| /* |
| * QEMU emulation of AMD IOMMU (AMD-Vi) |
| * |
| * Copyright (C) 2011 Eduard - Gabriel Munteanu |
| * Copyright (C) 2015, 2016 David Kiarie Kahurani |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, see <http://www.gnu.org/licenses/>. |
| * |
| * Cache implementation inspired by hw/i386/intel_iommu.c |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "hw/i386/pc.h" |
| #include "hw/pci/msi.h" |
| #include "hw/pci/pci_bus.h" |
| #include "migration/vmstate.h" |
| #include "amd_iommu.h" |
| #include "qapi/error.h" |
| #include "qemu/error-report.h" |
| #include "hw/i386/apic_internal.h" |
| #include "trace.h" |
| #include "hw/i386/apic-msidef.h" |
| #include "hw/qdev-properties.h" |
| #include "kvm/kvm_i386.h" |
| #include "qemu/iova-tree.h" |
| |
| /* used AMD-Vi MMIO registers */ |
| const char *amdvi_mmio_low[] = { |
| "AMDVI_MMIO_DEVTAB_BASE", |
| "AMDVI_MMIO_CMDBUF_BASE", |
| "AMDVI_MMIO_EVTLOG_BASE", |
| "AMDVI_MMIO_CONTROL", |
| "AMDVI_MMIO_EXCL_BASE", |
| "AMDVI_MMIO_EXCL_LIMIT", |
| "AMDVI_MMIO_EXT_FEATURES", |
| "AMDVI_MMIO_PPR_BASE", |
| "UNHANDLED" |
| }; |
| const char *amdvi_mmio_high[] = { |
| "AMDVI_MMIO_COMMAND_HEAD", |
| "AMDVI_MMIO_COMMAND_TAIL", |
| "AMDVI_MMIO_EVTLOG_HEAD", |
| "AMDVI_MMIO_EVTLOG_TAIL", |
| "AMDVI_MMIO_STATUS", |
| "AMDVI_MMIO_PPR_HEAD", |
| "AMDVI_MMIO_PPR_TAIL", |
| "UNHANDLED" |
| }; |
| |
| struct AMDVIAddressSpace { |
| uint8_t bus_num; /* bus number */ |
| uint8_t devfn; /* device function */ |
| AMDVIState *iommu_state; /* AMDVI - one per machine */ |
| MemoryRegion root; /* AMDVI Root memory map region */ |
| IOMMUMemoryRegion iommu; /* Device's address translation region */ |
| MemoryRegion iommu_nodma; /* Alias of shared nodma memory region */ |
| MemoryRegion iommu_ir; /* Device's interrupt remapping region */ |
| AddressSpace as; /* device's corresponding address space */ |
| |
| /* DMA address translation support */ |
| IOMMUNotifierFlag notifier_flags; |
| /* entry in list of Address spaces with registered notifiers */ |
| QLIST_ENTRY(AMDVIAddressSpace) next; |
| /* Record DMA translation ranges */ |
| IOVATree *iova_tree; |
| /* DMA address translation active */ |
| bool addr_translation; |
| }; |
| |
| /* AMDVI cache entry */ |
| typedef struct AMDVIIOTLBEntry { |
| uint16_t domid; /* assigned domain id */ |
| uint16_t devid; /* device owning entry */ |
| uint64_t perms; /* access permissions */ |
| uint64_t translated_addr; /* translated address */ |
| uint64_t page_mask; /* physical page size */ |
| } AMDVIIOTLBEntry; |
| |
| /* |
| * These 'fault' reasons have an overloaded meaning since they are not only |
| * intended for describing reasons that generate an IO_PAGE_FAULT as per the AMD |
| * IOMMU specification, but are also used to signal internal errors in the |
| * emulation code. |
| */ |
| typedef enum AMDVIFaultReason { |
| AMDVI_FR_DTE_RTR_ERR = 1, /* Failure to retrieve DTE */ |
| AMDVI_FR_DTE_V, /* DTE[V] = 0 */ |
| AMDVI_FR_DTE_TV, /* DTE[TV] = 0 */ |
| AMDVI_FR_PT_ROOT_INV, /* Page Table Root ptr invalid */ |
| AMDVI_FR_PT_ENTRY_INV, /* Failure to read PTE from guest memory */ |
| } AMDVIFaultReason; |
| |
| uint64_t amdvi_extended_feature_register(AMDVIState *s) |
| { |
| uint64_t feature = AMDVI_DEFAULT_EXT_FEATURES; |
| if (s->xtsup) { |
| feature |= AMDVI_FEATURE_XT; |
| } |
| if (!s->iommu.dma_translation) { |
| feature |= AMDVI_HATS_MODE_RESERVED; |
| } |
| |
| return feature; |
| } |
| |
| /* configure MMIO registers at startup/reset */ |
| static void amdvi_set_quad(AMDVIState *s, hwaddr addr, uint64_t val, |
| uint64_t romask, uint64_t w1cmask) |
| { |
| stq_le_p(&s->mmior[addr], val); |
| stq_le_p(&s->romask[addr], romask); |
| stq_le_p(&s->w1cmask[addr], w1cmask); |
| } |
| |
| static uint16_t amdvi_readw(AMDVIState *s, hwaddr addr) |
| { |
| return lduw_le_p(&s->mmior[addr]); |
| } |
| |
| static uint32_t amdvi_readl(AMDVIState *s, hwaddr addr) |
| { |
| return ldl_le_p(&s->mmior[addr]); |
| } |
| |
| static uint64_t amdvi_readq(AMDVIState *s, hwaddr addr) |
| { |
| return ldq_le_p(&s->mmior[addr]); |
| } |
| |
| /* internal write */ |
| static void amdvi_writeq_raw(AMDVIState *s, hwaddr addr, uint64_t val) |
| { |
| stq_le_p(&s->mmior[addr], val); |
| } |
| |
| /* external write */ |
| static void amdvi_writew(AMDVIState *s, hwaddr addr, uint16_t val) |
| { |
| uint16_t romask = lduw_le_p(&s->romask[addr]); |
| uint16_t w1cmask = lduw_le_p(&s->w1cmask[addr]); |
| uint16_t oldval = lduw_le_p(&s->mmior[addr]); |
| |
| uint16_t oldval_preserved = oldval & (romask | w1cmask); |
| uint16_t newval_write = val & ~romask; |
| uint16_t newval_w1c_set = val & w1cmask; |
| |
| stw_le_p(&s->mmior[addr], |
| (oldval_preserved | newval_write) & ~newval_w1c_set); |
| } |
| |
| static void amdvi_writel(AMDVIState *s, hwaddr addr, uint32_t val) |
| { |
| uint32_t romask = ldl_le_p(&s->romask[addr]); |
| uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]); |
| uint32_t oldval = ldl_le_p(&s->mmior[addr]); |
| |
| uint32_t oldval_preserved = oldval & (romask | w1cmask); |
| uint32_t newval_write = val & ~romask; |
| uint32_t newval_w1c_set = val & w1cmask; |
| |
| stl_le_p(&s->mmior[addr], |
| (oldval_preserved | newval_write) & ~newval_w1c_set); |
| } |
| |
| static void amdvi_writeq(AMDVIState *s, hwaddr addr, uint64_t val) |
| { |
| uint64_t romask = ldq_le_p(&s->romask[addr]); |
| uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]); |
| uint64_t oldval = ldq_le_p(&s->mmior[addr]); |
| |
| uint64_t oldval_preserved = oldval & (romask | w1cmask); |
| uint64_t newval_write = val & ~romask; |
| uint64_t newval_w1c_set = val & w1cmask; |
| |
| stq_le_p(&s->mmior[addr], |
| (oldval_preserved | newval_write) & ~newval_w1c_set); |
| } |
| |
| /* AND a 64-bit register with a 64-bit value */ |
| static bool amdvi_test_mask(AMDVIState *s, hwaddr addr, uint64_t val) |
| { |
| return amdvi_readq(s, addr) & val; |
| } |
| |
| /* OR a 64-bit register with a 64-bit value storing result in the register */ |
| static void amdvi_assign_orq(AMDVIState *s, hwaddr addr, uint64_t val) |
| { |
| amdvi_writeq_raw(s, addr, amdvi_readq(s, addr) | val); |
| } |
| |
| /* AND a 64-bit register with a 64-bit value storing result in the register */ |
| static void amdvi_assign_andq(AMDVIState *s, hwaddr addr, uint64_t val) |
| { |
| amdvi_writeq_raw(s, addr, amdvi_readq(s, addr) & val); |
| } |
| |
| static void amdvi_generate_msi_interrupt(AMDVIState *s) |
| { |
| MSIMessage msg = {}; |
| MemTxAttrs attrs = { |
| .requester_id = pci_requester_id(&s->pci->dev) |
| }; |
| |
| if (msi_enabled(&s->pci->dev)) { |
| msg = msi_get_message(&s->pci->dev, 0); |
| address_space_stl_le(&address_space_memory, msg.address, msg.data, |
| attrs, NULL); |
| } |
| } |
| |
| static uint32_t get_next_eventlog_entry(AMDVIState *s) |
| { |
| uint32_t evtlog_size = s->evtlog_len * AMDVI_EVENT_LEN; |
| return (s->evtlog_tail + AMDVI_EVENT_LEN) % evtlog_size; |
| } |
| |
| static void amdvi_log_event(AMDVIState *s, uint64_t *evt) |
| { |
| uint32_t evtlog_tail_next; |
| |
| /* event logging not enabled */ |
| if (!s->evtlog_enabled || amdvi_test_mask(s, AMDVI_MMIO_STATUS, |
| AMDVI_MMIO_STATUS_EVT_OVF)) { |
| return; |
| } |
| |
| evtlog_tail_next = get_next_eventlog_entry(s); |
| |
| /* event log buffer full */ |
| if (evtlog_tail_next == s->evtlog_head) { |
| /* generate overflow interrupt */ |
| if (s->evtlog_intr) { |
| amdvi_assign_orq(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_EVT_OVF); |
| amdvi_generate_msi_interrupt(s); |
| } |
| return; |
| } |
| |
| if (dma_memory_write(&address_space_memory, s->evtlog + s->evtlog_tail, |
| evt, AMDVI_EVENT_LEN, MEMTXATTRS_UNSPECIFIED)) { |
| trace_amdvi_evntlog_fail(s->evtlog, s->evtlog_tail); |
| } |
| |
| s->evtlog_tail = evtlog_tail_next; |
| amdvi_writeq_raw(s, AMDVI_MMIO_EVENT_TAIL, s->evtlog_tail); |
| |
| if (s->evtlog_intr) { |
| amdvi_assign_orq(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_EVENT_INT); |
| amdvi_generate_msi_interrupt(s); |
| } |
| } |
| |
| static void amdvi_setevent_bits(uint64_t *buffer, uint64_t value, int start, |
| int length) |
| { |
| int index = start / 64, bitpos = start % 64; |
| uint64_t mask = MAKE_64BIT_MASK(start, length); |
| buffer[index] &= ~mask; |
| buffer[index] |= (value << bitpos) & mask; |
| } |
| /* |
| * AMDVi event structure |
| * 0:15 -> DeviceID |
| * 48:63 -> event type + miscellaneous info |
| * 64:127 -> related address |
| */ |
| static void amdvi_encode_event(uint64_t *evt, uint16_t devid, uint64_t addr, |
| uint16_t info) |
| { |
| evt[0] = 0; |
| evt[1] = 0; |
| |
| amdvi_setevent_bits(evt, devid, 0, 16); |
| amdvi_setevent_bits(evt, info, 48, 16); |
| amdvi_setevent_bits(evt, addr, 64, 64); |
| } |
| /* log an error encountered during a page walk |
| * |
| * @addr: virtual address in translation request |
| */ |
| static void amdvi_page_fault(AMDVIState *s, uint16_t devid, |
| hwaddr addr, uint16_t info) |
| { |
| uint64_t evt[2]; |
| |
| info |= AMDVI_EVENT_IOPF_I | AMDVI_EVENT_IOPF; |
| amdvi_encode_event(evt, devid, addr, info); |
| amdvi_log_event(s, evt); |
| pci_word_test_and_set_mask(s->pci->dev.config + PCI_STATUS, |
| PCI_STATUS_SIG_TARGET_ABORT); |
| } |
| /* |
| * log a master abort accessing device table |
| * @devtab : address of device table entry |
| * @info : error flags |
| */ |
| static void amdvi_log_devtab_error(AMDVIState *s, uint16_t devid, |
| hwaddr devtab, uint16_t info) |
| { |
| uint64_t evt[2]; |
| |
| info |= AMDVI_EVENT_DEV_TAB_HW_ERROR; |
| |
| amdvi_encode_event(evt, devid, devtab, info); |
| amdvi_log_event(s, evt); |
| pci_word_test_and_set_mask(s->pci->dev.config + PCI_STATUS, |
| PCI_STATUS_SIG_TARGET_ABORT); |
| } |
| /* log an event trying to access command buffer |
| * @addr : address that couldn't be accessed |
| */ |
| static void amdvi_log_command_error(AMDVIState *s, hwaddr addr) |
| { |
| uint64_t evt[2]; |
| uint16_t info = AMDVI_EVENT_COMMAND_HW_ERROR; |
| |
| amdvi_encode_event(evt, 0, addr, info); |
| amdvi_log_event(s, evt); |
| pci_word_test_and_set_mask(s->pci->dev.config + PCI_STATUS, |
| PCI_STATUS_SIG_TARGET_ABORT); |
| } |
| /* log an illegal command event |
| * @addr : address of illegal command |
