| /* | 
 |  * QEMU generic PowerPC hardware System Emulator | 
 |  * | 
 |  * Copyright (c) 2003-2007 Jocelyn Mayer | 
 |  * | 
 |  * Permission is hereby granted, free of charge, to any person obtaining a copy | 
 |  * of this software and associated documentation files (the "Software"), to deal | 
 |  * in the Software without restriction, including without limitation the rights | 
 |  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
 |  * copies of the Software, and to permit persons to whom the Software is | 
 |  * furnished to do so, subject to the following conditions: | 
 |  * | 
 |  * The above copyright notice and this permission notice shall be included in | 
 |  * all copies or substantial portions of the Software. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
 |  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
 |  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | 
 |  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
 |  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
 |  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
 |  * THE SOFTWARE. | 
 |  */ | 
 |  | 
 | #include "qemu/osdep.h" | 
 | #include "hw/irq.h" | 
 | #include "hw/ppc/ppc.h" | 
 | #include "hw/ppc/ppc_e500.h" | 
 | #include "qemu/timer.h" | 
 | #include "sysemu/cpus.h" | 
 | #include "qemu/log.h" | 
 | #include "qemu/main-loop.h" | 
 | #include "qemu/error-report.h" | 
 | #include "sysemu/kvm.h" | 
 | #include "sysemu/replay.h" | 
 | #include "sysemu/runstate.h" | 
 | #include "kvm_ppc.h" | 
 | #include "migration/vmstate.h" | 
 | #include "trace.h" | 
 |  | 
 | static void cpu_ppc_tb_stop (CPUPPCState *env); | 
 | static void cpu_ppc_tb_start (CPUPPCState *env); | 
 |  | 
 | void ppc_set_irq(PowerPCCPU *cpu, int irq, int level) | 
 | { | 
 |     CPUPPCState *env = &cpu->env; | 
 |     unsigned int old_pending; | 
 |  | 
 |     /* We may already have the BQL if coming from the reset path */ | 
 |     BQL_LOCK_GUARD(); | 
 |  | 
 |     old_pending = env->pending_interrupts; | 
 |  | 
 |     if (level) { | 
 |         env->pending_interrupts |= irq; | 
 |     } else { | 
 |         env->pending_interrupts &= ~irq; | 
 |     } | 
 |  | 
 |     if (old_pending != env->pending_interrupts) { | 
 |         ppc_maybe_interrupt(env); | 
 |         if (kvm_enabled()) { | 
 |             kvmppc_set_interrupt(cpu, irq, level); | 
 |         } | 
 |     } | 
 |  | 
 |     trace_ppc_irq_set_exit(env, irq, level, env->pending_interrupts, | 
 |                            CPU(cpu)->interrupt_request); | 
 | } | 
 |  | 
 | /* PowerPC 6xx / 7xx internal IRQ controller */ | 
 | static void ppc6xx_set_irq(void *opaque, int pin, int level) | 
 | { | 
 |     PowerPCCPU *cpu = opaque; | 
 |     CPUPPCState *env = &cpu->env; | 
 |     int cur_level; | 
 |  | 
 |     trace_ppc_irq_set(env, pin, level); | 
 |  | 
 |     cur_level = (env->irq_input_state >> pin) & 1; | 
 |     /* Don't generate spurious events */ | 
 |     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { | 
 |         CPUState *cs = CPU(cpu); | 
 |  | 
 |         switch (pin) { | 
 |         case PPC6xx_INPUT_TBEN: | 
 |             /* Level sensitive - active high */ | 
 |             trace_ppc_irq_set_state("time base", level); | 
 |             if (level) { | 
 |                 cpu_ppc_tb_start(env); | 
 |             } else { | 
 |                 cpu_ppc_tb_stop(env); | 
 |             } | 
 |             break; | 
 |         case PPC6xx_INPUT_INT: | 
 |             /* Level sensitive - active high */ | 
 |             trace_ppc_irq_set_state("external IRQ", level); | 
 |             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); | 
 |             break; | 
 |         case PPC6xx_INPUT_SMI: | 
 |             /* Level sensitive - active high */ | 
 |             trace_ppc_irq_set_state("SMI IRQ", level); | 
 |             ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level); | 
 |             break; | 
 |         case PPC6xx_INPUT_MCP: | 
 |             /* Negative edge sensitive */ | 
 |             /* XXX: TODO: actual reaction may depends on HID0 status | 
 |              *            603/604/740/750: check HID0[EMCP] | 
 |              */ | 
 |             if (cur_level == 1 && level == 0) { | 
 |                 trace_ppc_irq_set_state("machine check", 1); | 
 |                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1); | 
 |             } | 
 |             break; | 
 |         case PPC6xx_INPUT_CKSTP_IN: | 
 |             /* Level sensitive - active low */ | 
 |             /* XXX: TODO: relay the signal to CKSTP_OUT pin */ | 
 |             /* XXX: Note that the only way to restart the CPU is to reset it */ | 
 |             if (level) { | 
 |                 trace_ppc_irq_cpu("stop"); | 
 |                 cs->halted = 1; | 
 |             } | 
 |             break; | 
 |         case PPC6xx_INPUT_HRESET: | 
 |             /* Level sensitive - active low */ | 
 |             if (level) { | 
 |                 trace_ppc_irq_reset("CPU"); | 
 |                 cpu_interrupt(cs, CPU_INTERRUPT_RESET); | 
 |             } | 
 |             break; | 
 |         case PPC6xx_INPUT_SRESET: | 
 |             trace_ppc_irq_set_state("RESET IRQ", level); | 
 |             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level); | 
 |             break; | 
 |         default: | 
 |             g_assert_not_reached(); | 
 |         } | 
 |         if (level) | 
 |             env->irq_input_state |= 1 << pin; | 
 |         else | 
 |             env->irq_input_state &= ~(1 << pin); | 
 |     } | 
 | } | 
 |  | 
 | void ppc6xx_irq_init(PowerPCCPU *cpu) | 
 | { | 
 |     qdev_init_gpio_in(DEVICE(cpu), ppc6xx_set_irq, PPC6xx_INPUT_NB); | 
 | } | 
 |  | 
 | #if defined(TARGET_PPC64) | 
 | /* PowerPC 970 internal IRQ controller */ | 
 | static void ppc970_set_irq(void *opaque, int pin, int level) | 
 | { | 
 |     PowerPCCPU *cpu = opaque; | 
 |     CPUPPCState *env = &cpu->env; | 
 |     int cur_level; | 
 |  | 
 |     trace_ppc_irq_set(env, pin, level); | 
 |  | 
 |     cur_level = (env->irq_input_state >> pin) & 1; | 
 |     /* Don't generate spurious events */ | 
 |     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { | 
 |         CPUState *cs = CPU(cpu); | 
 |  | 
 |         switch (pin) { | 
 |         case PPC970_INPUT_INT: | 
 |             /* Level sensitive - active high */ | 
 |             trace_ppc_irq_set_state("external IRQ", level); | 
 |             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); | 
 |             break; | 
 |         case PPC970_INPUT_THINT: | 
 |             /* Level sensitive - active high */ | 
 |             trace_ppc_irq_set_state("SMI IRQ", level); | 
 |             ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level); | 
