blob: 105ab63ed758ccc6c2cd3afe953c6f40e6d9bd14 [file] [log] [blame]
/*
* ARM helper routines
*
* Copyright (c) 2005-2007 CodeSourcery, LLC
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/main-loop.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "internals.h"
#include "cpu-features.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "cpregs.h"
#define SIGNBIT (uint32_t)0x80000000
#define SIGNBIT64 ((uint64_t)1 << 63)
int exception_target_el(CPUARMState *env)
{
int target_el = MAX(1, arm_current_el(env));
/*
* No such thing as secure EL1 if EL3 is aarch32,
* so update the target EL to EL3 in this case.
*/
if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
target_el = 3;
}
return target_el;
}
void raise_exception(CPUARMState *env, uint32_t excp,
uint32_t syndrome, uint32_t target_el)
{
CPUState *cs = env_cpu(env);
if (target_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
/*
* Redirect NS EL1 exceptions to NS EL2. These are reported with
* their original syndrome register value, with the exception of
* SIMD/FP access traps, which are reported as uncategorized
* (see DDI0478C.a D1.10.4)
*/
target_el = 2;
if (syn_get_ec(syndrome) == EC_ADVSIMDFPACCESSTRAP) {
syndrome = syn_uncategorized();
}
}
assert(!excp_is_internal(excp));
cs->exception_index = excp;
env->exception.syndrome = syndrome;
env->exception.target_el = target_el;
cpu_loop_exit(cs);
}
void raise_exception_ra(CPUARMState *env, uint32_t excp, uint32_t syndrome,
uint32_t target_el, uintptr_t ra)
{
CPUState *cs = env_cpu(env);
/*
* restore_state_to_opc() will set env->exception.syndrome, so
* we must restore CPU state here before setting the syndrome
* the caller passed us, and cannot use cpu_loop_exit_restore().
*/
cpu_restore_state(cs, ra);
raise_exception(env, excp, syndrome, target_el);
}
uint64_t HELPER(neon_tbl)(CPUARMState *env, uint32_t desc,
uint64_t ireg, uint64_t def)
{
uint64_t tmp, val = 0;
uint32_t maxindex = ((desc & 3) + 1) * 8;
uint32_t base_reg = desc >> 2;
uint32_t shift, index, reg;
for (shift = 0; shift < 64; shift += 8) {
index = (ireg >> shift) & 0xff;
if (index < maxindex) {
reg = base_reg + (index >> 3);
tmp = *aa32_vfp_dreg(env, reg);
tmp = ((tmp >> ((index & 7) << 3)) & 0xff) << shift;
} else {
tmp = def & (0xffull << shift);
}
val |= tmp;
}
return val;
}
void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue)
{
/*
* Perform the v8M stack limit check for SP updates from translated code,
* raising an exception if the limit is breached.
*/
if (newvalue < v7m_sp_limit(env)) {
/*
* Stack limit exceptions are a rare case, so rather than syncing
* PC/condbits before the call, we use raise_exception_ra() so
* that cpu_restore_state() will sort them out.
