blob: 6f5eacacf267bdb0c71b8a4133d3446ab1279daa [file] [log] [blame]
/*
* TI OMAP DMA gigacell.
*
* Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
* Copyright (C) 2007-2008 Lauro Ramos Venancio <lauro.venancio@indt.org.br>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu-common.h"
#include "qemu-timer.h"
#include "omap.h"
#include "irq.h"
#include "soc_dma.h"
struct omap_dma_channel_s {
/* transfer data */
int burst[2];
int pack[2];
int endian[2];
int endian_lock[2];
int translate[2];
enum omap_dma_port port[2];
target_phys_addr_t addr[2];
omap_dma_addressing_t mode[2];
uint32_t elements;
uint16_t frames;
int32_t frame_index[2];
int16_t element_index[2];
int data_type;
/* transfer type */
int transparent_copy;
int constant_fill;
uint32_t color;
int prefetch;
/* auto init and linked channel data */
int end_prog;
int repeat;
int auto_init;
int link_enabled;
int link_next_ch;
/* interruption data */
int interrupts;
int status;
int cstatus;
/* state data */
int active;
int enable;
int sync;
int src_sync;
int pending_request;
int waiting_end_prog;
uint16_t cpc;
int set_update;
/* sync type */
int fs;
int bs;
/* compatibility */
int omap_3_1_compatible_disable;
qemu_irq irq;
struct omap_dma_channel_s *sibling;
struct omap_dma_reg_set_s {
target_phys_addr_t src, dest;
int frame;
int element;
int pck_element;
int frame_delta[2];
int elem_delta[2];
int frames;
int elements;
int pck_elements;
} active_set;
struct soc_dma_ch_s *dma;
/* unused parameters */
int write_mode;
int priority;
int interleave_disabled;
int type;
int suspend;
int buf_disable;
};
struct omap_dma_s {
struct soc_dma_s *dma;
struct omap_mpu_state_s *mpu;
omap_clk clk;
qemu_irq irq[4];
void (*intr_update)(struct omap_dma_s *s);
enum omap_dma_model model;
int omap_3_1_mapping_disabled;
uint32_t gcr;
uint32_t ocp;
uint32_t caps[5];
uint32_t irqen[4];
uint32_t irqstat[4];
int chans;
struct omap_dma_channel_s ch[32];
struct omap_dma_lcd_channel_s lcd_ch;
};
/* Interrupts */
#define TIMEOUT_INTR (1 << 0)
#define EVENT_DROP_INTR (1 << 1)
#define HALF_FRAME_INTR (1 << 2)
#define END_FRAME_INTR (1 << 3)
#define LAST_FRAME_INTR (1 << 4)
#define END_BLOCK_INTR (1 << 5)
#define SYNC (1 << 6)
#define END_PKT_INTR (1 << 7)
#define TRANS_ERR_INTR (1 << 8)
#define MISALIGN_INTR (1 << 11)
static inline void omap_dma_interrupts_update(struct omap_dma_s *s)
{
return s->intr_update(s);
}
static void omap_dma_channel_load(struct omap_dma_channel_s *ch)
{
struct omap_dma_reg_set_s *a = &ch->active_set;
int i, normal;
int omap_3_1 = !ch->omap_3_1_compatible_disable;
/*
* TODO: verify address ranges and alignment
* TODO: port endianness
*/
a->src = ch->addr[0];
a->dest = ch->addr[1];
a->frames = ch->frames;
a->elements = ch->elements;
a->pck_elements = ch->frame_index[!ch->src_sync];
a->frame = 0;
a->element = 0;
a->pck_element = 0;
if (unlikely(!ch->elements || !ch->frames)) {
printf("%s: bad DMA request\n", __FUNCTION__);
return;
}
for (i = 0; i < 2; i ++)
switch (ch->mode[i]) {
case constant:
a->elem_delta[i] = 0;
a->frame_delta[i] = 0;
break;
case post_incremented:
a->elem_delta[i] = ch->data_type;
a->frame_delta[i] = 0;
break;
case single_index:
a->elem_delta[i] = ch->data_type +
ch->element_index[omap_3_1 ? 0 : i] - 1;
a->frame_delta[i] = 0;
break;
case double_index:
a->elem_delta[i] = ch->data_type +
ch->element_index[omap_3_1 ? 0 : i] - 1;
a->frame_delta[i] = ch->frame_index[omap_3_1 ? 0 : i] -
ch->element_index[omap_3_1 ? 0 : i];
break;
default:
break;
}
normal = !ch->transparent_copy && !ch->constant_fill &&
/* FIFO is big-endian so either (ch->endian[n] == 1) OR
* (ch->endian_lock[n] == 1) mean no endianism conversion. */
(ch->endian[0] | ch->endian_lock[0]) ==
(ch->endian[1] | ch->endian_lock[1]);
for (i = 0; i < 2; i ++) {
/* TODO: for a->frame_delta[i] > 0 still use the fast path, just
* limit min_elems in omap_dma_transfer_setup to the nearest frame
* end. */
if (!a->elem_delta[i] && normal &&
(a->frames == 1 || !a->frame_delta[i]))
ch->dma->type[i] = soc_dma_access_const;
else if (a->elem_delta[i] == ch->data_type && normal &&