 |             break; | 
 |         case PPC970_INPUT_MCP: | 
 |             /* Negative edge sensitive */ | 
 |             /* XXX: TODO: actual reaction may depends on HID0 status | 
 |              *            603/604/740/750: check HID0[EMCP] | 
 |              */ | 
 |             if (cur_level == 1 && level == 0) { | 
 |                 trace_ppc_irq_set_state("machine check", 1); | 
 |                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1); | 
 |             } | 
 |             break; | 
 |         case PPC970_INPUT_CKSTP: | 
 |             /* Level sensitive - active low */ | 
 |             /* XXX: TODO: relay the signal to CKSTP_OUT pin */ | 
 |             if (level) { | 
 |                 trace_ppc_irq_cpu("stop"); | 
 |                 cs->halted = 1; | 
 |             } else { | 
 |                 trace_ppc_irq_cpu("restart"); | 
 |                 cs->halted = 0; | 
 |                 qemu_cpu_kick(cs); | 
 |             } | 
 |             break; | 
 |         case PPC970_INPUT_HRESET: | 
 |             /* Level sensitive - active low */ | 
 |             if (level) { | 
 |                 cpu_interrupt(cs, CPU_INTERRUPT_RESET); | 
 |             } | 
 |             break; | 
 |         case PPC970_INPUT_SRESET: | 
 |             trace_ppc_irq_set_state("RESET IRQ", level); | 
 |             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level); | 
 |             break; | 
 |         case PPC970_INPUT_TBEN: | 
 |             trace_ppc_irq_set_state("TBEN IRQ", level); | 
 |             /* XXX: TODO */ | 
 |             break; | 
 |         default: | 
 |             g_assert_not_reached(); | 
 |         } | 
 |         if (level) | 
 |             env->irq_input_state |= 1 << pin; | 
 |         else | 
 |             env->irq_input_state &= ~(1 << pin); | 
 |     } | 
 | } | 
 |  | 
 | void ppc970_irq_init(PowerPCCPU *cpu) | 
 | { | 
 |     qdev_init_gpio_in(DEVICE(cpu), ppc970_set_irq, PPC970_INPUT_NB); | 
 | } | 
 |  | 
 | /* POWER7 internal IRQ controller */ | 
 | static void power7_set_irq(void *opaque, int pin, int level) | 
 | { | 
 |     PowerPCCPU *cpu = opaque; | 
 |  | 
 |     trace_ppc_irq_set(&cpu->env, pin, level); | 
 |  | 
 |     switch (pin) { | 
 |     case POWER7_INPUT_INT: | 
 |         /* Level sensitive - active high */ | 
 |         trace_ppc_irq_set_state("external IRQ", level); | 
 |         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); | 
 |         break; | 
 |     default: | 
 |         g_assert_not_reached(); | 
 |     } | 
 | } | 
 |  | 
 | void ppcPOWER7_irq_init(PowerPCCPU *cpu) | 
 | { | 
 |     qdev_init_gpio_in(DEVICE(cpu), power7_set_irq, POWER7_INPUT_NB); | 
 | } | 
 |  | 
 | /* POWER9 internal IRQ controller */ | 
 | static void power9_set_irq(void *opaque, int pin, int level) | 
 | { | 
 |     PowerPCCPU *cpu = opaque; | 
 |  | 
 |     trace_ppc_irq_set(&cpu->env, pin, level); | 
 |  | 
 |     switch (pin) { | 
 |     case POWER9_INPUT_INT: | 
 |         /* Level sensitive - active high */ | 
 |         trace_ppc_irq_set_state("external IRQ", level); | 
 |         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); | 
 |         break; | 
 |     case POWER9_INPUT_HINT: | 
 |         /* Level sensitive - active high */ | 
 |         trace_ppc_irq_set_state("HV external IRQ", level); | 
 |         ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level); | 
 |         break; | 
 |     default: | 
 |         g_assert_not_reached(); | 
 |         return; | 
 |     } | 
 | } | 
 |  | 
 | void ppcPOWER9_irq_init(PowerPCCPU *cpu) | 
 | { | 
 |     qdev_init_gpio_in(DEVICE(cpu), power9_set_irq, POWER9_INPUT_NB); | 
 | } | 
 | #endif /* defined(TARGET_PPC64) */ | 
 |  | 
 | void ppc40x_core_reset(PowerPCCPU *cpu) | 
 | { | 
 |     CPUPPCState *env = &cpu->env; | 
 |     target_ulong dbsr; | 
 |  | 
 |     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n"); | 
 |     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET); | 
 |     dbsr = env->spr[SPR_40x_DBSR]; | 
 |     dbsr &= ~0x00000300; | 
 |     dbsr |= 0x00000100; | 
 |     env->spr[SPR_40x_DBSR] = dbsr; | 
 | } | 
 |  | 
 | void ppc40x_chip_reset(PowerPCCPU *cpu) | 
 | { | 
 |     CPUPPCState *env = &cpu->env; | 
 |     target_ulong dbsr; | 
 |  | 
 |     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n"); | 
 |     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET); | 
 |     /* XXX: TODO reset all internal peripherals */ | 
 |     dbsr = env->spr[SPR_40x_DBSR]; | 
 |     dbsr &= ~0x00000300; | 
 |     dbsr |= 0x00000200; | 
 |     env->spr[SPR_40x_DBSR] = dbsr; | 
 | } | 
 |  | 
 | void ppc40x_system_reset(PowerPCCPU *cpu) | 
 | { | 
 |     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n"); | 
 |     qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); | 
 | } | 
 |  | 
 | void store_40x_dbcr0(CPUPPCState *env, uint32_t val) | 
 | { | 
 |     PowerPCCPU *cpu = env_archcpu(env); | 
 |  | 
 |     bql_lock(); | 
 |  | 
 |     switch ((val >> 28) & 0x3) { | 
 |     case 0x0: | 
 |         /* No action */ | 
 |         break; | 
 |     case 0x1: | 
 |         /* Core reset */ | 
 |         ppc40x_core_reset(cpu); | 
 |         break; | 
 |     case 0x2: | 
 |         /* Chip reset */ | 
 |         ppc40x_chip_reset(cpu); | 
 |         break; | 
 |     case 0x3: | 
 |         /* System reset */ | 
 |         ppc40x_system_reset(cpu); | 
 |         break; | 
 |     } | 
 |  | 
 |     bql_unlock(); | 
 | } | 
 |  | 
 | /* PowerPC 40x internal IRQ controller */ | 
 | static void ppc40x_set_irq(void *opaque, int pin, int level) | 
 | { | 
 |     PowerPCCPU *cpu = opaque; | 
 |     CPUPPCState *env = &cpu->env; | 
 |     int cur_level; | 
 |  | 
 |     trace_ppc_irq_set(env, pin, level); | 
 |  | 
 |     cur_level = (env->irq_input_state >> pin) & 1; | 
 |     /* Don't generate spurious events */ | 
 |     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { | 
 |         CPUState *cs = CPU(cpu); | 
 |  | 
 |         switch (pin) { | 
 |         case PPC40x_INPUT_RESET_SYS: | 
 |             if (level) { | 
 |                 trace_ppc_irq_reset("system"); | 
 |                 ppc40x_system_reset(cpu); | 
 |             } | 
 |             break; | 
 |         case PPC40x_INPUT_RESET_CHIP: | 
 |             if (level) { | 
 |                 trace_ppc_irq_reset("chip"); | 
 |                 ppc40x_chip_reset(cpu); | 
 |             } | 
 |             break; | 
 |         case PPC40x_INPUT_RESET_CORE: | 
 |             /* XXX: TODO: update DBSR[MRR] */ | 
 |             if (level) { | 
 |                 trace_ppc_irq_reset("core"); | 
 |                 ppc40x_core_reset(cpu); | 
 |             } | 
 |             break; | 
 |         case PPC40x_INPUT_CINT: | 
 |             /* Level sensitive - active high */ | 