*/
raise_exception_ra(env, EXCP_STKOF, 0, 1, GETPC());
}
}
/* Sign/zero extend */
uint32_t HELPER(sxtb16)(uint32_t x)
{
uint32_t res;
res = (uint16_t)(int8_t)x;
res |= (uint32_t)(int8_t)(x >> 16) << 16;
return res;
}
static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
{
/*
* Take a division-by-zero exception if necessary; otherwise return
* to get the usual non-trapping division behaviour (result of 0)
*/
if (arm_feature(env, ARM_FEATURE_M)
&& (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
}
}
uint32_t HELPER(uxtb16)(uint32_t x)
{
uint32_t res;
res = (uint16_t)(uint8_t)x;
res |= (uint32_t)(uint8_t)(x >> 16) << 16;
return res;
}
int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
{
if (den == 0) {
handle_possible_div0_trap(env, GETPC());
return 0;
}
if (num == INT_MIN && den == -1) {
return INT_MIN;
}
return num / den;
}
uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
{
if (den == 0) {
handle_possible_div0_trap(env, GETPC());
return 0;
}
return num / den;
}
uint32_t HELPER(rbit)(uint32_t x)
{
return revbit32(x);
}
uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a + b;
if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
env->QF = 1;
return res;
}
uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a + b;
if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
env->QF = 1;
res = ~(((int32_t)a >> 31) ^ SIGNBIT);
}
return res;
}
uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a - b;
if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
env->QF = 1;
res = ~(((int32_t)a >> 31) ^ SIGNBIT);
}
return res;
}
uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a + b;
if (res < a) {
env->QF = 1;
res = ~0;
}
return res;
}
uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a - b;
if (res > a) {
env->QF = 1;
res = 0;
}
return res;
}
/* Signed saturation. */
static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
{
int32_t top;
uint32_t mask;
top = val >> shift;
mask = (1u << shift) - 1;
if (top > 0) {
env->QF = 1;
return mask;
} else if (top < -1) {
env->QF = 1;
return ~mask;
}
return val;
}
/* Unsigned saturation. */
static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
{
uint32_t max;
max = (1u << shift) - 1;
if (val < 0) {
env->QF = 1;
return 0;
} else if (val > max) {
env->QF = 1;
return max;
}
return val;
}
/* Signed saturate. */
uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
{
return do_ssat(env, x, shift);
}
/* Dual halfword signed saturate. */
uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
{
uint32_t res;
res = (uint16_t)do_ssat(env, (int16_t)x, shift);
res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
return res;
}
/* Unsigned saturate. */
uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
{
return do_usat(env, x, shift);
}
/* Dual halfword unsigned saturate. */
uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
{
uint32_t res;
res = (uint16_t)do_usat(env, (int16_t)x, shift);
res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
return res;
}
void HELPER(setend)(CPUARMState *env)
{
env->uncached_cpsr ^= CPSR_E;
arm_rebuild_hflags(env);
}
void HELPER(check_bxj_trap)(CPUARMState *env, uint32_t rm)
{
/*
* Only called if in NS EL0 or EL1 for a BXJ for a v7A CPU;
* check if HSTR.TJDBX means we need to trap to EL2.
*/
if (env->cp15.hstr_el2 & HSTR_TJDBX) {
/*
* We know the condition code check passed, so take the IMPDEF
* choice to always report CV=1 COND 0xe
*/
uint32_t syn = syn_bxjtrap(1, 0xe, rm);
raise_exception_ra(env, EXCP_HYP_TRAP, syn, 2, GETPC());
}
}
#ifndef CONFIG_USER_ONLY
/* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
* The function returns the target EL (1-3) if the instruction is to be trapped;
* otherwise it returns 0 indicating it is not trapped.
*/
static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
{
int cur_el = arm_current_el(env);
uint64_t mask;
if (arm_feature(env, ARM_FEATURE_M)) {
/* M profile cores can never trap WFI/WFE. */
return 0;
}
/* If we are currently in EL0 then we need to check if SCTLR is set up for
* WFx instructions being trapped to EL1. These trap bits don't exist in v7.
*/
if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
int target_el;
mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
/* Secure EL0 and Secure PL1 is at EL3 */
target_el = 3;
} else {
target_el = 1;
}
if (!(env->cp15.sctlr_el[target_el] & mask)) {
return target_el;
}
}
/* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
* No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
* bits will be zero indicating no trap.
*/
if (cur_el < 2) {
mask = is_wfe ? HCR_TWE : HCR_TWI;
if (arm_hcr_el2_eff(env) & mask) {
return 2;
}
}
/* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
if (cur_el < 3) {
mask = (is_wfe) ? SCR_TWE : SCR_TWI;
if (env->cp15.scr_el3 & mask) {
return 3;
}
}
return 0;
}
#endif
void HELPER(wfi)(CPUARMState *env, uint32_t insn_len)
{
#ifdef CONFIG_USER_ONLY
/*
* WFI in the user-mode emulator is technically permitted but not
* something any real-world code would do. AArch64 Linux kernels
* trap it via SCTRL_EL1.nTWI and make it an (expensive) NOP;
* AArch32 kernels don't trap it so it will delay a bit.
* For QEMU, make it NOP here, because trying to raise EXCP_HLT
* would trigger an abort.
*/
return;
#else
CPUState *cs = env_cpu(env);
int target_el = check_wfx_trap(env, false);
if (cpu_has_work(cs)) {
/* Don't bother to go into our "low power state" if
* we would just wake up immediately.