| */ |
| static void amdvi_log_illegalcom_error(AMDVIState *s, uint16_t info, |
| hwaddr addr) |
| { |
| uint64_t evt[2]; |
| |
| info |= AMDVI_EVENT_ILLEGAL_COMMAND_ERROR; |
| amdvi_encode_event(evt, 0, addr, info); |
| amdvi_log_event(s, evt); |
| } |
| /* log an error accessing device table |
| * |
| * @devid : device owning the table entry |
| * @devtab : address of device table entry |
| * @info : error flags |
| */ |
| static void amdvi_log_illegaldevtab_error(AMDVIState *s, uint16_t devid, |
| hwaddr addr, uint16_t info) |
| { |
| uint64_t evt[2]; |
| |
| info |= AMDVI_EVENT_ILLEGAL_DEVTAB_ENTRY; |
| amdvi_encode_event(evt, devid, addr, info); |
| amdvi_log_event(s, evt); |
| } |
| /* log an error accessing a PTE entry |
| * @addr : address that couldn't be accessed |
| */ |
| static void amdvi_log_pagetab_error(AMDVIState *s, uint16_t devid, |
| hwaddr addr, uint16_t info) |
| { |
| uint64_t evt[2]; |
| |
| info |= AMDVI_EVENT_PAGE_TAB_HW_ERROR; |
| amdvi_encode_event(evt, devid, addr, info); |
| amdvi_log_event(s, evt); |
| pci_word_test_and_set_mask(s->pci->dev.config + PCI_STATUS, |
| PCI_STATUS_SIG_TARGET_ABORT); |
| } |
| |
| static gboolean amdvi_uint64_equal(gconstpointer v1, gconstpointer v2) |
| { |
| return *((const uint64_t *)v1) == *((const uint64_t *)v2); |
| } |
| |
| static guint amdvi_uint64_hash(gconstpointer v) |
| { |
| return (guint)*(const uint64_t *)v; |
| } |
| |
| static AMDVIIOTLBEntry *amdvi_iotlb_lookup(AMDVIState *s, hwaddr addr, |
| uint64_t devid) |
| { |
| uint64_t key = (addr >> AMDVI_PAGE_SHIFT_4K) | |
| ((uint64_t)(devid) << AMDVI_DEVID_SHIFT); |
| return g_hash_table_lookup(s->iotlb, &key); |
| } |
| |
| static void amdvi_iotlb_reset(AMDVIState *s) |
| { |
| assert(s->iotlb); |
| trace_amdvi_iotlb_reset(); |
| g_hash_table_remove_all(s->iotlb); |
| } |
| |
| static gboolean amdvi_iotlb_remove_by_devid(gpointer key, gpointer value, |
| gpointer user_data) |
| { |
| AMDVIIOTLBEntry *entry = (AMDVIIOTLBEntry *)value; |
| uint16_t devid = *(uint16_t *)user_data; |
| return entry->devid == devid; |
| } |
| |
| static void amdvi_iotlb_remove_page(AMDVIState *s, hwaddr addr, |
| uint64_t devid) |
| { |
| uint64_t key = (addr >> AMDVI_PAGE_SHIFT_4K) | |
| ((uint64_t)(devid) << AMDVI_DEVID_SHIFT); |
| g_hash_table_remove(s->iotlb, &key); |
| } |
| |
| static void amdvi_update_iotlb(AMDVIState *s, uint16_t devid, |
| uint64_t gpa, IOMMUTLBEntry to_cache, |
| uint16_t domid) |
| { |
| /* don't cache erroneous translations */ |
| if (to_cache.perm != IOMMU_NONE) { |
| AMDVIIOTLBEntry *entry = g_new(AMDVIIOTLBEntry, 1); |
| uint64_t *key = g_new(uint64_t, 1); |
| uint64_t gfn = gpa >> AMDVI_PAGE_SHIFT_4K; |
| |
| trace_amdvi_cache_update(domid, PCI_BUS_NUM(devid), PCI_SLOT(devid), |
| PCI_FUNC(devid), gpa, to_cache.translated_addr); |
| |
| if (g_hash_table_size(s->iotlb) >= AMDVI_IOTLB_MAX_SIZE) { |
| amdvi_iotlb_reset(s); |
| } |
| |
| entry->domid = domid; |
| entry->perms = to_cache.perm; |
| entry->translated_addr = to_cache.translated_addr; |
| entry->page_mask = to_cache.addr_mask; |
| *key = gfn | ((uint64_t)(devid) << AMDVI_DEVID_SHIFT); |
| g_hash_table_replace(s->iotlb, key, entry); |
| } |
| } |
| |
| static void amdvi_completion_wait(AMDVIState *s, uint64_t *cmd) |
| { |
| /* pad the last 3 bits */ |
| hwaddr addr = cpu_to_le64(extract64(cmd[0], 3, 49)) << 3; |
| uint64_t data = cpu_to_le64(cmd[1]); |
| |
| if (extract64(cmd[0], 52, 8)) { |
| amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4), |
| s->cmdbuf + s->cmdbuf_head); |
| } |
| if (extract64(cmd[0], 0, 1)) { |
| if (dma_memory_write(&address_space_memory, addr, &data, |
| AMDVI_COMPLETION_DATA_SIZE, |
| MEMTXATTRS_UNSPECIFIED)) { |
| trace_amdvi_completion_wait_fail(addr); |
| } |
| } |
| /* set completion interrupt */ |
| if (extract64(cmd[0], 1, 1)) { |
| amdvi_assign_orq(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_COMP_INT); |
| /* generate interrupt */ |
| amdvi_generate_msi_interrupt(s); |
| } |
| trace_amdvi_completion_wait(addr, data); |
| } |
| |
| static inline uint64_t amdvi_get_perms(uint64_t entry) |
| { |
| return (entry & (AMDVI_DEV_PERM_READ | AMDVI_DEV_PERM_WRITE)) >> |
| AMDVI_DEV_PERM_SHIFT; |
| } |
| |
| /* validate that reserved bits are honoured */ |
| static bool amdvi_validate_dte(AMDVIState *s, uint16_t devid, |
| uint64_t *dte) |
| { |
| |
| uint64_t root; |
| |
| if ((dte[0] & AMDVI_DTE_QUAD0_RESERVED) || |
| (dte[1] & AMDVI_DTE_QUAD1_RESERVED) || |
| (dte[2] & AMDVI_DTE_QUAD2_RESERVED) || |
| (dte[3] & AMDVI_DTE_QUAD3_RESERVED)) { |
| amdvi_log_illegaldevtab_error(s, devid, |
| s->devtab + |
| devid * AMDVI_DEVTAB_ENTRY_SIZE, 0); |
| return false; |
| } |
| |
| /* |
| * 1 = Host Address Translation is not supported. Value in MMIO Offset |
| * 0030h[HATS] is not meaningful. A non-zero host page table root pointer |
| * in the DTE would result in an ILLEGAL_DEV_TABLE_ENTRY event. |
| */ |
| root = (dte[0] & AMDVI_DEV_PT_ROOT_MASK) >> 12; |
| if (root && !s->iommu.dma_translation) { |
| amdvi_log_illegaldevtab_error(s, devid, |
| s->devtab + |
| devid * AMDVI_DEVTAB_ENTRY_SIZE, 0); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* get a device table entry given the devid */ |
| static bool amdvi_get_dte(AMDVIState *s, int devid, uint64_t *entry) |
| { |
| uint32_t offset = devid * AMDVI_DEVTAB_ENTRY_SIZE; |
| |
| if (dma_memory_read(&address_space_memory, s->devtab + offset, entry, |
| AMDVI_DEVTAB_ENTRY_SIZE, MEMTXATTRS_UNSPECIFIED)) { |
| trace_amdvi_dte_get_fail(s->devtab, offset); |
| /* log error accessing dte */ |
| amdvi_log_devtab_error(s, devid, s->devtab + offset, 0); |
| return false; |
| } |
| |
| *entry = le64_to_cpu(*entry); |
| if (!amdvi_validate_dte(s, devid, entry)) { |
| trace_amdvi_invalid_dte(entry[0]); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* get pte translation mode */ |
| static inline uint8_t get_pte_translation_mode(uint64_t pte) |
| { |
| return (pte >> AMDVI_DEV_MODE_RSHIFT) & AMDVI_DEV_MODE_MASK; |
| } |
| |
| static inline uint64_t amdvi_get_pte_entry(AMDVIState *s, uint64_t pte_addr, |
| uint16_t devid) |
| { |
| uint64_t pte; |
| |
| if (dma_memory_read(&address_space_memory, pte_addr, |
| &pte, sizeof(pte), MEMTXATTRS_UNSPECIFIED)) { |
| trace_amdvi_get_pte_hwerror(pte_addr); |
| amdvi_log_pagetab_error(s, devid, pte_addr, 0); |
| pte = (uint64_t)-1; |
| return pte; |
| } |
| |
| pte = le64_to_cpu(pte); |
| return pte; |
| } |
| |
| static int amdvi_as_to_dte(AMDVIAddressSpace *as, uint64_t *dte) |
| { |
| uint16_t devid = PCI_BUILD_BDF(as->bus_num, as->devfn); |
| AMDVIState *s = as->iommu_state; |
| |
| if (!amdvi_get_dte(s, devid, dte)) { |
| /* Unable to retrieve DTE for devid */ |
| return -AMDVI_FR_DTE_RTR_ERR; |
| } |
| |
| if (!(dte[0] & AMDVI_DEV_VALID)) { |
| /* DTE[V] not set, address is passed untranslated for devid */ |
| return -AMDVI_FR_DTE_V; |
| } |
| |
| if (!(dte[0] & AMDVI_DEV_TRANSLATION_VALID)) { |
| /* DTE[TV] not set, host page table not valid for devid */ |
| return -AMDVI_FR_DTE_TV; |
| } |
| return 0; |
| } |
| |
| /* |
| * For a PTE encoding a large page, return the page size it encodes as described |
| * by the AMD IOMMU Specification Table 14: Example Page Size Encodings. |
| * No need to adjust the value of the PTE to point to the first PTE in the large |
| * page since the encoding guarantees all "base" PTEs in the large page are the |
| * same. |
| */ |
| static uint64_t large_pte_page_size(uint64_t pte) |
| { |
| assert(PTE_NEXT_LEVEL(pte) == 7); |
| |
| /* Determine size of the large/contiguous page encoded in the PTE */ |
| return PTE_LARGE_PAGE_SIZE(pte); |
| } |
| |
| /* |
| * Helper function to fetch a PTE using AMD v1 pgtable format. |
| * On successful page walk, returns 0 and pte parameter points to a valid PTE. |
| * On failure, returns: |
| * -AMDVI_FR_PT_ROOT_INV: A page walk is not possible due to conditions like DTE |
| * with invalid permissions, Page Table Root can not be read from DTE, or a |
| * larger IOVA than supported by page table level encoded in DTE[Mode]. |
| * -AMDVI_FR_PT_ENTRY_INV: A PTE could not be read from guest memory during a |
| * page table walk. This means that the DTE has valid data, but one of the |
| * lower level entries in the Page Table could not be read. |
| */ |
| static uint64_t fetch_pte(AMDVIAddressSpace *as, hwaddr address, uint64_t dte, |
| uint64_t *pte, hwaddr *page_size) |
| { |
| IOMMUAccessFlags perms = amdvi_get_perms(dte); |
| |
| uint8_t level, mode; |
| uint64_t pte_addr; |
| |
| *pte = dte; |
| *page_size = 0; |
| |
| if (perms == IOMMU_NONE) { |
| return -AMDVI_FR_PT_ROOT_INV; |
| } |
| |
| /* |
| * The Linux kernel driver initializes the default mode to 3, corresponding |
| * to a 39-bit GPA space, where each entry in the pagetable translates to a |
| * 1GB (2^30) page size. |
| */ |
| level = mode = get_pte_translation_mode(dte); |
| assert(mode > 0 && mode < 7); |
| |
| /* |
| * If IOVA is larger than the max supported by the current pgtable level, |
| * there is nothing to do. |
| */ |
| if (address > PT_LEVEL_MAX_ADDR(mode - 1)) { |
| /* IOVA too large for the current DTE */ |
| return -AMDVI_FR_PT_ROOT_INV; |
| } |
| |
| do { |
| level -= 1; |
| |
| /* Update the page_size */ |
| *page_size = PTE_LEVEL_PAGE_SIZE(level); |
| |
| /* Permission bits are ANDed at every level, including the DTE */ |
| perms &= amdvi_get_perms(*pte); |
| if (perms == IOMMU_NONE) { |
| return 0; |
| } |
| |
| /* Not Present */ |
| if (!IOMMU_PTE_PRESENT(*pte)) { |
| return 0; |
| } |
| |
| /* Large or Leaf PTE found */ |
| if (PTE_NEXT_LEVEL(*pte) == 7 || PTE_NEXT_LEVEL(*pte) == 0) { |
| /* Leaf PTE found */ |
| break; |
| } |
| |
| /* |
| * Index the pgtable using the IOVA bits corresponding to current level |
| * and walk down to the lower level. |
| */ |
| pte_addr = NEXT_PTE_ADDR(*pte, level, address); |
| *pte = amdvi_get_pte_entry(as->iommu_state, pte_addr, as->devfn); |
| |
| if (*pte == (uint64_t)-1) { |
| /* |
| * A returned PTE of -1 indicates a failure to read the page table |
| * entry from guest memory. |
| */ |
| if (level == mode - 1) { |
| /* Failure to retrieve the Page Table from Root Pointer */ |
| *page_size = 0; |
