmeCtrl *n = nvme_ctrl(req);
NvmeNamespace *ns = req->ns;
NvmeDsmRange *range;
uint64_t slba;
uint32_t nlb;
if (iocb->ret < 0) {
goto done;
} else if (ret < 0) {
iocb->ret = ret;
goto done;
}
next:
if (iocb->idx == iocb->nr) {
goto done;
}
range = &iocb->range[iocb->idx++];
slba = le64_to_cpu(range->slba);
nlb = le32_to_cpu(range->nlb);
trace_pci_nvme_dsm_deallocate(slba, nlb);
if (nlb > n->dmrsl) {
trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
goto next;
}
if (nvme_check_bounds(ns, slba, nlb)) {
trace_pci_nvme_err_invalid_lba_range(slba, nlb,
ns->id_ns.nsze);
goto next;
}
iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba),
nvme_l2b(ns, nlb),
nvme_dsm_md_cb, iocb);
return;
done:
iocb->aiocb = NULL;
iocb->common.cb(iocb->common.opaque, iocb->ret);
g_free(iocb->range);
qemu_aio_unref(iocb);
}
static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
uint32_t attr = le32_to_cpu(dsm->attributes);
uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
uint16_t status = NVME_SUCCESS;
trace_pci_nvme_dsm(nr, attr);
if (attr & NVME_DSMGMT_AD) {
NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk,
nvme_misc_cb, req);
iocb->req = req;
iocb->ret = 0;
iocb->range = g_new(NvmeDsmRange, nr);
iocb->nr = nr;
iocb->idx = 0;
status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr,
req);
if (status) {
g_free(iocb->range);
qemu_aio_unref(iocb);
return status;
}
req->aiocb = &iocb->common;
nvme_dsm_cb(iocb, 0);
return NVME_NO_COMPLETE;
}
return status;
}
static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
{
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
size_t len = nvme_l2b(ns, nlb);
size_t data_len = len;
int64_t offset = nvme_l2b(ns, slba);
uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
uint32_t reftag = le32_to_cpu(rw->reftag);
NvmeBounceContext *ctx = NULL;
uint16_t status;
trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
status = nvme_check_prinfo(ns, prinfo, slba, reftag);
if (status) {
return status;
}
if (prinfo & NVME_PRINFO_PRACT) {
return NVME_INVALID_PROT_INFO | NVME_DNR;
}
}
if (nvme_ns_ext(ns) && !(NVME_ID_CTRL_CTRATT_MEM(n->id_ctrl.ctratt))) {
data_len += nvme_m2b(ns, nlb);
}
if (data_len > (n->page_size << n->params.vsl)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
status = nvme_check_bounds(ns, slba, nlb);
if (status) {
return status;
}
if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
status = nvme_check_dulbe(ns, slba, nlb);
if (status) {
return status;
}
}
ctx = g_new0(NvmeBounceContext, 1);
ctx->req = req;
ctx->data.bounce = g_malloc(len);
qemu_iovec_init(&ctx->data.iov, 1);
qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
BLOCK_ACCT_READ);
req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
nvme_verify_mdata_in_cb, ctx);
return NVME_NO_COMPLETE;
}
typedef struct NvmeCopyAIOCB {
BlockAIOCB common;
BlockAIOCB *aiocb;
NvmeRequest *req;
NvmeCtrl *n;
int ret;
void *ranges;
unsigned int format;
int nr;
int idx;
uint8_t *bounce;
QEMUIOVector iov;
struct {
BlockAcctCookie read;
BlockAcctCookie write;
} acct;
uint64_t reftag;
uint64_t slba;
NvmeZone *zone;
NvmeNamespace *sns;
uint32_t tcl;
} NvmeCopyAIOCB;
static void nvme_copy_cancel(BlockAIOCB *aiocb)
{
NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common);
iocb->ret = -ECANCELED;
if (iocb->aiocb) {
blk_aio_cancel_async(iocb->aiocb);
iocb->aiocb = NULL;
}
}
static const AIOCBInfo nvme_copy_aiocb_info = {
.aiocb_size = sizeof(NvmeCopyAIOCB),
.cancel_async = nvme_copy_cancel,
};
static void nvme_copy_done(NvmeCopyAIOCB *iocb)
{
NvmeRequest *req = iocb->req;
NvmeNamespace *ns = req->ns;
BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk);
if (iocb->idx != iocb->nr) {
req->cqe.result = cpu_to_le32(iocb->idx);
}
qemu_iovec_destroy(&iocb->iov);
g_free(iocb->bounce);
if (iocb->ret < 0) {
block_acct_failed(stats, &iocb->acct.read);
block_acct_failed(stats, &iocb->acct.write);
} else {
block_acct_done(stats, &iocb->acct.read);
block_acct_done(stats, &iocb->acct.write);
}
iocb->common.cb(iocb->common.opaque, iocb->ret);
qemu_aio_unref(iocb);
}
static void nvme_do_copy(NvmeCopyAIOCB *iocb);
static void nvme_copy_source_range_parse_format0_2(void *ranges,
int idx, uint64_t *slba,
uint32_t *nlb,
uint32_t *snsid,
uint16_t *apptag,
uint16_t *appmask,
uint64_t *reftag)
{
NvmeCopySourceRangeFormat0_2 *_ranges = ranges;
if (snsid) {
*snsid = le32_to_cpu(_ranges[idx].sparams);
}
if (slba) {
*slba = le64_to_cpu(_ranges[idx].slba);
}
if (nlb) {
*nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
}
if (apptag) {
*apptag = le16_to_cpu(_ranges[idx].apptag);
}
if (appmask) {
*appmask = le16_to_cpu(_ranges[idx].appmask);
}
if (reftag) {
*reftag = le32_to_cpu(_ranges[idx].reftag);
}
}
static void nvme_copy_source_range_parse_format1_3(void *ranges, int idx,
uint64_t *slba,
uint32_t *nlb,
uint32_t *snsid,
uint16_t *apptag,
uint16_t *appmask,
uint64_t *reftag)
{
NvmeCopySourceRangeFormat1_3 *_ranges = ranges;
if (snsid) {
*snsid = le32_to_cpu(_ranges[idx].sparams);
}
if (slba) {
*slba = le64_to_cpu(_ranges[idx].slba);
}
if (nlb) {
*nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
}
if (apptag) {
*apptag = le16_to_cpu(_ranges[idx].apptag);
}
if (appmask) {
*appmask = le16_to_cpu(_ranges[idx].appmask);
}
if (reftag) {
*reftag = 0;
*reftag |= (uint64_t)_ranges[idx].sr[4] << 40;
*reftag |= (uint64_t)_ranges[idx].sr[5] << 32;
*reftag |= (uint64_t)_ranges[idx].sr[6] << 24;
*reftag |= (uint64_t)_ranges[idx].sr[7] << 16;
*reftag |= (uint64_t)_ranges[idx].sr[8] << 8;
*reftag |= (uint64_t)_ranges[idx].sr[9];
}
}
static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format,
uint64_t *slba, uint32_t *nlb,
uint32_t *snsid, uint16_t *apptag,
uint16_t *appmask, uint64_t *reftag)
{
switch (format) {
case NVME_COPY_FORMAT_0:
case NVME_COPY_FORMAT_2:
nvme_copy_source_range_parse_format0_2(ranges, idx, slba, nlb, snsid,
apptag, appmask, reftag);
break;
case NVME_COPY_FORMAT_1:
case NVME_COPY_FORMAT_3:
nvme_copy_source_range_parse_format1_3(ranges, idx, slba, nlb, snsid,
apptag, appmask, reftag);
break;
default:
abort();
}
}
static inline uint16_t nvme_check_copy_mcl(NvmeNamespace *ns,
NvmeCopyAIOCB *iocb, uint16_t nr)
{
uint32_t copy_len = 0;
for (int idx = 0; idx < nr; idx++) {
uint32_t nlb;
nvme_copy_source_range_parse(iocb->ranges, idx, iocb->format, NULL,
&nlb, NULL, NULL, NULL, NULL);
copy_len += nlb;
}
iocb->tcl = copy_len;
if (copy_len > ns->id_ns.mcl) {
return NVME_CMD_SIZE_LIMIT | NVME_DNR;
}
return NVME_SUCCESS;
}
static void nvme_copy_out_completed_cb(void *opaque, int ret)
{
NvmeCopyAIOCB *iocb = opaque;
NvmeRequest *req = iocb->req;
NvmeNamespace *dns = req->ns;
uint32_t nlb;
nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
&nlb, NULL, NULL, NULL, NULL);
if (ret < 0) {
iocb->ret = ret;
goto out;
} else if (iocb->ret < 0) {
goto out;
}
if (dns->params.zoned) {
nvme_advance_zone_wp(dns, iocb->zone, nlb);
}
iocb->idx++;
iocb->slba += nlb;
out:
nvme_do_copy(iocb);
}
static void nvme_copy_out_cb(void *opaque, int ret)
{
NvmeCopyAIOCB *iocb = opaque;
NvmeRequest *req = iocb->req;
NvmeNamespace *dns = req->ns;
uint32_t nlb;
size_t mlen;
uint8_t *mbounce;
if (ret < 0 || iocb->ret < 0 || !dns->lbaf.ms) {
goto out;
}
nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
&nlb, NULL, NULL, NULL, NULL);
mlen = nvme_m2b(dns, nlb);
mbounce = iocb->bounce + nvme_l2b(dns, nlb);
qemu_iovec_reset(&iocb->iov);
qemu_iovec_add(&iocb->iov, mbounce, mlen);
iocb->aiocb = blk_aio_pwritev(dns->blkconf.blk, nvme_moff(dns, iocb->slba),
&iocb->iov, 0, nvme_copy_out_completed_cb,
iocb);
return;
out:
nvme_copy_out_completed_cb(iocb, ret);
}
static void nvme_copy_in_completed_cb(void *opaque, int ret)
{
NvmeCopyAIOCB *iocb = opaque;
NvmeRequest *req = iocb->req;
NvmeNamespace *sns = iocb->sns;
NvmeNamespace *dns = req->ns;
NvmeCopyCmd *copy = NULL;
uint8_t *mbounce = NULL;
uint32_t nlb;
uint64_t slba;
uint16_t apptag, appmask;
uint64_t reftag;
size_t len, mlen;
uint16_t status;
if (ret < 0) {
iocb->ret = ret;
goto out;
} else if (iocb->ret < 0) {
goto out;
}
nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
&nlb, NULL, &apptag, &appmask, &reftag);
trace_pci_nvme_copy_out(iocb->slba, nlb);
len = nvme_l2b(sns, nlb);
if (NVME_ID_NS_DPS_TYPE(sns->id_ns.dps)) {
copy = (NvmeCopyCmd *)&req->cmd;
uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
mlen = nvme_m2b(sns, nlb);
mbounce = iocb->bounce + nvme_l2b(sns, nlb);
status = nvme_dif_mangle_mdata(sns, mbounce, mlen, slba);
if (status) {
goto invalid;
}
status = nvme_dif_check(sns, iocb->bounce, len, mbounce, mlen, prinfor,
slba, apptag, appmask, &reftag);
if (status) {
goto invalid;
}
}
if (NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) {
copy = (NvmeCopyCmd *)&req->cmd;
uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
mlen = nvme_m2b(dns, nlb);
mbounce = iocb->bounce + nvme_l2b(dns, nlb);
apptag = le16_to_cpu(copy->apptag);
appmask = le16_to_cpu(copy->appmask);
if (prinfow & NVME_PRINFO_PRACT) {
status = nvme_check_prinfo(dns, prinfow, iocb->slba, iocb->reftag);
if (status) {
goto invalid;
}
nvme_dif_pract_generate_dif(dns, iocb->bounce, len, mbounce, mlen,
apptag, &iocb->reftag);
} else {
status = nvme_dif_check(dns, iocb->bounce, len, mbounce, mlen,
prinfow, iocb->slba, apptag, appmask,
&iocb->reftag);
if (status) {
goto invalid;
}
}
}
status = nvme_check_bounds(dns, iocb->slba, nlb);
if (status) {
goto invalid;
}
if (dns->params.zoned) {
status = nvme_check_zone_write(dns, iocb->zone, iocb->slba, nlb);
if (status) {
goto invalid;
}
if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) {
iocb->zone->w_ptr += nlb;
}
}
qemu_iovec_reset(&iocb->iov);
qemu_iovec_add(&iocb->iov, iocb->bounce, len);
block_acct_start(blk_get_stats(dns->blkconf.blk), &iocb->acct.write, 0,
BLOCK_ACCT_WRITE);
iocb->aiocb = blk_aio_pwritev(dns->blkconf.blk, nvme_l2b(dns, iocb->slba),
&iocb->iov, 0, nvme_copy_out_cb, iocb);
return;
invalid:
req->status = status;
iocb->ret = -1;
out:
nvme_do_copy(iocb);
}
static void nvme_copy_in_cb(void *opaque, int ret)
{
NvmeCopyAIOCB *iocb = opaque;
NvmeNamespace *sns = iocb->sns;
uint64_t slba;
uint32_t nlb;
if (ret < 0 || iocb->ret < 0 || !sns->lbaf.ms) {
goto out;
}
nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
&nlb, NULL, NULL, NULL, NULL);
qemu_iovec_reset(&iocb->iov);
qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(sns, nlb),
nvme_m2b(sns, nlb));
iocb->aiocb = blk_aio_preadv(sns->blkconf.blk, nvme_moff(sns, slba),
&iocb->iov, 0, nvme_copy_in_completed_cb,
iocb);
return;
out:
nvme_copy_in_completed_cb(iocb, ret);
}
static inline bool nvme_csi_supports_copy(uint8_t csi)
{
return csi == NVME_CSI_NVM || csi == NVME_CSI_ZONED;
}
static inline bool nvme_copy_ns_format_match(NvmeNamespace *sns,
NvmeNamespace *dns)
{
return sns->lbaf.ds == dns->lbaf.ds && sns->lbaf.ms == dns->lbaf.ms;
}
static bool nvme_copy_matching_ns_format(NvmeNamespace *sns, NvmeNamespace *dns,
bool pi_enable)
{
if (!nvme_csi_supports_copy(sns->csi) ||
!nvme_csi_supports_copy(dns->csi)) {
return false;
}
if (!pi_enable && !nvme_copy_ns_format_match(sns, dns)) {
return false;
}
if (pi_enable && (!nvme_copy_ns_format_match(sns, dns) ||
sns->id_ns.dps != dns->id_ns.dps)) {
return false;
}
return true;
}
static inline bool nvme_copy_corresp_pi_match(NvmeNamespace *sns,
NvmeNamespace *dns)
{
return sns->lbaf.ms == 0 &&
((dns->lbaf.ms == 8 && dns->pif == 0) ||
(dns->lbaf.ms == 16 && dns->pif == 1));
}
static bool nvme_copy_corresp_pi_format(NvmeNamespace *sns, NvmeNamespace *dns,
bool sns_pi_en)
{
if (!nvme_csi_supports_copy(sns->csi) ||
!nvme_csi_supports_copy(dns->csi)) {
return false;
}
if (!sns_pi_en && !nvme_copy_corresp_pi_match(sns, dns)) {
return false;
}
if (sns_pi_en && !nvme_copy_corresp_pi_match(dns, sns)) {
return false;
}
return true;
}
static void nvme_do_copy(NvmeCopyAIOCB *iocb)
{
NvmeRequest *req = iocb->req;
NvmeNamespace *sns;
NvmeNamespace *dns = req->ns;
NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
uint64_t slba;
uint32_t nlb;
size_t len;
uint16_t status;
uint32_t dnsid = le32_to_cpu(req->cmd.nsid);
uint32_t snsid = dnsid;
if (iocb->ret < 0) {
goto done;
}
if (iocb->idx == iocb->nr) {
goto done;
}
if (iocb->format == 2 || iocb->format == 3) {
nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format,
&slba, &nlb, &snsid, NULL, NULL, NULL);
if (snsid != dnsid) {
if (snsid == NVME_NSID_BROADCAST ||
!nvme_nsid_valid(iocb->n, snsid)) {
status = NVME_INVALID_NSID | NVME_DNR;
goto invalid;
}
iocb->sns = nvme_ns(iocb->n, snsid);
if (unlikely(!iocb->sns)) {
status = NVME_INVALID_FIELD | NVME_DNR;
goto invalid;
}
} else {
if (((slba + nlb) > iocb->slba) &&
((slba + nlb) < (iocb->slba + iocb->tcl))) {
status = NVME_CMD_OVERLAP_IO_RANGE | NVME_DNR;
goto invalid;
}
}
} else {
nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format,
&slba, &nlb, NULL, NULL, NULL, NULL);
}
sns = iocb->sns;
if ((snsid == dnsid) && NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) &&
((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) {
status = NVME_INVALID_FIELD | NVME_DNR;
goto invalid;
} else if (snsid != dnsid) {
if (!NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) &&
!NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) {
if (!nvme_copy_matching_ns_format(sns, dns, false)) {
status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR;
goto invalid;
}
}
if (NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) &&
NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) {
if ((prinfor & NVME_PRINFO_PRACT) !=
(prinfow & NVME_PRINFO_PRACT)) {
status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR;
goto invalid;
} else {
if (!nvme_copy_matching_ns_format(sns, dns, true)) {
status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR;
goto invalid;
}
}
}
if (!NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) &&
NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) {
if (!(prinfow & NVME_PRINFO_PRACT)) {
status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR;
goto invalid;
} else {
if (!nvme_copy_corresp_pi_format(sns, dns, false)) {
status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR;
goto invalid;
}
}
}
if (NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) &&
!NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) {
if (!(prinfor & NVME_PRINFO_PRACT)) {
status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR;
goto invalid;
} else {
if (!nvme_copy_corresp_pi_format(sns, dns, true)) {
status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR;
goto invalid;
}
}
}
}
len = nvme_l2b(sns, nlb);
trace_pci_nvme_copy_source_range(slba, nlb);
if (nlb > le16_to_cpu(sns->id_ns.mssrl)) {
status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
goto invalid;
}
status = nvme_check_bounds(sns, slba, nlb);
if (status) {
goto invalid;
}
if (NVME_ERR_REC_DULBE(sns->features.err_rec)) {
status = nvme_check_dulbe(sns, slba, nlb);
if (status) {
goto invalid;
}
}
if (sns->params.zoned) {
status = nvme_check_zone_read(sns, slba, nlb);
if (status) {
goto invalid;
}
}
g_free(iocb->bounce);
iocb->bounce = g_malloc_n(le16_to_cpu(sns->id_ns.mssrl),
sns->lbasz + sns->lbaf.ms);
qemu_iovec_reset(&iocb->iov);
qemu_iovec_add(&iocb->iov, iocb->bounce, len);
block_acct_start(blk_get_stats(sns->blkconf.blk), &iocb->acct.read, 0,
BLOCK_ACCT_READ);
iocb->aiocb = blk_aio_preadv(sns->blkconf.blk, nvme_l2b(sns, slba),
&iocb->iov, 0, nvme_copy_in_cb, iocb);
return;
invalid:
req->status = status;
iocb->ret = -1;
done:
nvme_copy_done(iocb);
}
static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk,
nvme_misc_cb, req);
uint16_t nr = copy->nr + 1;
uint8_t format = copy->control[0] & 0xf;
size_t len = sizeof(NvmeCopySourceRangeFormat0_2);
uint16_t status;
trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
iocb->ranges = NULL;
iocb->zone = NULL;
if (!(n->id_ctrl.ocfs & (1 << format)) ||
((format == 2 || format == 3) &&
!(n->features.hbs.cdfe & (1 << format)))) {
trace_pci_nvme_err_copy_invalid_format(format);
status = NVME_INVALID_FIELD | NVME_DNR;
goto invalid;
}
if (nr > ns->id_ns.msrc + 1) {
status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
goto invalid;
}
if ((ns->pif == 0x0 && (format != 0x0 && format != 0x2)) ||
(ns->pif != 0x0 && (format != 0x1 && format != 0x3))) {
status = NVME_INVALID_FORMAT | NVME_DNR;
goto invalid;
}
if (ns->pif) {
len = sizeof(NvmeCopySourceRangeFormat1_3);
}
iocb->format = format;
iocb->ranges = g_malloc_n(nr, len);
status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req);
if (status) {
goto invalid;
}
iocb->slba = le64_to_cpu(copy->sdlba);
if (ns->params.zoned) {
iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba);
if (!iocb->zone) {
status = NVME_LBA_RANGE | NVME_DNR;
goto invalid;
}
status = nvme_zrm_auto(n, ns, iocb->zone);
if (status) {
goto invalid;
}
}
status = nvme_check_copy_mcl(ns, iocb, nr);
if (status) {
goto invalid;
}
iocb->req = req;
iocb->ret = 0;
iocb->nr = nr;
iocb->idx = 0;
iocb->reftag = le32_to_cpu(copy->reftag);
iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32;
qemu_iovec_init(&iocb->iov, 1);
req->aiocb = &iocb->common;
iocb->sns = req->ns;
iocb->n = n;
iocb->bounce = NULL;
nvme_do_copy(iocb);
return NVME_NO_COMPLETE;
invalid:
g_free(iocb->ranges);
qemu_aio_unref(iocb);
return status;
}
static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
{
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
size_t data_len = nvme_l2b(ns, nlb);
size_t len = data_len;
int64_t offset = nvme_l2b(ns, slba);
struct nvme_compare_ctx *ctx = NULL;
uint16_t status;
trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) {
return NVME_INVALID_PROT_INFO | NVME_DNR;
}
if (nvme_ns_ext(ns)) {