*/
return;
}
if (target_el) {
if (env->aarch64) {
env->pc -= insn_len;
} else {
env->regs[15] -= insn_len;
}
raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2),
target_el);
}
cs->exception_index = EXCP_HLT;
cs->halted = 1;
cpu_loop_exit(cs);
#endif
}
void HELPER(wfe)(CPUARMState *env)
{
/* This is a hint instruction that is semantically different
* from YIELD even though we currently implement it identically.
* Don't actually halt the CPU, just yield back to top
* level loop. This is not going into a "low power state"
* (ie halting until some event occurs), so we never take
* a configurable trap to a different exception level.
*/
HELPER(yield)(env);
}
void HELPER(yield)(CPUARMState *env)
{
CPUState *cs = env_cpu(env);
/* This is a non-trappable hint instruction that generally indicates
* that the guest is currently busy-looping. Yield control back to the
* top level loop so that a more deserving VCPU has a chance to run.
*/
cs->exception_index = EXCP_YIELD;
cpu_loop_exit(cs);
}
/* Raise an internal-to-QEMU exception. This is limited to only
* those EXCP values which are special cases for QEMU to interrupt
* execution and not to be used for exceptions which are passed to
* the guest (those must all have syndrome information and thus should
* use exception_with_syndrome*).
*/
void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
{
CPUState *cs = env_cpu(env);
assert(excp_is_internal(excp));
cs->exception_index = excp;
cpu_loop_exit(cs);
}
/* Raise an exception with the specified syndrome register value */
void HELPER(exception_with_syndrome_el)(CPUARMState *env, uint32_t excp,
uint32_t syndrome, uint32_t target_el)
{
raise_exception(env, excp, syndrome, target_el);
}
/*
* Raise an exception with the specified syndrome register value
* to the default target el.
*/
void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
uint32_t syndrome)
{
raise_exception(env, excp, syndrome, exception_target_el(env));
}
uint32_t HELPER(cpsr_read)(CPUARMState *env)
{
return cpsr_read(env) & ~CPSR_EXEC;
}
void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
{
cpsr_write(env, val, mask, CPSRWriteByInstr);
/* TODO: Not all cpsr bits are relevant to hflags. */
arm_rebuild_hflags(env);
}
/* Write the CPSR for a 32-bit exception return */
void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
{
uint32_t mask;
bql_lock();
arm_call_pre_el_change_hook(env_archcpu(env));
bql_unlock();
mask = aarch32_cpsr_valid_mask(env->features, &env_archcpu(env)->isar);
cpsr_write(env, val, mask, CPSRWriteExceptionReturn);
/* Generated code has already stored the new PC value, but
* without masking out its low bits, because which bits need
* masking depends on whether we're returning to Thumb or ARM
* state. Do the masking now.
*/
env->regs[15] &= (env->thumb ? ~1 : ~3);
arm_rebuild_hflags(env);
bql_lock();
arm_call_el_change_hook(env_archcpu(env));
bql_unlock();
}
/* Access to user mode registers from privileged modes. */
uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
{
uint32_t val;
if (regno == 13) {
val = env->banked_r13[BANK_USRSYS];
} else if (regno == 14) {
val = env->banked_r14[BANK_USRSYS];
} else if (regno >= 8
&& (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
val = env->usr_regs[regno - 8];
} else {
val = env->regs[regno];
}
return val;
}
void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
{
if (regno == 13) {
env->banked_r13[BANK_USRSYS] = val;
} else if (regno == 14) {
env->banked_r14[BANK_USRSYS] = val;
} else if (regno >= 8
&& (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
env->usr_regs[regno - 8] = val;
} else {
env->regs[regno] = val;
}
}
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
{
if ((env->uncached_cpsr & CPSR_M) == mode) {
env->regs[13] = val;
} else {
env->banked_r13[bank_number(mode)] = val;
}
}
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
{
if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
/* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
* Other UNPREDICTABLE and UNDEF cases were caught at translate time.
*/
raise_exception(env, EXCP_UDEF, syn_uncategorized(),
exception_target_el(env));
}
if ((env->uncached_cpsr & CPSR_M) == mode) {
return env->regs[13];
} else {
return env->banked_r13[bank_number(mode)];
}
}
static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
uint32_t regno)
{
/* Raise an exception if the requested access is one of the UNPREDICTABLE
* cases; otherwise return. This broadly corresponds to the pseudocode
* BankedRegisterAccessValid() and SPSRAccessValid(),
* except that we have already handled some cases at translate time.