(a->frames == 1 || !a->frame_delta[i]))
ch->dma->type[i] = soc_dma_access_linear;
else
ch->dma->type[i] = soc_dma_access_other;
ch->dma->vaddr[i] = ch->addr[i];
}
soc_dma_ch_update(ch->dma);
}
static void omap_dma_activate_channel(struct omap_dma_s *s,
struct omap_dma_channel_s *ch)
{
if (!ch->active) {
if (ch->set_update) {
/* It's not clear when the active set is supposed to be
* loaded from registers. We're already loading it when the
* channel is enabled, and for some guests this is not enough
* but that may be also because of a race condition (no
* delays in qemu) in the guest code, which we're just
* working around here. */
omap_dma_channel_load(ch);
ch->set_update = 0;
}
ch->active = 1;
soc_dma_set_request(ch->dma, 1);
if (ch->sync)
ch->status |= SYNC;
}
}
static void omap_dma_deactivate_channel(struct omap_dma_s *s,
struct omap_dma_channel_s *ch)
{
/* Update cpc */
ch->cpc = ch->active_set.dest & 0xffff;
if (ch->pending_request && !ch->waiting_end_prog && ch->enable) {
/* Don't deactivate the channel */
ch->pending_request = 0;
return;
}
/* Don't deactive the channel if it is synchronized and the DMA request is
active */
if (ch->sync && ch->enable && (s->dma->drqbmp & (1 << ch->sync)))
return;
if (ch->active) {
ch->active = 0;
ch->status &= ~SYNC;
soc_dma_set_request(ch->dma, 0);
}
}
static void omap_dma_enable_channel(struct omap_dma_s *s,
struct omap_dma_channel_s *ch)
{
if (!ch->enable) {
ch->enable = 1;
ch->waiting_end_prog = 0;
omap_dma_channel_load(ch);
/* TODO: theoretically if ch->sync && ch->prefetch &&
* !s->dma->drqbmp[ch->sync], we should also activate and fetch
* from source and then stall until signalled. */
if ((!ch->sync) || (s->dma->drqbmp & (1 << ch->sync)))
omap_dma_activate_channel(s, ch);
}
}
static void omap_dma_disable_channel(struct omap_dma_s *s,
struct omap_dma_channel_s *ch)
{
if (ch->enable) {
ch->enable = 0;
/* Discard any pending request */
ch->pending_request = 0;
omap_dma_deactivate_channel(s, ch);
}
}
static void omap_dma_channel_end_prog(struct omap_dma_s *s,
struct omap_dma_channel_s *ch)
{
if (ch->waiting_end_prog) {
ch->waiting_end_prog = 0;
if (!ch->sync || ch->pending_request) {
ch->pending_request = 0;
omap_dma_activate_channel(s, ch);
}
}
}
static void omap_dma_interrupts_3_1_update(struct omap_dma_s *s)
{
struct omap_dma_channel_s *ch = s->ch;
/* First three interrupts are shared between two channels each. */
if (ch[0].status | ch[6].status)
qemu_irq_raise(ch[0].irq);
if (ch[1].status | ch[7].status)
qemu_irq_raise(ch[1].irq);
if (ch[2].status | ch[8].status)
qemu_irq_raise(ch[2].irq);
if (ch[3].status)
qemu_irq_raise(ch[3].irq);
if (ch[4].status)
qemu_irq_raise(ch[4].irq);
if (ch[5].status)
qemu_irq_raise(ch[5].irq);
}
static void omap_dma_interrupts_3_2_update(struct omap_dma_s *s)
{
struct omap_dma_channel_s *ch = s->ch;
int i;
for (i = s->chans; i; ch ++, i --)
if (ch->status)
qemu_irq_raise(ch->irq);
}
static void omap_dma_enable_3_1_mapping(struct omap_dma_s *s)
{
s->omap_3_1_mapping_disabled = 0;
s->chans = 9;
s->intr_update = omap_dma_interrupts_3_1_update;
}
static void omap_dma_disable_3_1_mapping(struct omap_dma_s *s)
{
s->omap_3_1_mapping_disabled = 1;
s->chans = 16;
s->intr_update = omap_dma_interrupts_3_2_update;
}
static void omap_dma_process_request(struct omap_dma_s *s, int request)
{
int channel;
int drop_event = 0;
struct omap_dma_channel_s *ch = s->ch;
for (channel = 0; channel < s->chans; channel ++, ch ++) {
if (ch->enable && ch->sync == request) {
if (!ch->active)
omap_dma_activate_channel(s, ch);
else if (!ch->pending_request)
ch->pending_request = 1;
else {
/* Request collision */
/* Second request received while processing other request */
ch->status |= EVENT_DROP_INTR;
drop_event = 1;
}
}
}
if (drop_event)
omap_dma_interrupts_update(s);
}
static void omap_dma_transfer_generic(struct soc_dma_ch_s *dma)
{
uint8_t value[4];
struct omap_dma_channel_s *ch = dma->opaque;
struct omap_dma_reg_set_s *a = &ch->active_set;
int bytes = dma->bytes;
#ifdef MULTI_REQ
uint16_t status = ch->status;
#endif
do {
/* Transfer a single element */