len += nvme_m2b(ns, nlb);
}
if (NVME_ID_CTRL_CTRATT_MEM(n->id_ctrl.ctratt)) {
status = nvme_check_mdts(n, data_len);
} else {
status = nvme_check_mdts(n, len);
}
if (status) {
return status;
}
status = nvme_check_bounds(ns, slba, nlb);
if (status) {
return status;
}
if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
status = nvme_check_dulbe(ns, slba, nlb);
if (status) {
return status;
}
}
status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
if (status) {
return status;
}
ctx = g_new(struct nvme_compare_ctx, 1);
ctx->data.bounce = g_malloc(data_len);
req->opaque = ctx;
qemu_iovec_init(&ctx->data.iov, 1);
qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
block_acct_start(blk_get_stats(blk), &req->acct, data_len,
BLOCK_ACCT_READ);
req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
nvme_compare_data_cb, req);
return NVME_NO_COMPLETE;
}
typedef struct NvmeFlushAIOCB {
BlockAIOCB common;
BlockAIOCB *aiocb;
NvmeRequest *req;
int ret;
NvmeNamespace *ns;
uint32_t nsid;
bool broadcast;
} NvmeFlushAIOCB;
static void nvme_flush_cancel(BlockAIOCB *acb)
{
NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common);
iocb->ret = -ECANCELED;
if (iocb->aiocb) {
blk_aio_cancel_async(iocb->aiocb);
iocb->aiocb = NULL;
}
}
static const AIOCBInfo nvme_flush_aiocb_info = {
.aiocb_size = sizeof(NvmeFlushAIOCB),
.cancel_async = nvme_flush_cancel,
};
static void nvme_do_flush(NvmeFlushAIOCB *iocb);
static void nvme_flush_ns_cb(void *opaque, int ret)
{
NvmeFlushAIOCB *iocb = opaque;
NvmeNamespace *ns = iocb->ns;
if (ret < 0) {
iocb->ret = ret;
goto out;
} else if (iocb->ret < 0) {
goto out;
}
if (ns) {
trace_pci_nvme_flush_ns(iocb->nsid);
iocb->ns = NULL;
iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb);
return;
}
out:
nvme_do_flush(iocb);
}
static void nvme_do_flush(NvmeFlushAIOCB *iocb)
{
NvmeRequest *req = iocb->req;
NvmeCtrl *n = nvme_ctrl(req);
int i;
if (iocb->ret < 0) {
goto done;
}
if (iocb->broadcast) {
for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
iocb->ns = nvme_ns(n, i);
if (iocb->ns) {
iocb->nsid = i;
break;
}
}
}
if (!iocb->ns) {
goto done;
}
nvme_flush_ns_cb(iocb, 0);
return;
done:
iocb->common.cb(iocb->common.opaque, iocb->ret);
qemu_aio_unref(iocb);
}
static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
{
NvmeFlushAIOCB *iocb;
uint32_t nsid = le32_to_cpu(req->cmd.nsid);
uint16_t status;
iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req);
iocb->req = req;
iocb->ret = 0;
iocb->ns = NULL;
iocb->nsid = 0;
iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
if (!iocb->broadcast) {
if (!nvme_nsid_valid(n, nsid)) {
status = NVME_INVALID_NSID | NVME_DNR;
goto out;
}
iocb->ns = nvme_ns(n, nsid);
if (!iocb->ns) {
status = NVME_INVALID_FIELD | NVME_DNR;
goto out;
}
iocb->nsid = nsid;
}
req->aiocb = &iocb->common;
nvme_do_flush(iocb);
return NVME_NO_COMPLETE;
out:
qemu_aio_unref(iocb);
return status;
}
static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
{
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
NvmeNamespace *ns = req->ns;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
uint64_t data_size = nvme_l2b(ns, nlb);
uint64_t mapped_size = data_size;
uint64_t data_offset;
BlockBackend *blk = ns->blkconf.blk;
uint16_t status;
if (nvme_ns_ext(ns) && !(NVME_ID_CTRL_CTRATT_MEM(n->id_ctrl.ctratt))) {
mapped_size += nvme_m2b(ns, nlb);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
bool pract = prinfo & NVME_PRINFO_PRACT;
if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
mapped_size = data_size;
}
}
}
trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
status = nvme_check_mdts(n, mapped_size);
if (status) {
goto invalid;
}
status = nvme_check_bounds(ns, slba, nlb);
if (status) {
goto invalid;
}
if (ns->params.zoned) {
status = nvme_check_zone_read(ns, slba, nlb);
if (status) {
trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
goto invalid;
}
}
if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
status = nvme_check_dulbe(ns, slba, nlb);
if (status) {
goto invalid;
}
}
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
return nvme_dif_rw(n, req);
}
status = nvme_map_data(n, nlb, req);
if (status) {
goto invalid;
}
data_offset = nvme_l2b(ns, slba);
block_acct_start(blk_get_stats(blk), &req->acct, data_size,
BLOCK_ACCT_READ);
nvme_blk_read(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req);
return NVME_NO_COMPLETE;
invalid:
block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
return status | NVME_DNR;
}
static void nvme_do_write_fdp(NvmeCtrl *n, NvmeRequest *req, uint64_t slba,
uint32_t nlb)
{
NvmeNamespace *ns = req->ns;
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint64_t data_size = nvme_l2b(ns, nlb);
uint32_t dw12 = le32_to_cpu(req->cmd.cdw12);
uint8_t dtype = (dw12 >> 20) & 0xf;
uint16_t pid = le16_to_cpu(rw->dspec);
uint16_t ph, rg, ruhid;
NvmeReclaimUnit *ru;
if (dtype != NVME_DIRECTIVE_DATA_PLACEMENT ||
!nvme_parse_pid(ns, pid, &ph, &rg)) {
ph = 0;
rg = 0;
}
ruhid = ns->fdp.phs[ph];
ru = &ns->endgrp->fdp.ruhs[ruhid].rus[rg];
nvme_fdp_stat_inc(&ns->endgrp->fdp.hbmw, data_size);
nvme_fdp_stat_inc(&ns->endgrp->fdp.mbmw, data_size);
while (nlb) {
if (nlb < ru->ruamw) {
ru->ruamw -= nlb;
break;
}
nlb -= ru->ruamw;
nvme_update_ruh(n, ns, pid);
}
}
static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
bool wrz)
{
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
NvmeNamespace *ns = req->ns;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
uint16_t ctrl = le16_to_cpu(rw->control);
uint8_t prinfo = NVME_RW_PRINFO(ctrl);
uint64_t data_size = nvme_l2b(ns, nlb);
uint64_t mapped_size = data_size;
uint64_t data_offset;
NvmeZone *zone;
NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
BlockBackend *blk = ns->blkconf.blk;
uint16_t status;
if (nvme_ns_ext(ns) && !(NVME_ID_CTRL_CTRATT_MEM(n->id_ctrl.ctratt))) {
mapped_size += nvme_m2b(ns, nlb);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
bool pract = prinfo & NVME_PRINFO_PRACT;
if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
mapped_size -= nvme_m2b(ns, nlb);
}
}
}
trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
nvme_nsid(ns), nlb, mapped_size, slba);
if (!wrz) {
status = nvme_check_mdts(n, mapped_size);
if (status) {
goto invalid;
}
}
status = nvme_check_bounds(ns, slba, nlb);
if (status) {
goto invalid;
}
if (ns->params.zoned) {
zone = nvme_get_zone_by_slba(ns, slba);
assert(zone);
if (append) {
bool piremap = !!(ctrl & NVME_RW_PIREMAP);
if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) {
return NVME_INVALID_ZONE_OP | NVME_DNR;
}
if (unlikely(slba != zone->d.zslba)) {
trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
status = NVME_INVALID_FIELD;
goto invalid;
}
if (n->params.zasl &&
data_size > (uint64_t)n->page_size << n->params.zasl) {
trace_pci_nvme_err_zasl(data_size);
return NVME_INVALID_FIELD | NVME_DNR;
}
slba = zone->w_ptr;
rw->slba = cpu_to_le64(slba);
res->slba = cpu_to_le64(slba);
switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
case NVME_ID_NS_DPS_TYPE_1:
if (!piremap) {
return NVME_INVALID_PROT_INFO | NVME_DNR;
}
/* fallthrough */
case NVME_ID_NS_DPS_TYPE_2:
if (piremap) {
uint32_t reftag = le32_to_cpu(rw->reftag);
rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
}
break;
case NVME_ID_NS_DPS_TYPE_3:
if (piremap) {
return NVME_INVALID_PROT_INFO | NVME_DNR;
}
break;
}
}
status = nvme_check_zone_write(ns, zone, slba, nlb);
if (status) {
goto invalid;
}
status = nvme_zrm_auto(n, ns, zone);
if (status) {
goto invalid;
}
if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
zone->w_ptr += nlb;
}
} else if (ns->endgrp && ns->endgrp->fdp.enabled) {
nvme_do_write_fdp(n, req, slba, nlb);
}
data_offset = nvme_l2b(ns, slba);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
return nvme_dif_rw(n, req);
}
if (!wrz) {
status = nvme_map_data(n, nlb, req);
if (status) {
goto invalid;
}
block_acct_start(blk_get_stats(blk), &req->acct, data_size,
BLOCK_ACCT_WRITE);
nvme_blk_write(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req);
} else {
req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
req);
}
return NVME_NO_COMPLETE;
invalid:
block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
return status | NVME_DNR;
}
static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
{
return nvme_do_write(n, req, false, false);
}
static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
{
return nvme_do_write(n, req, false, true);
}
static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
{
return nvme_do_write(n, req, true, false);
}
static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
uint64_t *slba, uint32_t *zone_idx)
{
uint32_t dw10 = le32_to_cpu(c->cdw10);
uint32_t dw11 = le32_to_cpu(c->cdw11);
if (!ns->params.zoned) {
trace_pci_nvme_err_invalid_opc(c->opcode);
return NVME_INVALID_OPCODE | NVME_DNR;
}
*slba = ((uint64_t)dw11) << 32 | dw10;
if (unlikely(*slba >= ns->id_ns.nsze)) {
trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
*slba = 0;
return NVME_LBA_RANGE | NVME_DNR;
}
*zone_idx = nvme_zone_idx(ns, *slba);
assert(*zone_idx < ns->num_zones);
return NVME_SUCCESS;
}
typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
NvmeRequest *);
enum NvmeZoneProcessingMask {
NVME_PROC_CURRENT_ZONE = 0,
NVME_PROC_OPENED_ZONES = 1 << 0,
NVME_PROC_CLOSED_ZONES = 1 << 1,
NVME_PROC_READ_ONLY_ZONES = 1 << 2,
NVME_PROC_FULL_ZONES = 1 << 3,
};
static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
NvmeZoneState state, NvmeRequest *req)
{
NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
int flags = 0;
if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) {
uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
return NVME_INVALID_ZONE_OP | NVME_DNR;
}
if (zone->w_ptr % ns->zns.zrwafg) {
return NVME_NOZRWA | NVME_DNR;
}
flags = NVME_ZRM_ZRWA;
}
return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags);
}
static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
NvmeZoneState state, NvmeRequest *req)
{
return nvme_zrm_close(ns, zone);
}
static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
NvmeZoneState state, NvmeRequest *req)
{
return nvme_zrm_finish(ns, zone);
}
static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
NvmeZoneState state, NvmeRequest *req)
{
switch (state) {
case NVME_ZONE_STATE_READ_ONLY:
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
/* fall through */
case NVME_ZONE_STATE_OFFLINE:
return NVME_SUCCESS;
default:
return NVME_ZONE_INVAL_TRANSITION;
}
}
static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
{
uint16_t status;
uint8_t state = nvme_get_zone_state(zone);
if (state == NVME_ZONE_STATE_EMPTY) {
status = nvme_aor_check(ns, 1, 0);
if (status) {
return status;
}
nvme_aor_inc_active(ns);
zone->d.za |= NVME_ZA_ZD_EXT_VALID;
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
return NVME_SUCCESS;
}
return NVME_ZONE_INVAL_TRANSITION;
}
static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
enum NvmeZoneProcessingMask proc_mask,
op_handler_t op_hndlr, NvmeRequest *req)
{
uint16_t status = NVME_SUCCESS;
NvmeZoneState zs = nvme_get_zone_state(zone);
bool proc_zone;
switch (zs) {
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
break;
case NVME_ZONE_STATE_CLOSED:
proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
break;
case NVME_ZONE_STATE_READ_ONLY:
proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
break;
case NVME_ZONE_STATE_FULL:
proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
break;
default:
proc_zone = false;
}
if (proc_zone) {
status = op_hndlr(ns, zone, zs, req);
}
return status;
}
static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
enum NvmeZoneProcessingMask proc_mask,
op_handler_t op_hndlr, NvmeRequest *req)
{
NvmeZone *next;
uint16_t status = NVME_SUCCESS;
int i;
if (!proc_mask) {
status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
} else {
if (proc_mask & NVME_PROC_CLOSED_ZONES) {
QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
req);
if (status && status != NVME_NO_COMPLETE) {
goto out;
}
}
}
if (proc_mask & NVME_PROC_OPENED_ZONES) {
QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
req);
if (status && status != NVME_NO_COMPLETE) {
goto out;
}
}
QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
req);
if (status && status != NVME_NO_COMPLETE) {
goto out;
}
}
}
if (proc_mask & NVME_PROC_FULL_ZONES) {
QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
req);
if (status && status != NVME_NO_COMPLETE) {
goto out;
}
}
}
if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
for (i = 0; i < ns->num_zones; i++, zone++) {
status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
req);
if (status && status != NVME_NO_COMPLETE) {
goto out;
}
}
}
}
out:
return status;
}
typedef struct NvmeZoneResetAIOCB {
BlockAIOCB common;
BlockAIOCB *aiocb;
NvmeRequest *req;
int ret;
bool all;
int idx;
NvmeZone *zone;
} NvmeZoneResetAIOCB;
static void nvme_zone_reset_cancel(BlockAIOCB *aiocb)
{
NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common);
NvmeRequest *req = iocb->req;
NvmeNamespace *ns = req->ns;
iocb->idx = ns->num_zones;
iocb->ret = -ECANCELED;
if (iocb->aiocb) {
blk_aio_cancel_async(iocb->aiocb);
iocb->aiocb = NULL;
}
}
static const AIOCBInfo nvme_zone_reset_aiocb_info = {
.aiocb_size = sizeof(NvmeZoneResetAIOCB),
.cancel_async = nvme_zone_reset_cancel,
};
static void nvme_zone_reset_cb(void *opaque, int ret);
static void nvme_zone_reset_epilogue_cb(void *opaque, int ret)
{
NvmeZoneResetAIOCB *iocb = opaque;
NvmeRequest *req = iocb->req;
NvmeNamespace *ns = req->ns;
int64_t moff;
int count;
if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
goto out;
}
moff = nvme_moff(ns, iocb->zone->d.zslba);
count = nvme_m2b(ns, ns->zone_size);
iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count,
BDRV_REQ_MAY_UNMAP,
nvme_zone_reset_cb, iocb);
return;
out:
nvme_zone_reset_cb(iocb, ret);
}
static void nvme_zone_reset_cb(void *opaque, int ret)
{
NvmeZoneResetAIOCB *iocb = opaque;
NvmeRequest *req = iocb->req;
NvmeNamespace *ns = req->ns;
if (iocb->ret < 0) {
goto done;
} else if (ret < 0) {
iocb->ret = ret;
goto done;
}
if (iocb->zone) {
nvme_zrm_reset(ns, iocb->zone);
if (!iocb->all) {
goto done;
}
}
while (iocb->idx < ns->num_zones) {
NvmeZone *zone = &ns->zone_array[iocb->idx++];
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EMPTY:
if (!iocb->all) {
goto done;
}
continue;
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
case NVME_ZONE_STATE_CLOSED:
case NVME_ZONE_STATE_FULL:
iocb->zone = zone;
break;
default:
continue;
}
trace_pci_nvme_zns_zone_reset(zone->d.zslba);
iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk,
nvme_l2b(ns, zone->d.zslba),
nvme_l2b(ns, ns->zone_size),
BDRV_REQ_MAY_UNMAP,
nvme_zone_reset_epilogue_cb,
iocb);
return;
}
done:
iocb->aiocb = NULL;
iocb->common.cb(iocb->common.opaque, iocb->ret);
qemu_aio_unref(iocb);
}
static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone,
uint64_t elba, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
uint64_t wp = zone->d.wp;
uint32_t nlb = elba - wp + 1;
uint16_t status;
if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
return NVME_INVALID_ZONE_OP | NVME_DNR;
}
if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (elba < wp || elba > wp + ns->zns.zrwas) {
return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR;
}
if (nlb % ns->zns.zrwafg) {
return NVME_INVALID_FIELD | NVME_DNR;
}
status = nvme_zrm_auto(n, ns, zone);
if (status) {
return status;
}
zone->w_ptr += nlb;
nvme_advance_zone_wp(ns, zone, nlb);
return NVME_SUCCESS;
}
static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
{
NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
NvmeNamespace *ns = req->ns;
NvmeZone *zone;
NvmeZoneResetAIOCB *iocb;
uint8_t *zd_ext;
uint64_t slba = 0;
uint32_t zone_idx = 0;
uint16_t status;
uint8_t action = cmd->zsa;
bool all;
enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL;
req->status = NVME_SUCCESS;
if (!all) {
status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx);
if (status) {
return status;
}
}
zone = &ns->zone_array[zone_idx];
if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) {
trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
return NVME_INVALID_FIELD | NVME_DNR;
}
switch (action) {
case NVME_ZONE_ACTION_OPEN:
if (all) {
proc_mask = NVME_PROC_CLOSED_ZONES;
}
trace_pci_nvme_open_zone(slba, zone_idx, all);
status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
break;
case NVME_ZONE_ACTION_CLOSE:
if (all) {
proc_mask = NVME_PROC_OPENED_ZONES;
}
trace_pci_nvme_close_zone(slba, zone_idx, all);
status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
break;
case NVME_ZONE_ACTION_FINISH:
if (all) {
proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
}
trace_pci_nvme_finish_zone(slba, zone_idx, all);
status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
break;
case NVME_ZONE_ACTION_RESET:
trace_pci_nvme_reset_zone(slba, zone_idx, all);
iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk,
nvme_misc_cb, req);
iocb->req = req;
iocb->ret = 0;
iocb->all = all;
iocb->idx = zone_idx;
iocb->zone = NULL;
req->aiocb = &iocb->common;
nvme_zone_reset_cb(iocb, 0);
return NVME_NO_COMPLETE;
case NVME_ZONE_ACTION_OFFLINE:
if (all) {
proc_mask = NVME_PROC_READ_ONLY_ZONES;
}
trace_pci_nvme_offline_zone(slba, zone_idx, all);
status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
break;
case NVME_ZONE_ACTION_SET_ZD_EXT:
trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
if (all || !ns->params.zd_extension_size) {
return NVME_INVALID_FIELD | NVME_DNR;
}
zd_ext = nvme_get_zd_extension(ns, zone_idx);
status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