*/
int curmode = env->uncached_cpsr & CPSR_M;
if (regno == 17) {
/* ELR_Hyp: a special case because access from tgtmode is OK */
if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
goto undef;
}
return;
}
if (curmode == tgtmode) {
goto undef;
}
if (tgtmode == ARM_CPU_MODE_USR) {
switch (regno) {
case 8 ... 12:
if (curmode != ARM_CPU_MODE_FIQ) {
goto undef;
}
break;
case 13:
if (curmode == ARM_CPU_MODE_SYS) {
goto undef;
}
break;
case 14:
if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
goto undef;
}
break;
default:
break;
}
}
if (tgtmode == ARM_CPU_MODE_HYP) {
/* SPSR_Hyp, r13_hyp: accessible from Monitor mode only */
if (curmode != ARM_CPU_MODE_MON) {
goto undef;
}
}
return;
undef:
raise_exception(env, EXCP_UDEF, syn_uncategorized(),
exception_target_el(env));
}
void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
uint32_t regno)
{
msr_mrs_banked_exc_checks(env, tgtmode, regno);
switch (regno) {
case 16: /* SPSRs */
env->banked_spsr[bank_number(tgtmode)] = value;
break;
case 17: /* ELR_Hyp */
env->elr_el[2] = value;
break;
case 13:
env->banked_r13[bank_number(tgtmode)] = value;
break;
case 14:
env->banked_r14[r14_bank_number(tgtmode)] = value;
break;
case 8 ... 12:
switch (tgtmode) {
case ARM_CPU_MODE_USR:
env->usr_regs[regno - 8] = value;
break;
case ARM_CPU_MODE_FIQ:
env->fiq_regs[regno - 8] = value;
break;
default:
g_assert_not_reached();
}
break;
default:
g_assert_not_reached();
}
}
uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
{
msr_mrs_banked_exc_checks(env, tgtmode, regno);
switch (regno) {
case 16: /* SPSRs */
return env->banked_spsr[bank_number(tgtmode)];
case 17: /* ELR_Hyp */
return env->elr_el[2];
case 13:
return env->banked_r13[bank_number(tgtmode)];
case 14:
return env->banked_r14[r14_bank_number(tgtmode)];
case 8 ... 12:
switch (tgtmode) {
case ARM_CPU_MODE_USR:
return env->usr_regs[regno - 8];
case ARM_CPU_MODE_FIQ:
return env->fiq_regs[regno - 8];
default:
g_assert_not_reached();
}
default:
g_assert_not_reached();
}
}
const void *HELPER(access_check_cp_reg)(CPUARMState *env, uint32_t key,
uint32_t syndrome, uint32_t isread)
{
ARMCPU *cpu = env_archcpu(env);
const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, key);
CPAccessResult res = CP_ACCESS_OK;
int target_el;
assert(ri != NULL);
if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
&& extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
res = CP_ACCESS_TRAP;
goto fail;
}
if (ri->accessfn) {
res = ri->accessfn(env, ri, isread);
}
/*
* If the access function indicates a trap from EL0 to EL1 then
* that always takes priority over the HSTR_EL2 trap. (If it indicates
* a trap to EL3, then the HSTR_EL2 trap takes priority; if it indicates
* a trap to EL2, then the syndrome is the same either way so we don't
* care whether technically the architecture says that HSTR_EL2 trap or
* the other trap takes priority. So we take the "check HSTR_EL2" path
* for all of those cases.)
*/
if (res != CP_ACCESS_OK && ((res & CP_ACCESS_EL_MASK) == 0) &&
arm_current_el(env) == 0) {
goto fail;
}
/*
* HSTR_EL2 traps from EL1 are checked earlier, in generated code;
* we only need to check here for traps from EL0.
*/
if (!is_a64(env) && arm_current_el(env) == 0 && ri->cp == 15 &&
arm_is_el2_enabled(env) &&
(arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
uint32_t mask = 1 << ri->crn;
if (ri->type & ARM_CP_64BIT) {
mask = 1 << ri->crm;
}
/* T4 and T14 are RES0 */
mask &= ~((1 << 4) | (1 << 14));
if (env->cp15.hstr_el2 & mask) {
res = CP_ACCESS_TRAP_EL2;
goto fail;
}
}
/*
* Fine-grained traps also are lower priority than undef-to-EL1,
* higher priority than trap-to-EL3, and we don't care about priority
* order with other EL2 traps because the syndrome value is the same.