/* FIXME: check the endianness */
if (!ch->constant_fill)
cpu_physical_memory_read(a->src, value, ch->data_type);
else
*(uint32_t *) value = ch->color;
if (!ch->transparent_copy || *(uint32_t *) value != ch->color)
cpu_physical_memory_write(a->dest, value, ch->data_type);
a->src += a->elem_delta[0];
a->dest += a->elem_delta[1];
a->element ++;
#ifndef MULTI_REQ
if (a->element == a->elements) {
/* End of Frame */
a->element = 0;
a->src += a->frame_delta[0];
a->dest += a->frame_delta[1];
a->frame ++;
/* If the channel is async, update cpc */
if (!ch->sync)
ch->cpc = a->dest & 0xffff;
}
} while ((bytes -= ch->data_type));
#else
/* If the channel is element synchronized, deactivate it */
if (ch->sync && !ch->fs && !ch->bs)
omap_dma_deactivate_channel(s, ch);
/* If it is the last frame, set the LAST_FRAME interrupt */
if (a->element == 1 && a->frame == a->frames - 1)
if (ch->interrupts & LAST_FRAME_INTR)
ch->status |= LAST_FRAME_INTR;
/* If the half of the frame was reached, set the HALF_FRAME
interrupt */
if (a->element == (a->elements >> 1))
if (ch->interrupts & HALF_FRAME_INTR)
ch->status |= HALF_FRAME_INTR;
if (ch->fs && ch->bs) {
a->pck_element ++;
/* Check if a full packet has beed transferred. */
if (a->pck_element == a->pck_elements) {
a->pck_element = 0;
/* Set the END_PKT interrupt */
if ((ch->interrupts & END_PKT_INTR) && !ch->src_sync)
ch->status |= END_PKT_INTR;
/* If the channel is packet-synchronized, deactivate it */
if (ch->sync)
omap_dma_deactivate_channel(s, ch);
}
}
if (a->element == a->elements) {
/* End of Frame */
a->element = 0;
a->src += a->frame_delta[0];
a->dest += a->frame_delta[1];
a->frame ++;
/* If the channel is frame synchronized, deactivate it */
if (ch->sync && ch->fs && !ch->bs)
omap_dma_deactivate_channel(s, ch);
/* If the channel is async, update cpc */
if (!ch->sync)
ch->cpc = a->dest & 0xffff;
/* Set the END_FRAME interrupt */
if (ch->interrupts & END_FRAME_INTR)
ch->status |= END_FRAME_INTR;
if (a->frame == a->frames) {
/* End of Block */
/* Disable the channel */
if (ch->omap_3_1_compatible_disable) {
omap_dma_disable_channel(s, ch);
if (ch->link_enabled)
omap_dma_enable_channel(s,
&s->ch[ch->link_next_ch]);
} else {
if (!ch->auto_init)
omap_dma_disable_channel(s, ch);
else if (ch->repeat || ch->end_prog)
omap_dma_channel_load(ch);
else {
ch->waiting_end_prog = 1;
omap_dma_deactivate_channel(s, ch);
}
}
if (ch->interrupts & END_BLOCK_INTR)
ch->status |= END_BLOCK_INTR;
}
}
} while (status == ch->status && ch->active);
omap_dma_interrupts_update(s);
#endif
}
enum {
omap_dma_intr_element_sync,
omap_dma_intr_last_frame,
omap_dma_intr_half_frame,
omap_dma_intr_frame,
omap_dma_intr_frame_sync,
omap_dma_intr_packet,
omap_dma_intr_packet_sync,
omap_dma_intr_block,
__omap_dma_intr_last,
};
static void omap_dma_transfer_setup(struct soc_dma_ch_s *dma)
{
struct omap_dma_port_if_s *src_p, *dest_p;
struct omap_dma_reg_set_s *a;
struct omap_dma_channel_s *ch = dma->opaque;
struct omap_dma_s *s = dma->dma->opaque;
int frames, min_elems, elements[__omap_dma_intr_last];
a = &ch->active_set;
src_p = &s->mpu->port[ch->port[0]];
dest_p = &s->mpu->port[ch->port[1]];
if ((!ch->constant_fill && !src_p->addr_valid(s->mpu, a->src)) ||
(!dest_p->addr_valid(s->mpu, a->dest))) {
#if 0
/* Bus time-out */
if (ch->interrupts & TIMEOUT_INTR)
ch->status |= TIMEOUT_INTR;
omap_dma_deactivate_channel(s, ch);
continue;
#endif
printf("%s: Bus time-out in DMA%i operation\n",
__FUNCTION__, dma->num);
}
min_elems = INT_MAX;
/* Check all the conditions that terminate the transfer starting
* with those that can occur the soonest. */
#define INTR_CHECK(cond, id, nelements) \
if (cond) { \
elements[id] = nelements; \
if (elements[id] < min_elems) \
min_elems = elements[id]; \
} else \
elements[id] = INT_MAX;
/* Elements */
INTR_CHECK(
ch->sync && !ch->fs && !ch->bs,
omap_dma_intr_element_sync,
1)
/* Frames */
/* TODO: for transfers where entire frames can be read and written
* using memcpy() but a->frame_delta is non-zero, try to still do
* transfers using soc_dma but limit min_elems to a->elements - ...