if (status) {
trace_pci_nvme_err_zd_extension_map_error(zone_idx);
return status;
}
status = nvme_set_zd_ext(ns, zone);
if (status == NVME_SUCCESS) {
trace_pci_nvme_zd_extension_set(zone_idx);
return status;
}
break;
case NVME_ZONE_ACTION_ZRWA_FLUSH:
if (all) {
return NVME_INVALID_FIELD | NVME_DNR;
}
return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req);
default:
trace_pci_nvme_err_invalid_mgmt_action(action);
status = NVME_INVALID_FIELD;
}
if (status == NVME_ZONE_INVAL_TRANSITION) {
trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
zone->d.za);
}
if (status) {
status |= NVME_DNR;
}
return status;
}
static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
{
NvmeZoneState zs = nvme_get_zone_state(zl);
switch (zafs) {
case NVME_ZONE_REPORT_ALL:
return true;
case NVME_ZONE_REPORT_EMPTY:
return zs == NVME_ZONE_STATE_EMPTY;
case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
case NVME_ZONE_REPORT_CLOSED:
return zs == NVME_ZONE_STATE_CLOSED;
case NVME_ZONE_REPORT_FULL:
return zs == NVME_ZONE_STATE_FULL;
case NVME_ZONE_REPORT_READ_ONLY:
return zs == NVME_ZONE_STATE_READ_ONLY;
case NVME_ZONE_REPORT_OFFLINE:
return zs == NVME_ZONE_STATE_OFFLINE;
default:
return false;
}
}
static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
{
NvmeCmd *cmd = &req->cmd;
NvmeNamespace *ns = req->ns;
/* cdw12 is zero-based number of dwords to return. Convert to bytes */
uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
uint32_t dw13 = le32_to_cpu(cmd->cdw13);
uint32_t zone_idx, zra, zrasf, partial;
uint64_t max_zones, nr_zones = 0;
uint16_t status;
uint64_t slba;
NvmeZoneDescr *z;
NvmeZone *zone;
NvmeZoneReportHeader *header;
void *buf, *buf_p;
size_t zone_entry_sz;
int i;
req->status = NVME_SUCCESS;
status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
if (status) {
return status;
}
zra = dw13 & 0xff;
if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
return NVME_INVALID_FIELD | NVME_DNR;
}
zrasf = (dw13 >> 8) & 0xff;
if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (data_size < sizeof(NvmeZoneReportHeader)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
status = nvme_check_mdts(n, data_size);
if (status) {
return status;
}
partial = (dw13 >> 16) & 0x01;
zone_entry_sz = sizeof(NvmeZoneDescr);
if (zra == NVME_ZONE_REPORT_EXTENDED) {
zone_entry_sz += ns->params.zd_extension_size;
}
max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
buf = g_malloc0(data_size);
zone = &ns->zone_array[zone_idx];
for (i = zone_idx; i < ns->num_zones; i++) {
if (partial && nr_zones >= max_zones) {
break;
}
if (nvme_zone_matches_filter(zrasf, zone++)) {
nr_zones++;
}
}
header = buf;
header->nr_zones = cpu_to_le64(nr_zones);
buf_p = buf + sizeof(NvmeZoneReportHeader);
for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
zone = &ns->zone_array[zone_idx];
if (nvme_zone_matches_filter(zrasf, zone)) {
z = buf_p;
buf_p += sizeof(NvmeZoneDescr);
z->zt = zone->d.zt;
z->zs = zone->d.zs;
z->zcap = cpu_to_le64(zone->d.zcap);
z->zslba = cpu_to_le64(zone->d.zslba);
z->za = zone->d.za;
if (nvme_wp_is_valid(zone)) {
z->wp = cpu_to_le64(zone->d.wp);
} else {
z->wp = cpu_to_le64(~0ULL);
}
if (zra == NVME_ZONE_REPORT_EXTENDED) {
if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
ns->params.zd_extension_size);
}
buf_p += ns->params.zd_extension_size;
}
max_zones--;
}
}
status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
g_free(buf);
return status;
}
static uint16_t nvme_io_mgmt_recv_ruhs(NvmeCtrl *n, NvmeRequest *req,
size_t len)
{
NvmeNamespace *ns = req->ns;
NvmeEnduranceGroup *endgrp;
NvmeRuhStatus *hdr;
NvmeRuhStatusDescr *ruhsd;
unsigned int nruhsd;
uint16_t rg, ph, *ruhid;
size_t trans_len;
g_autofree uint8_t *buf = NULL;
if (!n->subsys) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (ns->params.nsid == 0 || ns->params.nsid == 0xffffffff) {
return NVME_INVALID_NSID | NVME_DNR;
}
if (!n->subsys->endgrp.fdp.enabled) {
return NVME_FDP_DISABLED | NVME_DNR;
}
endgrp = ns->endgrp;
nruhsd = ns->fdp.nphs * endgrp->fdp.nrg;
trans_len = sizeof(NvmeRuhStatus) + nruhsd * sizeof(NvmeRuhStatusDescr);
buf = g_malloc0(trans_len);
trans_len = MIN(trans_len, len);
hdr = (NvmeRuhStatus *)buf;
ruhsd = (NvmeRuhStatusDescr *)(buf + sizeof(NvmeRuhStatus));
hdr->nruhsd = cpu_to_le16(nruhsd);
ruhid = ns->fdp.phs;
for (ph = 0; ph < ns->fdp.nphs; ph++, ruhid++) {
NvmeRuHandle *ruh = &endgrp->fdp.ruhs[*ruhid];
for (rg = 0; rg < endgrp->fdp.nrg; rg++, ruhsd++) {
uint16_t pid = nvme_make_pid(ns, rg, ph);
ruhsd->pid = cpu_to_le16(pid);
ruhsd->ruhid = *ruhid;
ruhsd->earutr = 0;
ruhsd->ruamw = cpu_to_le64(ruh->rus[rg].ruamw);
}
}
return nvme_c2h(n, buf, trans_len, req);
}
static uint16_t nvme_io_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
{
NvmeCmd *cmd = &req->cmd;
uint32_t cdw10 = le32_to_cpu(cmd->cdw10);
uint32_t numd = le32_to_cpu(cmd->cdw11);
uint8_t mo = (cdw10 & 0xff);
size_t len = (numd + 1) << 2;
switch (mo) {
case NVME_IOMR_MO_NOP:
return 0;
case NVME_IOMR_MO_RUH_STATUS:
return nvme_io_mgmt_recv_ruhs(n, req, len);
default:
return NVME_INVALID_FIELD | NVME_DNR;
};
}
static uint16_t nvme_io_mgmt_send_ruh_update(NvmeCtrl *n, NvmeRequest *req)
{
NvmeCmd *cmd = &req->cmd;
NvmeNamespace *ns = req->ns;
uint32_t cdw10 = le32_to_cpu(cmd->cdw10);
uint16_t ret = NVME_SUCCESS;
uint32_t npid = (cdw10 >> 16) + 1;
unsigned int i = 0;
g_autofree uint16_t *pids = NULL;
uint32_t maxnpid;
if (!ns->endgrp || !ns->endgrp->fdp.enabled) {
return NVME_FDP_DISABLED | NVME_DNR;
}
maxnpid = n->subsys->endgrp.fdp.nrg * n->subsys->endgrp.fdp.nruh;
if (unlikely(npid >= MIN(NVME_FDP_MAXPIDS, maxnpid))) {
return NVME_INVALID_FIELD | NVME_DNR;
}
pids = g_new(uint16_t, npid);
ret = nvme_h2c(n, pids, npid * sizeof(uint16_t), req);
if (ret) {
return ret;
}
for (; i < npid; i++) {
if (!nvme_update_ruh(n, ns, pids[i])) {
return NVME_INVALID_FIELD | NVME_DNR;
}
}
return ret;
}
static uint16_t nvme_io_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
{
NvmeCmd *cmd = &req->cmd;
uint32_t cdw10 = le32_to_cpu(cmd->cdw10);
uint8_t mo = (cdw10 & 0xff);
switch (mo) {
case NVME_IOMS_MO_NOP:
return 0;
case NVME_IOMS_MO_RUH_UPDATE:
return nvme_io_mgmt_send_ruh_update(n, req);
default:
return NVME_INVALID_FIELD | NVME_DNR;
};
}
static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
{
NvmeNamespace *ns;
uint32_t nsid = le32_to_cpu(req->cmd.nsid);
trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
/*
* In the base NVM command set, Flush may apply to all namespaces
* (indicated by NSID being set to FFFFFFFFh). But if that feature is used
* along with TP 4056 (Namespace Types), it may be pretty screwed up.
*
* If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
* opcode with a specific command since we cannot determine a unique I/O
* command set. Opcode 0h could have any other meaning than something
* equivalent to flushing and say it DOES have completely different
* semantics in some other command set - does an NSID of FFFFFFFFh then
* mean "for all namespaces, apply whatever command set specific command
* that uses the 0h opcode?" Or does it mean "for all namespaces, apply
* whatever command that uses the 0h opcode if, and only if, it allows NSID
* to be FFFFFFFFh"?
*
* Anyway (and luckily), for now, we do not care about this since the
* device only supports namespace types that includes the NVM Flush command
* (NVM and Zoned), so always do an NVM Flush.
*/
if (req->cmd.opcode == NVME_CMD_FLUSH) {
return nvme_flush(n, req);
}
if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
return NVME_INVALID_NSID | NVME_DNR;
}
ns = nvme_ns(n, nsid);
if (unlikely(!ns)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
return NVME_INVALID_OPCODE | NVME_DNR;
}
if (ns->status) {
return ns->status;
}
if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
return NVME_INVALID_FIELD;
}
req->ns = ns;
switch (req->cmd.opcode) {
case NVME_CMD_WRITE_ZEROES:
return nvme_write_zeroes(n, req);
case NVME_CMD_ZONE_APPEND:
return nvme_zone_append(n, req);
case NVME_CMD_WRITE:
return nvme_write(n, req);
case NVME_CMD_READ:
return nvme_read(n, req);
case NVME_CMD_COMPARE:
return nvme_compare(n, req);
case NVME_CMD_DSM:
return nvme_dsm(n, req);
case NVME_CMD_VERIFY:
return nvme_verify(n, req);
case NVME_CMD_COPY:
return nvme_copy(n, req);
case NVME_CMD_ZONE_MGMT_SEND:
return nvme_zone_mgmt_send(n, req);
case NVME_CMD_ZONE_MGMT_RECV:
return nvme_zone_mgmt_recv(n, req);
case NVME_CMD_IO_MGMT_RECV:
return nvme_io_mgmt_recv(n, req);
case NVME_CMD_IO_MGMT_SEND:
return nvme_io_mgmt_send(n, req);
default:
g_assert_not_reached();
}
return NVME_INVALID_OPCODE | NVME_DNR;
}
static void nvme_cq_notifier(EventNotifier *e)
{
NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier);
NvmeCtrl *n = cq->ctrl;
if (!event_notifier_test_and_clear(e)) {
return;
}
nvme_update_cq_head(cq);
if (cq->tail == cq->head) {
if (cq->irq_enabled) {
n->cq_pending--;
}
nvme_irq_deassert(n, cq);
}
qemu_bh_schedule(cq->bh);
}
static int nvme_init_cq_ioeventfd(NvmeCQueue *cq)
{
NvmeCtrl *n = cq->ctrl;
uint16_t offset = (cq->cqid << 3) + (1 << 2);
int ret;
ret = event_notifier_init(&cq->notifier, 0);
if (ret < 0) {
return ret;
}
event_notifier_set_handler(&cq->notifier, nvme_cq_notifier);
memory_region_add_eventfd(&n->iomem,
0x1000 + offset, 4, false, 0, &cq->notifier);
return 0;
}
static void nvme_sq_notifier(EventNotifier *e)
{
NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier);
if (!event_notifier_test_and_clear(e)) {
return;
}
nvme_process_sq(sq);
}
static int nvme_init_sq_ioeventfd(NvmeSQueue *sq)
{
NvmeCtrl *n = sq->ctrl;
uint16_t offset = sq->sqid << 3;
int ret;
ret = event_notifier_init(&sq->notifier, 0);
if (ret < 0) {
return ret;
}
event_notifier_set_handler(&sq->notifier, nvme_sq_notifier);
memory_region_add_eventfd(&n->iomem,
0x1000 + offset, 4, false, 0, &sq->notifier);
return 0;
}
static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
{
uint16_t offset = sq->sqid << 3;
n->sq[sq->sqid] = NULL;
qemu_bh_delete(sq->bh);
if (sq->ioeventfd_enabled) {
memory_region_del_eventfd(&n->iomem,
0x1000 + offset, 4, false, 0, &sq->notifier);
event_notifier_set_handler(&sq->notifier, NULL);
event_notifier_cleanup(&sq->notifier);
}
g_free(sq->io_req);
if (sq->sqid) {
g_free(sq);
}
}
static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
{
NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
NvmeRequest *r, *next;
NvmeSQueue *sq;
NvmeCQueue *cq;
uint16_t qid = le16_to_cpu(c->qid);
if (unlikely(!qid || nvme_check_sqid(n, qid))) {
trace_pci_nvme_err_invalid_del_sq(qid);
return NVME_INVALID_QID | NVME_DNR;
}
trace_pci_nvme_del_sq(qid);
sq = n->sq[qid];
while (!QTAILQ_EMPTY(&sq->out_req_list)) {
r = QTAILQ_FIRST(&sq->out_req_list);
assert(r->aiocb);
blk_aio_cancel(r->aiocb);
}
assert(QTAILQ_EMPTY(&sq->out_req_list));
if (!nvme_check_cqid(n, sq->cqid)) {
cq = n->cq[sq->cqid];
QTAILQ_REMOVE(&cq->sq_list, sq, entry);
nvme_post_cqes(cq);
QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
if (r->sq == sq) {
QTAILQ_REMOVE(&cq->req_list, r, entry);
QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
}
}
}
nvme_free_sq(sq, n);
return NVME_SUCCESS;
}
static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
uint16_t sqid, uint16_t cqid, uint16_t size)
{
int i;
NvmeCQueue *cq;
sq->ctrl = n;
sq->dma_addr = dma_addr;
sq->sqid = sqid;
sq->size = size;
sq->cqid = cqid;
sq->head = sq->tail = 0;
sq->io_req = g_new0(NvmeRequest, sq->size);
QTAILQ_INIT(&sq->req_list);
QTAILQ_INIT(&sq->out_req_list);
for (i = 0; i < sq->size; i++) {
sq->io_req[i].sq = sq;
QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
}
sq->bh = qemu_bh_new_guarded(nvme_process_sq, sq,
&DEVICE(sq->ctrl)->mem_reentrancy_guard);
if (n->dbbuf_enabled) {
sq->db_addr = n->dbbuf_dbs + (sqid << 3);
sq->ei_addr = n->dbbuf_eis + (sqid << 3);
if (n->params.ioeventfd && sq->sqid != 0) {
if (!nvme_init_sq_ioeventfd(sq)) {
sq->ioeventfd_enabled = true;
}
}
}
assert(n->cq[cqid]);
cq = n->cq[cqid];
QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
n->sq[sqid] = sq;
}
static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
{
NvmeSQueue *sq;
NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
uint16_t cqid = le16_to_cpu(c->cqid);
uint16_t sqid = le16_to_cpu(c->sqid);
uint16_t qsize = le16_to_cpu(c->qsize);
uint16_t qflags = le16_to_cpu(c->sq_flags);
uint64_t prp1 = le64_to_cpu(c->prp1);
trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
return NVME_INVALID_CQID | NVME_DNR;
}
if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) {
trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
return NVME_INVALID_QID | NVME_DNR;
}
if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
trace_pci_nvme_err_invalid_create_sq_size(qsize);
return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
}
if (unlikely(prp1 & (n->page_size - 1))) {
trace_pci_nvme_err_invalid_create_sq_addr(prp1);
return NVME_INVALID_PRP_OFFSET | NVME_DNR;
}
if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
return NVME_INVALID_FIELD | NVME_DNR;
}
sq = g_malloc0(sizeof(*sq));
nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
return NVME_SUCCESS;
}
struct nvme_stats {
uint64_t units_read;
uint64_t units_written;
uint64_t read_commands;
uint64_t write_commands;
};
static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
{
BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
stats->units_read += s->nr_bytes[BLOCK_ACCT_READ];
stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE];
stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
}
static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
uint64_t off, NvmeRequest *req)
{
uint32_t nsid = le32_to_cpu(req->cmd.nsid);
struct nvme_stats stats = { 0 };
NvmeSmartLog smart = { 0 };
uint32_t trans_len;
NvmeNamespace *ns;
time_t current_ms;
uint64_t u_read, u_written;
if (off >= sizeof(smart)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (nsid != 0xffffffff) {
ns = nvme_ns(n, nsid);
if (!ns) {
return NVME_INVALID_NSID | NVME_DNR;
}
nvme_set_blk_stats(ns, &stats);
} else {
int i;
for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
nvme_set_blk_stats(ns, &stats);
}
}
trans_len = MIN(sizeof(smart) - off, buf_len);
smart.critical_warning = n->smart_critical_warning;
u_read = DIV_ROUND_UP(stats.units_read >> BDRV_SECTOR_BITS, 1000);
u_written = DIV_ROUND_UP(stats.units_written >> BDRV_SECTOR_BITS, 1000);
smart.data_units_read[0] = cpu_to_le64(u_read);
smart.data_units_written[0] = cpu_to_le64(u_written);
smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
smart.temperature = cpu_to_le16(n->temperature);
if ((n->temperature >= n->features.temp_thresh_hi) ||
(n->temperature <= n->features.temp_thresh_low)) {
smart.critical_warning |= NVME_SMART_TEMPERATURE;
}
current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
smart.power_on_hours[0] =
cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
if (!rae) {
nvme_clear_events(n, NVME_AER_TYPE_SMART);
}
return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
}
static uint16_t nvme_endgrp_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
uint64_t off, NvmeRequest *req)
{
uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
uint16_t endgrpid = (dw11 >> 16) & 0xffff;
struct nvme_stats stats = {};
NvmeEndGrpLog info = {};
int i;
if (!n->subsys || endgrpid != 0x1) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (off >= sizeof(info)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
NvmeNamespace *ns = nvme_subsys_ns(n->subsys, i);
if (!ns) {
continue;
}
nvme_set_blk_stats(ns, &stats);
}
info.data_units_read[0] =
cpu_to_le64(DIV_ROUND_UP(stats.units_read / 1000000000, 1000000000));
info.data_units_written[0] =
cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000));
info.media_units_written[0] =
cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000));
info.host_read_commands[0] = cpu_to_le64(stats.read_commands);
info.host_write_commands[0] = cpu_to_le64(stats.write_commands);
buf_len = MIN(sizeof(info) - off, buf_len);
return nvme_c2h(n, (uint8_t *)&info + off, buf_len, req);
}
static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
NvmeRequest *req)
{
uint32_t trans_len;
NvmeFwSlotInfoLog fw_log = {
.afi = 0x1,
};
if (off >= sizeof(fw_log)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
trans_len = MIN(sizeof(fw_log) - off, buf_len);
return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
}
static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
uint64_t off, NvmeRequest *req)
{
uint32_t trans_len;
NvmeErrorLog errlog;
if (off >= sizeof(errlog)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (!rae) {
nvme_clear_events(n, NVME_AER_TYPE_ERROR);
}
memset(&errlog, 0x0, sizeof(errlog));
trans_len = MIN(sizeof(errlog) - off, buf_len);
return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
}
static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
uint64_t off, NvmeRequest *req)
{
uint32_t nslist[1024];
uint32_t trans_len;
int i = 0;
uint32_t nsid;
if (off >= sizeof(nslist)) {
trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist));
return NVME_INVALID_FIELD | NVME_DNR;
}
memset(nslist, 0x0, sizeof(nslist));
trans_len = MIN(sizeof(nslist) - off, buf_len);
while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
NVME_CHANGED_NSID_SIZE) {
/*
* If more than 1024 namespaces, the first entry in the log page should
* be set to FFFFFFFFh and the others to 0 as spec.
*/
if (i == ARRAY_SIZE(nslist)) {
memset(nslist, 0x0, sizeof(nslist));
nslist[0] = 0xffffffff;
break;
}
nslist[i++] = nsid;
clear_bit(nsid, n->changed_nsids);
}
/*
* Remove all the remaining list entries in case returns directly due to
* more than 1024 namespaces.