*/
if (arm_fgt_active(env, arm_current_el(env))) {
uint64_t trapword = 0;
unsigned int idx = FIELD_EX32(ri->fgt, FGT, IDX);
unsigned int bitpos = FIELD_EX32(ri->fgt, FGT, BITPOS);
bool rev = FIELD_EX32(ri->fgt, FGT, REV);
bool trapbit;
if (ri->fgt & FGT_EXEC) {
assert(idx < ARRAY_SIZE(env->cp15.fgt_exec));
trapword = env->cp15.fgt_exec[idx];
} else if (isread && (ri->fgt & FGT_R)) {
assert(idx < ARRAY_SIZE(env->cp15.fgt_read));
trapword = env->cp15.fgt_read[idx];
} else if (!isread && (ri->fgt & FGT_W)) {
assert(idx < ARRAY_SIZE(env->cp15.fgt_write));
trapword = env->cp15.fgt_write[idx];
}
trapbit = extract64(trapword, bitpos, 1);
if (trapbit != rev) {
res = CP_ACCESS_TRAP_EL2;
goto fail;
}
}
if (likely(res == CP_ACCESS_OK)) {
return ri;
}
fail:
switch (res & ~CP_ACCESS_EL_MASK) {
case CP_ACCESS_TRAP:
break;
case CP_ACCESS_TRAP_UNCATEGORIZED:
/* Only CP_ACCESS_TRAP traps are direct to a specified EL */
assert((res & CP_ACCESS_EL_MASK) == 0);
if (cpu_isar_feature(aa64_ids, cpu) && isread &&
arm_cpreg_in_idspace(ri)) {
/*
* FEAT_IDST says this should be reported as EC_SYSTEMREGISTERTRAP,
* not EC_UNCATEGORIZED
*/
break;
}
syndrome = syn_uncategorized();
break;
default:
g_assert_not_reached();
}
target_el = res & CP_ACCESS_EL_MASK;
switch (target_el) {
case 0:
target_el = exception_target_el(env);
break;
case 2:
assert(arm_current_el(env) != 3);
assert(arm_is_el2_enabled(env));
break;
case 3:
assert(arm_feature(env, ARM_FEATURE_EL3));
break;
default:
/* No "direct" traps to EL1 */
g_assert_not_reached();
}
raise_exception(env, EXCP_UDEF, syndrome, target_el);
}
const void *HELPER(lookup_cp_reg)(CPUARMState *env, uint32_t key)
{
ARMCPU *cpu = env_archcpu(env);
const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, key);
assert(ri != NULL);
return ri;
}
/*
* Test for HCR_EL2.TIDCP at EL1.
* Since implementation defined registers are rare, and within QEMU
* most of them are no-op, do not waste HFLAGS space for this and
* always use a helper.
*/
void HELPER(tidcp_el1)(CPUARMState *env, uint32_t syndrome)
{
if (arm_hcr_el2_eff(env) & HCR_TIDCP) {
raise_exception_ra(env, EXCP_UDEF, syndrome, 2, GETPC());
}
}
/*
* Similarly, for FEAT_TIDCP1 at EL0.
* We have already checked for the presence of the feature.
*/
void HELPER(tidcp_el0)(CPUARMState *env, uint32_t syndrome)
{
/* See arm_sctlr(), but we also need the sctlr el. */
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
int target_el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
/*
* The bit is not valid unless the target el is aa64, but since the
* bit test is simpler perform that first and check validity after.
