blob: b13e7c46f9a2a00648c20bc26d34497b503057fb [file] [log] [blame]
/*
* QEMU Sparc SLAVIO serial port emulation
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
/* debug serial */
//#define DEBUG_SERIAL
/* debug keyboard */
//#define DEBUG_KBD
/* debug mouse */
//#define DEBUG_MOUSE
/*
* This is the serial port, mouse and keyboard part of chip STP2001
* (Slave I/O), also produced as NCR89C105. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
*
* The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
* mouse and keyboard ports don't implement all functions and they are
* only asynchronous. There is no DMA.
*
*/
#ifdef DEBUG_SERIAL
#define SER_DPRINTF(fmt, args...) \
do { printf("SER: " fmt , ##args); } while (0)
#define pic_set_irq(irq, level) \
do { printf("SER: set_irq(%d): %d\n", (irq), (level)); pic_set_irq((irq),(level));} while (0)
#else
#define SER_DPRINTF(fmt, args...)
#endif
#ifdef DEBUG_KBD
#define KBD_DPRINTF(fmt, args...) \
do { printf("KBD: " fmt , ##args); } while (0)
#else
#define KBD_DPRINTF(fmt, args...)
#endif
#ifdef DEBUG_MOUSE
#define MS_DPRINTF(fmt, args...) \
do { printf("SER: " fmt , ##args); } while (0)
#else
#define MS_DPRINTF(fmt, args...)
#endif
typedef enum {
chn_a, chn_b,
} chn_id_t;
typedef enum {
ser, kbd, mouse,
} chn_type_t;
#define KBD_QUEUE_SIZE 256
typedef struct {
uint8_t data[KBD_QUEUE_SIZE];
int rptr, wptr, count;
} KBDQueue;
typedef struct ChannelState {
int irq;
int reg;
int rxint, txint;
chn_id_t chn; // this channel, A (base+4) or B (base+0)
chn_type_t type;
struct ChannelState *otherchn;
uint8_t rx, tx, wregs[16], rregs[16];
KBDQueue queue;
CharDriverState *chr;
} ChannelState;
struct SerialState {
struct ChannelState chn[2];
};
#define SERIAL_MAXADDR 7
static void handle_kbd_command(ChannelState *s, int val);
static int serial_can_receive(void *opaque);
static void serial_receive_byte(ChannelState *s, int ch);
static void put_queue(void *opaque, int b)
{
ChannelState *s = opaque;
KBDQueue *q = &s->queue;
KBD_DPRINTF("put: 0x%02x\n", b);
if (q->count >= KBD_QUEUE_SIZE)
return;
q->data[q->wptr] = b;
if (++q->wptr == KBD_QUEUE_SIZE)
q->wptr = 0;
q->count++;
serial_receive_byte(s, 0);
}
static uint32_t get_queue(void *opaque)
{
ChannelState *s = opaque;
KBDQueue *q = &s->queue;
int val;
if (q->count == 0) {
return 0;
} else {
val = q->data[q->rptr];
if (++q->rptr == KBD_QUEUE_SIZE)
q->rptr = 0;
q->count--;
}
KBD_DPRINTF("get 0x%02x\n", val);
if (q->count > 0)
serial_receive_byte(s, 0);
return val;
}
static void slavio_serial_update_irq(ChannelState *s)
{
if ((s->wregs[1] & 1) && // interrupts enabled
(((s->wregs[1] & 2) && s->txint == 1) || // tx ints enabled, pending
((((s->wregs[1] & 0x18) == 8) || ((s->wregs[1] & 0x18) == 0x10)) &&
s->rxint == 1) || // rx ints enabled, pending
((s->wregs[15] & 0x80) && (s->rregs[0] & 0x80)))) { // break int e&p
pic_set_irq(s->irq, 1);
} else {
pic_set_irq(s->irq, 0);
}
}
static void slavio_serial_reset_chn(ChannelState *s)
{
int i;
s->reg = 0;
for (i = 0; i < SERIAL_MAXADDR; i++) {
s->rregs[i] = 0;
s->wregs[i] = 0;
}
s->wregs[4] = 4;
s->wregs[9] = 0xc0;
s->wregs[11] = 8;
s->wregs[14] = 0x30;
s->wregs[15] = 0xf8;
s->rregs[0] = 0x44;
s->rregs[1] = 6;
s->rx = s->tx = 0;
s->rxint = s->txint = 0;
}
static void slavio_serial_reset(void *opaque)
{
SerialState *s = opaque;
slavio_serial_reset_chn(&s->chn[0]);
slavio_serial_reset_chn(&s->chn[1]);
}
static inline void clr_rxint(ChannelState *s)
{
s->rxint = 0;
if (s->chn == 0)
s->rregs[3] &= ~0x20;
else {
s->otherchn->rregs[3] &= ~4;
}
slavio_serial_update_irq(s);
}
static inline void set_rxint(ChannelState *s)
{
s->rxint = 1;
if (s->chn == 0)
s->rregs[3] |= 0x20;
else {