*/
if (nslist[0] == 0xffffffff) {
bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
}
if (!rae) {
nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
}
return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
}
static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
uint64_t off, NvmeRequest *req)
{
NvmeEffectsLog log = {};
const uint32_t *src_iocs = NULL;
uint32_t trans_len;
if (off >= sizeof(log)) {
trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
return NVME_INVALID_FIELD | NVME_DNR;
}
switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) {
case NVME_CC_CSS_NVM:
src_iocs = nvme_cse_iocs_nvm;
/* fall through */
case NVME_CC_CSS_ADMIN_ONLY:
break;
case NVME_CC_CSS_CSI:
switch (csi) {
case NVME_CSI_NVM:
src_iocs = nvme_cse_iocs_nvm;
break;
case NVME_CSI_ZONED:
src_iocs = nvme_cse_iocs_zoned;
break;
}
}
memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
if (src_iocs) {
memcpy(log.iocs, src_iocs, sizeof(log.iocs));
}
trans_len = MIN(sizeof(log) - off, buf_len);
return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
}
static size_t sizeof_fdp_conf_descr(size_t nruh, size_t vss)
{
size_t entry_siz = sizeof(NvmeFdpDescrHdr) + nruh * sizeof(NvmeRuhDescr)
+ vss;
return ROUND_UP(entry_siz, 8);
}
static uint16_t nvme_fdp_confs(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len,
uint64_t off, NvmeRequest *req)
{
uint32_t log_size, trans_len;
g_autofree uint8_t *buf = NULL;
NvmeFdpDescrHdr *hdr;
NvmeRuhDescr *ruhd;
NvmeEnduranceGroup *endgrp;
NvmeFdpConfsHdr *log;
size_t nruh, fdp_descr_size;
int i;
if (endgrpid != 1 || !n->subsys) {
return NVME_INVALID_FIELD | NVME_DNR;
}
endgrp = &n->subsys->endgrp;
if (endgrp->fdp.enabled) {
nruh = endgrp->fdp.nruh;
} else {
nruh = 1;
}
fdp_descr_size = sizeof_fdp_conf_descr(nruh, FDPVSS);
log_size = sizeof(NvmeFdpConfsHdr) + fdp_descr_size;
if (off >= log_size) {
return NVME_INVALID_FIELD | NVME_DNR;
}
trans_len = MIN(log_size - off, buf_len);
buf = g_malloc0(log_size);
log = (NvmeFdpConfsHdr *)buf;
hdr = (NvmeFdpDescrHdr *)(log + 1);
ruhd = (NvmeRuhDescr *)(buf + sizeof(*log) + sizeof(*hdr));
log->num_confs = cpu_to_le16(0);
log->size = cpu_to_le32(log_size);
hdr->descr_size = cpu_to_le16(fdp_descr_size);
if (endgrp->fdp.enabled) {
hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, VALID, 1);
hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, RGIF, endgrp->fdp.rgif);
hdr->nrg = cpu_to_le16(endgrp->fdp.nrg);
hdr->nruh = cpu_to_le16(endgrp->fdp.nruh);
hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1);
hdr->nnss = cpu_to_le32(NVME_MAX_NAMESPACES);
hdr->runs = cpu_to_le64(endgrp->fdp.runs);
for (i = 0; i < nruh; i++) {
ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED;
ruhd++;
}
} else {
/* 1 bit for RUH in PIF -> 2 RUHs max. */
hdr->nrg = cpu_to_le16(1);
hdr->nruh = cpu_to_le16(1);
hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1);
hdr->nnss = cpu_to_le32(1);
hdr->runs = cpu_to_le64(96 * MiB);
ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED;
}
return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req);
}
static uint16_t nvme_fdp_ruh_usage(NvmeCtrl *n, uint32_t endgrpid,
uint32_t dw10, uint32_t dw12,
uint32_t buf_len, uint64_t off,
NvmeRequest *req)
{
NvmeRuHandle *ruh;
NvmeRuhuLog *hdr;
NvmeRuhuDescr *ruhud;
NvmeEnduranceGroup *endgrp;
g_autofree uint8_t *buf = NULL;
uint32_t log_size, trans_len;
uint16_t i;
if (endgrpid != 1 || !n->subsys) {
return NVME_INVALID_FIELD | NVME_DNR;
}
endgrp = &n->subsys->endgrp;
if (!endgrp->fdp.enabled) {
return NVME_FDP_DISABLED | NVME_DNR;
}
log_size = sizeof(NvmeRuhuLog) + endgrp->fdp.nruh * sizeof(NvmeRuhuDescr);
if (off >= log_size) {
return NVME_INVALID_FIELD | NVME_DNR;
}
trans_len = MIN(log_size - off, buf_len);
buf = g_malloc0(log_size);
hdr = (NvmeRuhuLog *)buf;
ruhud = (NvmeRuhuDescr *)(hdr + 1);
ruh = endgrp->fdp.ruhs;
hdr->nruh = cpu_to_le16(endgrp->fdp.nruh);
for (i = 0; i < endgrp->fdp.nruh; i++, ruhud++, ruh++) {
ruhud->ruha = ruh->ruha;
}
return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req);
}
static uint16_t nvme_fdp_stats(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len,
uint64_t off, NvmeRequest *req)
{
NvmeEnduranceGroup *endgrp;
NvmeFdpStatsLog log = {};
uint32_t trans_len;
if (off >= sizeof(NvmeFdpStatsLog)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (endgrpid != 1 || !n->subsys) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (!n->subsys->endgrp.fdp.enabled) {
return NVME_FDP_DISABLED | NVME_DNR;
}
endgrp = &n->subsys->endgrp;
trans_len = MIN(sizeof(log) - off, buf_len);
/* spec value is 128 bit, we only use 64 bit */
log.hbmw[0] = cpu_to_le64(endgrp->fdp.hbmw);
log.mbmw[0] = cpu_to_le64(endgrp->fdp.mbmw);
log.mbe[0] = cpu_to_le64(endgrp->fdp.mbe);
return nvme_c2h(n, (uint8_t *)&log + off, trans_len, req);
}
static uint16_t nvme_fdp_events(NvmeCtrl *n, uint32_t endgrpid,
uint32_t buf_len, uint64_t off,
NvmeRequest *req)
{
NvmeEnduranceGroup *endgrp;
NvmeCmd *cmd = &req->cmd;
bool host_events = (cmd->cdw10 >> 8) & 0x1;
uint32_t log_size, trans_len;
NvmeFdpEventBuffer *ebuf;
g_autofree NvmeFdpEventsLog *elog = NULL;
NvmeFdpEvent *event;
if (endgrpid != 1 || !n->subsys) {
return NVME_INVALID_FIELD | NVME_DNR;
}
endgrp = &n->subsys->endgrp;
if (!endgrp->fdp.enabled) {
return NVME_FDP_DISABLED | NVME_DNR;
}
if (host_events) {
ebuf = &endgrp->fdp.host_events;
} else {
ebuf = &endgrp->fdp.ctrl_events;
}
log_size = sizeof(NvmeFdpEventsLog) + ebuf->nelems * sizeof(NvmeFdpEvent);
if (off >= log_size) {
return NVME_INVALID_FIELD | NVME_DNR;
}
trans_len = MIN(log_size - off, buf_len);
elog = g_malloc0(log_size);
elog->num_events = cpu_to_le32(ebuf->nelems);
event = (NvmeFdpEvent *)(elog + 1);
if (ebuf->nelems && ebuf->start == ebuf->next) {
unsigned int nelems = (NVME_FDP_MAX_EVENTS - ebuf->start);
/* wrap over, copy [start;NVME_FDP_MAX_EVENTS[ and [0; next[ */
memcpy(event, &ebuf->events[ebuf->start],
sizeof(NvmeFdpEvent) * nelems);
memcpy(event + nelems, ebuf->events,
sizeof(NvmeFdpEvent) * ebuf->next);
} else if (ebuf->start < ebuf->next) {
memcpy(event, &ebuf->events[ebuf->start],
sizeof(NvmeFdpEvent) * (ebuf->next - ebuf->start));
}
return nvme_c2h(n, (uint8_t *)elog + off, trans_len, req);
}
static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
{
NvmeCmd *cmd = &req->cmd;
uint32_t dw10 = le32_to_cpu(cmd->cdw10);
uint32_t dw11 = le32_to_cpu(cmd->cdw11);
uint32_t dw12 = le32_to_cpu(cmd->cdw12);
uint32_t dw13 = le32_to_cpu(cmd->cdw13);
uint8_t lid = dw10 & 0xff;
uint8_t lsp = (dw10 >> 8) & 0xf;
uint8_t rae = (dw10 >> 15) & 0x1;
uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24;
uint32_t numdl, numdu, lspi;
uint64_t off, lpol, lpou;
size_t len;
uint16_t status;
numdl = (dw10 >> 16);
numdu = (dw11 & 0xffff);
lspi = (dw11 >> 16);
lpol = dw12;
lpou = dw13;
len = (((numdu << 16) | numdl) + 1) << 2;
off = (lpou << 32ULL) | lpol;
if (off & 0x3) {
return NVME_INVALID_FIELD | NVME_DNR;
}
trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
status = nvme_check_mdts(n, len);
if (status) {
return status;
}
switch (lid) {
case NVME_LOG_ERROR_INFO:
return nvme_error_info(n, rae, len, off, req);
case NVME_LOG_SMART_INFO:
return nvme_smart_info(n, rae, len, off, req);
case NVME_LOG_FW_SLOT_INFO:
return nvme_fw_log_info(n, len, off, req);
case NVME_LOG_CHANGED_NSLIST:
return nvme_changed_nslist(n, rae, len, off, req);
case NVME_LOG_CMD_EFFECTS:
return nvme_cmd_effects(n, csi, len, off, req);
case NVME_LOG_ENDGRP:
return nvme_endgrp_info(n, rae, len, off, req);
case NVME_LOG_FDP_CONFS:
return nvme_fdp_confs(n, lspi, len, off, req);
case NVME_LOG_FDP_RUH_USAGE:
return nvme_fdp_ruh_usage(n, lspi, dw10, dw12, len, off, req);
case NVME_LOG_FDP_STATS:
return nvme_fdp_stats(n, lspi, len, off, req);
case NVME_LOG_FDP_EVENTS:
return nvme_fdp_events(n, lspi, len, off, req);
default:
trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
return NVME_INVALID_FIELD | NVME_DNR;
}
}
static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
{
PCIDevice *pci = PCI_DEVICE(n);
uint16_t offset = (cq->cqid << 3) + (1 << 2);
n->cq[cq->cqid] = NULL;
qemu_bh_delete(cq->bh);
if (cq->ioeventfd_enabled) {
memory_region_del_eventfd(&n->iomem,
0x1000 + offset, 4, false, 0, &cq->notifier);
event_notifier_set_handler(&cq->notifier, NULL);
event_notifier_cleanup(&cq->notifier);
}
if (msix_enabled(pci)) {
msix_vector_unuse(pci, cq->vector);
}
if (cq->cqid) {
g_free(cq);
}
}
static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
{
NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
NvmeCQueue *cq;
uint16_t qid = le16_to_cpu(c->qid);
if (unlikely(!qid || nvme_check_cqid(n, qid))) {
trace_pci_nvme_err_invalid_del_cq_cqid(qid);
return NVME_INVALID_CQID | NVME_DNR;
}
cq = n->cq[qid];
if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
trace_pci_nvme_err_invalid_del_cq_notempty(qid);
return NVME_INVALID_QUEUE_DEL;
}
if (cq->irq_enabled && cq->tail != cq->head) {
n->cq_pending--;
}
nvme_irq_deassert(n, cq);
trace_pci_nvme_del_cq(qid);
nvme_free_cq(cq, n);
return NVME_SUCCESS;
}
static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
uint16_t cqid, uint16_t vector, uint16_t size,
uint16_t irq_enabled)
{
PCIDevice *pci = PCI_DEVICE(n);
if (msix_enabled(pci)) {
msix_vector_use(pci, vector);
}
cq->ctrl = n;
cq->cqid = cqid;
cq->size = size;
cq->dma_addr = dma_addr;
cq->phase = 1;
cq->irq_enabled = irq_enabled;
cq->vector = vector;
cq->head = cq->tail = 0;
QTAILQ_INIT(&cq->req_list);
QTAILQ_INIT(&cq->sq_list);
if (n->dbbuf_enabled) {
cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2);
cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2);
if (n->params.ioeventfd && cqid != 0) {
if (!nvme_init_cq_ioeventfd(cq)) {
cq->ioeventfd_enabled = true;
}
}
}
n->cq[cqid] = cq;
cq->bh = qemu_bh_new_guarded(nvme_post_cqes, cq,
&DEVICE(cq->ctrl)->mem_reentrancy_guard);
}
static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
{
NvmeCQueue *cq;
NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
uint16_t cqid = le16_to_cpu(c->cqid);
uint16_t vector = le16_to_cpu(c->irq_vector);
uint16_t qsize = le16_to_cpu(c->qsize);
uint16_t qflags = le16_to_cpu(c->cq_flags);
uint64_t prp1 = le64_to_cpu(c->prp1);
uint32_t cc = ldq_le_p(&n->bar.cc);
uint8_t iocqes = NVME_CC_IOCQES(cc);
uint8_t iosqes = NVME_CC_IOSQES(cc);
trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
NVME_CQ_FLAGS_IEN(qflags) != 0);
if (iosqes != NVME_SQES || iocqes != NVME_CQES) {
trace_pci_nvme_err_invalid_create_cq_entry_size(iosqes, iocqes);
return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
}
if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) {
trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
return NVME_INVALID_QID | NVME_DNR;
}
if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
trace_pci_nvme_err_invalid_create_cq_size(qsize);
return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
}
if (unlikely(prp1 & (n->page_size - 1))) {
trace_pci_nvme_err_invalid_create_cq_addr(prp1);
return NVME_INVALID_PRP_OFFSET | NVME_DNR;
}
if (unlikely(!msix_enabled(PCI_DEVICE(n)) && vector)) {
trace_pci_nvme_err_invalid_create_cq_vector(vector);
return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
}
if (unlikely(vector >= n->conf_msix_qsize)) {
trace_pci_nvme_err_invalid_create_cq_vector(vector);
return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
}
if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
return NVME_INVALID_FIELD | NVME_DNR;
}
cq = g_malloc0(sizeof(*cq));
nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
NVME_CQ_FLAGS_IEN(qflags));
/*
* It is only required to set qs_created when creating a completion queue;
* creating a submission queue without a matching completion queue will
* fail.
*/
n->qs_created = true;
return NVME_SUCCESS;
}
static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
{
uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
return nvme_c2h(n, id, sizeof(id), req);
}
static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
{
trace_pci_nvme_identify_ctrl();
return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
}
static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
{
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
trace_pci_nvme_identify_ctrl_csi(c->csi);
switch (c->csi) {
case NVME_CSI_NVM:
id_nvm->vsl = n->params.vsl;
id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
break;
case NVME_CSI_ZONED:
((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
break;
default:
return NVME_INVALID_FIELD | NVME_DNR;
}
return nvme_c2h(n, id, sizeof(id), req);
}
static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
{
NvmeNamespace *ns;
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
uint32_t nsid = le32_to_cpu(c->nsid);
trace_pci_nvme_identify_ns(nsid);
if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
return NVME_INVALID_NSID | NVME_DNR;
}
ns = nvme_ns(n, nsid);
if (unlikely(!ns)) {
if (!active) {
ns = nvme_subsys_ns(n->subsys, nsid);
if (!ns) {
return nvme_rpt_empty_id_struct(n, req);
}
} else {
return nvme_rpt_empty_id_struct(n, req);
}
}
if (active || ns->csi == NVME_CSI_NVM) {
return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
}
return NVME_INVALID_CMD_SET | NVME_DNR;
}
static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req,
bool attached)
{
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
uint32_t nsid = le32_to_cpu(c->nsid);
uint16_t min_id = le16_to_cpu(c->ctrlid);
uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
uint16_t *ids = &list[1];
NvmeNamespace *ns;
NvmeCtrl *ctrl;
int cntlid, nr_ids = 0;
trace_pci_nvme_identify_ctrl_list(c->cns, min_id);
if (!n->subsys) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (attached) {
if (nsid == NVME_NSID_BROADCAST) {
return NVME_INVALID_FIELD | NVME_DNR;
}
ns = nvme_subsys_ns(n->subsys, nsid);
if (!ns) {
return NVME_INVALID_FIELD | NVME_DNR;
}
}
for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
if (!ctrl) {
continue;
}
if (attached && !nvme_ns(ctrl, nsid)) {
continue;
}
ids[nr_ids++] = cntlid;
}
list[0] = nr_ids;
return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
}
static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req)
{
trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid));
return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap,
sizeof(NvmePriCtrlCap), req);
}
static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req)
{
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid);
uint16_t min_id = le16_to_cpu(c->ctrlid);
uint8_t num_sec_ctrl = n->nr_sec_ctrls;
NvmeSecCtrlList list = {0};
uint8_t i;
for (i = 0; i < num_sec_ctrl; i++) {
if (n->sec_ctrl_list[i].scid >= min_id) {
list.numcntl = MIN(num_sec_ctrl - i, 127);
memcpy(&list.sec, n->sec_ctrl_list + i,
list.numcntl * sizeof(NvmeSecCtrlEntry));
break;
}
}
trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl);
return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req);
}
static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
bool active)
{
NvmeNamespace *ns;
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
uint32_t nsid = le32_to_cpu(c->nsid);
trace_pci_nvme_identify_ns_csi(nsid, c->csi);
if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
return NVME_INVALID_NSID | NVME_DNR;
}
ns = nvme_ns(n, nsid);
if (unlikely(!ns)) {
if (!active) {
ns = nvme_subsys_ns(n->subsys, nsid);
if (!ns) {
return nvme_rpt_empty_id_struct(n, req);
}
} else {
return nvme_rpt_empty_id_struct(n, req);
}
}
if (c->csi == NVME_CSI_NVM) {
return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm),
req);
} else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
req);
}
return NVME_INVALID_FIELD | NVME_DNR;
}
static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
bool active)
{
NvmeNamespace *ns;
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
uint32_t min_nsid = le32_to_cpu(c->nsid);
uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
static const int data_len = sizeof(list);
uint32_t *list_ptr = (uint32_t *)list;
int i, j = 0;
trace_pci_nvme_identify_nslist(min_nsid);
/*
* Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
* since the Active Namespace ID List should return namespaces with ids
* *higher* than the NSID specified in the command. This is also specified
* in the spec (NVM Express v1.3d, Section 5.15.4).
*/
if (min_nsid >= NVME_NSID_BROADCAST - 1) {
return NVME_INVALID_NSID | NVME_DNR;
}
for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
ns = nvme_ns(n, i);
if (!ns) {
if (!active) {
ns = nvme_subsys_ns(n->subsys, i);
if (!ns) {
continue;
}
} else {
continue;
}
}
if (ns->params.nsid <= min_nsid) {
continue;
}
list_ptr[j++] = cpu_to_le32(ns->params.nsid);
if (j == data_len / sizeof(uint32_t)) {
break;
}
}
return nvme_c2h(n, list, data_len, req);
}
static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
bool active)
{
NvmeNamespace *ns;
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
uint32_t min_nsid = le32_to_cpu(c->nsid);
uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
static const int data_len = sizeof(list);
uint32_t *list_ptr = (uint32_t *)list;
int i, j = 0;
trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
/*
* Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
*/
if (min_nsid >= NVME_NSID_BROADCAST - 1) {
return NVME_INVALID_NSID | NVME_DNR;
}
if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
return NVME_INVALID_FIELD | NVME_DNR;
}
for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
ns = nvme_ns(n, i);
if (!ns) {
if (!active) {
ns = nvme_subsys_ns(n->subsys, i);
if (!ns) {
continue;
}
} else {
continue;
}
}
if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
continue;
}
list_ptr[j++] = cpu_to_le32(ns->params.nsid);
if (j == data_len / sizeof(uint32_t)) {
break;
}
}
return nvme_c2h(n, list, data_len, req);
}
static uint16_t nvme_endurance_group_list(NvmeCtrl *n, NvmeRequest *req)
{
uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
uint16_t *nr_ids = &list[0];
uint16_t *ids = &list[1];
uint16_t endgid = le32_to_cpu(req->cmd.cdw11) & 0xffff;
/*
* The current nvme-subsys only supports Endurance Group #1.
