| /* |
| * Interface to the capstone disassembler. |
| * SPDX-License-Identifier: GPL-2.0-or-later |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/bswap.h" |
| #include "disas/dis-asm.h" |
| #include "disas/capstone.h" |
| |
| |
| /* |
| * Temporary storage for the capstone library. This will be alloced via |
| * malloc with a size private to the library; thus there's no reason not |
| * to share this across calls and across host vs target disassembly. |
| */ |
| static __thread cs_insn *cap_insn; |
| |
| /* |
| * The capstone library always skips 2 bytes for S390X. |
| * This is less than ideal, since we can tell from the first two bits |
| * the size of the insn and thus stay in sync with the insn stream. |
| */ |
| static size_t CAPSTONE_API |
| cap_skipdata_s390x_cb(const uint8_t *code, size_t code_size, |
| size_t offset, void *user_data) |
| { |
| size_t ilen; |
| |
| /* See get_ilen() in target/s390x/internal.h. */ |
| switch (code[offset] >> 6) { |
| case 0: |
| ilen = 2; |
| break; |
| case 1: |
| case 2: |
| ilen = 4; |
| break; |
| default: |
| ilen = 6; |
| break; |
| } |
| |
| return ilen; |
| } |
| |
| static const cs_opt_skipdata cap_skipdata_s390x = { |
| .mnemonic = ".byte", |
| .callback = cap_skipdata_s390x_cb |
| }; |
| |
| /* |
| * Initialize the Capstone library. |
| * |
| * ??? It would be nice to cache this. We would need one handle for the |
| * host and one for the target. For most targets we can reset specific |
| * parameters via cs_option(CS_OPT_MODE, new_mode), but we cannot change |
| * CS_ARCH_* in this way. Thus we would need to be able to close and |
| * re-open the target handle with a different arch for the target in order |
| * to handle AArch64 vs AArch32 mode switching. |
| */ |
| static cs_err cap_disas_start(disassemble_info *info, csh *handle) |
| { |
| cs_mode cap_mode = info->cap_mode; |
| cs_err err; |
| |
| cap_mode += (info->endian == BFD_ENDIAN_BIG ? CS_MODE_BIG_ENDIAN |
| : CS_MODE_LITTLE_ENDIAN); |
| |
| err = cs_open(info->cap_arch, cap_mode, handle); |
| if (err != CS_ERR_OK) { |
| return err; |
| } |
| |
| /* "Disassemble" unknown insns as ".byte W,X,Y,Z". */ |
| cs_option(*handle, CS_OPT_SKIPDATA, CS_OPT_ON); |
| |
| switch (info->cap_arch) { |
| case CS_ARCH_SYSZ: |
| cs_option(*handle, CS_OPT_SKIPDATA_SETUP, |
| (uintptr_t)&cap_skipdata_s390x); |
| break; |
| |
| case CS_ARCH_X86: |
| /* |
| * We don't care about errors (if for some reason the library |
| * is compiled without AT&T syntax); the user will just have |
| * to deal with the Intel syntax. |
| */ |
| cs_option(*handle, CS_OPT_SYNTAX, CS_OPT_SYNTAX_ATT); |
| break; |
| } |
| |
| /* Allocate temp space for cs_disasm_iter. */ |
| if (cap_insn == NULL) { |
| cap_insn = cs_malloc(*handle); |
| if (cap_insn == NULL) { |
| cs_close(handle); |
| return CS_ERR_MEM; |
| } |
| } |
| return CS_ERR_OK; |
| } |
| |
| static void cap_dump_insn_units(disassemble_info *info, cs_insn *insn, |
| int i, int n) |
| { |
| fprintf_function print = info->fprintf_func; |
| FILE *stream = info->stream; |
| |
| switch (info->cap_insn_unit) { |
| case 4: |
| if (info->endian == BFD_ENDIAN_BIG) { |
| for (; i < n; i += 4) { |
| print(stream, " %08x", ldl_be_p(insn->bytes + i)); |
| |
| } |
| } else { |
| for (; i < n; i += 4) { |
| print(stream, " %08x", ldl_le_p(insn->bytes + i)); |
| } |
| } |
| break; |
| |
| case 2: |
| if (info->endian == BFD_ENDIAN_BIG) { |
| for (; i < n; i += 2) { |
| print(stream, " %04x", lduw_be_p(insn->bytes + i)); |
| } |
| } else { |
| for (; i < n; i += 2) { |
| print(stream, " %04x", lduw_le_p(insn->bytes + i)); |
| } |
| } |
| break; |
| |
| default: |
| for (; i < n; i++) { |
| print(stream, " %02x", insn->bytes[i]); |
| } |
| break; |
| } |
| } |
| |
| static void cap_dump_insn(disassemble_info *info, cs_insn *insn) |
| { |
| fprintf_function print = info->fprintf_func; |
| FILE *stream = info->stream; |
| int i, n, split; |
| |
| print(stream, "0x%08" PRIx64 ": ", insn->address); |
| |
| n = insn->size; |
| split = info->cap_insn_split; |
| |
| /* Dump the first SPLIT bytes of the instruction. */ |
| cap_dump_insn_units(info, insn, 0, MIN(n, split)); |
| |
| /* Add padding up to SPLIT so that mnemonics line up. */ |
| if (n < split) { |
| int width = (split - n) / info->cap_insn_unit; |
| width *= (2 * info->cap_insn_unit + 1); |
| print(stream, "%*s", width, ""); |
| } |
| |
| /* Print the actual instruction. */ |
| print(stream, " %-8s %s\n", insn->mnemonic, insn->op_str); |
| |
