blob: 4754282ad736ac3be6459d59dcca6edb64d3f4ed [file] [log] [blame]
/*
* Linux Boot Option ROM for fw_cfg DMA
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*
* Copyright (c) 2015-2016 Red Hat Inc.
* Authors:
* Marc MarĂ­ <marc.mari.barcelo@gmail.com>
* Richard W.M. Jones <rjones@redhat.com>
*/
asm(
".text\n"
".global _start\n"
"_start:\n"
" .short 0xaa55\n"
" .byte 3\n" /* desired size in 512 units; signrom.py adds padding */
" .byte 0xcb\n" /* far return without prefix */
" .org 0x18\n"
" .short 0\n"
" .short _pnph\n"
"_pnph:\n"
" .ascii \"$PnP\"\n"
" .byte 0x01\n"
" .byte (_pnph_len / 16)\n"
" .short 0x0000\n"
" .byte 0x00\n"
" .byte 0x00\n"
" .long 0x00000000\n"
" .short _manufacturer\n"
" .short _product\n"
" .long 0x00000000\n"
" .short 0x0000\n"
" .short 0x0000\n"
" .short _bev\n"
" .short 0x0000\n"
" .short 0x0000\n"
" .equ _pnph_len, . - _pnph\n"
"_manufacturer:\n"
" .asciz \"QEMU\"\n"
"_product:\n"
" .asciz \"Linux loader DMA\"\n"
" .align 4, 0\n"
"_bev:\n"
" cli\n"
" cld\n"
" jmp load_kernel\n"
);
#include "../../include/hw/nvram/fw_cfg_keys.h"
/* QEMU_CFG_DMA_CONTROL bits */
#define BIOS_CFG_DMA_CTL_ERROR 0x01
#define BIOS_CFG_DMA_CTL_READ 0x02
#define BIOS_CFG_DMA_CTL_SKIP 0x04
#define BIOS_CFG_DMA_CTL_SELECT 0x08
#define BIOS_CFG_DMA_ADDR_HIGH 0x514
#define BIOS_CFG_DMA_ADDR_LOW 0x518
#define uint64_t unsigned long long
#define uint32_t unsigned int
#define uint16_t unsigned short
#define barrier() asm("" : : : "memory")
typedef struct FWCfgDmaAccess {
uint32_t control;
uint32_t length;
uint64_t address;
} __attribute__((packed)) FWCfgDmaAccess;
static inline void outl(uint32_t value, uint16_t port)
{
asm("outl %0, %w1" : : "a"(value), "Nd"(port));
}
static inline void set_es(void *addr)
{
uint32_t seg = (uint32_t)addr >> 4;
asm("movl %0, %%es" : : "r"(seg));
}
#ifdef __clang__
#define ADDR32
#else
#define ADDR32 "addr32 "
#endif
static inline uint16_t readw_es(uint16_t offset)
{
uint16_t val;
asm(ADDR32 "movw %%es:(%1), %0" : "=r"(val) : "r"((uint32_t)offset));
barrier();
return val;
}
static inline uint32_t readl_es(uint16_t offset)
{
uint32_t val;
asm(ADDR32 "movl %%es:(%1), %0" : "=r"(val) : "r"((uint32_t)offset));
barrier();
return val;
}
static inline void writel_es(uint16_t offset, uint32_t val)
{
barrier();
asm(ADDR32 "movl %0, %%es:(%1)" : : "r"(val), "r"((uint32_t)offset));
}
static inline uint32_t bswap32(uint32_t x)
{
asm("bswapl %0" : "=r" (x) : "0" (x));
return x;
}
static inline uint64_t bswap64(uint64_t x)
{
asm("bswapl %%eax; bswapl %%edx; xchg %%eax, %%edx" : "=A" (x) : "0" (x));
return x;
}
static inline uint64_t cpu_to_be64(uint64_t x)
{
return bswap64(x);
}
static inline uint32_t cpu_to_be32(uint32_t x)
{
return bswap32(x);
}
static inline uint32_t be32_to_cpu(uint32_t x)
{
return bswap32(x);
}
/* clang is happy to inline this function, and bloats the
* ROM.