*/
if (!endgid) {
*nr_ids = 1;
ids[0] = 1;
} else {
*nr_ids = 0;
}
return nvme_c2h(n, list, sizeof(list), req);
}
static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
{
NvmeNamespace *ns;
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
uint32_t nsid = le32_to_cpu(c->nsid);
uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
uint8_t *pos = list;
struct {
NvmeIdNsDescr hdr;
uint8_t v[NVME_NIDL_UUID];
} QEMU_PACKED uuid = {};
struct {
NvmeIdNsDescr hdr;
uint8_t v[NVME_NIDL_NGUID];
} QEMU_PACKED nguid = {};
struct {
NvmeIdNsDescr hdr;
uint64_t v;
} QEMU_PACKED eui64 = {};
struct {
NvmeIdNsDescr hdr;
uint8_t v;
} QEMU_PACKED csi = {};
trace_pci_nvme_identify_ns_descr_list(nsid);
if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
return NVME_INVALID_NSID | NVME_DNR;
}
ns = nvme_ns(n, nsid);
if (unlikely(!ns)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (!qemu_uuid_is_null(&ns->params.uuid)) {
uuid.hdr.nidt = NVME_NIDT_UUID;
uuid.hdr.nidl = NVME_NIDL_UUID;
memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
memcpy(pos, &uuid, sizeof(uuid));
pos += sizeof(uuid);
}
if (!nvme_nguid_is_null(&ns->params.nguid)) {
nguid.hdr.nidt = NVME_NIDT_NGUID;
nguid.hdr.nidl = NVME_NIDL_NGUID;
memcpy(nguid.v, ns->params.nguid.data, NVME_NIDL_NGUID);
memcpy(pos, &nguid, sizeof(nguid));
pos += sizeof(nguid);
}
if (ns->params.eui64) {
eui64.hdr.nidt = NVME_NIDT_EUI64;
eui64.hdr.nidl = NVME_NIDL_EUI64;
eui64.v = cpu_to_be64(ns->params.eui64);
memcpy(pos, &eui64, sizeof(eui64));
pos += sizeof(eui64);
}
csi.hdr.nidt = NVME_NIDT_CSI;
csi.hdr.nidl = NVME_NIDL_CSI;
csi.v = ns->csi;
memcpy(pos, &csi, sizeof(csi));
pos += sizeof(csi);
return nvme_c2h(n, list, sizeof(list), req);
}
static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
{
uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
static const int data_len = sizeof(list);
trace_pci_nvme_identify_cmd_set();
NVME_SET_CSI(*list, NVME_CSI_NVM);
NVME_SET_CSI(*list, NVME_CSI_ZONED);
return nvme_c2h(n, list, data_len, req);
}
static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
{
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
c->csi);
switch (c->cns) {
case NVME_ID_CNS_NS:
return nvme_identify_ns(n, req, true);
case NVME_ID_CNS_NS_PRESENT:
return nvme_identify_ns(n, req, false);
case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
return nvme_identify_ctrl_list(n, req, true);
case NVME_ID_CNS_CTRL_LIST:
return nvme_identify_ctrl_list(n, req, false);
case NVME_ID_CNS_PRIMARY_CTRL_CAP:
return nvme_identify_pri_ctrl_cap(n, req);
case NVME_ID_CNS_SECONDARY_CTRL_LIST:
return nvme_identify_sec_ctrl_list(n, req);
case NVME_ID_CNS_CS_NS:
return nvme_identify_ns_csi(n, req, true);
case NVME_ID_CNS_CS_NS_PRESENT:
return nvme_identify_ns_csi(n, req, false);
case NVME_ID_CNS_CTRL:
return nvme_identify_ctrl(n, req);
case NVME_ID_CNS_CS_CTRL:
return nvme_identify_ctrl_csi(n, req);
case NVME_ID_CNS_NS_ACTIVE_LIST:
return nvme_identify_nslist(n, req, true);
case NVME_ID_CNS_NS_PRESENT_LIST:
return nvme_identify_nslist(n, req, false);
case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
return nvme_identify_nslist_csi(n, req, true);
case NVME_ID_CNS_ENDURANCE_GROUP_LIST:
return nvme_endurance_group_list(n, req);
case NVME_ID_CNS_CS_NS_PRESENT_LIST:
return nvme_identify_nslist_csi(n, req, false);
case NVME_ID_CNS_NS_DESCR_LIST:
return nvme_identify_ns_descr_list(n, req);
case NVME_ID_CNS_IO_COMMAND_SET:
return nvme_identify_cmd_set(n, req);
default:
trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
return NVME_INVALID_FIELD | NVME_DNR;
}
}
static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
{
uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
uint16_t cid = (le32_to_cpu(req->cmd.cdw10) >> 16) & 0xffff;
NvmeSQueue *sq = n->sq[sqid];
NvmeRequest *r, *next;
int i;
req->cqe.result = 1;
if (nvme_check_sqid(n, sqid)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (sqid == 0) {
for (i = 0; i < n->outstanding_aers; i++) {
NvmeRequest *re = n->aer_reqs[i];
if (re->cqe.cid == cid) {
memmove(n->aer_reqs + i, n->aer_reqs + i + 1,
(n->outstanding_aers - i - 1) * sizeof(NvmeRequest *));
n->outstanding_aers--;
re->status = NVME_CMD_ABORT_REQ;
req->cqe.result = 0;
nvme_enqueue_req_completion(&n->admin_cq, re);
return NVME_SUCCESS;
}
}
}
QTAILQ_FOREACH_SAFE(r, &sq->out_req_list, entry, next) {
if (r->cqe.cid == cid) {
if (r->aiocb) {
blk_aio_cancel_async(r->aiocb);
}
break;
}
}
return NVME_SUCCESS;
}
static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
{
trace_pci_nvme_setfeat_timestamp(ts);
n->host_timestamp = le64_to_cpu(ts);
n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
}
static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
{
uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
union nvme_timestamp {
struct {
uint64_t timestamp:48;
uint64_t sync:1;
uint64_t origin:3;
uint64_t rsvd1:12;
};
uint64_t all;
};
union nvme_timestamp ts;
ts.all = 0;
ts.timestamp = n->host_timestamp + elapsed_time;
/* If the host timestamp is non-zero, set the timestamp origin */
ts.origin = n->host_timestamp ? 0x01 : 0x00;
trace_pci_nvme_getfeat_timestamp(ts.all);
return cpu_to_le64(ts.all);
}
static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
{
uint64_t timestamp = nvme_get_timestamp(n);
return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
}
static int nvme_get_feature_fdp(NvmeCtrl *n, uint32_t endgrpid,
uint32_t *result)
{
*result = 0;
if (!n->subsys || !n->subsys->endgrp.fdp.enabled) {
return NVME_INVALID_FIELD | NVME_DNR;
}
*result = FIELD_DP16(0, FEAT_FDP, FDPE, 1);
*result = FIELD_DP16(*result, FEAT_FDP, CONF_NDX, 0);
return NVME_SUCCESS;
}
static uint16_t nvme_get_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns,
NvmeRequest *req, uint32_t *result)
{
NvmeCmd *cmd = &req->cmd;
uint32_t cdw11 = le32_to_cpu(cmd->cdw11);
uint16_t ph = cdw11 & 0xffff;
uint8_t noet = (cdw11 >> 16) & 0xff;
uint16_t ruhid, ret;
uint32_t nentries = 0;
uint8_t s_events_ndx = 0;
size_t s_events_siz = sizeof(NvmeFdpEventDescr) * noet;
g_autofree NvmeFdpEventDescr *s_events = g_malloc0(s_events_siz);
NvmeRuHandle *ruh;
NvmeFdpEventDescr *s_event;
if (!n->subsys || !n->subsys->endgrp.fdp.enabled) {
return NVME_FDP_DISABLED | NVME_DNR;
}
if (!nvme_ph_valid(ns, ph)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
ruhid = ns->fdp.phs[ph];
ruh = &n->subsys->endgrp.fdp.ruhs[ruhid];
assert(ruh);
if (unlikely(noet == 0)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
for (uint8_t event_type = 0; event_type < FDP_EVT_MAX; event_type++) {
uint8_t shift = nvme_fdp_evf_shifts[event_type];
if (!shift && event_type) {
/*
* only first entry (event_type == 0) has a shift value of 0
* other entries are simply unpopulated.
*/
continue;
}
nentries++;
s_event = &s_events[s_events_ndx];
s_event->evt = event_type;
s_event->evta = (ruh->event_filter >> shift) & 0x1;
/* break if all `noet` entries are filled */
if ((++s_events_ndx) == noet) {
break;
}
}
ret = nvme_c2h(n, s_events, s_events_siz, req);
if (ret) {
return ret;
}
*result = nentries;
return NVME_SUCCESS;
}
static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
{
NvmeCmd *cmd = &req->cmd;
uint32_t dw10 = le32_to_cpu(cmd->cdw10);
uint32_t dw11 = le32_to_cpu(cmd->cdw11);
uint32_t nsid = le32_to_cpu(cmd->nsid);
uint32_t result = 0;
uint8_t fid = NVME_GETSETFEAT_FID(dw10);
NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
uint16_t iv;
NvmeNamespace *ns;
int i;
uint16_t endgrpid = 0, ret = NVME_SUCCESS;
static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
[NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
};
trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
if (!nvme_feature_support[fid]) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
/*
* The Reservation Notification Mask and Reservation Persistence
* features require a status code of Invalid Field in Command when
* NSID is FFFFFFFFh. Since the device does not support those
* features we can always return Invalid Namespace or Format as we
* should do for all other features.
*/
return NVME_INVALID_NSID | NVME_DNR;
}
if (!nvme_ns(n, nsid)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
}
switch (sel) {
case NVME_GETFEAT_SELECT_CURRENT:
break;
case NVME_GETFEAT_SELECT_SAVED:
/* no features are saveable by the controller; fallthrough */
case NVME_GETFEAT_SELECT_DEFAULT:
goto defaults;
case NVME_GETFEAT_SELECT_CAP:
result = nvme_feature_cap[fid];
goto out;
}
switch (fid) {
case NVME_TEMPERATURE_THRESHOLD:
result = 0;
/*
* The controller only implements the Composite Temperature sensor, so
* return 0 for all other sensors.
*/
if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
goto out;
}
switch (NVME_TEMP_THSEL(dw11)) {
case NVME_TEMP_THSEL_OVER:
result = n->features.temp_thresh_hi;
goto out;
case NVME_TEMP_THSEL_UNDER:
result = n->features.temp_thresh_low;
goto out;
}
return NVME_INVALID_FIELD | NVME_DNR;
case NVME_ERROR_RECOVERY:
if (!nvme_nsid_valid(n, nsid)) {
return NVME_INVALID_NSID | NVME_DNR;
}
ns = nvme_ns(n, nsid);
if (unlikely(!ns)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
result = ns->features.err_rec;
goto out;
case NVME_VOLATILE_WRITE_CACHE:
result = 0;
for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
result = blk_enable_write_cache(ns->blkconf.blk);
if (result) {
break;
}
}
trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
goto out;
case NVME_ASYNCHRONOUS_EVENT_CONF:
result = n->features.async_config;
goto out;
case NVME_TIMESTAMP:
return nvme_get_feature_timestamp(n, req);
case NVME_HOST_BEHAVIOR_SUPPORT:
return nvme_c2h(n, (uint8_t *)&n->features.hbs,
sizeof(n->features.hbs), req);
case NVME_FDP_MODE:
endgrpid = dw11 & 0xff;
if (endgrpid != 0x1) {
return NVME_INVALID_FIELD | NVME_DNR;
}
ret = nvme_get_feature_fdp(n, endgrpid, &result);
if (ret) {
return ret;
}
goto out;
case NVME_FDP_EVENTS:
if (!nvme_nsid_valid(n, nsid)) {
return NVME_INVALID_NSID | NVME_DNR;
}
ns = nvme_ns(n, nsid);
if (unlikely(!ns)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
ret = nvme_get_feature_fdp_events(n, ns, req, &result);
if (ret) {
return ret;
}
goto out;
default:
break;
}
defaults:
switch (fid) {
case NVME_TEMPERATURE_THRESHOLD:
result = 0;
if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
break;
}
if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
result = NVME_TEMPERATURE_WARNING;
}
break;
case NVME_NUMBER_OF_QUEUES:
result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16);
trace_pci_nvme_getfeat_numq(result);
break;
case NVME_INTERRUPT_VECTOR_CONF:
iv = dw11 & 0xffff;
if (iv >= n->conf_ioqpairs + 1) {
return NVME_INVALID_FIELD | NVME_DNR;
}
result = iv;
if (iv == n->admin_cq.vector) {
result |= NVME_INTVC_NOCOALESCING;
}
break;
case NVME_FDP_MODE:
endgrpid = dw11 & 0xff;
if (endgrpid != 0x1) {
return NVME_INVALID_FIELD | NVME_DNR;
}
ret = nvme_get_feature_fdp(n, endgrpid, &result);
if (ret) {
return ret;
}
break;
case NVME_WRITE_ATOMICITY:
result = n->dn;
break;
default:
result = nvme_feature_default[fid];
break;
}
out:
req->cqe.result = cpu_to_le32(result);
return ret;
}
static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
{
uint16_t ret;
uint64_t timestamp;
ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
if (ret) {
return ret;
}
nvme_set_timestamp(n, timestamp);
return NVME_SUCCESS;
}
static uint16_t nvme_set_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns,
NvmeRequest *req)
{
NvmeCmd *cmd = &req->cmd;
uint32_t cdw11 = le32_to_cpu(cmd->cdw11);
uint16_t ph = cdw11 & 0xffff;
uint8_t noet = (cdw11 >> 16) & 0xff;
uint16_t ret, ruhid;
uint8_t enable = le32_to_cpu(cmd->cdw12) & 0x1;
uint8_t event_mask = 0;
unsigned int i;
g_autofree uint8_t *events = g_malloc0(noet);
NvmeRuHandle *ruh = NULL;
assert(ns);
if (!n->subsys || !n->subsys->endgrp.fdp.enabled) {
return NVME_FDP_DISABLED | NVME_DNR;
}
if (!nvme_ph_valid(ns, ph)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
ruhid = ns->fdp.phs[ph];
ruh = &n->subsys->endgrp.fdp.ruhs[ruhid];
ret = nvme_h2c(n, events, noet, req);
if (ret) {
return ret;
}
for (i = 0; i < noet; i++) {
event_mask |= (1 << nvme_fdp_evf_shifts[events[i]]);
}
if (enable) {
ruh->event_filter |= event_mask;
} else {
ruh->event_filter = ruh->event_filter & ~event_mask;
}
return NVME_SUCCESS;
}
static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
{
NvmeNamespace *ns = NULL;
NvmeCmd *cmd = &req->cmd;
uint32_t dw10 = le32_to_cpu(cmd->cdw10);
uint32_t dw11 = le32_to_cpu(cmd->cdw11);
uint32_t nsid = le32_to_cpu(cmd->nsid);
uint8_t fid = NVME_GETSETFEAT_FID(dw10);
uint8_t save = NVME_SETFEAT_SAVE(dw10);
uint16_t status;
int i;
NvmeIdCtrl *id = &n->id_ctrl;
NvmeAtomic *atomic = &n->atomic;
trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
return NVME_FID_NOT_SAVEABLE | NVME_DNR;
}
if (!nvme_feature_support[fid]) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
if (nsid != NVME_NSID_BROADCAST) {
if (!nvme_nsid_valid(n, nsid)) {
return NVME_INVALID_NSID | NVME_DNR;
}
ns = nvme_ns(n, nsid);
if (unlikely(!ns)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
}
} else if (nsid && nsid != NVME_NSID_BROADCAST) {
if (!nvme_nsid_valid(n, nsid)) {
return NVME_INVALID_NSID | NVME_DNR;
}
return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
}
if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
}
switch (fid) {
case NVME_TEMPERATURE_THRESHOLD:
if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
break;
}
switch (NVME_TEMP_THSEL(dw11)) {
case NVME_TEMP_THSEL_OVER:
n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
break;
case NVME_TEMP_THSEL_UNDER:
n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
break;
default:
return NVME_INVALID_FIELD | NVME_DNR;
}
if ((n->temperature >= n->features.temp_thresh_hi) ||
(n->temperature <= n->features.temp_thresh_low)) {
nvme_smart_event(n, NVME_SMART_TEMPERATURE);
}
break;
case NVME_ERROR_RECOVERY:
if (nsid == NVME_NSID_BROADCAST) {
for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
ns->features.err_rec = dw11;
}
}
break;
}
assert(ns);
if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
ns->features.err_rec = dw11;
}
break;
case NVME_VOLATILE_WRITE_CACHE:
for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
blk_flush(ns->blkconf.blk);
}
blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
}
break;
case NVME_NUMBER_OF_QUEUES:
if (n->qs_created) {
return NVME_CMD_SEQ_ERROR | NVME_DNR;
}
/*
* NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
* and NSQR.
*/
if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
return NVME_INVALID_FIELD | NVME_DNR;
}
trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
((dw11 >> 16) & 0xffff) + 1,
n->conf_ioqpairs,
n->conf_ioqpairs);
req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) |
((n->conf_ioqpairs - 1) << 16));
break;
case NVME_ASYNCHRONOUS_EVENT_CONF:
n->features.async_config = dw11;
break;
case NVME_TIMESTAMP:
return nvme_set_feature_timestamp(n, req);
case NVME_HOST_BEHAVIOR_SUPPORT:
status = nvme_h2c(n, (uint8_t *)&n->features.hbs,
sizeof(n->features.hbs), req);
if (status) {
return status;
}
for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
ns->id_ns.nlbaf = ns->nlbaf - 1;
if (!n->features.hbs.lbafee) {
ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15);
}
}
return status;
case NVME_COMMAND_SET_PROFILE:
if (dw11 & 0x1ff) {
trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
}
break;
case NVME_FDP_MODE:
/* spec: abort with cmd seq err if there's one or more NS' in endgrp */
return NVME_CMD_SEQ_ERROR | NVME_DNR;
case NVME_FDP_EVENTS:
return nvme_set_feature_fdp_events(n, ns, req);
case NVME_WRITE_ATOMICITY:
n->dn = 0x1 & dw11;
if (n->dn) {
atomic->atomic_max_write_size = le16_to_cpu(id->awupf) + 1;
} else {
atomic->atomic_max_write_size = le16_to_cpu(id->awun) + 1;
}
if (atomic->atomic_max_write_size == 1) {
atomic->atomic_writes = 0;
} else {
atomic->atomic_writes = 1;
}
break;
default:
return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
}
return NVME_SUCCESS;
}
static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
{
trace_pci_nvme_aer(nvme_cid(req));
if (n->outstanding_aers > n->params.aerl) {
trace_pci_nvme_aer_aerl_exceeded();
return NVME_AER_LIMIT_EXCEEDED;
}
n->aer_reqs[n->outstanding_aers] = req;
n->outstanding_aers++;
if (!QTAILQ_EMPTY(&n->aer_queue)) {
nvme_process_aers(n);
}
return NVME_NO_COMPLETE;
}
static void nvme_update_dmrsl(NvmeCtrl *n)
{
int nsid;
for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
NvmeNamespace *ns = nvme_ns(n, nsid);
if (!ns) {
continue;
}
n->dmrsl = MIN_NON_ZERO(n->dmrsl,
BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
}
}
static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
{
uint32_t cc = ldl_le_p(&n->bar.cc);
ns->iocs = nvme_cse_iocs_none;
switch (ns->csi) {
case NVME_CSI_NVM:
if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) {
ns->iocs = nvme_cse_iocs_nvm;
}
break;
case NVME_CSI_ZONED:
if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) {
ns->iocs = nvme_cse_iocs_zoned;
} else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) {
ns->iocs = nvme_cse_iocs_nvm;
}
break;
}
}
static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
{
NvmeNamespace *ns;
NvmeCtrl *ctrl;
uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
uint32_t nsid = le32_to_cpu(req->cmd.nsid);
uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
uint8_t sel = dw10 & 0xf;
uint16_t *nr_ids = &list[0];
uint16_t *ids = &list[1];
uint16_t ret;
int i;
trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
if (!nvme_nsid_valid(n, nsid)) {
return NVME_INVALID_NSID | NVME_DNR;
}
ns = nvme_subsys_ns(n->subsys, nsid);
if (!ns) {
return NVME_INVALID_FIELD | NVME_DNR;
}
ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
if (ret) {
return ret;
}
if (!*nr_ids) {
return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
}
*nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
for (i = 0; i < *nr_ids; i++) {
ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
if (!ctrl) {
return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
}
switch (sel) {
case NVME_NS_ATTACHMENT_ATTACH:
if (nvme_ns(ctrl, nsid)) {
return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
}
if (ns->attached && !ns->params.shared) {
return NVME_NS_PRIVATE | NVME_DNR;
}
nvme_attach_ns(ctrl, ns);
nvme_select_iocs_ns(ctrl, ns);
break;
case NVME_NS_ATTACHMENT_DETACH:
if (!nvme_ns(ctrl, nsid)) {
return NVME_NS_NOT_ATTACHED | NVME_DNR;
}
ctrl->namespaces[nsid] = NULL;
ns->attached--;
nvme_update_dmrsl(ctrl);
break;
default:
return NVME_INVALID_FIELD | NVME_DNR;
}
/*
* Add namespace id to the changed namespace id list for event clearing
* via Get Log Page command.