* See also the TODO in omap_dma_channel_load. */
INTR_CHECK(
(ch->interrupts & LAST_FRAME_INTR) &&
((a->frame < a->frames - 1) || !a->element),
omap_dma_intr_last_frame,
(a->frames - a->frame - 2) * a->elements +
(a->elements - a->element + 1))
INTR_CHECK(
ch->interrupts & HALF_FRAME_INTR,
omap_dma_intr_half_frame,
(a->elements >> 1) +
(a->element >= (a->elements >> 1) ? a->elements : 0) -
a->element)
INTR_CHECK(
ch->sync && ch->fs && (ch->interrupts & END_FRAME_INTR),
omap_dma_intr_frame,
a->elements - a->element)
INTR_CHECK(
ch->sync && ch->fs && !ch->bs,
omap_dma_intr_frame_sync,
a->elements - a->element)
/* Packets */
INTR_CHECK(
ch->fs && ch->bs &&
(ch->interrupts & END_PKT_INTR) && !ch->src_sync,
omap_dma_intr_packet,
a->pck_elements - a->pck_element)
INTR_CHECK(
ch->fs && ch->bs && ch->sync,
omap_dma_intr_packet_sync,
a->pck_elements - a->pck_element)
/* Blocks */
INTR_CHECK(
1,
omap_dma_intr_block,
(a->frames - a->frame - 1) * a->elements +
(a->elements - a->element))
dma->bytes = min_elems * ch->data_type;
/* Set appropriate interrupts and/or deactivate channels */
#ifdef MULTI_REQ
/* TODO: should all of this only be done if dma->update, and otherwise
* inside omap_dma_transfer_generic below - check what's faster. */
if (dma->update) {
#endif
/* If the channel is element synchronized, deactivate it */
if (min_elems == elements[omap_dma_intr_element_sync])
omap_dma_deactivate_channel(s, ch);
/* If it is the last frame, set the LAST_FRAME interrupt */
if (min_elems == elements[omap_dma_intr_last_frame])
ch->status |= LAST_FRAME_INTR;
/* If exactly half of the frame was reached, set the HALF_FRAME
interrupt */
if (min_elems == elements[omap_dma_intr_half_frame])
ch->status |= HALF_FRAME_INTR;
/* If a full packet has been transferred, set the END_PKT interrupt */
if (min_elems == elements[omap_dma_intr_packet])
ch->status |= END_PKT_INTR;
/* If the channel is packet-synchronized, deactivate it */
if (min_elems == elements[omap_dma_intr_packet_sync])
omap_dma_deactivate_channel(s, ch);
/* If the channel is frame synchronized, deactivate it */
if (min_elems == elements[omap_dma_intr_frame_sync])
omap_dma_deactivate_channel(s, ch);
/* Set the END_FRAME interrupt */
if (min_elems == elements[omap_dma_intr_frame])
ch->status |= END_FRAME_INTR;
if (min_elems == elements[omap_dma_intr_block]) {
/* End of Block */
/* Disable the channel */
if (ch->omap_3_1_compatible_disable) {
omap_dma_disable_channel(s, ch);
if (ch->link_enabled)
omap_dma_enable_channel(s, &s->ch[ch->link_next_ch]);
} else {
if (!ch->auto_init)
omap_dma_disable_channel(s, ch);
else if (ch->repeat || ch->end_prog)
omap_dma_channel_load(ch);
else {
ch->waiting_end_prog = 1;
omap_dma_deactivate_channel(s, ch);
}
}
if (ch->interrupts & END_BLOCK_INTR)
ch->status |= END_BLOCK_INTR;
}
/* Update packet number */
if (ch->fs && ch->bs) {
a->pck_element += min_elems;
a->pck_element %= a->pck_elements;
}
/* TODO: check if we really need to update anything here or perhaps we
* can skip part of this. */
#ifndef MULTI_REQ
if (dma->update) {
#endif
a->element += min_elems;
frames = a->element / a->elements;
a->element = a->element % a->elements;
a->frame += frames;
a->src += min_elems * a->elem_delta[0] + frames * a->frame_delta[0];
a->dest += min_elems * a->elem_delta[1] + frames * a->frame_delta[1];
/* If the channel is async, update cpc */
if (!ch->sync && frames)
ch->cpc = a->dest & 0xffff;
/* TODO: if the destination port is IMIF or EMIFF, set the dirty
* bits on it. */
}
omap_dma_interrupts_update(s);
}
void omap_dma_reset(struct soc_dma_s *dma)
{
int i;
struct omap_dma_s *s = dma->opaque;
soc_dma_reset(s->dma);
if (s->model < omap_dma_4)
s->gcr = 0x0004;
else
s->gcr = 0x00010010;
s->ocp = 0x00000000;
memset(&s->irqstat, 0, sizeof(s->irqstat));
memset(&s->irqen, 0, sizeof(s->irqen));
s->lcd_ch.src = emiff;
s->lcd_ch.condition = 0;
s->lcd_ch.interrupts = 0;
s->lcd_ch.dual = 0;
if (s->model < omap_dma_4)
omap_dma_enable_3_1_mapping(s);
for (i = 0; i < s->chans; i ++) {
s->ch[i].suspend = 0;
s->ch[i].prefetch = 0;
s->ch[i].buf_disable = 0;
s->ch[i].src_sync = 0;