s->otherchn->rregs[3] |= 4;
}
slavio_serial_update_irq(s);
}
static inline void clr_txint(ChannelState *s)
{
s->txint = 0;
if (s->chn == 0)
s->rregs[3] &= ~0x10;
else {
s->otherchn->rregs[3] &= ~2;
}
slavio_serial_update_irq(s);
}
static inline void set_txint(ChannelState *s)
{
s->txint = 1;
if (s->chn == 0)
s->rregs[3] |= 0x10;
else {
s->otherchn->rregs[3] |= 2;
}
slavio_serial_update_irq(s);
}
static void slavio_serial_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
SerialState *ser = opaque;
ChannelState *s;
uint32_t saddr;
int newreg, channel;
val &= 0xff;
saddr = (addr & 3) >> 1;
channel = (addr & SERIAL_MAXADDR) >> 2;
s = &ser->chn[channel];
switch (saddr) {
case 0:
SER_DPRINTF("Write channel %c, reg[%d] = %2.2x\n", channel? 'b' : 'a', s->reg, val & 0xff);
newreg = 0;
switch (s->reg) {
case 0:
newreg = val & 7;
val &= 0x38;
switch (val) {
case 8:
newreg |= 0x8;
break;
case 0x20:
clr_rxint(s);
break;
case 0x28:
clr_txint(s);
break;
case 0x38:
clr_rxint(s);
clr_txint(s);
break;
default:
break;
}
break;
case 1 ... 8:
case 10 ... 15:
s->wregs[s->reg] = val;
break;
case 9:
switch (val & 0xc0) {
case 0:
default:
break;
case 0x40:
slavio_serial_reset_chn(&ser->chn[1]);
return;
case 0x80:
slavio_serial_reset_chn(&ser->chn[0]);
return;
case 0xc0:
slavio_serial_reset(ser);
return;
}
break;
default:
break;
}
if (s->reg == 0)
s->reg = newreg;
else
s->reg = 0;
break;
case 1:
SER_DPRINTF("Write channel %c, ch %d\n", channel? 'b' : 'a', val);
if (s->wregs[5] & 8) { // tx enabled
s->tx = val;
if (s->chr)
qemu_chr_write(s->chr, &s->tx, 1);
else if (s->type == kbd) {
handle_kbd_command(s, val);
}
s->txint = 1;
s->rregs[0] |= 4; // Tx buffer empty
s->rregs[1] |= 1; // All sent
set_txint(s);
slavio_serial_update_irq(s);
}
break;
default:
break;
}
}
static uint32_t slavio_serial_mem_readb(void *opaque, target_phys_addr_t addr)
{
SerialState *ser = opaque;
ChannelState *s;
uint32_t saddr;
uint32_t ret;
int channel;
saddr = (addr & 3) >> 1;
channel = (addr & SERIAL_MAXADDR) >> 2;
s = &ser->chn[channel];
switch (saddr) {
case 0:
SER_DPRINTF("Read channel %c, reg[%d] = %2.2x\n", channel? 'b' : 'a', s->reg, s->rregs[s->reg]);
ret = s->rregs[s->reg];
s->reg = 0;
return ret;
case 1:
s->rregs[0] &= ~1;
clr_rxint(s);
if (s->type == kbd)
ret = get_queue(s);
else
ret = s->rx;
SER_DPRINTF("Read channel %c, ch %d\n", channel? 'b' : 'a', ret);
return ret;
default:
break;
}
return 0;
}
static int serial_can_receive(void *opaque)
{
ChannelState *s = opaque;
if (((s->wregs[3] & 1) == 0) // Rx not enabled
|| ((s->rregs[0] & 1) == 1)) // char already available
return 0;
else
return 1;
}
static void serial_receive_byte(ChannelState *s, int ch)
{
SER_DPRINTF("put ch %d\n", ch);
s->rregs[0] |= 1;
s->rx = ch;
set_rxint(s);
}
static void serial_receive_break(ChannelState *s)
{
s->rregs[0] |= 0x80;
slavio_serial_update_irq(s);
}
static void serial_receive1(void *opaque, const uint8_t *buf, int size)
{
ChannelState *s = opaque;
serial_receive_byte(s, buf[0]);
}
static void serial_event(void *opaque, int event)
{
ChannelState *s = opaque;
if (event == CHR_EVENT_BREAK)
serial_receive_break(s);
}
static CPUReadMemoryFunc *slavio_serial_mem_read[3] = {
slavio_serial_mem_readb,
slavio_serial_mem_readb,
slavio_serial_mem_readb,
};
static CPUWriteMemoryFunc *slavio_serial_mem_write[3] = {
slavio_serial_mem_writeb,
slavio_serial_mem_writeb,
slavio_serial_mem_writeb,
};
static void slavio_serial_save_chn(QEMUFile *f, ChannelState *s)
{
qemu_put_be32s(f, &s->irq);
qemu_put_be32s(f, &s->reg);
qemu_put_be32s(f, &s->rxint);
qemu_put_be32s(f, &s->txint);
qemu_put_8s(f, &s->rx);
qemu_put_8s(f, &s->tx);
qemu_put_buffer(f, s->wregs, 16);