*/
if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
NVME_LOG_CHANGED_NSLIST);
}
}
return NVME_SUCCESS;
}
typedef struct NvmeFormatAIOCB {
BlockAIOCB common;
BlockAIOCB *aiocb;
NvmeRequest *req;
int ret;
NvmeNamespace *ns;
uint32_t nsid;
bool broadcast;
int64_t offset;
uint8_t lbaf;
uint8_t mset;
uint8_t pi;
uint8_t pil;
} NvmeFormatAIOCB;
static void nvme_format_cancel(BlockAIOCB *aiocb)
{
NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common);
iocb->ret = -ECANCELED;
if (iocb->aiocb) {
blk_aio_cancel_async(iocb->aiocb);
iocb->aiocb = NULL;
}
}
static const AIOCBInfo nvme_format_aiocb_info = {
.aiocb_size = sizeof(NvmeFormatAIOCB),
.cancel_async = nvme_format_cancel,
};
static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset,
uint8_t pi, uint8_t pil)
{
uint8_t lbafl = lbaf & 0xf;
uint8_t lbafu = lbaf >> 4;
trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil);
ns->id_ns.dps = (pil << 3) | pi;
ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl;
nvme_ns_init_format(ns);
}
static void nvme_do_format(NvmeFormatAIOCB *iocb);
static void nvme_format_ns_cb(void *opaque, int ret)
{
NvmeFormatAIOCB *iocb = opaque;
NvmeNamespace *ns = iocb->ns;
int bytes;
if (iocb->ret < 0) {
goto done;
} else if (ret < 0) {
iocb->ret = ret;
goto done;
}
assert(ns);
if (iocb->offset < ns->size) {
bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset);
iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset,
bytes, BDRV_REQ_MAY_UNMAP,
nvme_format_ns_cb, iocb);
iocb->offset += bytes;
return;
}
nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil);
ns->status = 0x0;
iocb->ns = NULL;
iocb->offset = 0;
done:
nvme_do_format(iocb);
}
static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi)
{
if (ns->params.zoned) {
return NVME_INVALID_FORMAT | NVME_DNR;
}
if (lbaf > ns->id_ns.nlbaf) {
return NVME_INVALID_FORMAT | NVME_DNR;
}
if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) {
return NVME_INVALID_FORMAT | NVME_DNR;
}
if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
return NVME_INVALID_FIELD | NVME_DNR;
}
return NVME_SUCCESS;
}
static void nvme_do_format(NvmeFormatAIOCB *iocb)
{
NvmeRequest *req = iocb->req;
NvmeCtrl *n = nvme_ctrl(req);
uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
uint8_t lbaf = dw10 & 0xf;
uint8_t pi = (dw10 >> 5) & 0x7;
uint16_t status;
int i;
if (iocb->ret < 0) {
goto done;
}
if (iocb->broadcast) {
for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
iocb->ns = nvme_ns(n, i);
if (iocb->ns) {
iocb->nsid = i;
break;
}
}
}
if (!iocb->ns) {
goto done;
}
status = nvme_format_check(iocb->ns, lbaf, pi);
if (status) {
req->status = status;
goto done;
}
iocb->ns->status = NVME_FORMAT_IN_PROGRESS;
nvme_format_ns_cb(iocb, 0);
return;
done:
iocb->common.cb(iocb->common.opaque, iocb->ret);
qemu_aio_unref(iocb);
}
static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
{
NvmeFormatAIOCB *iocb;
uint32_t nsid = le32_to_cpu(req->cmd.nsid);
uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
uint8_t lbaf = dw10 & 0xf;
uint8_t mset = (dw10 >> 4) & 0x1;
uint8_t pi = (dw10 >> 5) & 0x7;
uint8_t pil = (dw10 >> 8) & 0x1;
uint8_t lbafu = (dw10 >> 12) & 0x3;
uint16_t status;
iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req);
iocb->req = req;
iocb->ret = 0;
iocb->ns = NULL;
iocb->nsid = 0;
iocb->lbaf = lbaf;
iocb->mset = mset;
iocb->pi = pi;
iocb->pil = pil;
iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
iocb->offset = 0;
if (n->features.hbs.lbafee) {
iocb->lbaf |= lbafu << 4;
}
if (!iocb->broadcast) {
if (!nvme_nsid_valid(n, nsid)) {
status = NVME_INVALID_NSID | NVME_DNR;
goto out;
}
iocb->ns = nvme_ns(n, nsid);
if (!iocb->ns) {
status = NVME_INVALID_FIELD | NVME_DNR;
goto out;
}
}
req->aiocb = &iocb->common;
nvme_do_format(iocb);
return NVME_NO_COMPLETE;
out:
qemu_aio_unref(iocb);
return status;
}
static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total,
int *num_prim, int *num_sec)
{
*num_total = le32_to_cpu(rt ?
n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt);
*num_prim = le16_to_cpu(rt ?
n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap);
*num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa);
}
static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req,
uint16_t cntlid, uint8_t rt,
int nr)
{
int num_total, num_prim, num_sec;
if (cntlid != n->cntlid) {
return NVME_INVALID_CTRL_ID | NVME_DNR;
}
nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
if (nr > num_total) {
return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
}
if (nr > num_total - num_sec) {
return NVME_INVALID_RESOURCE_ID | NVME_DNR;
}
if (rt) {
n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr);
} else {
n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr);
}
req->cqe.result = cpu_to_le32(nr);
return req->status;
}
static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl,
uint8_t rt, int nr)
{
int prev_nr, prev_total;
if (rt) {
prev_nr = le16_to_cpu(sctrl->nvi);
prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa);
sctrl->nvi = cpu_to_le16(nr);
n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr);
} else {
prev_nr = le16_to_cpu(sctrl->nvq);
prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa);
sctrl->nvq = cpu_to_le16(nr);
n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr);
}
}
static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req,
uint16_t cntlid, uint8_t rt, int nr)
{
int num_total, num_prim, num_sec, num_free, diff, limit;
NvmeSecCtrlEntry *sctrl;
sctrl = nvme_sctrl_for_cntlid(n, cntlid);
if (!sctrl) {
return NVME_INVALID_CTRL_ID | NVME_DNR;
}
if (sctrl->scs) {
return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
}
limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm);
if (nr > limit) {
return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
}
nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
num_free = num_total - num_prim - num_sec;
diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq);
if (diff > num_free) {
return NVME_INVALID_RESOURCE_ID | NVME_DNR;
}
nvme_update_virt_res(n, sctrl, rt, nr);
req->cqe.result = cpu_to_le32(nr);
return req->status;
}
static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online)
{
PCIDevice *pci = PCI_DEVICE(n);
NvmeCtrl *sn = NULL;
NvmeSecCtrlEntry *sctrl;
int vf_index;
sctrl = nvme_sctrl_for_cntlid(n, cntlid);
if (!sctrl) {
return NVME_INVALID_CTRL_ID | NVME_DNR;
}
if (!pci_is_vf(pci)) {
vf_index = le16_to_cpu(sctrl->vfn) - 1;
sn = NVME(pcie_sriov_get_vf_at_index(pci, vf_index));
}
if (online) {
if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) {
return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
}
if (!sctrl->scs) {
sctrl->scs = 0x1;
nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
}
} else {
nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0);
nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0);
if (sctrl->scs) {
sctrl->scs = 0x0;
if (sn) {
nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
}
}
}
return NVME_SUCCESS;
}
static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req)
{
uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
uint8_t act = dw10 & 0xf;
uint8_t rt = (dw10 >> 8) & 0x7;
uint16_t cntlid = (dw10 >> 16) & 0xffff;
int nr = dw11 & 0xffff;
trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr);
if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) {
return NVME_INVALID_RESOURCE_ID | NVME_DNR;
}
switch (act) {
case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN:
return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr);
case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC:
return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr);
case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE:
return nvme_virt_set_state(n, cntlid, true);
case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE:
return nvme_virt_set_state(n, cntlid, false);
default:
return NVME_INVALID_FIELD | NVME_DNR;
}
}
static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req)
{
PCIDevice *pci = PCI_DEVICE(n);
uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1);
uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2);
int i;
/* Address should be page aligned */
if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
/* Save shadow buffer base addr for use during queue creation */
n->dbbuf_dbs = dbs_addr;
n->dbbuf_eis = eis_addr;
n->dbbuf_enabled = true;
for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
NvmeSQueue *sq = n->sq[i];
NvmeCQueue *cq = n->cq[i];
if (sq) {
/*
* CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3)
* nvme_process_db() uses this hard-coded way to calculate
* doorbell offsets. Be consistent with that here.
*/
sq->db_addr = dbs_addr + (i << 3);
sq->ei_addr = eis_addr + (i << 3);
stl_le_pci_dma(pci, sq->db_addr, sq->tail, MEMTXATTRS_UNSPECIFIED);
if (n->params.ioeventfd && sq->sqid != 0) {
if (!nvme_init_sq_ioeventfd(sq)) {
sq->ioeventfd_enabled = true;
}
}
}
if (cq) {
/* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */
cq->db_addr = dbs_addr + (i << 3) + (1 << 2);
cq->ei_addr = eis_addr + (i << 3) + (1 << 2);
stl_le_pci_dma(pci, cq->db_addr, cq->head, MEMTXATTRS_UNSPECIFIED);
if (n->params.ioeventfd && cq->cqid != 0) {
if (!nvme_init_cq_ioeventfd(cq)) {
cq->ioeventfd_enabled = true;
}
}
}
}
trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr);
return NVME_SUCCESS;
}
static uint16_t nvme_directive_send(NvmeCtrl *n, NvmeRequest *req)
{
return NVME_INVALID_FIELD | NVME_DNR;
}
static uint16_t nvme_directive_receive(NvmeCtrl *n, NvmeRequest *req)
{
NvmeNamespace *ns;
uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
uint32_t nsid = le32_to_cpu(req->cmd.nsid);
uint8_t doper, dtype;
uint32_t numd, trans_len;
NvmeDirectiveIdentify id = {
.supported = 1 << NVME_DIRECTIVE_IDENTIFY,
.enabled = 1 << NVME_DIRECTIVE_IDENTIFY,
};
numd = dw10 + 1;
doper = dw11 & 0xff;
dtype = (dw11 >> 8) & 0xff;
trans_len = MIN(sizeof(NvmeDirectiveIdentify), numd << 2);
if (nsid == NVME_NSID_BROADCAST || dtype != NVME_DIRECTIVE_IDENTIFY ||
doper != NVME_DIRECTIVE_RETURN_PARAMS) {
return NVME_INVALID_FIELD | NVME_DNR;
}
ns = nvme_ns(n, nsid);
if (!ns) {
return NVME_INVALID_FIELD | NVME_DNR;
}
switch (dtype) {
case NVME_DIRECTIVE_IDENTIFY:
switch (doper) {
case NVME_DIRECTIVE_RETURN_PARAMS:
if (ns->endgrp && ns->endgrp->fdp.enabled) {
id.supported |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT;
id.enabled |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT;
id.persistent |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT;
}
return nvme_c2h(n, (uint8_t *)&id, trans_len, req);
default:
return NVME_INVALID_FIELD | NVME_DNR;
}
default:
return NVME_INVALID_FIELD;
}
}
static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
{
trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
nvme_adm_opc_str(req->cmd.opcode));
if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
return NVME_INVALID_OPCODE | NVME_DNR;
}
/* SGLs shall not be used for Admin commands in NVMe over PCIe */
if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
return NVME_INVALID_FIELD;
}
switch (req->cmd.opcode) {
case NVME_ADM_CMD_DELETE_SQ:
return nvme_del_sq(n, req);
case NVME_ADM_CMD_CREATE_SQ:
return nvme_create_sq(n, req);
case NVME_ADM_CMD_GET_LOG_PAGE:
return nvme_get_log(n, req);
case NVME_ADM_CMD_DELETE_CQ:
return nvme_del_cq(n, req);
case NVME_ADM_CMD_CREATE_CQ:
return nvme_create_cq(n, req);
case NVME_ADM_CMD_IDENTIFY:
return nvme_identify(n, req);
case NVME_ADM_CMD_ABORT:
return nvme_abort(n, req);
case NVME_ADM_CMD_SET_FEATURES:
return nvme_set_feature(n, req);
case NVME_ADM_CMD_GET_FEATURES:
return nvme_get_feature(n, req);
case NVME_ADM_CMD_ASYNC_EV_REQ:
return nvme_aer(n, req);
case NVME_ADM_CMD_NS_ATTACHMENT:
return nvme_ns_attachment(n, req);
case NVME_ADM_CMD_VIRT_MNGMT:
return nvme_virt_mngmt(n, req);
case NVME_ADM_CMD_DBBUF_CONFIG:
return nvme_dbbuf_config(n, req);
case NVME_ADM_CMD_FORMAT_NVM:
return nvme_format(n, req);
case NVME_ADM_CMD_DIRECTIVE_SEND:
return nvme_directive_send(n, req);
case NVME_ADM_CMD_DIRECTIVE_RECV:
return nvme_directive_receive(n, req);
default:
g_assert_not_reached();
}
return NVME_INVALID_OPCODE | NVME_DNR;
}
static void nvme_update_sq_eventidx(const NvmeSQueue *sq)
{
trace_pci_nvme_update_sq_eventidx(sq->sqid, sq->tail);
stl_le_pci_dma(PCI_DEVICE(sq->ctrl), sq->ei_addr, sq->tail,
MEMTXATTRS_UNSPECIFIED);
}
static void nvme_update_sq_tail(NvmeSQueue *sq)
{
ldl_le_pci_dma(PCI_DEVICE(sq->ctrl), sq->db_addr, &sq->tail,
MEMTXATTRS_UNSPECIFIED);
trace_pci_nvme_update_sq_tail(sq->sqid, sq->tail);
}
#define NVME_ATOMIC_NO_START 0
#define NVME_ATOMIC_START_ATOMIC 1
#define NVME_ATOMIC_START_NONATOMIC 2
static int nvme_atomic_write_check(NvmeCtrl *n, NvmeCmd *cmd,
NvmeAtomic *atomic)
{
NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb);
uint64_t elba = slba + nlb;
bool cmd_atomic_wr = true;
int i;
if ((cmd->opcode == NVME_CMD_READ) || ((cmd->opcode == NVME_CMD_WRITE) &&
((rw->nlb + 1) > atomic->atomic_max_write_size))) {
cmd_atomic_wr = false;
}
/*
* Walk the queues to see if there are any atomic conflicts.
*/
for (i = 1; i < n->params.max_ioqpairs + 1; i++) {
NvmeSQueue *sq;
NvmeRequest *req;
NvmeRwCmd *req_rw;
uint64_t req_slba;
uint32_t req_nlb;
uint64_t req_elba;
sq = n->sq[i];
if (!sq) {
continue;
}
/*
* Walk all the requests on a given queue.