| return -AMDVI_FR_PT_ROOT_INV; |
| } else { |
| /* Failure to read PTE. Page walk skips a page_size chunk */ |
| return -AMDVI_FR_PT_ENTRY_INV; |
| } |
| } |
| } while (level > 0); |
| |
| assert(PTE_NEXT_LEVEL(*pte) == 0 || PTE_NEXT_LEVEL(*pte) == 7 || |
| level == 0); |
| /* |
| * Page walk ends when Next Level field on PTE shows that either a leaf PTE |
| * or a series of large PTEs have been reached. In the latter case, even if |
| * the range starts in the middle of a contiguous page, the returned PTE |
| * must be the first PTE of the series. |
| */ |
| if (PTE_NEXT_LEVEL(*pte) == 7) { |
| /* Update page_size with the large PTE page size */ |
| *page_size = large_pte_page_size(*pte); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Invoke notifiers registered for the address space. Update record of mapped |
| * ranges in IOVA Tree. |
| */ |
| static void amdvi_notify_iommu(AMDVIAddressSpace *as, IOMMUTLBEvent *event) |
| { |
| IOMMUTLBEntry *entry = &event->entry; |
| |
| DMAMap target = { |
| .iova = entry->iova, |
| .size = entry->addr_mask, |
| .translated_addr = entry->translated_addr, |
| .perm = entry->perm, |
| }; |
| |
| /* |
| * Search the IOVA Tree for an existing translation for the target, and skip |
| * the notification if the mapping is already recorded. |
| * When the guest uses large pages, comparing against the record makes it |
| * possible to determine the size of the original MAP and adjust the UNMAP |
| * request to match it. This avoids failed checks against the mappings kept |
| * by the VFIO kernel driver. |
| */ |
| const DMAMap *mapped = iova_tree_find(as->iova_tree, &target); |
| |
| if (event->type == IOMMU_NOTIFIER_UNMAP) { |
| if (!mapped) { |
| /* No record exists of this mapping, nothing to do */ |
| return; |
| } |
| /* |
| * Adjust the size based on the original record. This is essential to |
| * determine when large/contiguous pages are used, since the guest has |
| * already cleared the PTE (erasing the pagesize encoded on it) before |
| * issuing the invalidation command. |
| */ |
| if (mapped->size != target.size) { |
| assert(mapped->size > target.size); |
| target.size = mapped->size; |
| /* Adjust event to invoke notifier with correct range */ |
| entry->addr_mask = mapped->size; |
| } |
| iova_tree_remove(as->iova_tree, target); |
| } else { /* IOMMU_NOTIFIER_MAP */ |
| if (mapped) { |
| /* |
| * If a mapping is present and matches the request, skip the |
| * notification. |
| */ |
| if (!memcmp(mapped, &target, sizeof(DMAMap))) { |
| return; |
| } else { |
| /* |
| * This should never happen unless a buggy guest OS omits or |
| * sends incorrect invalidation(s). Report an error in the event |
| * it does happen. |
| */ |
| error_report("Found conflicting translation. This could be due " |
| "to an incorrect or missing invalidation command"); |
| } |
| } |
| /* Record the new mapping */ |
| iova_tree_insert(as->iova_tree, &target); |
| } |
| |
| /* Invoke the notifiers registered for this address space */ |
| memory_region_notify_iommu(&as->iommu, 0, *event); |
| } |
| |
| /* |
| * Walk the guest page table for an IOVA and range and signal the registered |
| * notifiers to sync the shadow page tables in the host. |
| * Must be called with a valid DTE for DMA remapping i.e. V=1,TV=1 |
| */ |
| static void amdvi_sync_shadow_page_table_range(AMDVIAddressSpace *as, |
| uint64_t *dte, hwaddr addr, |
| uint64_t size, bool send_unmap) |
| { |
| IOMMUTLBEvent event; |
| |
| hwaddr page_mask, pagesize; |
| hwaddr iova = addr; |
| hwaddr end = iova + size - 1; |
| |
| uint64_t pte; |
| int ret; |
| |
| while (iova < end) { |
| |
| ret = fetch_pte(as, iova, dte[0], &pte, &pagesize); |
| |
| if (ret == -AMDVI_FR_PT_ROOT_INV) { |
| /* |
| * Invalid conditions such as the IOVA being larger than supported |
| * by current page table mode as configured in the DTE, or a failure |
| * to fetch the Page Table from the Page Table Root Pointer in DTE. |
| */ |
| assert(pagesize == 0); |
| return; |
| } |
| /* PTE has been validated for major errors and pagesize is set */ |
| assert(pagesize); |
| page_mask = ~(pagesize - 1); |
| |
| if (ret == -AMDVI_FR_PT_ENTRY_INV) { |
| /* |
| * Failure to read PTE from memory, the pagesize matches the current |
| * level. Unable to determine the region type, so a safe strategy is |
| * to skip the range and continue the page walk. |
| */ |
| goto next; |
| } |
| |
| event.entry.target_as = &address_space_memory; |
| event.entry.iova = iova & page_mask; |
| /* translated_addr is irrelevant for the unmap case */ |
| event.entry.translated_addr = (pte & AMDVI_DEV_PT_ROOT_MASK) & |
| page_mask; |
| event.entry.addr_mask = ~page_mask; |
| event.entry.perm = amdvi_get_perms(pte); |
| |
| /* |
| * In cases where the leaf PTE is not found, or it has invalid |
| * permissions, an UNMAP type notification is sent, but only if the |
| * caller requested it. |
| */ |
| if (!IOMMU_PTE_PRESENT(pte) || (event.entry.perm == IOMMU_NONE)) { |
| if (!send_unmap) { |
| goto next; |
| } |
| event.type = IOMMU_NOTIFIER_UNMAP; |
| } else { |
| event.type = IOMMU_NOTIFIER_MAP; |
| } |
| |
| /* |
| * The following call might need to adjust event.entry.size in cases |
| * where the guest unmapped a series of large pages. |
| */ |
| amdvi_notify_iommu(as, &event); |
| /* |
| * In the special scenario where the guest is unmapping a large page, |
| * addr_mask has been adjusted before sending the notification. Update |
| * pagesize accordingly in order to correctly compute the next IOVA. |
| */ |
| pagesize = event.entry.addr_mask + 1; |
| |
| next: |
| iova &= ~(pagesize - 1); |
| |
| /* Check for 64-bit overflow and terminate walk in such cases */ |
| if ((iova + pagesize) < iova) { |
| break; |
| } else { |
| iova += pagesize; |
| } |
| } |
| } |
| |
| /* |
| * Unmap entire range that the notifier registered for i.e. the full AS. |
| * |
| * This is seemingly technically equivalent to directly calling |
| * memory_region_unmap_iommu_notifier_range(), but it allows to check for |
| * notifier boundaries and issue notifications with ranges within those bounds. |
| */ |
| static void amdvi_address_space_unmap(AMDVIAddressSpace *as, IOMMUNotifier *n) |
| { |
| |
| hwaddr start = n->start; |
| hwaddr end = n->end; |
| hwaddr remain; |
| DMAMap map; |
| |
| assert(start <= end); |
| remain = end - start + 1; |
| |
| /* |
| * Divide the notifier range into chunks that are aligned and do not exceed |
| * the notifier boundaries. |
| */ |
| while (remain >= AMDVI_PAGE_SIZE) { |
| |
| IOMMUTLBEvent event; |
| |
| uint64_t mask = dma_aligned_pow2_mask(start, end, 64); |
| |
| event.type = IOMMU_NOTIFIER_UNMAP; |
| |
| IOMMUTLBEntry entry = { |
| .target_as = &address_space_memory, |
| .iova = start, |
| .translated_addr = 0, /* irrelevant for unmap case */ |
| .addr_mask = mask, |
| .perm = IOMMU_NONE, |
| }; |
| event.entry = entry; |
| |
| /* Call notifier registered for updates on this address space */ |
| memory_region_notify_iommu_one(n, &event); |
| |
| start += mask + 1; |
| remain -= mask + 1; |
| } |
| |
| assert(!remain); |
| |
| map.iova = n->start; |
| map.size = n->end - n->start; |
| |
| iova_tree_remove(as->iova_tree, map); |
| } |
| |
| /* |
| * For all the address spaces with notifiers registered, unmap the entire range |
| * the notifier registered for i.e. clear all the address spaces managed by the |
| * IOMMU. |
| */ |
| static void amdvi_address_space_unmap_all(AMDVIState *s) |
| { |
| AMDVIAddressSpace *as; |
| IOMMUNotifier *n; |
| |
| QLIST_FOREACH(as, &s->amdvi_as_with_notifiers, next) { |
| IOMMU_NOTIFIER_FOREACH(n, &as->iommu) { |
| amdvi_address_space_unmap(as, n); |
| } |
| } |
| } |
| |
| /* |
| * For every translation present in the IOMMU, construct IOMMUTLBEntry data |
| * and pass it as parameter to notifier callback. |
| */ |
| static void amdvi_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n) |
| { |
| AMDVIAddressSpace *as = container_of(iommu_mr, AMDVIAddressSpace, iommu); |
| uint64_t dte[4] = { 0 }; |
| |
| if (!(n->notifier_flags & IOMMU_NOTIFIER_MAP)) { |
| return; |
| } |
| |
| if (amdvi_as_to_dte(as, dte)) { |
| return; |
| } |
| |
| /* Dropping all mappings for the address space. Also clears the IOVA tree */ |
| amdvi_address_space_unmap(as, n); |
| |
| amdvi_sync_shadow_page_table_range(as, &dte[0], 0, UINT64_MAX, false); |
| } |
| |
| static void amdvi_address_space_sync(AMDVIAddressSpace *as) |
| { |
| IOMMUNotifier *n; |
| uint64_t dte[4] = { 0 }; |
| |
| /* If only UNMAP notifiers are registered, drop all existing mappings */ |
| if (!(as->notifier_flags & IOMMU_NOTIFIER_MAP)) { |
| IOMMU_NOTIFIER_FOREACH(n, &as->iommu) { |
| /* |
| * Directly calling memory_region_unmap_iommu_notifier_range() does |
| * not guarantee that the addr_mask eventually passed as parameter |
| * to the notifier is valid. Use amdvi_address_space_unmap() which |
| * ensures the notifier range is divided into properly aligned |
| * regions, and issues notifications for each one. |
| */ |
| amdvi_address_space_unmap(as, n); |
| } |
| return; |
| } |
| |
| if (amdvi_as_to_dte(as, dte)) { |
| return; |
| } |
| |
| amdvi_sync_shadow_page_table_range(as, &dte[0], 0, UINT64_MAX, true); |
| } |
| |
| /* |
| * This differs from the replay() method in that it issues both MAP and UNMAP |
| * notifications since it is called after global invalidation events in order to |
| * re-sync all address spaces. |
| */ |
| static void amdvi_iommu_address_space_sync_all(AMDVIState *s) |
| { |
| AMDVIAddressSpace *as; |
| |
| QLIST_FOREACH(as, &s->amdvi_as_with_notifiers, next) { |
| amdvi_address_space_sync(as); |
| } |
| } |
| |
| /* |
| * Toggle between address translation and passthrough modes by enabling the |
| * corresponding memory regions. |
| */ |
| static void amdvi_switch_address_space(AMDVIAddressSpace *amdvi_as) |
| { |
| AMDVIState *s = amdvi_as->iommu_state; |
| |
| if (s->dma_remap && amdvi_as->addr_translation) { |
| /* Enabling DMA region */ |
| memory_region_set_enabled(&amdvi_as->iommu_nodma, false); |
| memory_region_set_enabled(MEMORY_REGION(&amdvi_as->iommu), true); |
| } else { |
| /* Disabling DMA region, using passthrough */ |