 |             trace_ppc_irq_set_state("critical IRQ", level); | 
 |             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level); | 
 |             break; | 
 |         case PPC40x_INPUT_INT: | 
 |             /* Level sensitive - active high */ | 
 |             trace_ppc_irq_set_state("external IRQ", level); | 
 |             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); | 
 |             break; | 
 |         case PPC40x_INPUT_HALT: | 
 |             /* Level sensitive - active low */ | 
 |             if (level) { | 
 |                 trace_ppc_irq_cpu("stop"); | 
 |                 cs->halted = 1; | 
 |             } else { | 
 |                 trace_ppc_irq_cpu("restart"); | 
 |                 cs->halted = 0; | 
 |                 qemu_cpu_kick(cs); | 
 |             } | 
 |             break; | 
 |         case PPC40x_INPUT_DEBUG: | 
 |             /* Level sensitive - active high */ | 
 |             trace_ppc_irq_set_state("debug pin", level); | 
 |             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level); | 
 |             break; | 
 |         default: | 
 |             g_assert_not_reached(); | 
 |         } | 
 |         if (level) | 
 |             env->irq_input_state |= 1 << pin; | 
 |         else | 
 |             env->irq_input_state &= ~(1 << pin); | 
 |     } | 
 | } | 
 |  | 
 | void ppc40x_irq_init(PowerPCCPU *cpu) | 
 | { | 
 |     qdev_init_gpio_in(DEVICE(cpu), ppc40x_set_irq, PPC40x_INPUT_NB); | 
 | } | 
 |  | 
 | /* PowerPC E500 internal IRQ controller */ | 
 | static void ppce500_set_irq(void *opaque, int pin, int level) | 
 | { | 
 |     PowerPCCPU *cpu = opaque; | 
 |     CPUPPCState *env = &cpu->env; | 
 |     int cur_level; | 
 |  | 
 |     trace_ppc_irq_set(env, pin, level); | 
 |  | 
 |     cur_level = (env->irq_input_state >> pin) & 1; | 
 |     /* Don't generate spurious events */ | 
 |     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { | 
 |         switch (pin) { | 
 |         case PPCE500_INPUT_MCK: | 
 |             if (level) { | 
 |                 trace_ppc_irq_reset("system"); | 
 |                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); | 
 |             } | 
 |             break; | 
 |         case PPCE500_INPUT_RESET_CORE: | 
 |             if (level) { | 
 |                 trace_ppc_irq_reset("core"); | 
 |                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level); | 
 |             } | 
 |             break; | 
 |         case PPCE500_INPUT_CINT: | 
 |             /* Level sensitive - active high */ | 
 |             trace_ppc_irq_set_state("critical IRQ", level); | 
 |             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level); | 
 |             break; | 
 |         case PPCE500_INPUT_INT: | 
 |             /* Level sensitive - active high */ | 
 |             trace_ppc_irq_set_state("core IRQ", level); | 
 |             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); | 
 |             break; | 
 |         case PPCE500_INPUT_DEBUG: | 
 |             /* Level sensitive - active high */ | 
 |             trace_ppc_irq_set_state("debug pin", level); | 
 |             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level); | 
 |             break; | 
 |         default: | 
 |             g_assert_not_reached(); | 
 |         } | 
 |         if (level) | 
 |             env->irq_input_state |= 1 << pin; | 
 |         else | 
 |             env->irq_input_state &= ~(1 << pin); | 
 |     } | 
 | } | 
 |  | 
 | void ppce500_irq_init(PowerPCCPU *cpu) | 
 | { | 
 |     qdev_init_gpio_in(DEVICE(cpu), ppce500_set_irq, PPCE500_INPUT_NB); | 
 | } | 
 |  | 
 | /* Enable or Disable the E500 EPR capability */ | 
 | void ppce500_set_mpic_proxy(bool enabled) | 
 | { | 
 |     CPUState *cs; | 
 |  | 
 |     CPU_FOREACH(cs) { | 
 |         PowerPCCPU *cpu = POWERPC_CPU(cs); | 
 |  | 
 |         cpu->env.mpic_proxy = enabled; | 
 |         if (kvm_enabled()) { | 
 |             kvmppc_set_mpic_proxy(cpu, enabled); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | /*****************************************************************************/ | 
 | /* PowerPC time base and decrementer emulation */ | 
 |  | 
 | /* | 
 |  * Conversion between QEMU_CLOCK_VIRTUAL ns and timebase (TB) ticks: | 
 |  * TB ticks are arrived at by multiplying tb_freq then dividing by | 
 |  * ns per second, and rounding down. TB ticks drive all clocks and | 
 |  * timers in the target machine. | 
 |  * | 
 |  * Converting TB intervals to ns for the purpose of setting a | 
 |  * QEMU_CLOCK_VIRTUAL timer should go the other way, but rounding | 
 |  * up. Rounding down could cause the timer to fire before the TB | 
 |  * value has been reached. | 
 |  */ | 
 | static uint64_t ns_to_tb(uint32_t freq, int64_t clock) | 
 | { | 
 |     return muldiv64(clock, freq, NANOSECONDS_PER_SECOND); | 
 | } | 
 |  | 
 | /* virtual clock in TB ticks, not adjusted by TB offset */ | 
 | static int64_t tb_to_ns_round_up(uint32_t freq, uint64_t tb) | 
 | { | 
 |     return muldiv64_round_up(tb, NANOSECONDS_PER_SECOND, freq); | 
 | } | 
 |  | 
 | uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset) | 
 | { | 
 |     /* TB time in tb periods */ | 
 |     return ns_to_tb(tb_env->tb_freq, vmclk) + tb_offset; | 
 | } | 
 |  | 
 | uint64_t cpu_ppc_load_tbl (CPUPPCState *env) | 
 | { | 
 |     ppc_tb_t *tb_env = env->tb_env; | 
 |     uint64_t tb; | 
 |  | 
 |     if (kvm_enabled()) { | 
 |         return env->spr[SPR_TBL]; | 
 |     } | 
 |  | 
 |     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), | 
 |                         tb_env->tb_offset); | 
 |     trace_ppc_tb_load(tb); | 
 |  | 
 |     return tb; | 
 | } | 
 |  | 
 | static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env) | 
 | { | 
 |     ppc_tb_t *tb_env = env->tb_env; | 
 |     uint64_t tb; | 
 |  | 
 |     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), | 
 |                         tb_env->tb_offset); | 
 |     trace_ppc_tb_load(tb); | 
 |  | 
 |     return tb >> 32; | 
 | } | 
 |  | 
 | uint32_t cpu_ppc_load_tbu (CPUPPCState *env) | 
 | { | 
 |     if (kvm_enabled()) { | 
 |         return env->spr[SPR_TBU]; | 
 |     } | 
 |  | 
 |     return _cpu_ppc_load_tbu(env); | 
 | } | 
 |  | 
 | static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk, | 
 |                                     int64_t *tb_offsetp, uint64_t value) | 
 | { | 
 |     *tb_offsetp = value - ns_to_tb(tb_env->tb_freq, vmclk); | 
 |  | 
 |     trace_ppc_tb_store(value, *tb_offsetp); | 
 | } | 
 |  | 
 | void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value) | 
 | { | 
 |     ppc_tb_t *tb_env = env->tb_env; | 
 |     int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
 |     uint64_t tb; | 
 |  | 