*/
QTAILQ_FOREACH(req, &sq->out_req_list, entry) {
req_rw = (NvmeRwCmd *)&req->cmd;
if (((req_rw->opcode == NVME_CMD_WRITE) ||
(req_rw->opcode == NVME_CMD_READ)) &&
(cmd->nsid == req->ns->params.nsid)) {
req_slba = le64_to_cpu(req_rw->slba);
req_nlb = (uint32_t)le16_to_cpu(req_rw->nlb);
req_elba = req_slba + req_nlb;
if (cmd_atomic_wr) {
if ((elba >= req_slba) && (slba <= req_elba)) {
return NVME_ATOMIC_NO_START;
}
} else {
if (req->atomic_write && ((elba >= req_slba) &&
(slba <= req_elba))) {
return NVME_ATOMIC_NO_START;
}
}
}
}
}
if (cmd_atomic_wr) {
return NVME_ATOMIC_START_ATOMIC;
}
return NVME_ATOMIC_START_NONATOMIC;
}
static NvmeAtomic *nvme_get_atomic(NvmeCtrl *n, NvmeCmd *cmd)
{
if (n->atomic.atomic_writes) {
return &n->atomic;
}
return NULL;
}
static void nvme_process_sq(void *opaque)
{
NvmeSQueue *sq = opaque;
NvmeCtrl *n = sq->ctrl;
NvmeCQueue *cq = n->cq[sq->cqid];
uint16_t status;
hwaddr addr;
NvmeCmd cmd;
NvmeRequest *req;
if (n->dbbuf_enabled) {
nvme_update_sq_tail(sq);
}
while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
NvmeAtomic *atomic;
bool cmd_is_atomic;
addr = sq->dma_addr + (sq->head << NVME_SQES);
if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
trace_pci_nvme_err_addr_read(addr);
trace_pci_nvme_err_cfs();
stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
break;
}
atomic = nvme_get_atomic(n, &cmd);
cmd_is_atomic = false;
if (sq->sqid && atomic) {
int ret;
ret = nvme_atomic_write_check(n, &cmd, atomic);
switch (ret) {
case NVME_ATOMIC_NO_START:
qemu_bh_schedule(sq->bh);
return;
case NVME_ATOMIC_START_ATOMIC:
cmd_is_atomic = true;
break;
case NVME_ATOMIC_START_NONATOMIC:
default:
break;
}
}
nvme_inc_sq_head(sq);
req = QTAILQ_FIRST(&sq->req_list);
QTAILQ_REMOVE(&sq->req_list, req, entry);
QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
nvme_req_clear(req);
req->cqe.cid = cmd.cid;
memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
if (sq->sqid && atomic) {
req->atomic_write = cmd_is_atomic;
}
status = sq->sqid ? nvme_io_cmd(n, req) :
nvme_admin_cmd(n, req);
if (status != NVME_NO_COMPLETE) {
req->status = status;
nvme_enqueue_req_completion(cq, req);
}
if (n->dbbuf_enabled) {
nvme_update_sq_eventidx(sq);
nvme_update_sq_tail(sq);
}
}
}
static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size)
{
uint8_t *config;
if (!msix_present(pci_dev)) {
return;
}
assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr);
config = pci_dev->config + pci_dev->msix_cap;
pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE,
table_size - 1);
}
static void nvme_activate_virt_res(NvmeCtrl *n)
{
PCIDevice *pci_dev = PCI_DEVICE(n);
NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
NvmeSecCtrlEntry *sctrl;
/* -1 to account for the admin queue */
if (pci_is_vf(pci_dev)) {
sctrl = nvme_sctrl(n);
cap->vqprt = sctrl->nvq;
cap->viprt = sctrl->nvi;
n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
} else {
cap->vqrfap = n->next_pri_ctrl_cap.vqrfap;
cap->virfap = n->next_pri_ctrl_cap.virfap;
n->conf_ioqpairs = le16_to_cpu(cap->vqprt) +
le16_to_cpu(cap->vqrfap) - 1;
n->conf_msix_qsize = le16_to_cpu(cap->viprt) +
le16_to_cpu(cap->virfap);
}
}
static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst)
{
PCIDevice *pci_dev = PCI_DEVICE(n);
NvmeSecCtrlEntry *sctrl;
NvmeNamespace *ns;
int i;
for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
nvme_ns_drain(ns);
}
for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
if (n->sq[i] != NULL) {
nvme_free_sq(n->sq[i], n);
}
}
for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
if (n->cq[i] != NULL) {
nvme_free_cq(n->cq[i], n);
}
}
while (!QTAILQ_EMPTY(&n->aer_queue)) {
NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
QTAILQ_REMOVE(&n->aer_queue, event, entry);
g_free(event);
}
if (n->params.sriov_max_vfs) {
if (!pci_is_vf(pci_dev)) {
for (i = 0; i < n->nr_sec_ctrls; i++) {
sctrl = &n->sec_ctrl_list[i];
nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
}
}
if (rst != NVME_RESET_CONTROLLER) {
nvme_activate_virt_res(n);
}
}
n->aer_queued = 0;
n->aer_mask = 0;
n->outstanding_aers = 0;
n->qs_created = false;
n->dn = n->params.atomic_dn; /* Set Disable Normal */
nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
if (pci_is_vf(pci_dev)) {
sctrl = nvme_sctrl(n);
stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED);
} else {
stl_le_p(&n->bar.csts, 0);
}
stl_le_p(&n->bar.intms, 0);
stl_le_p(&n->bar.intmc, 0);
stl_le_p(&n->bar.cc, 0);
n->dbbuf_dbs = 0;
n->dbbuf_eis = 0;
n->dbbuf_enabled = false;
}
static void nvme_ctrl_shutdown(NvmeCtrl *n)
{
NvmeNamespace *ns;
int i;
if (n->pmr.dev) {
memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
}
for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
nvme_ns_shutdown(ns);
}
}
static void nvme_select_iocs(NvmeCtrl *n)
{
NvmeNamespace *ns;
int i;
for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
nvme_select_iocs_ns(n, ns);
}
}
static int nvme_start_ctrl(NvmeCtrl *n)
{
uint64_t cap = ldq_le_p(&n->bar.cap);
uint32_t cc = ldl_le_p(&n->bar.cc);
uint32_t aqa = ldl_le_p(&n->bar.aqa);
uint64_t asq = ldq_le_p(&n->bar.asq);
uint64_t acq = ldq_le_p(&n->bar.acq);
uint32_t page_bits = NVME_CC_MPS(cc) + 12;
uint32_t page_size = 1 << page_bits;
NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
if (pci_is_vf(PCI_DEVICE(n)) && !sctrl->scs) {
trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi),
le16_to_cpu(sctrl->nvq));
return -1;
}
if (unlikely(n->cq[0])) {
trace_pci_nvme_err_startfail_cq();
return -1;
}
if (unlikely(n->sq[0])) {
trace_pci_nvme_err_startfail_sq();
return -1;
}
if (unlikely(asq & (page_size - 1))) {
trace_pci_nvme_err_startfail_asq_misaligned(asq);
return -1;
}
if (unlikely(acq & (page_size - 1))) {
trace_pci_nvme_err_startfail_acq_misaligned(acq);
return -1;
}
if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) {
trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc));
return -1;
}
if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) {
trace_pci_nvme_err_startfail_page_too_small(
NVME_CC_MPS(cc),
NVME_CAP_MPSMIN(cap));
return -1;
}
if (unlikely(NVME_CC_MPS(cc) >
NVME_CAP_MPSMAX(cap))) {
trace_pci_nvme_err_startfail_page_too_large(
NVME_CC_MPS(cc),
NVME_CAP_MPSMAX(cap));
return -1;
}
if (unlikely(!NVME_AQA_ASQS(aqa))) {
trace_pci_nvme_err_startfail_asqent_sz_zero();
return -1;
}
if (unlikely(!NVME_AQA_ACQS(aqa))) {
trace_pci_nvme_err_startfail_acqent_sz_zero();
return -1;
}
n->page_bits = page_bits;
n->page_size = page_size;
n->max_prp_ents = n->page_size / sizeof(uint64_t);
nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1);
nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1);
nvme_set_timestamp(n, 0ULL);
nvme_select_iocs(n);
return 0;
}
static void nvme_cmb_enable_regs(NvmeCtrl *n)
{
uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc);
uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz);
NVME_CMBLOC_SET_CDPCILS(cmbloc, 1);
NVME_CMBLOC_SET_CDPMLS(cmbloc, 1);
NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR);
stl_le_p(&n->bar.cmbloc, cmbloc);
NVME_CMBSZ_SET_SQS(cmbsz, 1);
NVME_CMBSZ_SET_CQS(cmbsz, 0);
NVME_CMBSZ_SET_LISTS(cmbsz, 1);
NVME_CMBSZ_SET_RDS(cmbsz, 1);
NVME_CMBSZ_SET_WDS(cmbsz, 1);
NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */
NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb);
stl_le_p(&n->bar.cmbsz, cmbsz);
}
static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
unsigned size)
{
PCIDevice *pci = PCI_DEVICE(n);
uint64_t cap = ldq_le_p(&n->bar.cap);
uint32_t cc = ldl_le_p(&n->bar.cc);
uint32_t intms = ldl_le_p(&n->bar.intms);
uint32_t csts = ldl_le_p(&n->bar.csts);
uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts);
if (unlikely(offset & (sizeof(uint32_t) - 1))) {
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
"MMIO write not 32-bit aligned,"
" offset=0x%"PRIx64"", offset);
/* should be ignored, fall through for now */
}
if (unlikely(size < sizeof(uint32_t))) {
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
"MMIO write smaller than 32-bits,"
" offset=0x%"PRIx64", size=%u",
offset, size);
/* should be ignored, fall through for now */
}
switch (offset) {
case NVME_REG_INTMS:
if (unlikely(msix_enabled(pci))) {
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
"undefined access to interrupt mask set"
" when MSI-X is enabled");
/* should be ignored, fall through for now */
}
intms |= data;
stl_le_p(&n->bar.intms, intms);
n->bar.intmc = n->bar.intms;
trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms);
nvme_irq_check(n);
break;
case NVME_REG_INTMC:
if (unlikely(msix_enabled(pci))) {
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
"undefined access to interrupt mask clr"
" when MSI-X is enabled");
/* should be ignored, fall through for now */
}
intms &= ~data;
stl_le_p(&n->bar.intms, intms);
n->bar.intmc = n->bar.intms;
trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms);
nvme_irq_check(n);
break;
case NVME_REG_CC:
stl_le_p(&n->bar.cc, data);
trace_pci_nvme_mmio_cfg(data & 0xffffffff);
if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) {
trace_pci_nvme_mmio_shutdown_set();
nvme_ctrl_shutdown(n);
csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
csts |= NVME_CSTS_SHST_COMPLETE;
} else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) {
trace_pci_nvme_mmio_shutdown_cleared();
csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
}
if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) {
if (unlikely(nvme_start_ctrl(n))) {
trace_pci_nvme_err_startfail();
csts = NVME_CSTS_FAILED;
} else {
trace_pci_nvme_mmio_start_success();
csts = NVME_CSTS_READY;
}
} else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) {
trace_pci_nvme_mmio_stopped();
nvme_ctrl_reset(n, NVME_RESET_CONTROLLER);
break;
}
stl_le_p(&n->bar.csts, csts);
break;
case NVME_REG_CSTS:
if (data & (1 << 4)) {
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
"attempted to W1C CSTS.NSSRO"
" but CAP.NSSRS is zero (not supported)");
} else if (data != 0) {
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
"attempted to set a read only bit"
" of controller status");
}
break;
case NVME_REG_NSSR:
if (data == 0x4e564d65) {
trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
} else {
/* The spec says that writes of other values have no effect */
return;
}
break;
case NVME_REG_AQA:
stl_le_p(&n->bar.aqa, data);
trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
break;
case NVME_REG_ASQ:
stn_le_p(&n->bar.asq, size, data);
trace_pci_nvme_mmio_asqaddr(data);
break;
case NVME_REG_ASQ + 4:
stl_le_p((uint8_t *)&n->bar.asq + 4, data);
trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq));
break;
case NVME_REG_ACQ:
trace_pci_nvme_mmio_acqaddr(data);
stn_le_p(&n->bar.acq, size, data);
break;
case NVME_REG_ACQ + 4:
stl_le_p((uint8_t *)&n->bar.acq + 4, data);
trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq));
break;
case NVME_REG_CMBLOC:
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
"invalid write to reserved CMBLOC"
" when CMBSZ is zero, ignored");
return;
case NVME_REG_CMBSZ:
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
"invalid write to read only CMBSZ, ignored");
return;
case NVME_REG_CMBMSC:
if (!NVME_CAP_CMBS(cap)) {
return;
}
stn_le_p(&n->bar.cmbmsc, size, data);
n->cmb.cmse = false;
if (NVME_CMBMSC_CRE(data)) {
nvme_cmb_enable_regs(n);
if (NVME_CMBMSC_CMSE(data)) {
uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc);
hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT;
if (cba + int128_get64(n->cmb.mem.size) < cba) {
uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts);
NVME_CMBSTS_SET_CBAI(cmbsts, 1);
stl_le_p(&n->bar.cmbsts, cmbsts);
return;
}
n->cmb.cba = cba;
n->cmb.cmse = true;
}
} else {
n->bar.cmbsz = 0;
n->bar.cmbloc = 0;
}
return;
case NVME_REG_CMBMSC + 4:
stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data);
return;
case NVME_REG_PMRCAP:
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
"invalid write to PMRCAP register, ignored");
return;
case NVME_REG_PMRCTL:
if (!NVME_CAP_PMRS(cap)) {
return;
}
stl_le_p(&n->bar.pmrctl, data);
if (NVME_PMRCTL_EN(data)) {
memory_region_set_enabled(&n->pmr.dev->mr, true);
pmrsts = 0;
} else {
memory_region_set_enabled(&n->pmr.dev->mr, false);
NVME_PMRSTS_SET_NRDY(pmrsts, 1);
n->pmr.cmse = false;
}
stl_le_p(&n->bar.pmrsts, pmrsts);
return;
case NVME_REG_PMRSTS:
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
"invalid write to PMRSTS register, ignored");
return;
case NVME_REG_PMREBS:
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
"invalid write to PMREBS register, ignored");
return;
case NVME_REG_PMRSWTP:
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
"invalid write to PMRSWTP register, ignored");
return;
case NVME_REG_PMRMSCL:
if (!NVME_CAP_PMRS(cap)) {
return;
}
stl_le_p(&n->bar.pmrmscl, data);
n->pmr.cmse = false;
if (NVME_PMRMSCL_CMSE(data)) {
uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu);
hwaddr cba = pmrmscu << 32 |
(NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT);
if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
NVME_PMRSTS_SET_CBAI(pmrsts, 1);
stl_le_p(&n->bar.pmrsts, pmrsts);
return;
}
n->pmr.cmse = true;
n->pmr.cba = cba;
}
return;
case NVME_REG_PMRMSCU:
if (!NVME_CAP_PMRS(cap)) {
return;
}
stl_le_p(&n->bar.pmrmscu, data);
return;
default:
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
"invalid MMIO write,"
" offset=0x%"PRIx64", data=%"PRIx64"",
offset, data);
break;
}
}
static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
{
NvmeCtrl *n = (NvmeCtrl *)opaque;
uint8_t *ptr = (uint8_t *)&n->bar;
trace_pci_nvme_mmio_read(addr, size);
if (unlikely(addr & (sizeof(uint32_t) - 1))) {
NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
"MMIO read not 32-bit aligned,"
" offset=0x%"PRIx64"", addr);
/* should RAZ, fall through for now */
} else if (unlikely(size < sizeof(uint32_t))) {
NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
"MMIO read smaller than 32-bits,"
" offset=0x%"PRIx64"", addr);
/* should RAZ, fall through for now */
}
if (addr > sizeof(n->bar) - size) {
NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
"MMIO read beyond last register,"
" offset=0x%"PRIx64", returning 0", addr);
return 0;
}
if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs &&
addr != NVME_REG_CSTS) {
trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
return 0;
}
/*
* When PMRWBM bit 1 is set then read from
* from PMRSTS should ensure prior writes
* made it to persistent media
*/
if (addr == NVME_REG_PMRSTS &&
(NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) {
memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
}
return ldn_le_p(ptr + addr, size);
}
static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
{
PCIDevice *pci = PCI_DEVICE(n);
uint32_t qid;
if (unlikely(addr & ((1 << 2) - 1))) {
NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
"doorbell write not 32-bit aligned,"
" offset=0x%"PRIx64", ignoring", addr);
return;
}
if (((addr - 0x1000) >> 2) & 1) {
/* Completion queue doorbell write */
uint16_t new_head = val & 0xffff;
int start_sqs;
NvmeCQueue *cq;
qid = (addr - (0x1000 + (1 << 2))) >> 3;
if (unlikely(nvme_check_cqid(n, qid))) {
NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
"completion queue doorbell write"
" for nonexistent queue,"
" sqid=%"PRIu32", ignoring", qid);
/*
* NVM Express v1.3d, Section 4.1 state: "If host software writes
* an invalid value to the Submission Queue Tail Doorbell or
* Completion Queue Head Doorbell register and an Asynchronous Event
* Request command is outstanding, then an asynchronous event is
* posted to the Admin Completion Queue with a status code of
* Invalid Doorbell Write Value."
*
* Also note that the spec includes the "Invalid Doorbell Register"
* status code, but nowhere does it specify when to use it.
* However, it seems reasonable to use it here in a similar
* fashion.
*/
if (n->outstanding_aers) {
nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
NVME_LOG_ERROR_INFO);
}
return;
}
cq = n->cq[qid];
if (unlikely(new_head >= cq->size)) {
NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
"completion queue doorbell write value"
" beyond queue size, sqid=%"PRIu32","
" new_head=%"PRIu16", ignoring",
qid, new_head);
if (n->outstanding_aers) {
nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
NVME_AER_INFO_ERR_INVALID_DB_VALUE,
NVME_LOG_ERROR_INFO);
}
return;
}
trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
start_sqs = nvme_cq_full(cq) ? 1 : 0;
cq->head = new_head;
if (!qid && n->dbbuf_enabled) {
stl_le_pci_dma(pci, cq->db_addr, cq->head, MEMTXATTRS_UNSPECIFIED);
}
if (start_sqs) {
NvmeSQueue *sq;
QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
qemu_bh_schedule(sq->bh);
}
qemu_bh_schedule(cq->bh);
}
if (cq->tail == cq->head) {
if (cq->irq_enabled) {
n->cq_pending--;
}
nvme_irq_deassert(n, cq);
}
} else {
/* Submission queue doorbell write */
uint16_t new_tail = val & 0xffff;
NvmeSQueue *sq;
qid = (addr - 0x1000) >> 3;
if (unlikely(nvme_check_sqid(n, qid))) {
NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
"submission queue doorbell write"
" for nonexistent queue,"
" sqid=%"PRIu32", ignoring", qid);
if (n->outstanding_aers) {
nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
NVME_LOG_ERROR_INFO);
}
return;
}
sq = n->sq[qid];
if (unlikely(new_tail >= sq->size)) {
NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
"submission queue doorbell write value"
" beyond queue size, sqid=%"PRIu32","
" new_tail=%"PRIu16", ignoring",
qid, new_tail);
if (n->outstanding_aers) {
nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
NVME_AER_INFO_ERR_INVALID_DB_VALUE,
NVME_LOG_ERROR_INFO);
}
return;
}
trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
sq->tail = new_tail;
if (!qid && n->dbbuf_enabled) {
/*
* The spec states "the host shall also update the controller's
* corresponding doorbell property to match the value of that entry
* in the Shadow Doorbell buffer."
*
* Since this context is currently a VM trap, we can safely enforce
* the requirement from the device side in case the host is
* misbehaving.
*
* Note, we shouldn't have to do this, but various drivers
* including ones that run on Linux, are not updating Admin Queues,
* so we can't trust reading it for an appropriate sq tail.
*/
stl_le_pci_dma(pci, sq->db_addr, sq->tail, MEMTXATTRS_UNSPECIFIED);
}
qemu_bh_schedule(sq->bh);
}
}
static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
NvmeCtrl *n = (NvmeCtrl *)opaque;
trace_pci_nvme_mmio_write(addr, data, size);
if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs &&
addr != NVME_REG_CSTS) {
trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
return;
}
if (addr < sizeof(n->bar)) {
nvme_write_bar(n, addr, data, size);
} else {
nvme_process_db(n, addr, data);
}
}
static const MemoryRegionOps nvme_mmio_ops = {
.read = nvme_mmio_read,
.write = nvme_mmio_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 2,
.max_access_size = 8,
},
};
static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
NvmeCtrl *n = (NvmeCtrl *)opaque;
stn_le_p(&n->cmb.buf[addr], size, data);
}
static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
{
NvmeCtrl *n = (NvmeCtrl *)opaque;
return ldn_le_p(&n->cmb.buf[addr], size);
}
static const MemoryRegionOps nvme_cmb_ops = {
.read = nvme_cmb_read,
.write = nvme_cmb_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 1,
.max_access_size = 8,
},
};
static bool nvme_check_params(NvmeCtrl *n, Error **errp)
{
NvmeParams *params = &n->params;
if (params->num_queues) {
warn_report("num_queues is deprecated; please use max_ioqpairs "
"instead");
params->max_ioqpairs = params->num_queues - 1;
}
if (n->namespace.blkconf.blk && n->subsys) {
error_setg(errp, "subsystem support is unavailable with legacy "
"namespace ('drive' property)");
return false;
}
if (params->max_ioqpairs < 1 ||
params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
error_setg(errp, "max_ioqpairs must be between 1 and %d",
NVME_MAX_IOQPAIRS);
return false;
}
if (params->msix_qsize < 1 ||
params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
error_setg(errp, "msix_qsize must be between 1 and %d",
PCI_MSIX_FLAGS_QSIZE + 1);
return false;
}
if (!params->serial) {
error_setg(errp, "serial property not set");
return false;
}
if (params->mqes < 1) {
error_setg(errp, "mqes property cannot be less than 1");
return false;
}
if (n->pmr.dev) {
if (params->msix_exclusive_bar) {
error_setg(errp, "not enough BARs available to enable PMR");
return false;
}
if (host_memory_backend_is_mapped(n->pmr.dev)) {
error_setg(errp, "can't use already busy memdev: %s",
object_get_canonical_path_component(OBJECT(n->pmr.dev)));
return false;
}
if (!is_power_of_2(n->pmr.dev->size)) {
error_setg(errp, "pmr backend size needs to be power of 2 in size");
return false;
}
host_memory_backend_set_mapped(n->pmr.dev, true);
}
if (n->params.zasl > n->params.mdts) {
error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
"than or equal to mdts (Maximum Data Transfer Size)");
return false;
}
if (!n->params.vsl) {
error_setg(errp, "vsl must be non-zero");
return false;
}
if (params->sriov_max_vfs) {
if (!n->subsys) {
error_setg(errp, "subsystem is required for the use of SR-IOV");
return false;
}
if (params->cmb_size_mb) {
error_setg(errp, "CMB is not supported with SR-IOV");
return false;
}
if (n->pmr.dev) {
error_setg(errp, "PMR is not supported with SR-IOV");
return false;
}
if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) {
error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible"
" must be set for the use of SR-IOV");
return false;
}
if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) {
error_setg(errp, "sriov_vq_flexible must be greater than or equal"
" to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2);
return false;
}
if (params->max_ioqpairs < params->sriov_vq_flexible + 2) {
error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be"
" greater than or equal to 2");
return false;
}
if (params->sriov_vi_flexible < params->sriov_max_vfs) {
error_setg(errp, "sriov_vi_flexible must be greater than or equal"
" to %d (sriov_max_vfs)", params->sriov_max_vfs);
return false;
}
if (params->msix_qsize < params->sriov_vi_flexible + 1) {
error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be"
" greater than or equal to 1");
return false;
}
if (params->sriov_max_vi_per_vf &&
(params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) {
error_setg(errp, "sriov_max_vi_per_vf must meet:"
" (sriov_max_vi_per_vf - 1) %% %d == 0 and"
" sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY);
return false;
}
if (params->sriov_max_vq_per_vf &&
(params->sriov_max_vq_per_vf < 2 ||
(params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) {
error_setg(errp, "sriov_max_vq_per_vf must meet:"
" (sriov_max_vq_per_vf - 1) %% %d == 0 and"
" sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY);
return false;
}
}
return true;
}
static void nvme_init_state(NvmeCtrl *n)
{
NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
NvmeSecCtrlEntry *list = n->sec_ctrl_list;
NvmeSecCtrlEntry *sctrl;
PCIDevice *pci = PCI_DEVICE(n);
NvmeAtomic *atomic = &n->atomic;
NvmeIdCtrl *id = &n->id_ctrl;
uint8_t max_vfs;
int i;
if (pci_is_vf(pci)) {
sctrl = nvme_sctrl(n);
max_vfs = 0;
n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
} else {
max_vfs = n->params.sriov_max_vfs;
n->conf_ioqpairs = n->params.max_ioqpairs;
n->conf_msix_qsize = n->params.msix_qsize;
}
n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
n->temperature = NVME_TEMPERATURE;
n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
QTAILQ_INIT(&n->aer_queue);
n->nr_sec_ctrls = max_vfs;
for (i = 0; i < max_vfs; i++) {
sctrl = &list[i];
sctrl->pcid = cpu_to_le16(n->cntlid);
sctrl->vfn = cpu_to_le16(i + 1);
}
cap->cntlid = cpu_to_le16(n->cntlid);
cap->crt = NVME_CRT_VQ | NVME_CRT_VI;
if (pci_is_vf(pci)) {
cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs);
} else {
cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs -
n->params.sriov_vq_flexible);
cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible);
cap->vqrfap = cap->vqfrt;
cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
cap->vqfrsm = n->params.sriov_max_vq_per_vf ?