| memory_region_set_enabled(MEMORY_REGION(&amdvi_as->iommu), false); |
| memory_region_set_enabled(&amdvi_as->iommu_nodma, true); |
| } |
| } |
| |
| /* |
| * For all existing address spaces managed by the IOMMU, enable/disable the |
| * corresponding memory regions to reset the address translation mode and |
| * use passthrough by default. |
| */ |
| static void amdvi_reset_address_translation_all(AMDVIState *s) |
| { |
| AMDVIAddressSpace **iommu_as; |
| |
| for (int bus_num = 0; bus_num < PCI_BUS_MAX; bus_num++) { |
| |
| /* Nothing to do if there are no devices on the current bus */ |
| if (!s->address_spaces[bus_num]) { |
| continue; |
| } |
| iommu_as = s->address_spaces[bus_num]; |
| |
| for (int devfn = 0; devfn < PCI_DEVFN_MAX; devfn++) { |
| |
| if (!iommu_as[devfn]) { |
| continue; |
| } |
| /* Use passthrough as default mode after reset */ |
| iommu_as[devfn]->addr_translation = false; |
| amdvi_switch_address_space(iommu_as[devfn]); |
| } |
| } |
| } |
| |
| static void enable_dma_mode(AMDVIAddressSpace *as, bool inval_current) |
| { |
| /* |
| * When enabling DMA mode for the purpose of isolating guest devices on |
| * a failure to retrieve or invalid DTE, all existing mappings must be |
| * dropped. |
| */ |
| if (inval_current) { |
| IOMMUNotifier *n; |
| IOMMU_NOTIFIER_FOREACH(n, &as->iommu) { |
| amdvi_address_space_unmap(as, n); |
| } |
| } |
| |
| if (as->addr_translation) { |
| return; |
| } |
| |
| /* Installing DTE enabling translation, activate region */ |
| as->addr_translation = true; |
| amdvi_switch_address_space(as); |
| /* Sync shadow page tables */ |
| amdvi_address_space_sync(as); |
| } |
| |
| /* |
| * If paging was previously in use in the address space |
| * - invalidate all existing mappings |
| * - switch to no_dma memory region |
| */ |
| static void enable_nodma_mode(AMDVIAddressSpace *as) |
| { |
| IOMMUNotifier *n; |
| |
| if (!as->addr_translation) { |
| /* passthrough is already active, nothing to do */ |
| return; |
| } |
| |
| as->addr_translation = false; |
| IOMMU_NOTIFIER_FOREACH(n, &as->iommu) { |
| /* Drop all mappings for the address space */ |
| amdvi_address_space_unmap(as, n); |
| } |
| amdvi_switch_address_space(as); |
| } |
| |
| /* |
| * A guest driver must issue the INVALIDATE_DEVTAB_ENTRY command to the IOMMU |
| * after changing a Device Table entry. We can use this fact to detect when a |
| * Device Table entry is created for a device attached to a paging domain and |
| * enable the corresponding IOMMU memory region to allow for DMA translation if |
| * appropriate. |
| */ |
| static void amdvi_update_addr_translation_mode(AMDVIState *s, uint16_t devid) |
| { |
| uint8_t bus_num, devfn, dte_mode; |
| AMDVIAddressSpace *as; |
| uint64_t dte[4] = { 0 }; |
| int ret; |
| |
| /* |
| * Convert the devid encoded in the command to a bus and devfn in |
| * order to retrieve the corresponding address space. |
| */ |
| bus_num = PCI_BUS_NUM(devid); |
| devfn = devid & 0xff; |
| |
| /* |
| * The main buffer of size (AMDVIAddressSpace *) * (PCI_BUS_MAX) has already |
| * been allocated within AMDVIState, but must be careful to not access |
| * unallocated devfn. |
| */ |
| if (!s->address_spaces[bus_num] || !s->address_spaces[bus_num][devfn]) { |
| return; |
| } |
| as = s->address_spaces[bus_num][devfn]; |
| |
| ret = amdvi_as_to_dte(as, dte); |
| |
| if (!ret) { |
| dte_mode = (dte[0] >> AMDVI_DEV_MODE_RSHIFT) & AMDVI_DEV_MODE_MASK; |
| } |
| |
| switch (ret) { |
| case 0: |
| /* DTE was successfully retrieved */ |
| if (!dte_mode) { |
| enable_nodma_mode(as); /* DTE[V]=1 && DTE[Mode]=0 => passthrough */ |
| } else { |
| enable_dma_mode(as, false); /* Enable DMA translation */ |
| } |
| break; |
| case -AMDVI_FR_DTE_V: |
| /* DTE[V]=0, address is passed untranslated */ |
| enable_nodma_mode(as); |
| break; |
| case -AMDVI_FR_DTE_RTR_ERR: |
| case -AMDVI_FR_DTE_TV: |
| /* |
| * Enforce isolation by using DMA in rare scenarios where the DTE cannot |
| * be retrieved or DTE[TV]=0. Existing mappings are dropped. |
| */ |
| enable_dma_mode(as, true); |
| break; |
| } |
| } |
| |
| /* log error without aborting since linux seems to be using reserved bits */ |
| static void amdvi_inval_devtab_entry(AMDVIState *s, uint64_t *cmd) |
| { |
| uint16_t devid = cpu_to_le16((uint16_t)extract64(cmd[0], 0, 16)); |
| |
| trace_amdvi_devtab_inval(PCI_BUS_NUM(devid), PCI_SLOT(devid), |
| PCI_FUNC(devid)); |
| |
| /* This command should invalidate internal caches of which there isn't */ |
| if (extract64(cmd[0], 16, 44) || cmd[1]) { |
| amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4), |
| s->cmdbuf + s->cmdbuf_head); |
| return; |
| } |
| |
| /* |
| * When DMA remapping capability is enabled, check if updated DTE is setup |
| * for paging or not, and configure the corresponding memory regions. |
| */ |
| if (s->dma_remap) { |
| amdvi_update_addr_translation_mode(s, devid); |
| } |
| } |
| |
| static void amdvi_complete_ppr(AMDVIState *s, uint64_t *cmd) |
| { |
| if (extract64(cmd[0], 16, 16) || extract64(cmd[0], 52, 8) || |
| extract64(cmd[1], 0, 2) || extract64(cmd[1], 3, 29) |
| || extract64(cmd[1], 48, 16)) { |
| amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4), |
| s->cmdbuf + s->cmdbuf_head); |
| } |
| trace_amdvi_ppr_exec(); |
| } |
| |
| static void amdvi_intremap_inval_notify_all(AMDVIState *s, bool global, |
| uint32_t index, uint32_t mask) |
| { |
| x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask); |
| } |
| |
| static void amdvi_inval_all(AMDVIState *s, uint64_t *cmd) |
| { |
| if (extract64(cmd[0], 0, 60) || cmd[1]) { |
| amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4), |
| s->cmdbuf + s->cmdbuf_head); |
| } |
| |
| /* Notify global invalidation */ |
| amdvi_intremap_inval_notify_all(s, true, 0, 0); |
| |
| amdvi_iotlb_reset(s); |
| |
| /* |
| * Fully replay the address space i.e. send both UNMAP and MAP events in |
| * order to synchronize guest and host IO page tables tables. |
| */ |
| amdvi_iommu_address_space_sync_all(s); |
| |
| trace_amdvi_all_inval(); |
| } |
| |
| static gboolean amdvi_iotlb_remove_by_domid(gpointer key, gpointer value, |
| gpointer user_data) |
| { |
| AMDVIIOTLBEntry *entry = (AMDVIIOTLBEntry *)value; |
| uint16_t domid = *(uint16_t *)user_data; |
| return entry->domid == domid; |
| } |
| |
| /* |
| * Helper to decode the size of the range to invalidate encoded in the |
| * INVALIDATE_IOMMU_PAGES Command format. |
| * The size of the region to invalidate depends on the S bit and address. |
| * S bit value: |
| * 0 : Invalidation size is 4 Kbytes. |
| * 1 : Invalidation size is determined by first zero bit in the address |
| * starting from Address[12]. |
| * |
| * In the AMD IOMMU Linux driver, an invalidation command with address |
| * ((1 << 63) - 1) is sent when intending to clear the entire cache. |
| * However, Table 14: Example Page Size Encodings shows that an address of |
| * ((1ULL << 51) - 1) encodes the entire cache, so effectively any address with |
| * first zero at bit 51 or larger is a request to invalidate the entire address |
| * space. |
| */ |
| static uint64_t amdvi_decode_invalidation_size(hwaddr addr, uint16_t flags) |
| { |
| uint64_t size = AMDVI_PAGE_SIZE; |
| uint8_t fzbit = 0; |
| |
| if (flags & AMDVI_CMD_INVAL_IOMMU_PAGES_S) { |
| fzbit = cto64(addr | 0xFFF); |
| |
| if (fzbit >= 51) { |
| size = AMDVI_INV_ALL_PAGES; |
| } else { |
| size = 1ULL << (fzbit + 1); |
| } |
| } |
| return size; |
| } |
| |
| /* |
| * Synchronize the guest page tables with the shadow page tables kept in the |
| * host for the specified range. |
| * The invalidation command issued by the guest and intercepted by the VMM |
| * does not specify a device, but a domain, since all devices in the same domain |
| * share the same page tables. However, vIOMMU emulation creates separate |
| * address spaces per device, so it is necessary to traverse the list of all of |
| * address spaces (i.e. devices) that have notifiers registered in order to |
| * propagate the changes to the host page tables. |
| * We cannot return early from this function once a matching domain has been |
| * identified and its page tables synced (based on the fact that all devices in |
| * the same domain share the page tables). The reason is that different devices |
| * (i.e. address spaces) could have different notifiers registered, and by |
| * skipping address spaces that appear later on the amdvi_as_with_notifiers list |
| * their notifiers (which could differ from the ones registered for the first |
| * device/address space) would not be invoked. |
| */ |
| static void amdvi_sync_domain(AMDVIState *s, uint16_t domid, uint64_t addr, |
| uint16_t flags) |
| { |
| AMDVIAddressSpace *as; |
| |
| uint64_t size = amdvi_decode_invalidation_size(addr, flags); |
| |
| if (size == AMDVI_INV_ALL_PAGES) { |
| addr = 0; /* Set start address to 0 and invalidate entire AS */ |
| } else { |
| addr &= ~(size - 1); |
| } |
| |
| /* |
| * Call notifiers that have registered for each address space matching the |
| * domain ID, in order to sync the guest pagetable state with the host. |
| */ |
| QLIST_FOREACH(as, &s->amdvi_as_with_notifiers, next) { |
| |
| uint64_t dte[4] = { 0 }; |
| |
| /* |
| * Retrieve the Device Table entry for the devid corresponding to the |
| * current address space, and verify the DomainID matches i.e. the page |
| * tables to be synced belong to devices in the domain. |
| */ |
| if (amdvi_as_to_dte(as, dte)) { |
| continue; |
| } |
| |
| /* Only need to sync the Page Tables for a matching domain */ |
| if (domid != (dte[1] & AMDVI_DEV_DOMID_ID_MASK)) { |
| continue; |
| } |
| |
| /* |
| * We have determined that there is a valid Device Table Entry for a |
| * device matching the DomainID in the INV_IOMMU_PAGES command issued by |
| * the guest. Walk the guest page table to sync shadow page table. |
| */ |
| if (as->notifier_flags & IOMMU_NOTIFIER_MAP) { |
| /* Sync guest IOMMU mappings with host */ |
| amdvi_sync_shadow_page_table_range(as, &dte[0], addr, size, true); |
| } |
| } |
| } |
| |
| /* we don't have devid - we can't remove pages by address */ |
| static void amdvi_inval_pages(AMDVIState *s, uint64_t *cmd) |
| { |