*/
static __attribute__((__noinline__))
void bios_cfg_read_entry(void *buf, uint16_t entry, uint32_t len)
{
FWCfgDmaAccess access;
uint32_t control = (entry << 16) | BIOS_CFG_DMA_CTL_SELECT
| BIOS_CFG_DMA_CTL_READ;
access.address = cpu_to_be64((uint64_t)(uint32_t)buf);
access.length = cpu_to_be32(len);
access.control = cpu_to_be32(control);
barrier();
outl(cpu_to_be32((uint32_t)&access), BIOS_CFG_DMA_ADDR_LOW);
while (be32_to_cpu(access.control) & ~BIOS_CFG_DMA_CTL_ERROR) {
barrier();
}
}
/* Return top of memory using BIOS function E801. */
static uint32_t get_e801_addr(void)
{
uint16_t ax, bx, cx, dx;
uint32_t ret;
asm("int $0x15\n"
: "=a"(ax), "=b"(bx), "=c"(cx), "=d"(dx)
: "a"(0xe801), "b"(0), "c"(0), "d"(0));
/* Not SeaBIOS, but in theory a BIOS could return CX=DX=0 in which
* case we need to use the result from AX & BX instead.
*/
if (cx == 0 && dx == 0) {
cx = ax;
dx = bx;
}
if (dx) {
/* DX = extended memory above 16M, in 64K units.
* Convert it to bytes and return.
*/
ret = ((uint32_t)dx + 256 /* 16M in 64K units */) << 16;
} else {
/* This is a fallback path for machines with <= 16MB of RAM,
* which probably would never be the case, but deal with it
* anyway.
*
* CX = extended memory between 1M and 16M, in kilobytes
* Convert it to bytes and return.
*/
ret = ((uint32_t)cx + 1024 /* 1M in K */) << 10;
}
return ret;
}
/* Force the asm name without leading underscore, even on Win32. */
extern void load_kernel(void) asm("load_kernel");
void load_kernel(void)
{
void *setup_addr;
void *initrd_addr;
void *kernel_addr;
void *cmdline_addr;
uint32_t setup_size;
uint32_t initrd_size;
uint32_t kernel_size;
uint32_t cmdline_size;
uint32_t initrd_end_page, max_allowed_page;
uint32_t segment_addr, stack_addr;
bios_cfg_read_entry(&setup_addr, FW_CFG_SETUP_ADDR, 4);
bios_cfg_read_entry(&setup_size, FW_CFG_SETUP_SIZE, 4);
bios_cfg_read_entry(setup_addr, FW_CFG_SETUP_DATA, setup_size);
set_es(setup_addr);
/* For protocol < 0x203 we don't have initrd_max ... */
if (readw_es(0x206) < 0x203) {
/* ... so we assume initrd_max = 0x37ffffff. */
writel_es(0x22c, 0x37ffffff);
}
bios_cfg_read_entry(&initrd_addr, FW_CFG_INITRD_ADDR, 4);
bios_cfg_read_entry(&initrd_size, FW_CFG_INITRD_SIZE, 4);
initrd_end_page = ((uint32_t)(initrd_addr + initrd_size) & -4096);
max_allowed_page = (readl_es(0x22c) & -4096);
if (initrd_end_page != 0 && max_allowed_page != 0 &&
initrd_end_page != max_allowed_page) {
/* Initrd at the end of memory. Compute better initrd address
* based on e801 data
*/
initrd_addr = (void *)((get_e801_addr() - initrd_size) & -4096);
writel_es(0x218, (uint32_t)initrd_addr);
}
bios_cfg_read_entry(initrd_addr, FW_CFG_INITRD_DATA, initrd_size);
bios_cfg_read_entry(&kernel_addr, FW_CFG_KERNEL_ADDR, 4);
bios_cfg_read_entry(&kernel_size, FW_CFG_KERNEL_SIZE, 4);
bios_cfg_read_entry(kernel_addr, FW_CFG_KERNEL_DATA, kernel_size);
bios_cfg_read_entry(&cmdline_addr, FW_CFG_CMDLINE_ADDR, 4);
bios_cfg_read_entry(&cmdline_size, FW_CFG_CMDLINE_SIZE, 4);
bios_cfg_read_entry(cmdline_addr, FW_CFG_CMDLINE_DATA, cmdline_size);
/* Boot linux */
segment_addr = ((uint32_t)setup_addr >> 4);
stack_addr = (uint32_t)(cmdline_addr - setup_addr - 16);
/* As we are changing critical registers, we cannot leave freedom to the
* compiler.
*/
asm("movw %%ax, %%ds\n"
"movw %%ax, %%es\n"
"movw %%ax, %%fs\n"
"movw %%ax, %%gs\n"
"movw %%ax, %%ss\n"
"movl %%ebx, %%esp\n"
"addw $0x20, %%ax\n"
"pushw %%ax\n" /* CS */
"pushw $0\n" /* IP */
/* Clear registers and jump to Linux */
"xor %%ebx, %%ebx\n"
"xor %%ecx, %%ecx\n"
"xor %%edx, %%edx\n"
"xor %%edi, %%edi\n"
"xor %%ebp, %%ebp\n"
"lretw\n"
: : "a"(segment_addr), "b"(stack_addr));
}