memset(&s->ch[i].burst, 0, sizeof(s->ch[i].burst));
memset(&s->ch[i].port, 0, sizeof(s->ch[i].port));
memset(&s->ch[i].mode, 0, sizeof(s->ch[i].mode));
memset(&s->ch[i].frame_index, 0, sizeof(s->ch[i].frame_index));
memset(&s->ch[i].element_index, 0, sizeof(s->ch[i].element_index));
memset(&s->ch[i].endian, 0, sizeof(s->ch[i].endian));
memset(&s->ch[i].endian_lock, 0, sizeof(s->ch[i].endian_lock));
memset(&s->ch[i].translate, 0, sizeof(s->ch[i].translate));
s->ch[i].write_mode = 0;
s->ch[i].data_type = 0;
s->ch[i].transparent_copy = 0;
s->ch[i].constant_fill = 0;
s->ch[i].color = 0x00000000;
s->ch[i].end_prog = 0;
s->ch[i].repeat = 0;
s->ch[i].auto_init = 0;
s->ch[i].link_enabled = 0;
if (s->model < omap_dma_4)
s->ch[i].interrupts = 0x0003;
else
s->ch[i].interrupts = 0x0000;
s->ch[i].status = 0;
s->ch[i].cstatus = 0;
s->ch[i].active = 0;
s->ch[i].enable = 0;
s->ch[i].sync = 0;
s->ch[i].pending_request = 0;
s->ch[i].waiting_end_prog = 0;
s->ch[i].cpc = 0x0000;
s->ch[i].fs = 0;
s->ch[i].bs = 0;
s->ch[i].omap_3_1_compatible_disable = 0;
memset(&s->ch[i].active_set, 0, sizeof(s->ch[i].active_set));
s->ch[i].priority = 0;
s->ch[i].interleave_disabled = 0;
s->ch[i].type = 0;
}
}
static int omap_dma_ch_reg_read(struct omap_dma_s *s,
struct omap_dma_channel_s *ch, int reg, uint16_t *value)
{
switch (reg) {
case 0x00: /* SYS_DMA_CSDP_CH0 */
*value = (ch->burst[1] << 14) |
(ch->pack[1] << 13) |
(ch->port[1] << 9) |
(ch->burst[0] << 7) |
(ch->pack[0] << 6) |
(ch->port[0] << 2) |
(ch->data_type >> 1);
break;
case 0x02: /* SYS_DMA_CCR_CH0 */
if (s->model <= omap_dma_3_1)
*value = 0 << 10; /* FIFO_FLUSH reads as 0 */
else
*value = ch->omap_3_1_compatible_disable << 10;
*value |= (ch->mode[1] << 14) |
(ch->mode[0] << 12) |
(ch->end_prog << 11) |
(ch->repeat << 9) |
(ch->auto_init << 8) |
(ch->enable << 7) |
(ch->priority << 6) |
(ch->fs << 5) | ch->sync;
break;
case 0x04: /* SYS_DMA_CICR_CH0 */
*value = ch->interrupts;
break;
case 0x06: /* SYS_DMA_CSR_CH0 */
*value = ch->status;
ch->status &= SYNC;
if (!ch->omap_3_1_compatible_disable && ch->sibling) {
*value |= (ch->sibling->status & 0x3f) << 6;
ch->sibling->status &= SYNC;
}
qemu_irq_lower(ch->irq);
break;
case 0x08: /* SYS_DMA_CSSA_L_CH0 */
*value = ch->addr[0] & 0x0000ffff;
break;
case 0x0a: /* SYS_DMA_CSSA_U_CH0 */
*value = ch->addr[0] >> 16;
break;
case 0x0c: /* SYS_DMA_CDSA_L_CH0 */
*value = ch->addr[1] & 0x0000ffff;
break;
case 0x0e: /* SYS_DMA_CDSA_U_CH0 */
*value = ch->addr[1] >> 16;
break;
case 0x10: /* SYS_DMA_CEN_CH0 */
*value = ch->elements;
break;
case 0x12: /* SYS_DMA_CFN_CH0 */
*value = ch->frames;
break;
case 0x14: /* SYS_DMA_CFI_CH0 */
*value = ch->frame_index[0];
break;
case 0x16: /* SYS_DMA_CEI_CH0 */
*value = ch->element_index[0];
break;
case 0x18: /* SYS_DMA_CPC_CH0 or DMA_CSAC */
if (ch->omap_3_1_compatible_disable)
*value = ch->active_set.src & 0xffff; /* CSAC */
else
*value = ch->cpc;
break;
case 0x1a: /* DMA_CDAC */
*value = ch->active_set.dest & 0xffff; /* CDAC */
break;
case 0x1c: /* DMA_CDEI */
*value = ch->element_index[1];
break;
case 0x1e: /* DMA_CDFI */
*value = ch->frame_index[1];
break;
case 0x20: /* DMA_COLOR_L */
*value = ch->color & 0xffff;
break;
case 0x22: /* DMA_COLOR_U */
*value = ch->color >> 16;
break;
case 0x24: /* DMA_CCR2 */
*value = (ch->bs << 2) |
(ch->transparent_copy << 1) |
ch->constant_fill;
break;
case 0x28: /* DMA_CLNK_CTRL */
*value = (ch->link_enabled << 15) |
(ch->link_next_ch & 0xf);
break;
case 0x2a: /* DMA_LCH_CTRL */
*value = (ch->interleave_disabled << 15) |
ch->type;
break;
default:
return 1;
}
return 0;
}
static int omap_dma_ch_reg_write(struct omap_dma_s *s,
struct omap_dma_channel_s *ch, int reg, uint16_t value)
{
switch (reg) {
case 0x00: /* SYS_DMA_CSDP_CH0 */
ch->burst[1] = (value & 0xc000) >> 14;
ch->pack[1] = (value & 0x2000) >> 13;
ch->port[1] = (enum omap_dma_port) ((value & 0x1e00) >> 9);
ch->burst[0] = (value & 0x0180) >> 7;
ch->pack[0] = (value & 0x0040) >> 6;
ch->port[0] = (enum omap_dma_port) ((value & 0x003c) >> 2);
ch->data_type = 1 << (value & 3);
if (ch->port[0] >= __omap_dma_port_last)
printf("%s: invalid DMA port %i\n", __FUNCTION__,
ch->port[0]);