| uint16_t domid = cpu_to_le16((uint16_t)extract64(cmd[0], 32, 16)); |
| uint64_t addr = cpu_to_le64(extract64(cmd[1], 12, 52)) << 12; |
| uint16_t flags = cpu_to_le16((uint16_t)extract64(cmd[1], 0, 3)); |
| |
| if (extract64(cmd[0], 20, 12) || extract64(cmd[0], 48, 12) || |
| extract64(cmd[1], 3, 9)) { |
| amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4), |
| s->cmdbuf + s->cmdbuf_head); |
| } |
| |
| g_hash_table_foreach_remove(s->iotlb, amdvi_iotlb_remove_by_domid, |
| &domid); |
| |
| amdvi_sync_domain(s, domid, addr, flags); |
| trace_amdvi_pages_inval(domid); |
| } |
| |
| static void amdvi_prefetch_pages(AMDVIState *s, uint64_t *cmd) |
| { |
| if (extract64(cmd[0], 16, 8) || extract64(cmd[0], 52, 8) || |
| extract64(cmd[1], 1, 1) || extract64(cmd[1], 3, 1) || |
| extract64(cmd[1], 5, 7)) { |
| amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4), |
| s->cmdbuf + s->cmdbuf_head); |
| } |
| |
| trace_amdvi_prefetch_pages(); |
| } |
| |
| static void amdvi_inval_inttable(AMDVIState *s, uint64_t *cmd) |
| { |
| if (extract64(cmd[0], 16, 44) || cmd[1]) { |
| amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4), |
| s->cmdbuf + s->cmdbuf_head); |
| return; |
| } |
| |
| /* Notify global invalidation */ |
| amdvi_intremap_inval_notify_all(s, true, 0, 0); |
| |
| trace_amdvi_intr_inval(); |
| } |
| |
| /* FIXME: Try to work with the specified size instead of all the pages |
| * when the S bit is on |
| */ |
| static void iommu_inval_iotlb(AMDVIState *s, uint64_t *cmd) |
| { |
| |
| uint16_t devid = cpu_to_le16(extract64(cmd[0], 0, 16)); |
| if (extract64(cmd[1], 1, 1) || extract64(cmd[1], 3, 1) || |
| extract64(cmd[1], 6, 6)) { |
| amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4), |
| s->cmdbuf + s->cmdbuf_head); |
| return; |
| } |
| |
| if (extract64(cmd[1], 0, 1)) { |
| g_hash_table_foreach_remove(s->iotlb, amdvi_iotlb_remove_by_devid, |
| &devid); |
| } else { |
| amdvi_iotlb_remove_page(s, cpu_to_le64(extract64(cmd[1], 12, 52)) << 12, |
| devid); |
| } |
| trace_amdvi_iotlb_inval(); |
| } |
| |
| /* not honouring reserved bits is regarded as an illegal command */ |
| static void amdvi_cmdbuf_exec(AMDVIState *s) |
| { |
| uint64_t cmd[2]; |
| |
| if (dma_memory_read(&address_space_memory, s->cmdbuf + s->cmdbuf_head, |
| cmd, AMDVI_COMMAND_SIZE, MEMTXATTRS_UNSPECIFIED)) { |
| trace_amdvi_command_read_fail(s->cmdbuf, s->cmdbuf_head); |
| amdvi_log_command_error(s, s->cmdbuf + s->cmdbuf_head); |
| return; |
| } |
| |
| switch (extract64(cmd[0], 60, 4)) { |
| case AMDVI_CMD_COMPLETION_WAIT: |
| amdvi_completion_wait(s, cmd); |
| break; |
| case AMDVI_CMD_INVAL_DEVTAB_ENTRY: |
| amdvi_inval_devtab_entry(s, cmd); |
| break; |
| case AMDVI_CMD_INVAL_AMDVI_PAGES: |
| amdvi_inval_pages(s, cmd); |
| break; |
| case AMDVI_CMD_INVAL_IOTLB_PAGES: |
| iommu_inval_iotlb(s, cmd); |
| break; |
| case AMDVI_CMD_INVAL_INTR_TABLE: |
| amdvi_inval_inttable(s, cmd); |
| break; |
| case AMDVI_CMD_PREFETCH_AMDVI_PAGES: |
| amdvi_prefetch_pages(s, cmd); |
| break; |
| case AMDVI_CMD_COMPLETE_PPR_REQUEST: |
| amdvi_complete_ppr(s, cmd); |
| break; |
| case AMDVI_CMD_INVAL_AMDVI_ALL: |
| amdvi_inval_all(s, cmd); |
| break; |
| default: |
| trace_amdvi_unhandled_command(extract64(cmd[1], 60, 4)); |
| /* log illegal command */ |
| amdvi_log_illegalcom_error(s, extract64(cmd[1], 60, 4), |
| s->cmdbuf + s->cmdbuf_head); |
| } |
| } |
| |
| static void amdvi_cmdbuf_run(AMDVIState *s) |
| { |
| if (!s->cmdbuf_enabled) { |
| trace_amdvi_command_error(amdvi_readq(s, AMDVI_MMIO_CONTROL)); |
| return; |
| } |
| |
| /* check if there is work to do. */ |
| while (s->cmdbuf_head != s->cmdbuf_tail) { |
| trace_amdvi_command_exec(s->cmdbuf_head, s->cmdbuf_tail, s->cmdbuf); |
| amdvi_cmdbuf_exec(s); |
| s->cmdbuf_head += AMDVI_COMMAND_SIZE; |
| amdvi_writeq_raw(s, AMDVI_MMIO_COMMAND_HEAD, s->cmdbuf_head); |
| |
| /* wrap head pointer */ |
| if (s->cmdbuf_head >= s->cmdbuf_len * AMDVI_COMMAND_SIZE) { |
| s->cmdbuf_head = 0; |
| } |
| } |
| } |
| |
| static inline uint8_t amdvi_mmio_get_index(hwaddr addr) |
| { |
| uint8_t index = (addr & ~0x2000) / 8; |
| |
| if ((addr & 0x2000)) { |
| /* high table */ |
| index = index >= AMDVI_MMIO_REGS_HIGH ? AMDVI_MMIO_REGS_HIGH : index; |
| } else { |
| index = index >= AMDVI_MMIO_REGS_LOW ? AMDVI_MMIO_REGS_LOW : index; |
| } |
| |
| return index; |
| } |
| |
| static void amdvi_mmio_trace_read(hwaddr addr, unsigned size) |
| { |
| uint8_t index = amdvi_mmio_get_index(addr); |
| trace_amdvi_mmio_read(amdvi_mmio_low[index], addr, size, addr & ~0x07); |
| } |
| |
| static void amdvi_mmio_trace_write(hwaddr addr, unsigned size, uint64_t val) |
| { |
| uint8_t index = amdvi_mmio_get_index(addr); |
| trace_amdvi_mmio_write(amdvi_mmio_low[index], addr, size, val, |
| addr & ~0x07); |
| } |
| |
| static uint64_t amdvi_mmio_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| AMDVIState *s = opaque; |
| |
| uint64_t val = -1; |
| if (addr + size > AMDVI_MMIO_SIZE) { |
| trace_amdvi_mmio_read_invalid(AMDVI_MMIO_SIZE, addr, size); |
| return (uint64_t)-1; |
| } |
| |
| if (size == 2) { |
| val = amdvi_readw(s, addr); |
| } else if (size == 4) { |
| val = amdvi_readl(s, addr); |
| } else if (size == 8) { |
| val = amdvi_readq(s, addr); |
| } |
| amdvi_mmio_trace_read(addr, size); |
| |
| return val; |
| } |
| |
| static void amdvi_handle_control_write(AMDVIState *s) |
| { |
| unsigned long control = amdvi_readq(s, AMDVI_MMIO_CONTROL); |
| s->enabled = !!(control & AMDVI_MMIO_CONTROL_AMDVIEN); |
| |
| s->evtlog_enabled = s->enabled && !!(control & |
| AMDVI_MMIO_CONTROL_EVENTLOGEN); |
| |
| s->evtlog_intr = !!(control & AMDVI_MMIO_CONTROL_EVENTINTEN); |
| s->completion_wait_intr = !!(control & AMDVI_MMIO_CONTROL_COMWAITINTEN); |
| s->cmdbuf_enabled = s->enabled && !!(control & |
| AMDVI_MMIO_CONTROL_CMDBUFLEN); |
| s->ga_enabled = !!(control & AMDVI_MMIO_CONTROL_GAEN); |
| |
| /* update the flags depending on the control register */ |
| if (s->cmdbuf_enabled) { |
| amdvi_assign_orq(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_CMDBUF_RUN); |
| } else { |
| amdvi_assign_andq(s, AMDVI_MMIO_STATUS, ~AMDVI_MMIO_STATUS_CMDBUF_RUN); |
| } |
| if (s->evtlog_enabled) { |
| amdvi_assign_orq(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_EVT_RUN); |
| } else { |
| amdvi_assign_andq(s, AMDVI_MMIO_STATUS, ~AMDVI_MMIO_STATUS_EVT_RUN); |
| } |
| |
| trace_amdvi_control_status(control); |
| amdvi_cmdbuf_run(s); |
| } |
| |
| static inline void amdvi_handle_devtab_write(AMDVIState *s) |
| |
| { |
| uint64_t val = amdvi_readq(s, AMDVI_MMIO_DEVICE_TABLE); |
| s->devtab = (val & AMDVI_MMIO_DEVTAB_BASE_MASK); |
| |
| /* set device table length (i.e. number of entries table can hold) */ |
| s->devtab_len = (((val & AMDVI_MMIO_DEVTAB_SIZE_MASK) + 1) * |
| (AMDVI_MMIO_DEVTAB_SIZE_UNIT / |
| AMDVI_MMIO_DEVTAB_ENTRY_SIZE)); |
| } |
| |
| static inline void amdvi_handle_cmdhead_write(AMDVIState *s) |
| { |
| s->cmdbuf_head = amdvi_readq(s, AMDVI_MMIO_COMMAND_HEAD) |
| & AMDVI_MMIO_CMDBUF_HEAD_MASK; |
| amdvi_cmdbuf_run(s); |
| } |
| |
| static inline void amdvi_handle_cmdbase_write(AMDVIState *s) |
| { |
| s->cmdbuf = amdvi_readq(s, AMDVI_MMIO_COMMAND_BASE) |
| & AMDVI_MMIO_CMDBUF_BASE_MASK; |
| s->cmdbuf_len = 1UL << (amdvi_readq(s, AMDVI_MMIO_CMDBUF_SIZE_BYTE) |
| & AMDVI_MMIO_CMDBUF_SIZE_MASK); |
| s->cmdbuf_head = s->cmdbuf_tail = 0; |
| } |
| |
| static inline void amdvi_handle_cmdtail_write(AMDVIState *s) |
| { |
| s->cmdbuf_tail = amdvi_readq(s, AMDVI_MMIO_COMMAND_TAIL) |
| & AMDVI_MMIO_CMDBUF_TAIL_MASK; |
| amdvi_cmdbuf_run(s); |
| } |
| |
| static inline void amdvi_handle_excllim_write(AMDVIState *s) |
| { |
| uint64_t val = amdvi_readq(s, AMDVI_MMIO_EXCL_LIMIT); |
| s->excl_limit = (val & AMDVI_MMIO_EXCL_LIMIT_MASK) | |
| AMDVI_MMIO_EXCL_LIMIT_LOW; |
| } |
| |
| static inline void amdvi_handle_evtbase_write(AMDVIState *s) |
| { |
| uint64_t val = amdvi_readq(s, AMDVI_MMIO_EVENT_BASE); |
| |
| if (amdvi_readq(s, AMDVI_MMIO_STATUS) & AMDVI_MMIO_STATUS_EVENT_INT) |
| /* Do not reset if eventlog interrupt bit is set*/ |
| return; |
| |
| s->evtlog = val & AMDVI_MMIO_EVTLOG_BASE_MASK; |
| s->evtlog_len = 1UL << (amdvi_readq(s, AMDVI_MMIO_EVTLOG_SIZE_BYTE) |
| & AMDVI_MMIO_EVTLOG_SIZE_MASK); |
| |
| /* clear tail and head pointer to 0 when event base is updated */ |
| s->evtlog_tail = s->evtlog_head = 0; |
| amdvi_writeq_raw(s, AMDVI_MMIO_EVENT_HEAD, s->evtlog_head); |
| amdvi_writeq_raw(s, AMDVI_MMIO_EVENT_TAIL, s->evtlog_tail); |
| } |
| |
| static inline void amdvi_handle_evttail_write(AMDVIState *s) |
| { |
| uint64_t val = amdvi_readq(s, AMDVI_MMIO_EVENT_TAIL); |
| s->evtlog_tail = val & AMDVI_MMIO_EVTLOG_TAIL_MASK; |
| } |
| |
| static inline void amdvi_handle_evthead_write(AMDVIState *s) |
| { |
| uint64_t val = amdvi_readq(s, AMDVI_MMIO_EVENT_HEAD); |
| s->evtlog_head = val & AMDVI_MMIO_EVTLOG_HEAD_MASK; |
| } |
| |
| static inline void amdvi_handle_pprbase_write(AMDVIState *s) |
| { |
| uint64_t val = amdvi_readq(s, AMDVI_MMIO_PPR_BASE); |
| s->ppr_log = val & AMDVI_MMIO_PPRLOG_BASE_MASK; |
| s->pprlog_len = 1UL << (amdvi_readq(s, AMDVI_MMIO_PPRLOG_SIZE_BYTE) |
| & AMDVI_MMIO_PPRLOG_SIZE_MASK); |
| } |
| |
| static inline void amdvi_handle_pprhead_write(AMDVIState *s) |
| { |
| uint64_t val = amdvi_readq(s, AMDVI_MMIO_PPR_HEAD); |
| s->pprlog_head = val & AMDVI_MMIO_PPRLOG_HEAD_MASK; |
| } |
| |
| static inline void amdvi_handle_pprtail_write(AMDVIState *s) |
| { |
| uint64_t val = amdvi_readq(s, AMDVI_MMIO_PPR_TAIL); |
| s->pprlog_tail = val & AMDVI_MMIO_PPRLOG_TAIL_MASK; |
| } |
| |
| /* FIXME: something might go wrong if System Software writes in chunks |
| * of one byte but linux writes in chunks of 4 bytes so currently it |
| * works correctly with linux but will definitely be busted if software |
| * reads/writes 8 bytes |
| */ |
| static void amdvi_mmio_reg_write(AMDVIState *s, unsigned size, uint64_t val, |
| hwaddr addr) |
| { |
| if (size == 2) { |
| amdvi_writew(s, addr, val); |
| } else if (size == 4) { |
| amdvi_writel(s, addr, val); |
| } else if (size == 8) { |
| amdvi_writeq(s, addr, val); |
| } |
| } |
| |
| static void amdvi_mmio_write(void *opaque, hwaddr addr, uint64_t val, |
| unsigned size) |