 |     tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset); | 
 |     tb &= 0xFFFFFFFF00000000ULL; | 
 |     cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, tb | (uint64_t)value); | 
 | } | 
 |  | 
 | static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value) | 
 | { | 
 |     ppc_tb_t *tb_env = env->tb_env; | 
 |     int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
 |     uint64_t tb; | 
 |  | 
 |     tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset); | 
 |     tb &= 0x00000000FFFFFFFFULL; | 
 |     cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, | 
 |                      ((uint64_t)value << 32) | tb); | 
 | } | 
 |  | 
 | void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value) | 
 | { | 
 |     _cpu_ppc_store_tbu(env, value); | 
 | } | 
 |  | 
 | uint64_t cpu_ppc_load_atbl (CPUPPCState *env) | 
 | { | 
 |     ppc_tb_t *tb_env = env->tb_env; | 
 |     uint64_t tb; | 
 |  | 
 |     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), | 
 |                         tb_env->atb_offset); | 
 |     trace_ppc_tb_load(tb); | 
 |  | 
 |     return tb; | 
 | } | 
 |  | 
 | uint32_t cpu_ppc_load_atbu (CPUPPCState *env) | 
 | { | 
 |     ppc_tb_t *tb_env = env->tb_env; | 
 |     uint64_t tb; | 
 |  | 
 |     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), | 
 |                         tb_env->atb_offset); | 
 |     trace_ppc_tb_load(tb); | 
 |  | 
 |     return tb >> 32; | 
 | } | 
 |  | 
 | void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value) | 
 | { | 
 |     ppc_tb_t *tb_env = env->tb_env; | 
 |     int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
 |     uint64_t tb; | 
 |  | 
 |     tb = cpu_ppc_get_tb(tb_env, clock, tb_env->atb_offset); | 
 |     tb &= 0xFFFFFFFF00000000ULL; | 
 |     cpu_ppc_store_tb(tb_env, clock, &tb_env->atb_offset, tb | (uint64_t)value); | 
 | } | 
 |  | 
 | void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value) | 
 | { | 
 |     ppc_tb_t *tb_env = env->tb_env; | 
 |     int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
 |     uint64_t tb; | 
 |  | 
 |     tb = cpu_ppc_get_tb(tb_env, clock, tb_env->atb_offset); | 
 |     tb &= 0x00000000FFFFFFFFULL; | 
 |     cpu_ppc_store_tb(tb_env, clock, &tb_env->atb_offset, | 
 |                      ((uint64_t)value << 32) | tb); | 
 | } | 
 |  | 
 | void cpu_ppc_increase_tb_by_offset(CPUPPCState *env, int64_t offset) | 
 | { | 
 |     env->tb_env->tb_offset += offset; | 
 | } | 
 |  | 
 | void cpu_ppc_decrease_tb_by_offset(CPUPPCState *env, int64_t offset) | 
 | { | 
 |     env->tb_env->tb_offset -= offset; | 
 | } | 
 |  | 
 | uint64_t cpu_ppc_load_vtb(CPUPPCState *env) | 
 | { | 
 |     ppc_tb_t *tb_env = env->tb_env; | 
 |  | 
 |     return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), | 
 |                           tb_env->vtb_offset); | 
 | } | 
 |  | 
 | void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value) | 
 | { | 
 |     ppc_tb_t *tb_env = env->tb_env; | 
 |  | 
 |     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), | 
 |                      &tb_env->vtb_offset, value); | 
 | } | 
 |  | 
 | void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value) | 
 | { | 
 |     ppc_tb_t *tb_env = env->tb_env; | 
 |     int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
 |     uint64_t tb; | 
 |  | 
 |     tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset); | 
 |     tb &= 0xFFFFFFUL; | 
 |     tb |= (value & ~0xFFFFFFUL); | 
 |     cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, tb); | 
 | } | 
 |  | 
 | static void cpu_ppc_tb_stop (CPUPPCState *env) | 
 | { | 
 |     ppc_tb_t *tb_env = env->tb_env; | 
 |     uint64_t tb, atb, vmclk; | 
 |  | 
 |     /* If the time base is already frozen, do nothing */ | 
 |     if (tb_env->tb_freq != 0) { | 
 |         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
 |         /* Get the time base */ | 
 |         tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset); | 
 |         /* Get the alternate time base */ | 
 |         atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset); | 
 |         /* Store the time base value (ie compute the current offset) */ | 
 |         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb); | 
 |         /* Store the alternate time base value (compute the current offset) */ | 
 |         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb); | 
 |         /* Set the time base frequency to zero */ | 
 |         tb_env->tb_freq = 0; | 
 |         /* Now, the time bases are frozen to tb_offset / atb_offset value */ | 
 |     } | 
 | } | 
 |  | 
 | static void cpu_ppc_tb_start (CPUPPCState *env) | 
 | { | 
 |     ppc_tb_t *tb_env = env->tb_env; | 
 |     uint64_t tb, atb, vmclk; | 
 |  | 
 |     /* If the time base is not frozen, do nothing */ | 
 |     if (tb_env->tb_freq == 0) { | 
 |         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
 |         /* Get the time base from tb_offset */ | 
 |         tb = tb_env->tb_offset; | 
 |         /* Get the alternate time base from atb_offset */ | 
 |         atb = tb_env->atb_offset; | 
 |         /* Restore the tb frequency from the decrementer frequency */ | 
 |         tb_env->tb_freq = tb_env->decr_freq; | 
 |         /* Store the time base value */ | 
 |         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb); | 
 |         /* Store the alternate time base value */ | 
 |         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb); | 
 |     } | 
 | } | 
 |  | 
 | bool ppc_decr_clear_on_delivery(CPUPPCState *env) | 
 | { | 
 |     ppc_tb_t *tb_env = env->tb_env; | 
 |     int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL; | 
 |     return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED); | 
 | } | 
 |  | 
 | static inline int64_t __cpu_ppc_load_decr(CPUPPCState *env, int64_t now, | 
 |                                           uint64_t next) | 
 | { | 
 |     ppc_tb_t *tb_env = env->tb_env; | 
 |     uint64_t n; | 
 |     int64_t decr; | 
 |  | 
 |     n = ns_to_tb(tb_env->decr_freq, now); | 
 |     if (next > n && tb_env->flags & PPC_TIMER_BOOKE) { | 
 |         decr = 0; | 
 |     } else { | 
 |         decr = next - n; | 
 |     } | 
 |  | 
 |     trace_ppc_decr_load(decr); | 
 |  | 
 |     return decr; | 
 | } | 
 |  | 
 | static target_ulong _cpu_ppc_load_decr(CPUPPCState *env, int64_t now) | 
 | { | 
 |     ppc_tb_t *tb_env = env->tb_env; | 
 |     uint64_t decr; | 
 |  | 
 |     decr = __cpu_ppc_load_decr(env, now, tb_env->decr_next); | 
 |  | 
 |     /* | 
 |      * If large decrementer is enabled then the decrementer is signed extended | 
 |      * to 64 bits, otherwise it is a 32 bit value. | 
 |      */ | 
 |     if (env->spr[SPR_LPCR] & LPCR_LD) { | 
 |         PowerPCCPU *cpu = env_archcpu(env); | 