if (ch->port[1] >= __omap_dma_port_last)
printf("%s: invalid DMA port %i\n", __FUNCTION__,
ch->port[1]);
if ((value & 3) == 3)
printf("%s: bad data_type for DMA channel\n", __FUNCTION__);
break;
case 0x02: /* SYS_DMA_CCR_CH0 */
ch->mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14);
ch->mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12);
ch->end_prog = (value & 0x0800) >> 11;
if (s->model >= omap_dma_3_2)
ch->omap_3_1_compatible_disable = (value >> 10) & 0x1;
ch->repeat = (value & 0x0200) >> 9;
ch->auto_init = (value & 0x0100) >> 8;
ch->priority = (value & 0x0040) >> 6;
ch->fs = (value & 0x0020) >> 5;
ch->sync = value & 0x001f;
if (value & 0x0080)
omap_dma_enable_channel(s, ch);
else
omap_dma_disable_channel(s, ch);
if (ch->end_prog)
omap_dma_channel_end_prog(s, ch);
break;
case 0x04: /* SYS_DMA_CICR_CH0 */
ch->interrupts = value & 0x3f;
break;
case 0x06: /* SYS_DMA_CSR_CH0 */
OMAP_RO_REG((target_phys_addr_t) reg);
break;
case 0x08: /* SYS_DMA_CSSA_L_CH0 */
ch->addr[0] &= 0xffff0000;
ch->addr[0] |= value;
break;
case 0x0a: /* SYS_DMA_CSSA_U_CH0 */
ch->addr[0] &= 0x0000ffff;
ch->addr[0] |= (uint32_t) value << 16;
break;
case 0x0c: /* SYS_DMA_CDSA_L_CH0 */
ch->addr[1] &= 0xffff0000;
ch->addr[1] |= value;
break;
case 0x0e: /* SYS_DMA_CDSA_U_CH0 */
ch->addr[1] &= 0x0000ffff;
ch->addr[1] |= (uint32_t) value << 16;
break;
case 0x10: /* SYS_DMA_CEN_CH0 */
ch->elements = value;
break;
case 0x12: /* SYS_DMA_CFN_CH0 */
ch->frames = value;
break;
case 0x14: /* SYS_DMA_CFI_CH0 */
ch->frame_index[0] = (int16_t) value;
break;
case 0x16: /* SYS_DMA_CEI_CH0 */
ch->element_index[0] = (int16_t) value;
break;
case 0x18: /* SYS_DMA_CPC_CH0 or DMA_CSAC */
OMAP_RO_REG((target_phys_addr_t) reg);
break;
case 0x1c: /* DMA_CDEI */
ch->element_index[1] = (int16_t) value;
break;
case 0x1e: /* DMA_CDFI */
ch->frame_index[1] = (int16_t) value;
break;
case 0x20: /* DMA_COLOR_L */
ch->color &= 0xffff0000;
ch->color |= value;
break;
case 0x22: /* DMA_COLOR_U */
ch->color &= 0xffff;
ch->color |= value << 16;
break;
case 0x24: /* DMA_CCR2 */
ch->bs = (value >> 2) & 0x1;
ch->transparent_copy = (value >> 1) & 0x1;
ch->constant_fill = value & 0x1;
break;
case 0x28: /* DMA_CLNK_CTRL */
ch->link_enabled = (value >> 15) & 0x1;
if (value & (1 << 14)) { /* Stop_Lnk */
ch->link_enabled = 0;
omap_dma_disable_channel(s, ch);
}
ch->link_next_ch = value & 0x1f;
break;
case 0x2a: /* DMA_LCH_CTRL */
ch->interleave_disabled = (value >> 15) & 0x1;
ch->type = value & 0xf;
break;
default:
return 1;
}
return 0;
}
static int omap_dma_3_2_lcd_write(struct omap_dma_lcd_channel_s *s, int offset,
uint16_t value)
{
switch (offset) {
case 0xbc0: /* DMA_LCD_CSDP */
s->brust_f2 = (value >> 14) & 0x3;
s->pack_f2 = (value >> 13) & 0x1;
s->data_type_f2 = (1 << ((value >> 11) & 0x3));
s->brust_f1 = (value >> 7) & 0x3;
s->pack_f1 = (value >> 6) & 0x1;
s->data_type_f1 = (1 << ((value >> 0) & 0x3));
break;
case 0xbc2: /* DMA_LCD_CCR */
s->mode_f2 = (value >> 14) & 0x3;
s->mode_f1 = (value >> 12) & 0x3;
s->end_prog = (value >> 11) & 0x1;
s->omap_3_1_compatible_disable = (value >> 10) & 0x1;
s->repeat = (value >> 9) & 0x1;
s->auto_init = (value >> 8) & 0x1;
s->running = (value >> 7) & 0x1;
s->priority = (value >> 6) & 0x1;
s->bs = (value >> 4) & 0x1;
break;
case 0xbc4: /* DMA_LCD_CTRL */
s->dst = (value >> 8) & 0x1;
s->src = ((value >> 6) & 0x3) << 1;
s->condition = 0;
/* Assume no bus errors and thus no BUS_ERROR irq bits. */
s->interrupts = (value >> 1) & 1;
s->dual = value & 1;
break;
case 0xbc8: /* TOP_B1_L */
s->src_f1_top &= 0xffff0000;
s->src_f1_top |= 0x0000ffff & value;
break;
case 0xbca: /* TOP_B1_U */
s->src_f1_top &= 0x0000ffff;
s->src_f1_top |= value << 16;
break;
case 0xbcc: /* BOT_B1_L */
s->src_f1_bottom &= 0xffff0000;
s->src_f1_bottom |= 0x0000ffff & value;
break;
case 0xbce: /* BOT_B1_U */
s->src_f1_bottom &= 0x0000ffff;
s->src_f1_bottom |= (uint32_t) value << 16;
break;
case 0xbd0: /* TOP_B2_L */
s->src_f2_top &= 0xffff0000;
s->src_f2_top |= 0x0000ffff & value;
break;
case 0xbd2: /* TOP_B2_U */
s->src_f2_top &= 0x0000ffff;
s->src_f2_top |= (uint32_t) value << 16;
break;