| { |
| AMDVIState *s = opaque; |
| unsigned long offset = addr & 0x07; |
| |
| if (addr + size > AMDVI_MMIO_SIZE) { |
| trace_amdvi_mmio_write("error: addr outside region: max ", |
| (uint64_t)AMDVI_MMIO_SIZE, size, val, offset); |
| return; |
| } |
| |
| amdvi_mmio_trace_write(addr, size, val); |
| switch (addr & ~0x07) { |
| case AMDVI_MMIO_CONTROL: |
| amdvi_mmio_reg_write(s, size, val, addr); |
| amdvi_handle_control_write(s); |
| break; |
| case AMDVI_MMIO_DEVICE_TABLE: |
| amdvi_mmio_reg_write(s, size, val, addr); |
| /* set device table address |
| * This also suffers from inability to tell whether software |
| * is done writing |
| */ |
| if (offset || (size == 8)) { |
| amdvi_handle_devtab_write(s); |
| } |
| break; |
| case AMDVI_MMIO_COMMAND_HEAD: |
| amdvi_mmio_reg_write(s, size, val, addr); |
| amdvi_handle_cmdhead_write(s); |
| break; |
| case AMDVI_MMIO_COMMAND_BASE: |
| amdvi_mmio_reg_write(s, size, val, addr); |
| /* FIXME - make sure System Software has finished writing in case |
| * it writes in chucks less than 8 bytes in a robust way.As for |
| * now, this hacks works for the linux driver |
| */ |
| if (offset || (size == 8)) { |
| amdvi_handle_cmdbase_write(s); |
| } |
| break; |
| case AMDVI_MMIO_COMMAND_TAIL: |
| amdvi_mmio_reg_write(s, size, val, addr); |
| amdvi_handle_cmdtail_write(s); |
| break; |
| case AMDVI_MMIO_EVENT_BASE: |
| amdvi_mmio_reg_write(s, size, val, addr); |
| amdvi_handle_evtbase_write(s); |
| break; |
| case AMDVI_MMIO_EVENT_HEAD: |
| amdvi_mmio_reg_write(s, size, val, addr); |
| amdvi_handle_evthead_write(s); |
| break; |
| case AMDVI_MMIO_EVENT_TAIL: |
| amdvi_mmio_reg_write(s, size, val, addr); |
| amdvi_handle_evttail_write(s); |
| break; |
| case AMDVI_MMIO_EXCL_LIMIT: |
| amdvi_mmio_reg_write(s, size, val, addr); |
| amdvi_handle_excllim_write(s); |
| break; |
| /* PPR log base - unused for now */ |
| case AMDVI_MMIO_PPR_BASE: |
| amdvi_mmio_reg_write(s, size, val, addr); |
| amdvi_handle_pprbase_write(s); |
| break; |
| /* PPR log head - also unused for now */ |
| case AMDVI_MMIO_PPR_HEAD: |
| amdvi_mmio_reg_write(s, size, val, addr); |
| amdvi_handle_pprhead_write(s); |
| break; |
| /* PPR log tail - unused for now */ |
| case AMDVI_MMIO_PPR_TAIL: |
| amdvi_mmio_reg_write(s, size, val, addr); |
| amdvi_handle_pprtail_write(s); |
| break; |
| case AMDVI_MMIO_STATUS: |
| amdvi_mmio_reg_write(s, size, val, addr); |
| break; |
| } |
| } |
| |
| static void amdvi_page_walk(AMDVIAddressSpace *as, uint64_t *dte, |
| IOMMUTLBEntry *ret, unsigned perms, |
| hwaddr addr) |
| { |
| hwaddr page_mask, pagesize = 0; |
| uint8_t mode; |
| uint64_t pte; |
| int fetch_ret; |
| |
| /* make sure the DTE has TV = 1 */ |
| if (!(dte[0] & AMDVI_DEV_TRANSLATION_VALID)) { |
| /* |
| * A DTE with V=1, TV=0 does not have a valid Page Table Root Pointer. |
| * An IOMMU processing a request that requires a table walk terminates |
| * the walk when it encounters this condition. Do the same and return |
| * instead of assuming that the address is forwarded without translation |
| * i.e. the passthrough case, as it is done for the case where DTE[V]=0. |
| */ |
| return; |
| } |
| |
| mode = get_pte_translation_mode(dte[0]); |
| if (mode >= 7) { |
| trace_amdvi_mode_invalid(mode, addr); |
| return; |
| } |
| if (mode == 0) { |
| goto no_remap; |
| } |
| |
| /* Attempt to fetch the PTE to determine if a valid mapping exists */ |
| fetch_ret = fetch_pte(as, addr, dte[0], &pte, &pagesize); |
| |
| /* |
| * If walking the page table results in an error of any type, returns an |
| * empty PTE i.e. no mapping, or the permissions do not match, return since |
| * there is no translation available. |
| */ |
| if (fetch_ret < 0 || !IOMMU_PTE_PRESENT(pte) || |
| perms != (perms & amdvi_get_perms(pte))) { |
| |
| amdvi_page_fault(as->iommu_state, as->devfn, addr, perms); |
| trace_amdvi_page_fault(addr); |
| return; |
| } |
| |
| /* A valid PTE and page size has been retrieved */ |
| assert(pagesize); |
| page_mask = ~(pagesize - 1); |
| |
| /* get access permissions from pte */ |
| ret->iova = addr & page_mask; |
| ret->translated_addr = (pte & AMDVI_DEV_PT_ROOT_MASK) & page_mask; |
| ret->addr_mask = ~page_mask; |
| ret->perm = amdvi_get_perms(pte); |
| return; |
| |
| no_remap: |
| ret->iova = addr & AMDVI_PAGE_MASK_4K; |
| ret->translated_addr = addr & AMDVI_PAGE_MASK_4K; |
| ret->addr_mask = ~AMDVI_PAGE_MASK_4K; |
| ret->perm = amdvi_get_perms(dte[0]); |
| } |
| |
| static void amdvi_do_translate(AMDVIAddressSpace *as, hwaddr addr, |
| bool is_write, IOMMUTLBEntry *ret) |
| { |
| AMDVIState *s = as->iommu_state; |
| uint16_t devid = PCI_BUILD_BDF(as->bus_num, as->devfn); |
| AMDVIIOTLBEntry *iotlb_entry = amdvi_iotlb_lookup(s, addr, devid); |
| uint64_t entry[4]; |
| int dte_ret; |
| |
| if (iotlb_entry) { |
| trace_amdvi_iotlb_hit(PCI_BUS_NUM(devid), PCI_SLOT(devid), |
| PCI_FUNC(devid), addr, iotlb_entry->translated_addr); |
| ret->iova = addr & ~iotlb_entry->page_mask; |
| ret->translated_addr = iotlb_entry->translated_addr; |
| ret->addr_mask = iotlb_entry->page_mask; |
| ret->perm = iotlb_entry->perms; |
| return; |
| } |
| |
| dte_ret = amdvi_as_to_dte(as, entry); |
| |
| if (dte_ret < 0) { |
| if (dte_ret == -AMDVI_FR_DTE_V) { |
| /* DTE[V]=0, address is passed untranslated */ |
| goto out; |
| } |
| return; |
| } |
| |
| amdvi_page_walk(as, entry, ret, |
| is_write ? AMDVI_PERM_WRITE : AMDVI_PERM_READ, addr); |
| |
| amdvi_update_iotlb(s, devid, addr, *ret, |
| entry[1] & AMDVI_DEV_DOMID_ID_MASK); |
| return; |
| |
| out: |
| ret->iova = addr & AMDVI_PAGE_MASK_4K; |
| ret->translated_addr = addr & AMDVI_PAGE_MASK_4K; |
| ret->addr_mask = ~AMDVI_PAGE_MASK_4K; |
| ret->perm = IOMMU_RW; |
| } |
| |
| static inline bool amdvi_is_interrupt_addr(hwaddr addr) |
| { |
| return addr >= AMDVI_INT_ADDR_FIRST && addr <= AMDVI_INT_ADDR_LAST; |
| } |
| |
| static IOMMUTLBEntry amdvi_translate(IOMMUMemoryRegion *iommu, hwaddr addr, |
| IOMMUAccessFlags flag, int iommu_idx) |
| { |
| AMDVIAddressSpace *as = container_of(iommu, AMDVIAddressSpace, iommu); |
| AMDVIState *s = as->iommu_state; |
| IOMMUTLBEntry ret = { |
| .target_as = &address_space_memory, |
| .iova = addr, |
| .translated_addr = 0, |
| .addr_mask = ~(hwaddr)0, |
| .perm = IOMMU_NONE |
| }; |
| |
| if (!s->enabled) { |
| /* AMDVI disabled - corresponds to iommu=off not |
| * failure to provide any parameter |
| */ |
| ret.iova = addr & AMDVI_PAGE_MASK_4K; |
| ret.translated_addr = addr & AMDVI_PAGE_MASK_4K; |
| ret.addr_mask = ~AMDVI_PAGE_MASK_4K; |
| ret.perm = IOMMU_RW; |
| return ret; |
| } else if (amdvi_is_interrupt_addr(addr)) { |
| ret.iova = addr & AMDVI_PAGE_MASK_4K; |
| ret.translated_addr = addr & AMDVI_PAGE_MASK_4K; |
| ret.addr_mask = ~AMDVI_PAGE_MASK_4K; |
| ret.perm = IOMMU_WO; |
| return ret; |
| } |
| |
| amdvi_do_translate(as, addr, flag & IOMMU_WO, &ret); |
| trace_amdvi_translation_result(as->bus_num, PCI_SLOT(as->devfn), |
| PCI_FUNC(as->devfn), addr, ret.translated_addr); |
| return ret; |
| } |
| |
| static int amdvi_get_irte(AMDVIState *s, MSIMessage *origin, uint64_t *dte, |
| union irte *irte, uint16_t devid) |
| { |
| uint64_t irte_root, offset; |
| |
| irte_root = dte[2] & AMDVI_IR_PHYS_ADDR_MASK; |
| offset = (origin->data & AMDVI_IRTE_OFFSET) << 2; |
| |
| trace_amdvi_ir_irte(irte_root, offset); |
| |
| if (dma_memory_read(&address_space_memory, irte_root + offset, |
| irte, sizeof(*irte), MEMTXATTRS_UNSPECIFIED)) { |
| trace_amdvi_ir_err("failed to get irte"); |
| return -AMDVI_IR_GET_IRTE; |
| } |
| |
| trace_amdvi_ir_irte_val(irte->val); |
| |
| return 0; |
| } |
| |
| static int amdvi_int_remap_legacy(AMDVIState *iommu, |
| MSIMessage *origin, |
| MSIMessage *translated, |
| uint64_t *dte, |
| X86IOMMUIrq *irq, |
| uint16_t sid) |
| { |
| int ret; |
| union irte irte; |
| |
| /* get interrupt remapping table */ |
| ret = amdvi_get_irte(iommu, origin, dte, &irte, sid); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| if (!irte.fields.valid) { |
| trace_amdvi_ir_target_abort("RemapEn is disabled"); |
| return -AMDVI_IR_TARGET_ABORT; |
| } |
| |
| if (irte.fields.guest_mode) { |
| error_report_once("guest mode is not zero"); |
| return -AMDVI_IR_ERR; |
| } |
| |
| if (irte.fields.int_type > AMDVI_IOAPIC_INT_TYPE_ARBITRATED) { |
| error_report_once("reserved int_type"); |
| return -AMDVI_IR_ERR; |
| } |
| |
| irq->delivery_mode = irte.fields.int_type; |
| irq->vector = irte.fields.vector; |
| irq->dest_mode = irte.fields.dm; |
| irq->redir_hint = irte.fields.rq_eoi; |
| irq->dest = irte.fields.destination; |
| |
| return 0; |
| } |
| |
| static int amdvi_get_irte_ga(AMDVIState *s, MSIMessage *origin, uint64_t *dte, |
| struct irte_ga *irte, uint16_t devid) |
| { |
| uint64_t irte_root, offset; |
| |
| irte_root = dte[2] & AMDVI_IR_PHYS_ADDR_MASK; |
| offset = (origin->data & AMDVI_IRTE_OFFSET) << 4; |
| trace_amdvi_ir_irte(irte_root, offset); |
| |
| if (dma_memory_read(&address_space_memory, irte_root + offset, |
| irte, sizeof(*irte), MEMTXATTRS_UNSPECIFIED)) { |
| trace_amdvi_ir_err("failed to get irte_ga"); |
| return -AMDVI_IR_GET_IRTE; |
| } |
| |
| trace_amdvi_ir_irte_ga_val(irte->hi.val, irte->lo.val); |
| return 0; |
| } |
| |
| static int amdvi_int_remap_ga(AMDVIState *iommu, |
| MSIMessage *origin, |
| MSIMessage *translated, |
| uint64_t *dte, |
| X86IOMMUIrq *irq, |
| uint16_t sid) |
| { |
| int ret; |
| struct irte_ga irte; |
| |
| /* get interrupt remapping table */ |
| ret = amdvi_get_irte_ga(iommu, origin, dte, &irte, sid); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| if (!irte.lo.fields_remap.valid) { |
| trace_amdvi_ir_target_abort("RemapEn is disabled"); |
| return -AMDVI_IR_TARGET_ABORT; |
| } |
| |
| if (irte.lo.fields_remap.guest_mode) { |
| error_report_once("guest mode is not zero"); |
| return -AMDVI_IR_ERR; |
| } |
| |
| if (irte.lo.fields_remap.int_type > AMDVI_IOAPIC_INT_TYPE_ARBITRATED) { |
| error_report_once("reserved int_type is set"); |
| return -AMDVI_IR_ERR; |
| } |
| |
| irq->delivery_mode = irte.lo.fields_remap.int_type; |
| irq->vector = irte.hi.fields.vector; |
| irq->dest_mode = irte.lo.fields_remap.dm; |
| irq->redir_hint = irte.lo.fields_remap.rq_eoi; |