*/
if ((env->cp15.sctlr_el[target_el] & SCTLR_TIDCP)
&& arm_el_is_aa64(env, target_el)) {
raise_exception_ra(env, EXCP_UDEF, syndrome, target_el, GETPC());
}
}
void HELPER(set_cp_reg)(CPUARMState *env, const void *rip, uint32_t value)
{
const ARMCPRegInfo *ri = rip;
if (ri->type & ARM_CP_IO) {
bql_lock();
ri->writefn(env, ri, value);
bql_unlock();
} else {
ri->writefn(env, ri, value);
}
}
uint32_t HELPER(get_cp_reg)(CPUARMState *env, const void *rip)
{
const ARMCPRegInfo *ri = rip;
uint32_t res;
if (ri->type & ARM_CP_IO) {
bql_lock();
res = ri->readfn(env, ri);
bql_unlock();
} else {
res = ri->readfn(env, ri);
}
return res;
}
void HELPER(set_cp_reg64)(CPUARMState *env, const void *rip, uint64_t value)
{
const ARMCPRegInfo *ri = rip;
if (ri->type & ARM_CP_IO) {
bql_lock();
ri->writefn(env, ri, value);
bql_unlock();
} else {
ri->writefn(env, ri, value);
}
}
uint64_t HELPER(get_cp_reg64)(CPUARMState *env, const void *rip)
{
const ARMCPRegInfo *ri = rip;
uint64_t res;
if (ri->type & ARM_CP_IO) {
bql_lock();
res = ri->readfn(env, ri);
bql_unlock();
} else {
res = ri->readfn(env, ri);
}
return res;
}
void HELPER(pre_hvc)(CPUARMState *env)
{
ARMCPU *cpu = env_archcpu(env);
int cur_el = arm_current_el(env);
/* FIXME: Use actual secure state. */
bool secure = false;
bool undef;
if (arm_is_psci_call(cpu, EXCP_HVC)) {
/* If PSCI is enabled and this looks like a valid PSCI call then
* that overrides the architecturally mandated HVC behaviour.
*/
return;
}
if (!arm_feature(env, ARM_FEATURE_EL2)) {
/* If EL2 doesn't exist, HVC always UNDEFs */
undef = true;
} else if (arm_feature(env, ARM_FEATURE_EL3)) {
/* EL3.HCE has priority over EL2.HCD. */
undef = !(env->cp15.scr_el3 & SCR_HCE);
} else {
undef = env->cp15.hcr_el2 & HCR_HCD;
}
/* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
* For ARMv8/AArch64, HVC is allowed in EL3.
* Note that we've already trapped HVC from EL0 at translation
* time.
*/
if (secure && (!is_a64(env) || cur_el == 1)) {
undef = true;
}
if (undef) {
raise_exception(env, EXCP_UDEF, syn_uncategorized(),
exception_target_el(env));
}
}
void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
{
ARMCPU *cpu = env_archcpu(env);
int cur_el = arm_current_el(env);
bool secure = arm_is_secure(env);
bool smd_flag = env->cp15.scr_el3 & SCR_SMD;
/*
* SMC behaviour is summarized in the following table.
* This helper handles the "Trap to EL2" and "Undef insn" cases.
* The "Trap to EL3" and "PSCI call" cases are handled in the exception
* helper.
*
* -> ARM_FEATURE_EL3 and !SMD
* HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
*
* Conduit SMC, valid call Trap to EL2 PSCI Call
* Conduit SMC, inval call Trap to EL2 Trap to EL3
* Conduit not SMC Trap to EL2 Trap to EL3
*
*
* -> ARM_FEATURE_EL3 and SMD
* HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
*
* Conduit SMC, valid call Trap to EL2 PSCI Call
* Conduit SMC, inval call Trap to EL2 Undef insn
* Conduit not SMC Trap to EL2 Undef insn
*
*
* -> !ARM_FEATURE_EL3
* HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
*
* Conduit SMC, valid call Trap to EL2 PSCI Call
* Conduit SMC, inval call Trap to EL2 Undef insn
* Conduit not SMC Undef insn Undef insn
*/
/* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
* On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
* extensions, SMD only applies to NS state.
* On ARMv7 without the Virtualization extensions, the SMD bit
* doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
* so we need not special case this here.
*/
bool smd = arm_feature(env, ARM_FEATURE_AARCH64) ? smd_flag
: smd_flag && !secure;
if (!arm_feature(env, ARM_FEATURE_EL3) &&
cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
/* If we have no EL3 then SMC always UNDEFs and can't be
* trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3
* firmware within QEMU, and we want an EL2 guest to be able
* to forbid its EL1 from making PSCI calls into QEMU's
* "firmware" via HCR.TSC, so for these purposes treat
* PSCI-via-SMC as implying an EL3.
* This handles the very last line of the previous table.