| /* Dump any remaining part of the insn on subsequent lines. */ |
| for (i = split; i < n; i += split) { |
| print(stream, "0x%08" PRIx64 ": ", insn->address + i); |
| cap_dump_insn_units(info, insn, i, MIN(n, i + split)); |
| print(stream, "\n"); |
| } |
| } |
| |
| /* Disassemble SIZE bytes at PC for the target. */ |
| bool cap_disas_target(disassemble_info *info, uint64_t pc, size_t size) |
| { |
| uint8_t cap_buf[1024]; |
| csh handle; |
| cs_insn *insn; |
| size_t csize = 0; |
| |
| if (cap_disas_start(info, &handle) != CS_ERR_OK) { |
| return false; |
| } |
| insn = cap_insn; |
| |
| while (1) { |
| size_t tsize = MIN(sizeof(cap_buf) - csize, size); |
| const uint8_t *cbuf = cap_buf; |
| |
| if (info->read_memory_func(pc + csize, cap_buf + csize, tsize, info) == 0) { |
| csize += tsize; |
| size -= tsize; |
| |
| while (cs_disasm_iter(handle, &cbuf, &csize, &pc, insn)) { |
| cap_dump_insn(info, insn); |
| } |
| |
| /* If the target memory is not consumed, go back for more... */ |
| if (size != 0) { |
| /* |
| * ... taking care to move any remaining fractional insn |
| * to the beginning of the buffer. |
| */ |
| if (csize != 0) { |
| memmove(cap_buf, cbuf, csize); |
| } |
| continue; |
| } |
| |
| /* |
| * Since the target memory is consumed, we should not have |
| * a remaining fractional insn. |
| */ |
| if (csize != 0) { |
| info->fprintf_func(info->stream, |
| "Disassembler disagrees with translator " |
| "over instruction decoding\n" |
| "Please report this to qemu-devel@nongnu.org\n"); |
| } |
| break; |
| |
| } else { |
| info->fprintf_func(info->stream, |
| "0x%08" PRIx64 ": unable to read memory\n", pc); |
| break; |
| } |
| } |
| |
| cs_close(&handle); |
| return true; |
| } |
| |
| /* Disassemble SIZE bytes at CODE for the host. */ |
| bool cap_disas_host(disassemble_info *info, const void *code, size_t size) |
| { |
| csh handle; |
| const uint8_t *cbuf; |
| cs_insn *insn; |
| uint64_t pc; |
| |
| if (cap_disas_start(info, &handle) != CS_ERR_OK) { |
| return false; |
| } |
| insn = cap_insn; |
| |
| cbuf = code; |
| pc = (uintptr_t)code; |
| |
| while (cs_disasm_iter(handle, &cbuf, &size, &pc, insn)) { |
| cap_dump_insn(info, insn); |
| } |
| if (size != 0) { |
| info->fprintf_func(info->stream, |
| "Disassembler disagrees with TCG over instruction encoding\n" |
| "Please report this to qemu-devel@nongnu.org\n"); |
| } |
| |
| cs_close(&handle); |
| return true; |
| } |
| |
| /* Disassemble COUNT insns at PC for the target. */ |
| bool cap_disas_monitor(disassemble_info *info, uint64_t pc, int count) |
| { |
| uint8_t cap_buf[32]; |
| csh handle; |
| cs_insn *insn; |
| size_t csize = 0; |
| |
| if (cap_disas_start(info, &handle) != CS_ERR_OK) { |
| return false; |
| } |
| insn = cap_insn; |
| |
| while (1) { |
| /* |
| * We want to read memory for one insn, but generically we do not |
| * know how much memory that is. We have a small buffer which is |
| * known to be sufficient for all supported targets. Try to not |
| * read beyond the page, Just In Case. For even more simplicity, |
| * ignore the actual target page size and use a 1k boundary. If |
| * that turns out to be insufficient, we'll come back around the |
| * loop and read more. |
| */ |
| uint64_t epc = QEMU_ALIGN_UP(pc + csize + 1, 1024); |
| size_t tsize = MIN(sizeof(cap_buf) - csize, epc - pc); |
| const uint8_t *cbuf = cap_buf; |
| |
| /* Make certain that we can make progress. */ |
| assert(tsize != 0); |
| if (info->read_memory_func(pc + csize, cap_buf + csize, |
| tsize, info) == 0) |
| { |
| csize += tsize; |
| |
| if (cs_disasm_iter(handle, &cbuf, &csize, &pc, insn)) { |
| cap_dump_insn(info, insn); |
| if (--count <= 0) { |
| break; |
| } |
| } |
| memmove(cap_buf, cbuf, csize); |
| } else { |
| info->fprintf_func(info->stream, |
| "0x%08" PRIx64 ": unable to read memory\n", pc); |
| break; |
| } |
| } |
| |
| cs_close(&handle); |
| return true; |
| } |
| |
| /* Disassemble a single instruction directly into plugin output */ |
| bool cap_disas_plugin(disassemble_info *info, uint64_t pc, size_t size) |
| { |
| uint8_t cap_buf[32]; |
| const uint8_t *cbuf = cap_buf; |
| csh handle; |
| |
| if (cap_disas_start(info, &handle) != CS_ERR_OK) { |
| return false; |
| } |
| |
| assert(size < sizeof(cap_buf)); |
| info->read_memory_func(pc, cap_buf, size, info); |
| |
| if (cs_disasm_iter(handle, &cbuf, &size, &pc, cap_insn)) { |
| info->fprintf_func(info->stream, "%s %s", |
| cap_insn->mnemonic, cap_insn->op_str); |
| } |
| |
| cs_close(&handle); |
| return true; |
| } |