 |         PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); | 
 |         return sextract64(decr, 0, pcc->lrg_decr_bits); | 
 |     } | 
 |     return (uint32_t) decr; | 
 | } | 
 |  | 
 | target_ulong cpu_ppc_load_decr(CPUPPCState *env) | 
 | { | 
 |     if (kvm_enabled()) { | 
 |         return env->spr[SPR_DECR]; | 
 |     } else { | 
 |         return _cpu_ppc_load_decr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); | 
 |     } | 
 | } | 
 |  | 
 | static target_ulong _cpu_ppc_load_hdecr(CPUPPCState *env, int64_t now) | 
 | { | 
 |     PowerPCCPU *cpu = env_archcpu(env); | 
 |     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); | 
 |     ppc_tb_t *tb_env = env->tb_env; | 
 |     uint64_t hdecr; | 
 |  | 
 |     hdecr =  __cpu_ppc_load_decr(env, now, tb_env->hdecr_next); | 
 |  | 
 |     /* | 
 |      * If we have a large decrementer (POWER9 or later) then hdecr is sign | 
 |      * extended to 64 bits, otherwise it is 32 bits. | 
 |      */ | 
 |     if (pcc->lrg_decr_bits > 32) { | 
 |         return sextract64(hdecr, 0, pcc->lrg_decr_bits); | 
 |     } | 
 |     return (uint32_t) hdecr; | 
 | } | 
 |  | 
 | target_ulong cpu_ppc_load_hdecr(CPUPPCState *env) | 
 | { | 
 |     return _cpu_ppc_load_hdecr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); | 
 | } | 
 |  | 
 | uint64_t cpu_ppc_load_purr (CPUPPCState *env) | 
 | { | 
 |     ppc_tb_t *tb_env = env->tb_env; | 
 |  | 
 |     return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), | 
 |                           tb_env->purr_offset); | 
 | } | 
 |  | 
 | /* When decrementer expires, | 
 |  * all we need to do is generate or queue a CPU exception | 
 |  */ | 
 | static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu) | 
 | { | 
 |     /* Raise it */ | 
 |     trace_ppc_decr_excp("raise"); | 
 |     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1); | 
 | } | 
 |  | 
 | static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu) | 
 | { | 
 |     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0); | 
 | } | 
 |  | 
 | static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu) | 
 | { | 
 |     CPUPPCState *env = &cpu->env; | 
 |  | 
 |     /* Raise it */ | 
 |     trace_ppc_decr_excp("raise HV"); | 
 |  | 
 |     /* The architecture specifies that we don't deliver HDEC | 
 |      * interrupts in a PM state. Not only they don't cause a | 
 |      * wakeup but they also get effectively discarded. | 
 |      */ | 
 |     if (!env->resume_as_sreset) { | 
 |         ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1); | 
 |     } | 
 | } | 
 |  | 
 | static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu) | 
 | { | 
 |     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0); | 
 | } | 
 |  | 
 | static void __cpu_ppc_store_decr(PowerPCCPU *cpu, int64_t now, uint64_t *nextp, | 
 |                                  QEMUTimer *timer, | 
 |                                  void (*raise_excp)(void *), | 
 |                                  void (*lower_excp)(PowerPCCPU *), | 
 |                                  uint32_t flags, target_ulong decr, | 
 |                                  target_ulong value, int nr_bits) | 
 | { | 
 |     CPUPPCState *env = &cpu->env; | 
 |     ppc_tb_t *tb_env = env->tb_env; | 
 |     uint64_t next; | 
 |     int64_t signed_value; | 
 |     int64_t signed_decr; | 
 |  | 
 |     /* Truncate value to decr_width and sign extend for simplicity */ | 
 |     value = extract64(value, 0, nr_bits); | 
 |     decr = extract64(decr, 0, nr_bits); | 
 |     signed_value = sextract64(value, 0, nr_bits); | 
 |     signed_decr = sextract64(decr, 0, nr_bits); | 
 |  | 
 |     trace_ppc_decr_store(nr_bits, decr, value); | 
 |  | 
 |     /* | 
 |      * Calculate the next decrementer event and set a timer. | 
 |      * decr_next is in timebase units to keep rounding simple. Note it is | 
 |      * not adjusted by tb_offset because if TB changes via tb_offset changing, | 
 |      * decrementer does not change, so not directly comparable with TB. | 
 |      */ | 
 |     next = ns_to_tb(tb_env->decr_freq, now) + value; | 
 |     *nextp = next; /* nextp is in timebase units */ | 
 |  | 
 |     /* | 
 |      * Going from 1 -> 0 or 0 -> -1 is the event to generate a DEC interrupt. | 
 |      * | 
 |      * On MSB level based DEC implementations the MSB always means the interrupt | 
 |      * is pending, so raise it on those. | 
 |      * | 
 |      * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers | 
 |      * an edge interrupt, so raise it here too. | 
 |      */ | 
 |     if (((flags & PPC_DECR_UNDERFLOW_LEVEL) && signed_value < 0) || | 
 |         ((flags & PPC_DECR_UNDERFLOW_TRIGGERED) && signed_value < 0 | 
 |           && signed_decr >= 0)) { | 
 |         (*raise_excp)(cpu); | 
 |         return; | 
 |     } | 
 |  | 
 |     /* On MSB level based systems a 0 for the MSB stops interrupt delivery */ | 
 |     if (signed_value >= 0 && (flags & PPC_DECR_UNDERFLOW_LEVEL)) { | 
 |         (*lower_excp)(cpu); | 
 |     } | 
 |  | 
 |     /* Adjust timer */ | 
 |     timer_mod(timer, tb_to_ns_round_up(tb_env->decr_freq, next)); | 
 | } | 
 |  | 
 | static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, int64_t now, | 
 |                                        target_ulong decr, target_ulong value, | 
 |                                        int nr_bits) | 
 | { | 
 |     ppc_tb_t *tb_env = cpu->env.tb_env; | 
 |  | 
 |     __cpu_ppc_store_decr(cpu, now, &tb_env->decr_next, tb_env->decr_timer, | 
 |                          tb_env->decr_timer->cb, &cpu_ppc_decr_lower, | 
 |                          tb_env->flags, decr, value, nr_bits); | 
 | } | 
 |  | 
 | void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value) | 
 | { | 
 |     PowerPCCPU *cpu = env_archcpu(env); | 
 |     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); | 
 |     int64_t now; | 
 |     target_ulong decr; | 
 |     int nr_bits = 32; | 
 |  | 
 |     if (kvm_enabled()) { | 
 |         /* KVM handles decrementer exceptions, we don't need our own timer */ | 
 |         return; | 
 |     } | 
 |  | 
 |     if (env->spr[SPR_LPCR] & LPCR_LD) { | 
 |         nr_bits = pcc->lrg_decr_bits; | 
 |     } | 
 |  | 
 |     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
 |     decr = _cpu_ppc_load_decr(env, now); | 
 |     _cpu_ppc_store_decr(cpu, now, decr, value, nr_bits); | 
 | } | 
 |  | 
 | static void cpu_ppc_decr_cb(void *opaque) | 
 | { | 
 |     PowerPCCPU *cpu = opaque; | 
 |  | 
 |     cpu_ppc_decr_excp(cpu); | 
 | } | 
 |  | 
 | static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, int64_t now, | 
 |                                         target_ulong hdecr, target_ulong value, | 
 |                                         int nr_bits) | 