qemu_put_buffer(f, s->rregs, 16);
}
static void slavio_serial_save(QEMUFile *f, void *opaque)
{
SerialState *s = opaque;
slavio_serial_save_chn(f, &s->chn[0]);
slavio_serial_save_chn(f, &s->chn[1]);
}
static int slavio_serial_load_chn(QEMUFile *f, ChannelState *s, int version_id)
{
if (version_id != 1)
return -EINVAL;
qemu_get_be32s(f, &s->irq);
qemu_get_be32s(f, &s->reg);
qemu_get_be32s(f, &s->rxint);
qemu_get_be32s(f, &s->txint);
qemu_get_8s(f, &s->rx);
qemu_get_8s(f, &s->tx);
qemu_get_buffer(f, s->wregs, 16);
qemu_get_buffer(f, s->rregs, 16);
return 0;
}
static int slavio_serial_load(QEMUFile *f, void *opaque, int version_id)
{
SerialState *s = opaque;
int ret;
ret = slavio_serial_load_chn(f, &s->chn[0], version_id);
if (ret != 0)
return ret;
ret = slavio_serial_load_chn(f, &s->chn[1], version_id);
return ret;
}
SerialState *slavio_serial_init(int base, int irq, CharDriverState *chr1, CharDriverState *chr2)
{
int slavio_serial_io_memory, i;
SerialState *s;
s = qemu_mallocz(sizeof(SerialState));
if (!s)
return NULL;
slavio_serial_io_memory = cpu_register_io_memory(0, slavio_serial_mem_read, slavio_serial_mem_write, s);
cpu_register_physical_memory(base, SERIAL_MAXADDR, slavio_serial_io_memory);
s->chn[0].chr = chr1;
s->chn[1].chr = chr2;
for (i = 0; i < 2; i++) {
s->chn[i].irq = irq;
s->chn[i].chn = 1 - i;
s->chn[i].type = ser;
if (s->chn[i].chr) {
qemu_chr_add_read_handler(s->chn[i].chr, serial_can_receive, serial_receive1, &s->chn[i]);
qemu_chr_add_event_handler(s->chn[i].chr, serial_event);
}
}
s->chn[0].otherchn = &s->chn[1];
s->chn[1].otherchn = &s->chn[0];
register_savevm("slavio_serial", base, 1, slavio_serial_save, slavio_serial_load, s);
qemu_register_reset(slavio_serial_reset, s);
slavio_serial_reset(s);
return s;
}
static const uint8_t keycodes[128] = {
127, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 89, 76, 77, 78,
79, 80, 81, 82, 83, 84, 85, 86, 87, 42, 99, 88, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 47, 19, 121, 119, 5, 6, 8, 10, 12,
14, 16, 17, 18, 7, 98, 23, 68, 69, 70, 71, 91, 92, 93, 125, 112,
113, 114, 94, 50, 0, 0, 124, 9, 11, 0, 0, 0, 0, 0, 0, 0,
90, 0, 46, 22, 13, 111, 52, 20, 96, 24, 28, 74, 27, 123, 44, 66,
0, 45, 2, 4, 48, 0, 0, 21, 0, 0, 0, 0, 0, 120, 122, 67,
};
static void sunkbd_event(void *opaque, int ch)
{
ChannelState *s = opaque;
int release = ch & 0x80;
ch = keycodes[ch & 0x7f];
KBD_DPRINTF("Keycode %d (%s)\n", ch, release? "release" : "press");
put_queue(s, ch | release);
}
static void handle_kbd_command(ChannelState *s, int val)
{
KBD_DPRINTF("Command %d\n", val);
switch (val) {
case 1: // Reset, return type code
put_queue(s, 0xff);
put_queue(s, 5); // Type 5
break;
case 7: // Query layout
put_queue(s, 0xfe);
put_queue(s, 0x20); // XXX, layout?
break;
default:
break;
}
}
static void sunmouse_event(void *opaque,
int dx, int dy, int dz, int buttons_state)
{
ChannelState *s = opaque;
int ch;
// XXX
ch = 0x42;
serial_receive_byte(s, ch);
}
void slavio_serial_ms_kbd_init(int base, int irq)
{
int slavio_serial_io_memory, i;
SerialState *s;
s = qemu_mallocz(sizeof(SerialState));
if (!s)
return;
for (i = 0; i < 2; i++) {
s->chn[i].irq = irq;
s->chn[i].chn = 1 - i;
s->chn[i].chr = NULL;
}
s->chn[0].otherchn = &s->chn[1];
s->chn[1].otherchn = &s->chn[0];
s->chn[0].type = mouse;
s->chn[1].type = kbd;
slavio_serial_io_memory = cpu_register_io_memory(0, slavio_serial_mem_read, slavio_serial_mem_write, s);
cpu_register_physical_memory(base, SERIAL_MAXADDR, slavio_serial_io_memory);
qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0);
qemu_add_kbd_event_handler(sunkbd_event, &s->chn[1]);
qemu_register_reset(slavio_serial_reset, s);
slavio_serial_reset(s);
}