*/
raise_exception(env, EXCP_UDEF, syn_uncategorized(),
exception_target_el(env));
}
if (cur_el == 1 && (arm_hcr_el2_eff(env) & HCR_TSC)) {
/* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
* We also want an EL2 guest to be able to forbid its EL1 from
* making PSCI calls into QEMU's "firmware" via HCR.TSC.
* This handles all the "Trap to EL2" cases of the previous table.
*/
raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
}
/* Catch the two remaining "Undef insn" cases of the previous table:
* - PSCI conduit is SMC but we don't have a valid PCSI call,
* - We don't have EL3 or SMD is set.
*/
if (!arm_is_psci_call(cpu, EXCP_SMC) &&
(smd || !arm_feature(env, ARM_FEATURE_EL3))) {
raise_exception(env, EXCP_UDEF, syn_uncategorized(),
exception_target_el(env));
}
}
/* ??? Flag setting arithmetic is awkward because we need to do comparisons.
The only way to do that in TCG is a conditional branch, which clobbers
all our temporaries. For now implement these as helper functions. */
/* Similarly for variable shift instructions. */
uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
{
int shift = i & 0xff;
if (shift >= 32) {
if (shift == 32)
env->CF = x & 1;
else
env->CF = 0;
return 0;
} else if (shift != 0) {
env->CF = (x >> (32 - shift)) & 1;
return x << shift;
}
return x;
}
uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
{
int shift = i & 0xff;
if (shift >= 32) {
if (shift == 32)
env->CF = (x >> 31) & 1;
else
env->CF = 0;
return 0;
} else if (shift != 0) {
env->CF = (x >> (shift - 1)) & 1;
return x >> shift;
}
return x;
}
uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
{
int shift = i & 0xff;
if (shift >= 32) {
env->CF = (x >> 31) & 1;
return (int32_t)x >> 31;
} else if (shift != 0) {
env->CF = (x >> (shift - 1)) & 1;
return (int32_t)x >> shift;
}
return x;
}
uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
{
int shift1, shift;
shift1 = i & 0xff;
shift = shift1 & 0x1f;
if (shift == 0) {
if (shift1 != 0)
env->CF = (x >> 31) & 1;
return x;
} else {
env->CF = (x >> (shift - 1)) & 1;
return ((uint32_t)x >> shift) | (x << (32 - shift));
}
}
void HELPER(probe_access)(CPUARMState *env, target_ulong ptr,
uint32_t access_type, uint32_t mmu_idx,
uint32_t size)
{
uint32_t in_page = -((uint32_t)ptr | TARGET_PAGE_SIZE);
uintptr_t ra = GETPC();
if (likely(size <= in_page)) {
probe_access(env, ptr, size, access_type, mmu_idx, ra);
} else {
probe_access(env, ptr, in_page, access_type, mmu_idx, ra);
probe_access(env, ptr + in_page, size - in_page,
access_type, mmu_idx, ra);
}
}
/*
* This function corresponds to AArch64.vESBOperation().
* Note that the AArch32 version is not functionally different.
*/
void HELPER(vesb)(CPUARMState *env)
{
/*
* The EL2Enabled() check is done inside arm_hcr_el2_eff,
* and will return HCR_EL2.VSE == 0, so nothing happens.
*/
uint64_t hcr = arm_hcr_el2_eff(env);
bool enabled = !(hcr & HCR_TGE) && (hcr & HCR_AMO);
bool pending = enabled && (hcr & HCR_VSE);
bool masked = (env->daif & PSTATE_A);
/* If VSE pending and masked, defer the exception. */
if (pending && masked) {
uint32_t syndrome;
if (arm_el_is_aa64(env, 1)) {
/* Copy across IDS and ISS from VSESR. */
syndrome = env->cp15.vsesr_el2 & 0x1ffffff;
} else {
ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal };
if (extended_addresses_enabled(env)) {
syndrome = arm_fi_to_lfsc(&fi);
} else {
syndrome = arm_fi_to_sfsc(&fi);
}
/* Copy across AET and ExT from VSESR. */
syndrome |= env->cp15.vsesr_el2 & 0xd000;
}
/* Set VDISR_EL2.A along with the syndrome. */
env->cp15.vdisr_el2 = syndrome | (1u << 31);
/* Clear pending virtual SError */
env->cp15.hcr_el2 &= ~HCR_VSE;
cpu_reset_interrupt(env_cpu(env), CPU_INTERRUPT_VSERR);
}
}