 | { | 
 |     ppc_tb_t *tb_env = cpu->env.tb_env; | 
 |  | 
 |     if (tb_env->hdecr_timer != NULL) { | 
 |         /* HDECR (Book3S 64bit) is edge-based, not level like DECR */ | 
 |         __cpu_ppc_store_decr(cpu, now, &tb_env->hdecr_next, tb_env->hdecr_timer, | 
 |                              tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower, | 
 |                              PPC_DECR_UNDERFLOW_TRIGGERED, | 
 |                              hdecr, value, nr_bits); | 
 |     } | 
 | } | 
 |  | 
 | void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value) | 
 | { | 
 |     PowerPCCPU *cpu = env_archcpu(env); | 
 |     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); | 
 |     int64_t now; | 
 |     target_ulong hdecr; | 
 |  | 
 |     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
 |     hdecr = _cpu_ppc_load_hdecr(env, now); | 
 |     _cpu_ppc_store_hdecr(cpu, now, hdecr, value, pcc->lrg_decr_bits); | 
 | } | 
 |  | 
 | static void cpu_ppc_hdecr_cb(void *opaque) | 
 | { | 
 |     PowerPCCPU *cpu = opaque; | 
 |  | 
 |     cpu_ppc_hdecr_excp(cpu); | 
 | } | 
 |  | 
 | static void _cpu_ppc_store_purr(CPUPPCState *env, int64_t now, uint64_t value) | 
 | { | 
 |     ppc_tb_t *tb_env = env->tb_env; | 
 |  | 
 |     cpu_ppc_store_tb(tb_env, now, &tb_env->purr_offset, value); | 
 | } | 
 |  | 
 | void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value) | 
 | { | 
 |     _cpu_ppc_store_purr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), value); | 
 | } | 
 |  | 
 | static void timebase_save(PPCTimebase *tb) | 
 | { | 
 |     uint64_t ticks = cpu_get_host_ticks(); | 
 |     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); | 
 |  | 
 |     if (!first_ppc_cpu->env.tb_env) { | 
 |         error_report("No timebase object"); | 
 |         return; | 
 |     } | 
 |  | 
 |     if (replay_mode == REPLAY_MODE_NONE) { | 
 |         /* not used anymore, we keep it for compatibility */ | 
 |         tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST); | 
 |     } else { | 
 |         /* simpler for record-replay to avoid this event, compat not needed */ | 
 |         tb->time_of_the_day_ns = 0; | 
 |     } | 
 |  | 
 |     /* | 
 |      * tb_offset is only expected to be changed by QEMU so | 
 |      * there is no need to update it from KVM here | 
 |      */ | 
 |     tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset; | 
 |  | 
 |     tb->runstate_paused = | 
 |         runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM); | 
 | } | 
 |  | 
 | static void timebase_load(PPCTimebase *tb) | 
 | { | 
 |     CPUState *cpu; | 
 |     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); | 
 |     int64_t tb_off_adj, tb_off; | 
 |     unsigned long freq; | 
 |  | 
 |     if (!first_ppc_cpu->env.tb_env) { | 
 |         error_report("No timebase object"); | 
 |         return; | 
 |     } | 
 |  | 
 |     freq = first_ppc_cpu->env.tb_env->tb_freq; | 
 |  | 
 |     tb_off_adj = tb->guest_timebase - cpu_get_host_ticks(); | 
 |  | 
 |     tb_off = first_ppc_cpu->env.tb_env->tb_offset; | 
 |     trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off, | 
 |                         (tb_off_adj - tb_off) / freq); | 
 |  | 
 |     /* Set new offset to all CPUs */ | 
 |     CPU_FOREACH(cpu) { | 
 |         PowerPCCPU *pcpu = POWERPC_CPU(cpu); | 
 |         pcpu->env.tb_env->tb_offset = tb_off_adj; | 
 |         kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset); | 
 |     } | 
 | } | 
 |  | 
 | void cpu_ppc_clock_vm_state_change(void *opaque, bool running, | 
 |                                    RunState state) | 
 | { | 
 |     PPCTimebase *tb = opaque; | 
 |  | 
 |     if (running) { | 
 |         timebase_load(tb); | 
 |     } else { | 
 |         timebase_save(tb); | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |  * When migrating a running guest, read the clock just | 
 |  * before migration, so that the guest clock counts | 
 |  * during the events between: | 
 |  * | 
 |  *  * vm_stop() | 
 |  *  * | 
 |  *  * pre_save() | 
 |  * | 
 |  *  This reduces clock difference on migration from 5s | 
 |  *  to 0.1s (when max_downtime == 5s), because sending the | 
 |  *  final pages of memory (which happens between vm_stop() | 
 |  *  and pre_save()) takes max_downtime. | 
 |  */ | 
 | static int timebase_pre_save(void *opaque) | 
 | { | 
 |     PPCTimebase *tb = opaque; | 
 |  | 
 |     /* guest_timebase won't be overridden in case of paused guest or savevm */ | 
 |     if (!tb->runstate_paused) { | 
 |         timebase_save(tb); | 
 |     } | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | const VMStateDescription vmstate_ppc_timebase = { | 
 |     .name = "timebase", | 
 |     .version_id = 1, | 
 |     .minimum_version_id = 1, | 
 |     .pre_save = timebase_pre_save, | 
 |     .fields = (const VMStateField []) { | 
 |         VMSTATE_UINT64(guest_timebase, PPCTimebase), | 
 |         VMSTATE_INT64(time_of_the_day_ns, PPCTimebase), | 
 |         VMSTATE_END_OF_LIST() | 
 |     }, | 
 | }; | 
 |  | 
 | /* Set up (once) timebase frequency (in Hz) */ | 
 | void cpu_ppc_tb_init(CPUPPCState *env, uint32_t freq) | 
 | { | 
 |     PowerPCCPU *cpu = env_archcpu(env); | 
 |     ppc_tb_t *tb_env; | 
 |  | 
 |     tb_env = g_new0(ppc_tb_t, 1); | 
 |     env->tb_env = tb_env; | 
 |     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED; | 
 |     if (is_book3s_arch2x(env)) { | 
 |         /* All Book3S 64bit CPUs implement level based DEC logic */ | 
 |         tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL; | 
 |     } | 
 |     /* Create new timer */ | 
 |     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, | 
 |                                       &cpu_ppc_decr_cb, cpu); | 
 |     if (env->has_hv_mode && !cpu->vhyp) { | 
 |         tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, | 
 |                                            &cpu_ppc_hdecr_cb, cpu); | 
 |     } else { | 
 |         tb_env->hdecr_timer = NULL; | 
 |     } | 
 |  | 
 |     tb_env->tb_freq = freq; | 
 |     tb_env->decr_freq = freq; | 
 | } | 
 |  | 
 | void cpu_ppc_tb_reset(CPUPPCState *env) | 
 | { | 
 |     PowerPCCPU *cpu = env_archcpu(env); | 
 |     ppc_tb_t *tb_env = env->tb_env; | 
 |  | 
 |     timer_del(tb_env->decr_timer); | 
 |     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0); | 
 |     tb_env->decr_next = 0; | 
 |     if (tb_env->hdecr_timer != NULL) { | 
 |         timer_del(tb_env->hdecr_timer); | 
 |         ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0); | 
 |         tb_env->hdecr_next = 0; | 
 |     } | 
 |  | 
 |     /* | 
 |      * There is a bug in Linux 2.4 kernels: | 
 |      * if a decrementer exception is pending when it enables msr_ee at startup, | 