| if (iommu->xtsup) { |
| irq->dest = irte.lo.fields_remap.destination | |
| (irte.hi.fields.destination_hi << 24); |
| } else { |
| irq->dest = irte.lo.fields_remap.destination & 0xff; |
| } |
| |
| return 0; |
| } |
| |
| static int __amdvi_int_remap_msi(AMDVIState *iommu, |
| MSIMessage *origin, |
| MSIMessage *translated, |
| uint64_t *dte, |
| X86IOMMUIrq *irq, |
| uint16_t sid) |
| { |
| int ret; |
| uint8_t int_ctl; |
| |
| int_ctl = (dte[2] >> AMDVI_IR_INTCTL_SHIFT) & 3; |
| trace_amdvi_ir_intctl(int_ctl); |
| |
| switch (int_ctl) { |
| case AMDVI_IR_INTCTL_PASS: |
| memcpy(translated, origin, sizeof(*origin)); |
| return 0; |
| case AMDVI_IR_INTCTL_REMAP: |
| break; |
| case AMDVI_IR_INTCTL_ABORT: |
| trace_amdvi_ir_target_abort("int_ctl abort"); |
| return -AMDVI_IR_TARGET_ABORT; |
| default: |
| trace_amdvi_ir_err("int_ctl reserved"); |
| return -AMDVI_IR_ERR; |
| } |
| |
| if (iommu->ga_enabled) { |
| ret = amdvi_int_remap_ga(iommu, origin, translated, dte, irq, sid); |
| } else { |
| ret = amdvi_int_remap_legacy(iommu, origin, translated, dte, irq, sid); |
| } |
| |
| return ret; |
| } |
| |
| /* Interrupt remapping for MSI/MSI-X entry */ |
| static int amdvi_int_remap_msi(AMDVIState *iommu, |
| MSIMessage *origin, |
| MSIMessage *translated, |
| uint16_t sid) |
| { |
| int ret = 0; |
| uint64_t pass = 0; |
| uint64_t dte[4] = { 0 }; |
| X86IOMMUIrq irq = { 0 }; |
| uint8_t dest_mode, delivery_mode; |
| |
| assert(origin && translated); |
| |
| /* |
| * When IOMMU is enabled, interrupt remap request will come either from |
| * IO-APIC or PCI device. If interrupt is from PCI device then it will |
| * have a valid requester id but if the interrupt is from IO-APIC |
| * then requester id will be invalid. |
| */ |
| if (sid == X86_IOMMU_SID_INVALID) { |
| sid = AMDVI_IOAPIC_SB_DEVID; |
| } |
| |
| trace_amdvi_ir_remap_msi_req(origin->address, origin->data, sid); |
| |
| /* check if device table entry is set before we go further. */ |
| if (!iommu || !iommu->devtab_len) { |
| memcpy(translated, origin, sizeof(*origin)); |
| goto out; |
| } |
| |
| if (!amdvi_get_dte(iommu, sid, dte)) { |
| return -AMDVI_IR_ERR; |
| } |
| |
| /* Check if IR is enabled in DTE */ |
| if (!(dte[2] & AMDVI_IR_REMAP_ENABLE)) { |
| memcpy(translated, origin, sizeof(*origin)); |
| goto out; |
| } |
| |
| /* validate that we are configure with intremap=on */ |
| if (!x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu))) { |
| trace_amdvi_err("Interrupt remapping is enabled in the guest but " |
| "not in the host. Use intremap=on to enable interrupt " |
| "remapping in amd-iommu."); |
| return -AMDVI_IR_ERR; |
| } |
| |
| if (origin->address < AMDVI_INT_ADDR_FIRST || |
| origin->address + sizeof(origin->data) > AMDVI_INT_ADDR_LAST + 1) { |
| trace_amdvi_err("MSI is not from IOAPIC."); |
| return -AMDVI_IR_ERR; |
| } |
| |
| /* |
| * The MSI data register [10:8] are used to get the upstream interrupt type. |
| * |
| * See MSI/MSI-X format: |
| * https://pdfs.semanticscholar.org/presentation/9420/c279e942eca568157711ef5c92b800c40a79.pdf |
| * (page 5) |
| */ |
| delivery_mode = (origin->data >> MSI_DATA_DELIVERY_MODE_SHIFT) & 7; |
| |
| switch (delivery_mode) { |
| case AMDVI_IOAPIC_INT_TYPE_FIXED: |
| case AMDVI_IOAPIC_INT_TYPE_ARBITRATED: |
| trace_amdvi_ir_delivery_mode("fixed/arbitrated"); |
| ret = __amdvi_int_remap_msi(iommu, origin, translated, dte, &irq, sid); |
| if (ret < 0) { |
| goto remap_fail; |
| } else { |
| /* Translate IRQ to MSI messages */ |
| x86_iommu_irq_to_msi_message(&irq, translated); |
| goto out; |
| } |
| break; |
| case AMDVI_IOAPIC_INT_TYPE_SMI: |
| error_report("SMI is not supported!"); |
| ret = -AMDVI_IR_ERR; |
| break; |
| case AMDVI_IOAPIC_INT_TYPE_NMI: |
| pass = dte[2] & AMDVI_DEV_NMI_PASS_MASK; |
| trace_amdvi_ir_delivery_mode("nmi"); |
| break; |
| case AMDVI_IOAPIC_INT_TYPE_INIT: |
| pass = dte[2] & AMDVI_DEV_INT_PASS_MASK; |
| trace_amdvi_ir_delivery_mode("init"); |
| break; |
| case AMDVI_IOAPIC_INT_TYPE_EINT: |
| pass = dte[2] & AMDVI_DEV_EINT_PASS_MASK; |
| trace_amdvi_ir_delivery_mode("eint"); |
| break; |
| default: |
| trace_amdvi_ir_delivery_mode("unsupported delivery_mode"); |
| ret = -AMDVI_IR_ERR; |
| break; |
| } |
| |
| if (ret < 0) { |
| goto remap_fail; |
| } |
| |
| /* |
| * The MSI address register bit[2] is used to get the destination |
| * mode. The dest_mode 1 is valid for fixed and arbitrated interrupts |
| * only. |
| */ |
| dest_mode = (origin->address >> MSI_ADDR_DEST_MODE_SHIFT) & 1; |
| if (dest_mode) { |
| trace_amdvi_ir_err("invalid dest_mode"); |
| ret = -AMDVI_IR_ERR; |
| goto remap_fail; |
| } |
| |
| if (pass) { |
| memcpy(translated, origin, sizeof(*origin)); |
| } else { |
| trace_amdvi_ir_err("passthrough is not enabled"); |
| ret = -AMDVI_IR_ERR; |
| goto remap_fail; |
| } |
| |
| out: |
| trace_amdvi_ir_remap_msi(origin->address, origin->data, |
| translated->address, translated->data); |
| return 0; |
| |
| remap_fail: |
| return ret; |
| } |
| |
| static int amdvi_int_remap(X86IOMMUState *iommu, |
| MSIMessage *origin, |
| MSIMessage *translated, |
| uint16_t sid) |
| { |
| return amdvi_int_remap_msi(AMD_IOMMU_DEVICE(iommu), origin, |
| translated, sid); |
| } |
| |
| static MemTxResult amdvi_mem_ir_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size, |
| MemTxAttrs attrs) |
| { |
| int ret; |
| MSIMessage from = { 0, 0 }, to = { 0, 0 }; |
| uint16_t sid = AMDVI_IOAPIC_SB_DEVID; |
| |
| from.address = (uint64_t) addr + AMDVI_INT_ADDR_FIRST; |
| from.data = (uint32_t) value; |
| |
| trace_amdvi_mem_ir_write_req(addr, value, size); |
| |
| if (!attrs.unspecified) { |
| /* We have explicit Source ID */ |
| sid = attrs.requester_id; |
| } |
| |
| ret = amdvi_int_remap_msi(opaque, &from, &to, sid); |
| if (ret < 0) { |
| /* TODO: log the event using IOMMU log event interface */ |
| error_report_once("failed to remap interrupt from devid 0x%x", sid); |
| return MEMTX_ERROR; |
| } |
| |
| apic_get_class(NULL)->send_msi(&to); |
| |
| trace_amdvi_mem_ir_write(to.address, to.data); |
| return MEMTX_OK; |
| } |
| |
| static MemTxResult amdvi_mem_ir_read(void *opaque, hwaddr addr, |
| uint64_t *data, unsigned size, |
| MemTxAttrs attrs) |
| { |
| return MEMTX_OK; |
| } |
| |
| static const MemoryRegionOps amdvi_ir_ops = { |
| .read_with_attrs = amdvi_mem_ir_read, |
| .write_with_attrs = amdvi_mem_ir_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| .impl = { |
| .min_access_size = 4, |
| .max_access_size = 4, |
| }, |
| .valid = { |
| .min_access_size = 4, |
| .max_access_size = 4, |
| } |
| }; |
| |
| static AddressSpace *amdvi_host_dma_iommu(PCIBus *bus, void *opaque, int devfn) |
| { |
| char name[128]; |
| AMDVIState *s = opaque; |
| AMDVIAddressSpace **iommu_as, *amdvi_dev_as; |
| int bus_num = pci_bus_num(bus); |
| |
| iommu_as = s->address_spaces[bus_num]; |
| |
| /* allocate memory during the first run */ |
| if (!iommu_as) { |
| iommu_as = g_new0(AMDVIAddressSpace *, PCI_DEVFN_MAX); |
| s->address_spaces[bus_num] = iommu_as; |
| } |
| |
| /* set up AMD-Vi region */ |
| if (!iommu_as[devfn]) { |
| snprintf(name, sizeof(name), "amd_iommu_devfn_%d", devfn); |
| |
| iommu_as[devfn] = g_new0(AMDVIAddressSpace, 1); |
| iommu_as[devfn]->bus_num = (uint8_t)bus_num; |
| iommu_as[devfn]->devfn = (uint8_t)devfn; |
| iommu_as[devfn]->iommu_state = s; |
| iommu_as[devfn]->notifier_flags = IOMMU_NOTIFIER_NONE; |
| iommu_as[devfn]->iova_tree = iova_tree_new(); |
| iommu_as[devfn]->addr_translation = false; |
| |
| amdvi_dev_as = iommu_as[devfn]; |
| |
| /* |
| * Memory region relationships looks like (Address range shows |
| * only lower 32 bits to make it short in length...): |
| * |
| * |--------------------+-------------------+----------| |
| * | Name | Address range | Priority | |
| * |--------------------+-------------------+----------+ |
| * | amdvi-root | 00000000-ffffffff | 0 | |
| * | amdvi-iommu_nodma | 00000000-ffffffff | 0 | |
| * | amdvi-iommu_ir | fee00000-feefffff | 1 | |
| * |--------------------+-------------------+----------| |
| */ |
| memory_region_init_iommu(&amdvi_dev_as->iommu, |
| sizeof(amdvi_dev_as->iommu), |
| TYPE_AMD_IOMMU_MEMORY_REGION, |
| OBJECT(s), |
| "amd_iommu", UINT64_MAX); |
| memory_region_init(&amdvi_dev_as->root, OBJECT(s), |
| "amdvi_root", UINT64_MAX); |
| address_space_init(&amdvi_dev_as->as, &amdvi_dev_as->root, name); |
| memory_region_add_subregion_overlap(&amdvi_dev_as->root, 0, |
| MEMORY_REGION(&amdvi_dev_as->iommu), |
| 0); |
| |
| /* Build the DMA Disabled alias to shared memory */ |
| memory_region_init_alias(&amdvi_dev_as->iommu_nodma, OBJECT(s), |
| "amdvi-sys", &s->mr_sys, 0, |
| memory_region_size(&s->mr_sys)); |
| memory_region_add_subregion_overlap(&amdvi_dev_as->root, 0, |
| &amdvi_dev_as->iommu_nodma, |
| 0); |
| /* Build the Interrupt Remapping alias to shared memory */ |
| memory_region_init_alias(&amdvi_dev_as->iommu_ir, OBJECT(s), |
| "amdvi-ir", &s->mr_ir, 0, |
| memory_region_size(&s->mr_ir)); |
| memory_region_add_subregion_overlap(MEMORY_REGION(&amdvi_dev_as->iommu), |
| AMDVI_INT_ADDR_FIRST, |
| &amdvi_dev_as->iommu_ir, 1); |
| |
| amdvi_switch_address_space(amdvi_dev_as); |
| } |
| return &iommu_as[devfn]->as; |
| } |
| |
| static const PCIIOMMUOps amdvi_iommu_ops = { |
| .get_address_space = amdvi_host_dma_iommu, |
| }; |
| |
| static const MemoryRegionOps mmio_mem_ops = { |
| .read = amdvi_mmio_read, |
| .write = amdvi_mmio_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| .impl = { |
| .min_access_size = 1, |
| .max_access_size = 8, |
| .unaligned = false, |
| }, |
| .valid = { |
| .min_access_size = 1, |
| .max_access_size = 8, |
| } |
| }; |
| |
| static int amdvi_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu, |
| IOMMUNotifierFlag old, |
| IOMMUNotifierFlag new, |
| Error **errp) |
| { |
| AMDVIAddressSpace *as = container_of(iommu, AMDVIAddressSpace, iommu); |
| AMDVIState *s = as->iommu_state; |
| |
| /* |
| * Accurate synchronization of the vIOMMU page tables required to support |
| * MAP notifiers is provided by the dma-remap feature. In addition, this |
| * also requires that the vIOMMU presents the NpCache capability, so a guest |
