blob: 51ccd41bd249a131f30e2730a36ef8fd9807e987 [file] [log] [blame]
/*
* Helpers for integer and multimedia instructions.
*
* Copyright (c) 2007 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "cpu.h"
#include "helper.h"
#include "qemu/host-utils.h"
uint64_t helper_ctpop(uint64_t arg)
{
return ctpop64(arg);
}
uint64_t helper_ctlz(uint64_t arg)
{
return clz64(arg);
}
uint64_t helper_cttz(uint64_t arg)
{
return ctz64(arg);
}
static inline uint64_t byte_zap(uint64_t op, uint8_t mskb)
{
uint64_t mask;
mask = 0;
mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL;
mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL;
mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL;
mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL;
mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL;
mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL;
mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL;
mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL;
return op & ~mask;
}
uint64_t helper_zap(uint64_t val, uint64_t mask)
{
return byte_zap(val, mask);
}
uint64_t helper_zapnot(uint64_t val, uint64_t mask)
{
return byte_zap(val, ~mask);
}
uint64_t helper_cmpbge(uint64_t op1, uint64_t op2)
{
uint8_t opa, opb, res;
int i;
res = 0;
for (i = 0; i < 8; i++) {
opa = op1 >> (i * 8);
opb = op2 >> (i * 8);
if (opa >= opb) {
res |= 1 << i;
}
}
return res;
}
uint64_t helper_minub8(uint64_t op1, uint64_t op2)
{
uint64_t res = 0;
uint8_t opa, opb, opr;
int i;
for (i = 0; i < 8; ++i) {
opa = op1 >> (i * 8);
opb = op2 >> (i * 8);
opr = opa < opb ? opa : opb;
res |= (uint64_t)opr << (i * 8);
}
return res;
}
uint64_t helper_minsb8(uint64_t op1, uint64_t op2)
{
uint64_t res = 0;
int8_t opa, opb;
uint8_t opr;
int i;
for (i = 0; i < 8; ++i) {
opa = op1 >> (i * 8);
opb = op2 >> (i * 8);
opr = opa < opb ? opa : opb;
res |= (uint64_t)opr << (i * 8);
}
return res;
}
uint64_t helper_minuw4(uint64_t op1, uint64_t op2)
{
uint64_t res = 0;
uint16_t opa, opb, opr;
int i;
for (i = 0; i < 4; ++i) {
opa = op1 >> (i * 16);
opb = op2 >> (i * 16);
opr = opa < opb ? opa : opb;
res |= (uint64_t)opr << (i * 16);
}
return res;
}
uint64_t helper_minsw4(uint64_t op1, uint64_t op2)
{
uint64_t res = 0;
int16_t opa, opb;
uint16_t opr;
int i;
for (i = 0; i < 4; ++i) {
opa = op1 >> (i * 16);
opb = op2 >> (i * 16);
opr = opa < opb ? opa : opb;
res |= (uint64_t)opr << (i * 16);
}
return res;
}
uint64_t helper_maxub8(uint64_t op1, uint64_t op2)
{
uint64_t res = 0;
uint8_t opa, opb, opr;
int i;
for (i = 0; i < 8; ++i) {
opa = op1 >> (i * 8);
opb = op2 >> (i * 8);
opr = opa > opb ? opa : opb;
res |= (uint64_t)opr << (i * 8);
}
return res;
}
uint64_t helper_maxsb8(uint64_t op1, uint64_t op2)
{
uint64_t res = 0;
int8_t opa, opb;
uint8_t opr;
int i;
for (i = 0; i < 8; ++i) {
opa = op1 >> (i * 8);
opb = op2 >> (i * 8);
opr = opa > opb ? opa : opb;
res |= (uint64_t)opr << (i * 8);
}
return res;
}
uint64_t helper_maxuw4(uint64_t op1, uint64_t op2)
{
uint64_t res = 0;
uint16_t opa, opb, opr;
int i;
for (i = 0; i < 4; ++i) {
opa = op1 >> (i * 16);
opb = op2 >> (i * 16);
opr = opa > opb ? opa : opb;
res |= (uint64_t)opr << (i * 16);
}
return res;
}
uint64_t helper_maxsw4(uint64_t op1, uint64_t op2)
{
uint64_t res = 0;
int16_t opa, opb;
uint16_t opr;
int i;
for (i = 0; i < 4; ++i) {
opa = op1 >> (i * 16);
opb = op2 >> (i * 16);
opr = opa > opb ? opa : opb;
res |= (uint64_t)opr << (i * 16);
}
return res;
}
uint64_t helper_perr(uint64_t op1, uint64_t op2)
{
uint64_t res = 0;
uint8_t opa, opb, opr;
int i;
for (i = 0; i < 8; ++i) {
opa = op1 >> (i * 8);
opb = op2 >> (i * 8);
if (opa >= opb) {
opr = opa - opb;
} else {
opr = opb - opa;
}
res += opr;
}
return res;
}
uint64_t helper_pklb(uint64_t op1)
{
return (op1 & 0xff) | ((op1 >> 24) & 0xff00);
}
uint64_t helper_pkwb(uint64_t op1)
{
return ((op1 & 0xff)
| ((op1 >> 8) & 0xff00)
| ((op1 >> 16) & 0xff0000)
| ((op1 >> 24) & 0xff000000));
}
uint64_t helper_unpkbl(uint64_t op1)
{
return (op1 & 0xff) | ((op1 & 0xff00) << 24);
}
uint64_t helper_unpkbw(uint64_t op1)
{
return ((op1 & 0xff)
| ((op1 & 0xff00) << 8)
| ((op1 & 0xff0000) << 16)
| ((op1 & 0xff000000) << 24));
}
uint64_t helper_addqv(CPUAlphaState *env, uint64_t op1, uint64_t op2)
{
uint64_t tmp = op1;
op1 += op2;
if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) {
arith_excp(env, GETPC(), EXC_M_IOV, 0);
}
return op1;
}
uint64_t helper_addlv(CPUAlphaState *env, uint64_t op1, uint64_t op2)
{
uint64_t tmp = op1;
op1 = (uint32_t)(op1 + op2);
if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) {
arith_excp(env, GETPC(), EXC_M_IOV, 0);
}
return op1;
}
uint64_t helper_subqv(CPUAlphaState *env, uint64_t op1, uint64_t op2)
{
uint64_t res;
res = op1 - op2;
if (unlikely((op1 ^ op2) & (res ^ op1) & (1ULL << 63))) {
arith_excp(env, GETPC(), EXC_M_IOV, 0);
}
return res;
}
uint64_t helper_sublv(CPUAlphaState *env, uint64_t op1, uint64_t op2)
{
uint32_t res;
res = op1 - op2;
if (unlikely((op1 ^ op2) & (res ^ op1) & (1UL << 31))) {
arith_excp(env, GETPC(), EXC_M_IOV, 0);
}
return res;
}
uint64_t helper_mullv(CPUAlphaState *env, uint64_t op1, uint64_t op2)
{
int64_t res = (int64_t)op1 * (int64_t)op2;
if (unlikely((int32_t)res != res)) {
arith_excp(env, GETPC(), EXC_M_IOV, 0);
}
return (int64_t)((int32_t)res);
}
uint64_t helper_mulqv(CPUAlphaState *env, uint64_t op1, uint64_t op2)
{
uint64_t tl, th;
muls64(&tl, &th, op1, op2);
/* If th != 0 && th != -1, then we had an overflow */
if (unlikely((th + 1) > 1)) {
arith_excp(env, GETPC(), EXC_M_IOV, 0);
}
return tl;
}