 |      * it's not ready to handle it... | 
 |      */ | 
 |     cpu_ppc_store_decr(env, -1); | 
 |     cpu_ppc_store_hdecr(env, -1); | 
 |     cpu_ppc_store_purr(env, 0x0000000000000000ULL); | 
 | } | 
 |  | 
 | void cpu_ppc_tb_free(CPUPPCState *env) | 
 | { | 
 |     timer_free(env->tb_env->decr_timer); | 
 |     timer_free(env->tb_env->hdecr_timer); | 
 |     g_free(env->tb_env); | 
 | } | 
 |  | 
 | /* cpu_ppc_hdecr_init may be used if the timer is not used by HDEC emulation */ | 
 | void cpu_ppc_hdecr_init(CPUPPCState *env) | 
 | { | 
 |     PowerPCCPU *cpu = env_archcpu(env); | 
 |  | 
 |     assert(env->tb_env->hdecr_timer == NULL); | 
 |  | 
 |     env->tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, | 
 |                                             &cpu_ppc_hdecr_cb, cpu); | 
 | } | 
 |  | 
 | void cpu_ppc_hdecr_exit(CPUPPCState *env) | 
 | { | 
 |     PowerPCCPU *cpu = env_archcpu(env); | 
 |  | 
 |     timer_free(env->tb_env->hdecr_timer); | 
 |     env->tb_env->hdecr_timer = NULL; | 
 |  | 
 |     cpu_ppc_hdecr_lower(cpu); | 
 | } | 
 |  | 
 | /*****************************************************************************/ | 
 | /* PowerPC 40x timers */ | 
 |  | 
 | /* PIT, FIT & WDT */ | 
 | typedef struct ppc40x_timer_t ppc40x_timer_t; | 
 | struct ppc40x_timer_t { | 
 |     uint64_t pit_reload;  /* PIT auto-reload value        */ | 
 |     uint64_t fit_next;    /* Tick for next FIT interrupt  */ | 
 |     QEMUTimer *fit_timer; | 
 |     uint64_t wdt_next;    /* Tick for next WDT interrupt  */ | 
 |     QEMUTimer *wdt_timer; | 
 |  | 
 |     /* 405 have the PIT, 440 have a DECR.  */ | 
 |     unsigned int decr_excp; | 
 | }; | 
 |  | 
 | /* Fixed interval timer */ | 
 | static void cpu_4xx_fit_cb (void *opaque) | 
 | { | 
 |     PowerPCCPU *cpu = opaque; | 
 |     CPUPPCState *env = &cpu->env; | 
 |     ppc_tb_t *tb_env; | 
 |     ppc40x_timer_t *ppc40x_timer; | 
 |     uint64_t now, next; | 
 |  | 
 |     tb_env = env->tb_env; | 
 |     ppc40x_timer = tb_env->opaque; | 
 |     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
 |     switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) { | 
 |     case 0: | 
 |         next = 1 << 9; | 
 |         break; | 
 |     case 1: | 
 |         next = 1 << 13; | 
 |         break; | 
 |     case 2: | 
 |         next = 1 << 17; | 
 |         break; | 
 |     case 3: | 
 |         next = 1 << 21; | 
 |         break; | 
 |     default: | 
 |         /* Cannot occur, but makes gcc happy */ | 
 |         return; | 
 |     } | 
 |     next = now + tb_to_ns_round_up(tb_env->tb_freq, next); | 
 |     timer_mod(ppc40x_timer->fit_timer, next); | 
 |     env->spr[SPR_40x_TSR] |= 1 << 26; | 
 |     if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) { | 
 |         ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1); | 
 |     } | 
 |     trace_ppc4xx_fit((int)((env->spr[SPR_40x_TCR] >> 23) & 0x1), | 
 |                          env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); | 
 | } | 
 |  | 
 | /* Programmable interval timer */ | 
 | static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp) | 
 | { | 
 |     ppc40x_timer_t *ppc40x_timer; | 
 |     uint64_t now, next; | 
 |  | 
 |     ppc40x_timer = tb_env->opaque; | 
 |     if (ppc40x_timer->pit_reload <= 1 || | 
 |         !((env->spr[SPR_40x_TCR] >> 26) & 0x1) || | 
 |         (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) { | 
 |         /* Stop PIT */ | 
 |         trace_ppc4xx_pit_stop(); | 
 |         timer_del(tb_env->decr_timer); | 
 |     } else { | 
 |         trace_ppc4xx_pit_start(ppc40x_timer->pit_reload); | 
 |         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
 |  | 
 |         if (is_excp) { | 
 |             tb_env->decr_next += ppc40x_timer->pit_reload; | 
 |         } else { | 
 |             tb_env->decr_next = ns_to_tb(tb_env->decr_freq, now) | 
 |                                 + ppc40x_timer->pit_reload; | 
 |         } | 
 |         next = tb_to_ns_round_up(tb_env->decr_freq, tb_env->decr_next); | 
 |         timer_mod(tb_env->decr_timer, next); | 
 |     } | 
 | } | 
 |  | 
 | static void cpu_4xx_pit_cb (void *opaque) | 
 | { | 
 |     PowerPCCPU *cpu = opaque; | 
 |     CPUPPCState *env = &cpu->env; | 
 |     ppc_tb_t *tb_env; | 
 |     ppc40x_timer_t *ppc40x_timer; | 
 |  | 
 |     tb_env = env->tb_env; | 
 |     ppc40x_timer = tb_env->opaque; | 
 |     env->spr[SPR_40x_TSR] |= 1 << 27; | 
 |     if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) { | 
 |         ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1); | 
 |     } | 
 |     start_stop_pit(env, tb_env, 1); | 
 |     trace_ppc4xx_pit((int)((env->spr[SPR_40x_TCR] >> 22) & 0x1), | 
 |            (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1), | 
 |            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR], | 
 |            ppc40x_timer->pit_reload); | 
 | } | 
 |  | 
 | /* Watchdog timer */ | 
 | static void cpu_4xx_wdt_cb (void *opaque) | 
 | { | 
 |     PowerPCCPU *cpu = opaque; | 
 |     CPUPPCState *env = &cpu->env; | 
 |     ppc_tb_t *tb_env; | 
 |     ppc40x_timer_t *ppc40x_timer; | 
 |     uint64_t now, next; | 
 |  | 
 |     tb_env = env->tb_env; | 
 |     ppc40x_timer = tb_env->opaque; | 
 |     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
 |     switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) { | 
 |     case 0: | 
 |         next = 1 << 17; | 
 |         break; | 
 |     case 1: | 
 |         next = 1 << 21; | 
 |         break; | 
 |     case 2: | 
 |         next = 1 << 25; | 
 |         break; | 
 |     case 3: | 
 |         next = 1 << 29; | 
 |         break; | 
 |     default: | 
 |         /* Cannot occur, but makes gcc happy */ | 
 |         return; | 
 |     } | 
 |     next = now + tb_to_ns_round_up(tb_env->decr_freq, next); | 
 |     trace_ppc4xx_wdt(env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); | 
 |     switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) { | 
 |     case 0x0: | 
 |     case 0x1: | 
 |         timer_mod(ppc40x_timer->wdt_timer, next); | 
 |         ppc40x_timer->wdt_next = next; | 
 |         env->spr[SPR_40x_TSR] |= 1U << 31; | 
 |         break; | 
 |     case 0x2: | 
 |         timer_mod(ppc40x_timer->wdt_timer, next); | 
 |         ppc40x_timer->wdt_next = next; | 
 |         env->spr[SPR_40x_TSR] |= 1 << 30; | 
 |         if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) { | 
 |             ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1); | 
 |         } | 
 |         break; | 
 |     case 0x3: | 
 |         env->spr[SPR_40x_TSR] &= ~0x30000000; | 
 |         env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000; | 
 |         switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) { | 
 |         case 0x0: | 