| * driver issues invalidations for both map() and unmap() operations. The |
| * capability is already set by default as part of AMDVI_CAPAB_FEATURES and |
| * written to the configuration in amdvi_pci_realize(). |
| */ |
| if (!s->dma_remap && (new & IOMMU_NOTIFIER_MAP)) { |
| error_setg_errno(errp, ENOTSUP, |
| "device %02x.%02x.%x requires dma-remap=1", |
| as->bus_num, PCI_SLOT(as->devfn), PCI_FUNC(as->devfn)); |
| return -ENOTSUP; |
| } |
| |
| /* |
| * Update notifier flags for address space and the list of address spaces |
| * with registered notifiers. |
| */ |
| as->notifier_flags = new; |
| |
| if (old == IOMMU_NOTIFIER_NONE) { |
| QLIST_INSERT_HEAD(&s->amdvi_as_with_notifiers, as, next); |
| } else if (new == IOMMU_NOTIFIER_NONE) { |
| QLIST_REMOVE(as, next); |
| } |
| |
| return 0; |
| } |
| |
| static void amdvi_init(AMDVIState *s) |
| { |
| amdvi_iotlb_reset(s); |
| |
| s->devtab_len = 0; |
| s->cmdbuf_len = 0; |
| s->cmdbuf_head = 0; |
| s->cmdbuf_tail = 0; |
| s->evtlog_head = 0; |
| s->evtlog_tail = 0; |
| s->excl_enabled = false; |
| s->excl_allow = false; |
| s->mmio_enabled = false; |
| s->enabled = false; |
| s->cmdbuf_enabled = false; |
| |
| /* reset MMIO */ |
| memset(s->mmior, 0, AMDVI_MMIO_SIZE); |
| amdvi_set_quad(s, AMDVI_MMIO_EXT_FEATURES, |
| amdvi_extended_feature_register(s), |
| 0xffffffffffffffef, 0); |
| amdvi_set_quad(s, AMDVI_MMIO_STATUS, 0, 0x98, 0x67); |
| } |
| |
| static void amdvi_pci_realize(PCIDevice *pdev, Error **errp) |
| { |
| AMDVIPCIState *s = AMD_IOMMU_PCI(pdev); |
| int ret; |
| |
| ret = pci_add_capability(pdev, AMDVI_CAPAB_ID_SEC, 0, |
| AMDVI_CAPAB_SIZE, errp); |
| if (ret < 0) { |
| return; |
| } |
| s->capab_offset = ret; |
| |
| ret = pci_add_capability(pdev, PCI_CAP_ID_MSI, 0, |
| AMDVI_CAPAB_REG_SIZE, errp); |
| if (ret < 0) { |
| return; |
| } |
| ret = pci_add_capability(pdev, PCI_CAP_ID_HT, 0, |
| AMDVI_CAPAB_REG_SIZE, errp); |
| if (ret < 0) { |
| return; |
| } |
| |
| if (msi_init(pdev, 0, 1, true, false, errp) < 0) { |
| return; |
| } |
| |
| /* reset device ident */ |
| pci_config_set_prog_interface(pdev->config, 0); |
| |
| /* reset AMDVI specific capabilities, all r/o */ |
| pci_set_long(pdev->config + s->capab_offset, AMDVI_CAPAB_FEATURES); |
| pci_set_long(pdev->config + s->capab_offset + AMDVI_CAPAB_BAR_LOW, |
| AMDVI_BASE_ADDR & MAKE_64BIT_MASK(14, 18)); |
| pci_set_long(pdev->config + s->capab_offset + AMDVI_CAPAB_BAR_HIGH, |
| AMDVI_BASE_ADDR >> 32); |
| pci_set_long(pdev->config + s->capab_offset + AMDVI_CAPAB_RANGE, |
| 0xff000000); |
| pci_set_long(pdev->config + s->capab_offset + AMDVI_CAPAB_MISC, 0); |
| pci_set_long(pdev->config + s->capab_offset + AMDVI_CAPAB_MISC, |
| AMDVI_MAX_PH_ADDR | AMDVI_MAX_GVA_ADDR | AMDVI_MAX_VA_ADDR); |
| } |
| |
| static void amdvi_sysbus_reset(DeviceState *dev) |
| { |
| AMDVIState *s = AMD_IOMMU_DEVICE(dev); |
| |
| msi_reset(&s->pci->dev); |
| amdvi_init(s); |
| |
| /* Discard all mappings on device reset */ |
| amdvi_address_space_unmap_all(s); |
| amdvi_reset_address_translation_all(s); |
| } |
| |
| static const VMStateDescription vmstate_amdvi_sysbus_migratable = { |
| .name = "amd-iommu", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .priority = MIG_PRI_IOMMU, |
| .fields = (VMStateField[]) { |
| /* Updated in amdvi_handle_control_write() */ |
| VMSTATE_BOOL(enabled, AMDVIState), |
| VMSTATE_BOOL(ga_enabled, AMDVIState), |
| /* bool ats_enabled is obsolete */ |
| VMSTATE_UNUSED(1), /* was ats_enabled */ |
| VMSTATE_BOOL(cmdbuf_enabled, AMDVIState), |
| VMSTATE_BOOL(completion_wait_intr, AMDVIState), |
| VMSTATE_BOOL(evtlog_enabled, AMDVIState), |
| VMSTATE_BOOL(evtlog_intr, AMDVIState), |
| /* Updated in amdvi_handle_devtab_write() */ |
| VMSTATE_UINT64(devtab, AMDVIState), |
| VMSTATE_UINT64(devtab_len, AMDVIState), |
| /* Updated in amdvi_handle_cmdbase_write() */ |
| VMSTATE_UINT64(cmdbuf, AMDVIState), |
| VMSTATE_UINT64(cmdbuf_len, AMDVIState), |
| /* Updated in amdvi_handle_cmdhead_write() */ |
| VMSTATE_UINT32(cmdbuf_head, AMDVIState), |
| /* Updated in amdvi_handle_cmdtail_write() */ |
| VMSTATE_UINT32(cmdbuf_tail, AMDVIState), |
| /* Updated in amdvi_handle_evtbase_write() */ |
| VMSTATE_UINT64(evtlog, AMDVIState), |
| VMSTATE_UINT32(evtlog_len, AMDVIState), |
| /* Updated in amdvi_handle_evthead_write() */ |
| VMSTATE_UINT32(evtlog_head, AMDVIState), |
| /* Updated in amdvi_handle_evttail_write() */ |
| VMSTATE_UINT32(evtlog_tail, AMDVIState), |
| /* Updated in amdvi_handle_pprbase_write() */ |
| VMSTATE_UINT64(ppr_log, AMDVIState), |
| VMSTATE_UINT32(pprlog_len, AMDVIState), |
| /* Updated in amdvi_handle_pprhead_write() */ |
| VMSTATE_UINT32(pprlog_head, AMDVIState), |
| /* Updated in amdvi_handle_tailhead_write() */ |
| VMSTATE_UINT32(pprlog_tail, AMDVIState), |
| /* MMIO registers */ |
| VMSTATE_UINT8_ARRAY(mmior, AMDVIState, AMDVI_MMIO_SIZE), |
| VMSTATE_UINT8_ARRAY(romask, AMDVIState, AMDVI_MMIO_SIZE), |
| VMSTATE_UINT8_ARRAY(w1cmask, AMDVIState, AMDVI_MMIO_SIZE), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static void amdvi_sysbus_realize(DeviceState *dev, Error **errp) |
| { |
| DeviceClass *dc = (DeviceClass *) object_get_class(OBJECT(dev)); |
| AMDVIState *s = AMD_IOMMU_DEVICE(dev); |
| MachineState *ms = MACHINE(qdev_get_machine()); |
| PCMachineState *pcms = PC_MACHINE(ms); |
| X86MachineState *x86ms = X86_MACHINE(ms); |
| PCIBus *bus = pcms->pcibus; |
| |
| if (s->pci_id) { |
| PCIDevice *pdev = NULL; |
| int ret = pci_qdev_find_device(s->pci_id, &pdev); |
| |
| if (ret) { |
| error_report("Cannot find PCI device '%s'", s->pci_id); |
| return; |
| } |
| |
| if (!object_dynamic_cast(OBJECT(pdev), TYPE_AMD_IOMMU_PCI)) { |
| error_report("Device '%s' must be an AMDVI-PCI device type", s->pci_id); |
| return; |
| } |
| |
| s->pci = AMD_IOMMU_PCI(pdev); |
| dc->vmsd = &vmstate_amdvi_sysbus_migratable; |
| } else { |
| s->pci = AMD_IOMMU_PCI(object_new(TYPE_AMD_IOMMU_PCI)); |
| /* This device should take care of IOMMU PCI properties */ |
| if (!qdev_realize(DEVICE(s->pci), &bus->qbus, errp)) { |
| return; |
| } |
| } |
| |
| s->iotlb = g_hash_table_new_full(amdvi_uint64_hash, |
| amdvi_uint64_equal, g_free, g_free); |
| |
| /* set up MMIO */ |
| memory_region_init_io(&s->mr_mmio, OBJECT(s), &mmio_mem_ops, s, |
| "amdvi-mmio", AMDVI_MMIO_SIZE); |
| memory_region_add_subregion(get_system_memory(), AMDVI_BASE_ADDR, |
| &s->mr_mmio); |
| |
| /* Create the share memory regions by all devices */ |
| memory_region_init(&s->mr_sys, OBJECT(s), "amdvi-sys", UINT64_MAX); |
| |
| /* set up the DMA disabled memory region */ |
| memory_region_init_alias(&s->mr_nodma, OBJECT(s), |
| "amdvi-nodma", get_system_memory(), 0, |
| memory_region_size(get_system_memory())); |
| memory_region_add_subregion_overlap(&s->mr_sys, 0, |
| &s->mr_nodma, 0); |
| |
| /* set up the Interrupt Remapping memory region */ |
| memory_region_init_io(&s->mr_ir, OBJECT(s), &amdvi_ir_ops, |
| s, "amdvi-ir", AMDVI_INT_ADDR_SIZE); |
| memory_region_add_subregion_overlap(&s->mr_sys, AMDVI_INT_ADDR_FIRST, |
| &s->mr_ir, 1); |
| |
| /* Pseudo address space under root PCI bus. */ |
| x86ms->ioapic_as = amdvi_host_dma_iommu(bus, s, AMDVI_IOAPIC_SB_DEVID); |
| |
| if (kvm_enabled() && x86ms->apic_id_limit > 255 && !s->xtsup) { |
| error_report("AMD IOMMU with x2APIC configuration requires xtsup=on"); |
| exit(EXIT_FAILURE); |
| } |
| |
| if (s->xtsup) { |
| if (kvm_irqchip_is_split() && !kvm_enable_x2apic()) { |
| error_report("AMD IOMMU xtsup=on requires x2APIC support on " |
| "the KVM side"); |
| exit(EXIT_FAILURE); |
| } |
| } |
| |
| pci_setup_iommu(bus, &amdvi_iommu_ops, s); |
| amdvi_init(s); |
| } |
| |
| static const Property amdvi_properties[] = { |
| DEFINE_PROP_BOOL("xtsup", AMDVIState, xtsup, false), |
| DEFINE_PROP_STRING("pci-id", AMDVIState, pci_id), |
| DEFINE_PROP_BOOL("dma-remap", AMDVIState, dma_remap, false), |
| }; |
| |
| static const VMStateDescription vmstate_amdvi_sysbus = { |
| .name = "amd-iommu", |
| .unmigratable = 1 |
| }; |
| |
| static void amdvi_sysbus_class_init(ObjectClass *klass, const void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| X86IOMMUClass *dc_class = X86_IOMMU_DEVICE_CLASS(klass); |
| |
| device_class_set_legacy_reset(dc, amdvi_sysbus_reset); |
| dc->vmsd = &vmstate_amdvi_sysbus; |
| dc->hotpluggable = false; |
| dc_class->realize = amdvi_sysbus_realize; |
| dc_class->int_remap = amdvi_int_remap; |
| set_bit(DEVICE_CATEGORY_MISC, dc->categories); |
| dc->desc = "AMD IOMMU (AMD-Vi) DMA Remapping device"; |
| device_class_set_props(dc, amdvi_properties); |
| } |
| |
| static const TypeInfo amdvi_sysbus = { |
| .name = TYPE_AMD_IOMMU_DEVICE, |
| .parent = TYPE_X86_IOMMU_DEVICE, |
| .instance_size = sizeof(AMDVIState), |
| .class_init = amdvi_sysbus_class_init |
| }; |
| |
| static void amdvi_pci_class_init(ObjectClass *klass, const void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); |
| |
| k->vendor_id = PCI_VENDOR_ID_AMD; |
| k->device_id = 0x1419; |
| k->class_id = 0x0806; |
| k->realize = amdvi_pci_realize; |
| |
| set_bit(DEVICE_CATEGORY_MISC, dc->categories); |
| dc->desc = "AMD IOMMU (AMD-Vi) DMA Remapping device"; |
| } |
| |
| static const TypeInfo amdvi_pci = { |
| .name = TYPE_AMD_IOMMU_PCI, |
| .parent = TYPE_PCI_DEVICE, |
| .instance_size = sizeof(AMDVIPCIState), |
| .class_init = amdvi_pci_class_init, |
| .interfaces = (const InterfaceInfo[]) { |
| { INTERFACE_CONVENTIONAL_PCI_DEVICE }, |
| { }, |
| }, |
| }; |
| |
| static void amdvi_iommu_memory_region_class_init(ObjectClass *klass, |
| const void *data) |
| { |
| IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass); |
| |
| imrc->translate = amdvi_translate; |
| imrc->notify_flag_changed = amdvi_iommu_notify_flag_changed; |
| imrc->replay = amdvi_iommu_replay; |
| } |
| |
| static const TypeInfo amdvi_iommu_memory_region_info = { |
| .parent = TYPE_IOMMU_MEMORY_REGION, |
| .name = TYPE_AMD_IOMMU_MEMORY_REGION, |
| .class_init = amdvi_iommu_memory_region_class_init, |
| }; |
| |
| static void amdvi_register_types(void) |
| { |
| type_register_static(&amdvi_pci); |
| type_register_static(&amdvi_sysbus); |
| type_register_static(&amdvi_iommu_memory_region_info); |
| } |
| |
| type_init(amdvi_register_types); |