case 0xbd4: /* BOT_B2_L */
s->src_f2_bottom &= 0xffff0000;
s->src_f2_bottom |= 0x0000ffff & value;
break;
case 0xbd6: /* BOT_B2_U */
s->src_f2_bottom &= 0x0000ffff;
s->src_f2_bottom |= (uint32_t) value << 16;
break;
case 0xbd8: /* DMA_LCD_SRC_EI_B1 */
s->element_index_f1 = value;
break;
case 0xbda: /* DMA_LCD_SRC_FI_B1_L */
s->frame_index_f1 &= 0xffff0000;
s->frame_index_f1 |= 0x0000ffff & value;
break;
case 0xbf4: /* DMA_LCD_SRC_FI_B1_U */
s->frame_index_f1 &= 0x0000ffff;
s->frame_index_f1 |= (uint32_t) value << 16;
break;
case 0xbdc: /* DMA_LCD_SRC_EI_B2 */
s->element_index_f2 = value;
break;
case 0xbde: /* DMA_LCD_SRC_FI_B2_L */
s->frame_index_f2 &= 0xffff0000;
s->frame_index_f2 |= 0x0000ffff & value;
break;
case 0xbf6: /* DMA_LCD_SRC_FI_B2_U */
s->frame_index_f2 &= 0x0000ffff;
s->frame_index_f2 |= (uint32_t) value << 16;
break;
case 0xbe0: /* DMA_LCD_SRC_EN_B1 */
s->elements_f1 = value;
break;
case 0xbe4: /* DMA_LCD_SRC_FN_B1 */
s->frames_f1 = value;
break;
case 0xbe2: /* DMA_LCD_SRC_EN_B2 */
s->elements_f2 = value;
break;
case 0xbe6: /* DMA_LCD_SRC_FN_B2 */
s->frames_f2 = value;
break;
case 0xbea: /* DMA_LCD_LCH_CTRL */
s->lch_type = value & 0xf;
break;
default:
return 1;
}
return 0;
}
static int omap_dma_3_2_lcd_read(struct omap_dma_lcd_channel_s *s, int offset,
uint16_t *ret)
{
switch (offset) {
case 0xbc0: /* DMA_LCD_CSDP */
*ret = (s->brust_f2 << 14) |
(s->pack_f2 << 13) |
((s->data_type_f2 >> 1) << 11) |
(s->brust_f1 << 7) |
(s->pack_f1 << 6) |
((s->data_type_f1 >> 1) << 0);
break;
case 0xbc2: /* DMA_LCD_CCR */
*ret = (s->mode_f2 << 14) |
(s->mode_f1 << 12) |
(s->end_prog << 11) |
(s->omap_3_1_compatible_disable << 10) |
(s->repeat << 9) |
(s->auto_init << 8) |
(s->running << 7) |
(s->priority << 6) |
(s->bs << 4);
break;
case 0xbc4: /* DMA_LCD_CTRL */
qemu_irq_lower(s->irq);
*ret = (s->dst << 8) |
((s->src & 0x6) << 5) |
(s->condition << 3) |
(s->interrupts << 1) |
s->dual;
break;
case 0xbc8: /* TOP_B1_L */
*ret = s->src_f1_top & 0xffff;
break;
case 0xbca: /* TOP_B1_U */
*ret = s->src_f1_top >> 16;
break;
case 0xbcc: /* BOT_B1_L */
*ret = s->src_f1_bottom & 0xffff;
break;
case 0xbce: /* BOT_B1_U */
*ret = s->src_f1_bottom >> 16;
break;
case 0xbd0: /* TOP_B2_L */
*ret = s->src_f2_top & 0xffff;
break;
case 0xbd2: /* TOP_B2_U */
*ret = s->src_f2_top >> 16;
break;
case 0xbd4: /* BOT_B2_L */
*ret = s->src_f2_bottom & 0xffff;
break;
case 0xbd6: /* BOT_B2_U */
*ret = s->src_f2_bottom >> 16;
break;
case 0xbd8: /* DMA_LCD_SRC_EI_B1 */
*ret = s->element_index_f1;
break;
case 0xbda: /* DMA_LCD_SRC_FI_B1_L */
*ret = s->frame_index_f1 & 0xffff;
break;
case 0xbf4: /* DMA_LCD_SRC_FI_B1_U */
*ret = s->frame_index_f1 >> 16;
break;
case 0xbdc: /* DMA_LCD_SRC_EI_B2 */
*ret = s->element_index_f2;
break;
case 0xbde: /* DMA_LCD_SRC_FI_B2_L */
*ret = s->frame_index_f2 & 0xffff;
break;
case 0xbf6: /* DMA_LCD_SRC_FI_B2_U */
*ret = s->frame_index_f2 >> 16;
break;
case 0xbe0: /* DMA_LCD_SRC_EN_B1 */
*ret = s->elements_f1;
break;
case 0xbe4: /* DMA_LCD_SRC_FN_B1 */
*ret = s->frames_f1;
break;
case 0xbe2: /* DMA_LCD_SRC_EN_B2 */
*ret = s->elements_f2;
break;
case 0xbe6: /* DMA_LCD_SRC_FN_B2 */
*ret = s->frames_f2;
break;
case 0xbea: /* DMA_LCD_LCH_CTRL */
*ret = s->lch_type;
break;
default:
return 1;
}
return 0;
}
static int omap_dma_3_1_lcd_write(struct omap_dma_lcd_channel_s *s, int offset,
uint16_t value)
{
switch (offset) {
case 0x300: /* SYS_DMA_LCD_CTRL */
s->src = (value & 0x40) ? imif : emiff;
s->condition = 0;
/* Assume no bus errors and thus no BUS_ERROR irq bits. */
s->interrupts = (value >> 1) & 1;
s->dual = value & 1;
break;
case 0x302: /* SYS_DMA_LCD_TOP_F1_L */
s->src_f1_top &= 0xffff0000;
s->src_f1_top |= 0x0000ffff & value;
break;
case 0x304: /* SYS_DMA_LCD_TOP_F1_U */
s->src_f1_top &= 0x0000ffff;
s->src_f1_top |= value << 16;
break;
case 0x306: /* SYS_DMA_LCD_BOT_F1_L */
s->src_f1_bottom &= 0xffff0000;
s->src_f1_bottom |= 0x0000ffff & value;
break;
case 0x308: /* SYS_DMA_LCD_BOT_F1_U */
s->src_f1_bottom &= 0x0000ffff;
s->src_f1_bottom |= value << 16;
break;
case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */
s->src_f2_top &= 0xffff0000;