 |             /* No reset */ | 
 |             break; | 
 |         case 0x1: /* Core reset */ | 
 |             ppc40x_core_reset(cpu); | 
 |             break; | 
 |         case 0x2: /* Chip reset */ | 
 |             ppc40x_chip_reset(cpu); | 
 |             break; | 
 |         case 0x3: /* System reset */ | 
 |             ppc40x_system_reset(cpu); | 
 |             break; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void store_40x_pit (CPUPPCState *env, target_ulong val) | 
 | { | 
 |     ppc_tb_t *tb_env; | 
 |     ppc40x_timer_t *ppc40x_timer; | 
 |  | 
 |     tb_env = env->tb_env; | 
 |     ppc40x_timer = tb_env->opaque; | 
 |     trace_ppc40x_store_pit(val); | 
 |     ppc40x_timer->pit_reload = val; | 
 |     start_stop_pit(env, tb_env, 0); | 
 | } | 
 |  | 
 | target_ulong load_40x_pit (CPUPPCState *env) | 
 | { | 
 |     return cpu_ppc_load_decr(env); | 
 | } | 
 |  | 
 | void store_40x_tsr(CPUPPCState *env, target_ulong val) | 
 | { | 
 |     PowerPCCPU *cpu = env_archcpu(env); | 
 |  | 
 |     trace_ppc40x_store_tcr(val); | 
 |  | 
 |     env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000); | 
 |     if (val & 0x80000000) { | 
 |         ppc_set_irq(cpu, PPC_INTERRUPT_PIT, 0); | 
 |     } | 
 | } | 
 |  | 
 | void store_40x_tcr(CPUPPCState *env, target_ulong val) | 
 | { | 
 |     PowerPCCPU *cpu = env_archcpu(env); | 
 |     ppc_tb_t *tb_env; | 
 |  | 
 |     trace_ppc40x_store_tsr(val); | 
 |  | 
 |     tb_env = env->tb_env; | 
 |     env->spr[SPR_40x_TCR] = val & 0xFFC00000; | 
 |     start_stop_pit(env, tb_env, 1); | 
 |     cpu_4xx_wdt_cb(cpu); | 
 | } | 
 |  | 
 | static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq) | 
 | { | 
 |     CPUPPCState *env = opaque; | 
 |     ppc_tb_t *tb_env = env->tb_env; | 
 |  | 
 |     trace_ppc40x_set_tb_clk(freq); | 
 |     tb_env->tb_freq = freq; | 
 |     tb_env->decr_freq = freq; | 
 |     /* XXX: we should also update all timers */ | 
 | } | 
 |  | 
 | clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq, | 
 |                                   unsigned int decr_excp) | 
 | { | 
 |     ppc_tb_t *tb_env; | 
 |     ppc40x_timer_t *ppc40x_timer; | 
 |     PowerPCCPU *cpu = env_archcpu(env); | 
 |  | 
 |     trace_ppc40x_timers_init(freq); | 
 |  | 
 |     tb_env = g_new0(ppc_tb_t, 1); | 
 |     ppc40x_timer = g_new0(ppc40x_timer_t, 1); | 
 |  | 
 |     env->tb_env = tb_env; | 
 |     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED; | 
 |     tb_env->tb_freq = freq; | 
 |     tb_env->decr_freq = freq; | 
 |     tb_env->opaque = ppc40x_timer; | 
 |  | 
 |     /* We use decr timer for PIT */ | 
 |     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, cpu); | 
 |     ppc40x_timer->fit_timer = | 
 |         timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, cpu); | 
 |     ppc40x_timer->wdt_timer = | 
 |         timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, cpu); | 
 |     ppc40x_timer->decr_excp = decr_excp; | 
 |  | 
 |     return &ppc_40x_set_tb_clk; | 
 | } | 
 |  | 
 | /*****************************************************************************/ | 
 | /* Embedded PowerPC Device Control Registers */ | 
 | typedef struct ppc_dcrn_t ppc_dcrn_t; | 
 | struct ppc_dcrn_t { | 
 |     dcr_read_cb dcr_read; | 
 |     dcr_write_cb dcr_write; | 
 |     void *opaque; | 
 | }; | 
 |  | 
 | /* XXX: on 460, DCR addresses are 32 bits wide, | 
 |  *      using DCRIPR to get the 22 upper bits of the DCR address | 
 |  */ | 
 | #define DCRN_NB 1024 | 
 | struct ppc_dcr_t { | 
 |     ppc_dcrn_t dcrn[DCRN_NB]; | 
 |     int (*read_error)(int dcrn); | 
 |     int (*write_error)(int dcrn); | 
 | }; | 
 |  | 
 | int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp) | 
 | { | 
 |     ppc_dcrn_t *dcr; | 
 |  | 
 |     if (dcrn < 0 || dcrn >= DCRN_NB) | 
 |         goto error; | 
 |     dcr = &dcr_env->dcrn[dcrn]; | 
 |     if (dcr->dcr_read == NULL) | 
 |         goto error; | 
 |     *valp = (*dcr->dcr_read)(dcr->opaque, dcrn); | 
 |     trace_ppc_dcr_read(dcrn, *valp); | 
 |  | 
 |     return 0; | 
 |  | 
 |  error: | 
 |     if (dcr_env->read_error != NULL) | 
 |         return (*dcr_env->read_error)(dcrn); | 
 |  | 
 |     return -1; | 
 | } | 
 |  | 
 | int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val) | 
 | { | 
 |     ppc_dcrn_t *dcr; | 
 |  | 
 |     if (dcrn < 0 || dcrn >= DCRN_NB) | 
 |         goto error; | 
 |     dcr = &dcr_env->dcrn[dcrn]; | 
 |     if (dcr->dcr_write == NULL) | 
 |         goto error; | 
 |     trace_ppc_dcr_write(dcrn, val); | 
 |     (*dcr->dcr_write)(dcr->opaque, dcrn, val); | 
 |  | 
 |     return 0; | 
 |  | 
 |  error: | 
 |     if (dcr_env->write_error != NULL) | 
 |         return (*dcr_env->write_error)(dcrn); | 
 |  | 
 |     return -1; | 
 | } | 
 |  | 
 | int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque, | 
 |                       dcr_read_cb dcr_read, dcr_write_cb dcr_write) | 
 | { | 
 |     ppc_dcr_t *dcr_env; | 
 |     ppc_dcrn_t *dcr; | 
 |  | 
 |     dcr_env = env->dcr_env; | 
 |     if (dcr_env == NULL) | 
 |         return -1; | 
 |     if (dcrn < 0 || dcrn >= DCRN_NB) | 
 |         return -1; | 
 |     dcr = &dcr_env->dcrn[dcrn]; | 
 |     if (dcr->opaque != NULL || | 
 |         dcr->dcr_read != NULL || | 
 |         dcr->dcr_write != NULL) | 
 |         return -1; | 
 |     dcr->opaque = opaque; | 
 |     dcr->dcr_read = dcr_read; | 
 |     dcr->dcr_write = dcr_write; | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn), | 
 |                   int (*write_error)(int dcrn)) | 
 | { | 
 |     ppc_dcr_t *dcr_env; | 
 |  | 
 |     dcr_env = g_new0(ppc_dcr_t, 1); | 
 |     dcr_env->read_error = read_error; | 
 |     dcr_env->write_error = write_error; | 
 |     env->dcr_env = dcr_env; | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | /*****************************************************************************/ | 
 |  | 
 | int ppc_cpu_pir(PowerPCCPU *cpu) | 
 | { | 
 |     CPUPPCState *env = &cpu->env; | 
 |     return env->spr_cb[SPR_PIR].default_value; | 
 | } | 
 |  | 
 | int ppc_cpu_tir(PowerPCCPU *cpu) | 
 | { | 
 |     CPUPPCState *env = &cpu->env; | 
 |     return env->spr_cb[SPR_TIR].default_value; | 
 | } | 
 |  | 
 | PowerPCCPU *ppc_get_vcpu_by_pir(int pir) | 
 | { | 
 |     CPUState *cs; | 
 |  | 
 |     CPU_FOREACH(cs) { | 
 |         PowerPCCPU *cpu = POWERPC_CPU(cs); | 
 |  | 
 |         if (ppc_cpu_pir(cpu) == pir) { | 
 |             return cpu; | 
 |         } | 
 |     } | 
 |  | 
 |     return NULL; | 
 | } | 
 |  | 
 | void ppc_irq_reset(PowerPCCPU *cpu) | 
 | { | 
 |     CPUPPCState *env = &cpu->env; | 
 |  | 
 |     env->irq_input_state = 0; | 
 |     if (kvm_enabled()) { | 
 |         kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0); | 
 |     } | 
 | } |