cpu_to_le16(n->params.sriov_max_vq_per_vf) :
cap->vqfrt / MAX(max_vfs, 1);
}
if (pci_is_vf(pci)) {
cap->viprt = cpu_to_le16(n->conf_msix_qsize);
} else {
cap->viprt = cpu_to_le16(n->params.msix_qsize -
n->params.sriov_vi_flexible);
cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible);
cap->virfap = cap->vifrt;
cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
cap->vifrsm = n->params.sriov_max_vi_per_vf ?
cpu_to_le16(n->params.sriov_max_vi_per_vf) :
cap->vifrt / MAX(max_vfs, 1);
}
/* Atomic Write */
id->awun = cpu_to_le16(n->params.atomic_awun);
id->awupf = cpu_to_le16(n->params.atomic_awupf);
n->dn = n->params.atomic_dn;
if (id->awun || id->awupf) {
if (id->awupf > id->awun) {
id->awupf = 0;
}
if (n->dn) {
atomic->atomic_max_write_size = id->awupf + 1;
} else {
atomic->atomic_max_write_size = id->awun + 1;
}
if (atomic->atomic_max_write_size == 1) {
atomic->atomic_writes = 0;
} else {
atomic->atomic_writes = 1;
}
}
}
static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
{
uint64_t cmb_size = n->params.cmb_size_mb * MiB;
uint64_t cap = ldq_le_p(&n->bar.cap);
n->cmb.buf = g_malloc0(cmb_size);
memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
"nvme-cmb", cmb_size);
pci_register_bar(pci_dev, NVME_CMB_BIR,
PCI_BASE_ADDRESS_SPACE_MEMORY |
PCI_BASE_ADDRESS_MEM_TYPE_64 |
PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
NVME_CAP_SET_CMBS(cap, 1);
stq_le_p(&n->bar.cap, cap);
if (n->params.legacy_cmb) {
nvme_cmb_enable_regs(n);
n->cmb.cmse = true;
}
}
static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
{
uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap);
NVME_PMRCAP_SET_RDS(pmrcap, 1);
NVME_PMRCAP_SET_WDS(pmrcap, 1);
NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR);
/* Turn on bit 1 support */
NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02);
NVME_PMRCAP_SET_CMSS(pmrcap, 1);
stl_le_p(&n->bar.pmrcap, pmrcap);
pci_register_bar(pci_dev, NVME_PMR_BIR,
PCI_BASE_ADDRESS_SPACE_MEMORY |
PCI_BASE_ADDRESS_MEM_TYPE_64 |
PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
memory_region_set_enabled(&n->pmr.dev->mr, false);
}
static uint64_t nvme_mbar_size(unsigned total_queues, unsigned total_irqs,
unsigned *msix_table_offset,
unsigned *msix_pba_offset)
{
uint64_t bar_size, msix_table_size;
bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE;
if (total_irqs == 0) {
goto out;
}
bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
if (msix_table_offset) {
*msix_table_offset = bar_size;
}
msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs;
bar_size += msix_table_size;
bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
if (msix_pba_offset) {
*msix_pba_offset = bar_size;
}
bar_size += QEMU_ALIGN_UP(total_irqs, 64) / 8;
out:
return pow2ceil(bar_size);
}
static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset)
{
uint16_t vf_dev_id = n->params.use_intel_id ?
PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME;
NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
uint64_t bar_size = nvme_mbar_size(le16_to_cpu(cap->vqfrsm),
le16_to_cpu(cap->vifrsm),
NULL, NULL);
pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id,
n->params.sriov_max_vfs, n->params.sriov_max_vfs,
NVME_VF_OFFSET, NVME_VF_STRIDE);
pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size);
}
static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset)
{
Error *err = NULL;
int ret;
ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset,
PCI_PM_SIZEOF, &err);
if (err) {
error_report_err(err);
return ret;
}
pci_set_word(pci_dev->config + offset + PCI_PM_PMC,
PCI_PM_CAP_VER_1_2);
pci_set_word(pci_dev->config + offset + PCI_PM_CTRL,
PCI_PM_CTRL_NO_SOFT_RESET);
pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL,
PCI_PM_CTRL_STATE_MASK);
return 0;
}
static bool pcie_doe_spdm_rsp(DOECap *doe_cap)
{
void *req = pcie_doe_get_write_mbox_ptr(doe_cap);
uint32_t req_len = pcie_doe_get_obj_len(req) * 4;
void *rsp = doe_cap->read_mbox;
uint32_t rsp_len = SPDM_SOCKET_MAX_MESSAGE_BUFFER_SIZE;
uint32_t recvd = spdm_socket_rsp(doe_cap->spdm_socket,
SPDM_SOCKET_TRANSPORT_TYPE_PCI_DOE,
req, req_len, rsp, rsp_len);
doe_cap->read_mbox_len += DIV_ROUND_UP(recvd, 4);
return recvd != 0;
}
static DOEProtocol doe_spdm_prot[] = {
{ PCI_VENDOR_ID_PCI_SIG, PCI_SIG_DOE_CMA, pcie_doe_spdm_rsp },
{ PCI_VENDOR_ID_PCI_SIG, PCI_SIG_DOE_SECURED_CMA, pcie_doe_spdm_rsp },
{ }
};
static bool nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
{
ERRP_GUARD();
uint8_t *pci_conf = pci_dev->config;
uint64_t bar_size;
unsigned msix_table_offset = 0, msix_pba_offset = 0;
unsigned nr_vectors;
int ret;
pci_conf[PCI_INTERRUPT_PIN] = 1;
pci_config_set_prog_interface(pci_conf, 0x2);
if (n->params.use_intel_id) {
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME);
} else {
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
}
pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
nvme_add_pm_capability(pci_dev, 0x60);
pcie_endpoint_cap_init(pci_dev, 0x80);
pcie_cap_flr_init(pci_dev);
if (n->params.sriov_max_vfs) {
pcie_ari_init(pci_dev, 0x100);
}
if (n->params.msix_exclusive_bar && !pci_is_vf(pci_dev)) {
bar_size = nvme_mbar_size(n->params.max_ioqpairs + 1, 0, NULL, NULL);
memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
bar_size);
pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
PCI_BASE_ADDRESS_MEM_TYPE_64, &n->iomem);
ret = msix_init_exclusive_bar(pci_dev, n->params.msix_qsize, 4, errp);
} else {
assert(n->params.msix_qsize >= 1);
/* add one to max_ioqpairs to account for the admin queue pair */
if (!pci_is_vf(pci_dev)) {
nr_vectors = n->params.msix_qsize;
bar_size = nvme_mbar_size(n->params.max_ioqpairs + 1,
nr_vectors, &msix_table_offset,
&msix_pba_offset);
} else {
NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev));
NvmePriCtrlCap *cap = &pn->pri_ctrl_cap;
nr_vectors = le16_to_cpu(cap->vifrsm);
bar_size = nvme_mbar_size(le16_to_cpu(cap->vqfrsm), nr_vectors,
&msix_table_offset, &msix_pba_offset);
}
memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
msix_table_offset);
memory_region_add_subregion(&n->bar0, 0, &n->iomem);
if (pci_is_vf(pci_dev)) {
pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0);
} else {
pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
}
ret = msix_init(pci_dev, nr_vectors,
&n->bar0, 0, msix_table_offset,
&n->bar0, 0, msix_pba_offset, 0, errp);
}
if (ret == -ENOTSUP) {
/* report that msix is not supported, but do not error out */
warn_report_err(*errp);
*errp = NULL;
} else if (ret < 0) {
/* propagate error to caller */
return false;
}
nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
pcie_cap_deverr_init(pci_dev);
/* DOE Initialisation */
if (pci_dev->spdm_port) {
uint16_t doe_offset = n->params.sriov_max_vfs ?
PCI_CONFIG_SPACE_SIZE + PCI_ARI_SIZEOF
: PCI_CONFIG_SPACE_SIZE;
pcie_doe_init(pci_dev, &pci_dev->doe_spdm, doe_offset,
doe_spdm_prot, true, 0);
pci_dev->doe_spdm.spdm_socket = spdm_socket_connect(pci_dev->spdm_port,
errp);
if (pci_dev->doe_spdm.spdm_socket < 0) {
return false;
}
}
if (n->params.cmb_size_mb) {
nvme_init_cmb(n, pci_dev);
}
if (n->pmr.dev) {
nvme_init_pmr(n, pci_dev);
}
if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
nvme_init_sriov(n, pci_dev, 0x120);
}
return true;
}
static void nvme_init_subnqn(NvmeCtrl *n)
{
NvmeSubsystem *subsys = n->subsys;
NvmeIdCtrl *id = &n->id_ctrl;
if (!subsys) {
snprintf((char *)id->subnqn, sizeof(id->subnqn),
"nqn.2019-08.org.qemu:%s", n->params.serial);
} else {
pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
}
}
static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
{
NvmeIdCtrl *id = &n->id_ctrl;
uint8_t *pci_conf = pci_dev->config;
uint64_t cap = ldq_le_p(&n->bar.cap);
NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
uint32_t ctratt;
id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' ');
strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
id->cntlid = cpu_to_le16(n->cntlid);
id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
ctratt = NVME_CTRATT_ELBAS;
if (n->params.ctratt.mem) {
ctratt |= NVME_CTRATT_MEM;
}
id->rab = 6;
if (n->params.use_intel_id) {
id->ieee[0] = 0xb3;
id->ieee[1] = 0x02;
id->ieee[2] = 0x00;
} else {
id->ieee[0] = 0x00;
id->ieee[1] = 0x54;
id->ieee[2] = 0x52;
}
id->mdts = n->params.mdts;
id->ver = cpu_to_le32(NVME_SPEC_VER);
id->oacs =
cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF |
NVME_OACS_DIRECTIVES);
id->cntrltype = 0x1;
/*
* Because the controller always completes the Abort command immediately,
* there can never be more than one concurrently executing Abort command,
* so this value is never used for anything. Note that there can easily be
* many Abort commands in the queues, but they are not considered
* "executing" until processed by nvme_abort.
*
* The specification recommends a value of 3 for Abort Command Limit (four
* concurrently outstanding Abort commands), so lets use that though it is
* inconsequential.
*/
id->acl = 3;
id->aerl = n->params.aerl;
id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
/* recommended default value (~70 C) */
id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
id->sqes = (NVME_SQES << 4) | NVME_SQES;
id->cqes = (NVME_CQES << 4) | NVME_CQES;
id->nn = cpu_to_le32(NVME_MAX_NAMESPACES);
id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
NVME_ONCS_FEATURES | NVME_ONCS_DSM |
NVME_ONCS_COMPARE | NVME_ONCS_COPY |
NVME_ONCS_NVMCSA | NVME_ONCS_NVMAFC);
/*
* NOTE: If this device ever supports a command set that does NOT use 0x0
* as a Flush-equivalent operation, support for the broadcast NSID in Flush
* should probably be removed.
*
* See comment in nvme_io_cmd.
*/
id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1 |
NVME_OCFS_COPY_FORMAT_2 | NVME_OCFS_COPY_FORMAT_3);
id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN |
NVME_CTRL_SGLS_MPTR_SGL);
nvme_init_subnqn(n);
id->psd[0].mp = cpu_to_le16(0x9c4);
id->psd[0].enlat = cpu_to_le32(0x10);
id->psd[0].exlat = cpu_to_le32(0x4);
if (n->subsys) {
id->cmic |= NVME_CMIC_MULTI_CTRL;
ctratt |= NVME_CTRATT_ENDGRPS;
id->endgidmax = cpu_to_le16(0x1);
if (n->subsys->endgrp.fdp.enabled) {
ctratt |= NVME_CTRATT_FDPS;
}
}
id->ctratt = cpu_to_le32(ctratt);
NVME_CAP_SET_MQES(cap, n->params.mqes);
NVME_CAP_SET_CQR(cap, 1);
NVME_CAP_SET_TO(cap, 0xf);
NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM);
NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP);
NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY);
NVME_CAP_SET_MPSMAX(cap, 4);
NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0);
NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0);
stq_le_p(&n->bar.cap, cap);
stl_le_p(&n->bar.vs, NVME_SPEC_VER);
n->bar.intmc = n->bar.intms = 0;
if (pci_is_vf(pci_dev) && !sctrl->scs) {
stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
}
}
static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
{
int cntlid;
if (!n->subsys) {
return 0;
}
cntlid = nvme_subsys_register_ctrl(n, errp);
if (cntlid < 0) {
return -1;
}
n->cntlid = cntlid;
return 0;
}
void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
{
uint32_t nsid = ns->params.nsid;
assert(nsid && nsid <= NVME_MAX_NAMESPACES);
n->namespaces[nsid] = ns;
ns->attached++;
n->dmrsl = MIN_NON_ZERO(n->dmrsl,
BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
}
static void nvme_realize(PCIDevice *pci_dev, Error **errp)
{
NvmeCtrl *n = NVME(pci_dev);
DeviceState *dev = DEVICE(pci_dev);
NvmeNamespace *ns;
NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev));
if (pci_is_vf(pci_dev)) {
/*
* VFs derive settings from the parent. PF's lifespan exceeds
* that of VF's.
*/
memcpy(&n->params, &pn->params, sizeof(NvmeParams));
/*
* Set PF's serial value to a new string memory to prevent 'serial'
* property object release of PF when a VF is removed from the system.
*/
n->params.serial = g_strdup(pn->params.serial);
n->subsys = pn->subsys;
}
if (!nvme_check_params(n, errp)) {
return;
}
qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS, dev, dev->id);
if (nvme_init_subsys(n, errp)) {
return;
}
nvme_init_state(n);
if (!nvme_init_pci(n, pci_dev, errp)) {
return;
}
nvme_init_ctrl(n, pci_dev);
/* setup a namespace if the controller drive property was given */
if (n->namespace.blkconf.blk) {
ns = &n->namespace;
ns->params.nsid = 1;
if (nvme_ns_setup(ns, errp)) {
return;
}
nvme_attach_ns(n, ns);
}
}
static void nvme_exit(PCIDevice *pci_dev)
{
NvmeCtrl *n = NVME(pci_dev);
NvmeNamespace *ns;
int i;
nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
if (n->subsys) {
for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
ns = nvme_ns(n, i);
if (ns) {
ns->attached--;
}
}
nvme_subsys_unregister_ctrl(n->subsys, n);
}
g_free(n->cq);
g_free(n->sq);
g_free(n->aer_reqs);
if (n->params.cmb_size_mb) {
g_free(n->cmb.buf);
}
if (pci_dev->doe_spdm.spdm_socket > 0) {
spdm_socket_close(pci_dev->doe_spdm.spdm_socket,
SPDM_SOCKET_TRANSPORT_TYPE_PCI_DOE);
}
if (n->pmr.dev) {
host_memory_backend_set_mapped(n->pmr.dev, false);
}
if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
pcie_sriov_pf_exit(pci_dev);
}
msix_uninit(pci_dev, &n->bar0, &n->bar0);
memory_region_del_subregion(&n->bar0, &n->iomem);
}
static Property nvme_props[] = {
DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
HostMemoryBackend *),
DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
NvmeSubsystem *),
DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, false),
DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl,
params.auto_transition_zones, true),
DEFINE_PROP_UINT16("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0),
DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl,
params.sriov_vq_flexible, 0),
DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl,
params.sriov_vi_flexible, 0),
DEFINE_PROP_UINT32("sriov_max_vi_per_vf", NvmeCtrl,
params.sriov_max_vi_per_vf, 0),
DEFINE_PROP_UINT32("sriov_max_vq_per_vf", NvmeCtrl,
params.sriov_max_vq_per_vf, 0),
DEFINE_PROP_BOOL("msix-exclusive-bar", NvmeCtrl, params.msix_exclusive_bar,
false),
DEFINE_PROP_UINT16("mqes", NvmeCtrl, params.mqes, 0x7ff),
DEFINE_PROP_UINT16("spdm_port", PCIDevice, spdm_port, 0),
DEFINE_PROP_BOOL("ctratt.mem", NvmeCtrl, params.ctratt.mem, false),
DEFINE_PROP_BOOL("atomic.dn", NvmeCtrl, params.atomic_dn, 0),
DEFINE_PROP_UINT16("atomic.awun", NvmeCtrl, params.atomic_awun, 0),
DEFINE_PROP_UINT16("atomic.awupf", NvmeCtrl, params.atomic_awupf, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
NvmeCtrl *n = NVME(obj);
uint8_t value = n->smart_critical_warning;
visit_type_uint8(v, name, &value, errp);
}
static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
NvmeCtrl *n = NVME(obj);
uint8_t value, old_value, cap = 0, index, event;
if (!visit_type_uint8(v, name, &value, errp)) {
return;
}
cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
| NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) {
cap |= NVME_SMART_PMR_UNRELIABLE;
}
if ((value & cap) != value) {
error_setg(errp, "unsupported smart critical warning bits: 0x%x",
value & ~cap);
return;
}
old_value = n->smart_critical_warning;
n->smart_critical_warning = value;
/* only inject new bits of smart critical warning */
for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
event = 1 << index;
if (value & ~old_value & event)
nvme_smart_event(n, event);
}
}
static void nvme_pci_reset(DeviceState *qdev)
{
PCIDevice *pci_dev = PCI_DEVICE(qdev);
NvmeCtrl *n = NVME(pci_dev);
trace_pci_nvme_pci_reset();
nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
}
static void nvme_sriov_post_write_config(PCIDevice *dev, uint16_t old_num_vfs)
{
NvmeCtrl *n = NVME(dev);
NvmeSecCtrlEntry *sctrl;
int i;
for (i = pcie_sriov_num_vfs(dev); i < old_num_vfs; i++) {
sctrl = &n->sec_ctrl_list[i];
nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
}
}
static void nvme_pci_write_config(PCIDevice *dev, uint32_t address,
uint32_t val, int len)
{
uint16_t old_num_vfs = pcie_sriov_num_vfs(dev);
if (pcie_find_capability(dev, PCI_EXT_CAP_ID_DOE)) {
pcie_doe_write_config(&dev->doe_spdm, address, val, len);
}
pci_default_write_config(dev, address, val, len);
pcie_cap_flr_write_config(dev, address, val, len);
nvme_sriov_post_write_config(dev, old_num_vfs);
}
static uint32_t nvme_pci_read_config(PCIDevice *dev, uint32_t address, int len)
{
uint32_t val;
if (dev->spdm_port && pcie_find_capability(dev, PCI_EXT_CAP_ID_DOE)) {
if (pcie_doe_read_config(&dev->doe_spdm, address, len, &val)) {
return val;
}
}
return pci_default_read_config(dev, address, len);
}
static const VMStateDescription nvme_vmstate = {
.name = "nvme",
.unmigratable = 1,
};
static void nvme_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
pc->realize = nvme_realize;
pc->config_write = nvme_pci_write_config;
pc->config_read = nvme_pci_read_config;
pc->exit = nvme_exit;
pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
pc->revision = 2;
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
dc->desc = "Non-Volatile Memory Express";
device_class_set_props(dc, nvme_props);
dc->vmsd = &nvme_vmstate;
device_class_set_legacy_reset(dc, nvme_pci_reset);
}
static void nvme_instance_init(Object *obj)
{
NvmeCtrl *n = NVME(obj);
device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
"bootindex", "/namespace@1,0",
DEVICE(obj));
object_property_add(obj, "smart_critical_warning", "uint8",
nvme_get_smart_warning,
nvme_set_smart_warning, NULL, NULL);
}
static const TypeInfo nvme_info = {
.name = TYPE_NVME,
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(NvmeCtrl),
.instance_init = nvme_instance_init,
.class_init = nvme_class_init,
.interfaces = (InterfaceInfo[]) {
{ INTERFACE_PCIE_DEVICE },
{ }
},
};
static const TypeInfo nvme_bus_info = {
.name = TYPE_NVME_BUS,
.parent = TYPE_BUS,
.instance_size = sizeof(NvmeBus),
};
static void nvme_register_types(void)
{
type_register_static(&nvme_info);
type_register_static(&nvme_bus_info);
}
type_init(nvme_register_types)