s->src_f2_top |= 0x0000ffff & value;
break;
case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */
s->src_f2_top &= 0x0000ffff;
s->src_f2_top |= value << 16;
break;
case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */
s->src_f2_bottom &= 0xffff0000;
s->src_f2_bottom |= 0x0000ffff & value;
break;
case 0x310: /* SYS_DMA_LCD_BOT_F2_U */
s->src_f2_bottom &= 0x0000ffff;
s->src_f2_bottom |= value << 16;
break;
default:
return 1;
}
return 0;
}
static int omap_dma_3_1_lcd_read(struct omap_dma_lcd_channel_s *s, int offset,
uint16_t *ret)
{
int i;
switch (offset) {
case 0x300: /* SYS_DMA_LCD_CTRL */
i = s->condition;
s->condition = 0;
qemu_irq_lower(s->irq);
*ret = ((s->src == imif) << 6) | (i << 3) |
(s->interrupts << 1) | s->dual;
break;
case 0x302: /* SYS_DMA_LCD_TOP_F1_L */
*ret = s->src_f1_top & 0xffff;
break;
case 0x304: /* SYS_DMA_LCD_TOP_F1_U */
*ret = s->src_f1_top >> 16;
break;
case 0x306: /* SYS_DMA_LCD_BOT_F1_L */
*ret = s->src_f1_bottom & 0xffff;
break;
case 0x308: /* SYS_DMA_LCD_BOT_F1_U */
*ret = s->src_f1_bottom >> 16;
break;
case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */
*ret = s->src_f2_top & 0xffff;
break;
case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */
*ret = s->src_f2_top >> 16;
break;
case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */
*ret = s->src_f2_bottom & 0xffff;
break;
case 0x310: /* SYS_DMA_LCD_BOT_F2_U */
*ret = s->src_f2_bottom >> 16;
break;
default:
return 1;
}
return 0;
}
static int omap_dma_sys_write(struct omap_dma_s *s, int offset, uint16_t value)
{
switch (offset) {
case 0x400: /* SYS_DMA_GCR */
s->gcr = value;
break;
case 0x404: /* DMA_GSCR */
if (value & 0x8)
omap_dma_disable_3_1_mapping(s);
else
omap_dma_enable_3_1_mapping(s);
break;
case 0x408: /* DMA_GRST */
if (value & 0x1)
omap_dma_reset(s->dma);
break;
default:
return 1;
}
return 0;
}
static int omap_dma_sys_read(struct omap_dma_s *s, int offset,
uint16_t *ret)
{
switch (offset) {
case 0x400: /* SYS_DMA_GCR */
*ret = s->gcr;
break;
case 0x404: /* DMA_GSCR */
*ret = s->omap_3_1_mapping_disabled << 3;
break;
case 0x408: /* DMA_GRST */
*ret = 0;
break;
case 0x442: /* DMA_HW_ID */
case 0x444: /* DMA_PCh2_ID */
case 0x446: /* DMA_PCh0_ID */
case 0x448: /* DMA_PCh1_ID */
case 0x44a: /* DMA_PChG_ID */
case 0x44c: /* DMA_PChD_ID */
*ret = 1;
break;
case 0x44e: /* DMA_CAPS_0_U */
*ret = (s->caps[0] >> 16) & 0xffff;
break;
case 0x450: /* DMA_CAPS_0_L */
*ret = (s->caps[0] >> 0) & 0xffff;
break;
case 0x452: /* DMA_CAPS_1_U */
*ret = (s->caps[1] >> 16) & 0xffff;
break;
case 0x454: /* DMA_CAPS_1_L */
*ret = (s->caps[1] >> 0) & 0xffff;
break;
case 0x456: /* DMA_CAPS_2 */
*ret = s->caps[2];
break;
case 0x458: /* DMA_CAPS_3 */
*ret = s->caps[3];
break;
case 0x45a: /* DMA_CAPS_4 */
*ret = s->caps[4];
break;
case 0x460: /* DMA_PCh2_SR */
case 0x480: /* DMA_PCh0_SR */
case 0x482: /* DMA_PCh1_SR */
case 0x4c0: /* DMA_PChD_SR_0 */
printf("%s: Physical Channel Status Registers not implemented.\n",
__FUNCTION__);
*ret = 0xff;
break;
default:
return 1;
}
return 0;
}
static uint32_t omap_dma_read(void *opaque, target_phys_addr_t addr)
{
struct omap_dma_s *s = (struct omap_dma_s *) opaque;
int reg, ch;
uint16_t ret;
switch (addr) {
case 0x300 ... 0x3fe:
if (s->model <= omap_dma_3_1 || !s->omap_3_1_mapping_disabled) {
if (omap_dma_3_1_lcd_read(&s->lcd_ch, addr, &ret))
break;
return ret;
}
/* Fall through. */
case 0x000 ... 0x2fe:
reg = addr & 0x3f;
ch = (addr >> 6) & 0x0f;
if (omap_dma_ch_reg_read(s, &s->ch[ch], reg, &ret))
break;
return ret;
case 0x404 ... 0x4fe:
if (s->model <= omap_dma_3_1)
break;
/* Fall through. */
case 0x400:
if (omap_dma_sys_read(s, addr, &ret))
break;
return ret;
case 0xb00 ... 0xbfe:
if (s->model == omap_dma_3_2 && s->omap_3_1_mapping_disabled) {
if (omap_dma_3_2_lcd_read(&s->lcd_ch, addr, &ret))
break;
return ret;
}
break;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_dma_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_dma_s *s = (struct omap_dma_s *) opaque;
int reg, ch;
switch (addr) {
case 0x300 ... 0x3fe:
if (s->model <= omap_dma_3_1 || !s->omap_3_1_mapping_disabled) {
if (omap_dma_3_1_lcd_write(&s->lcd_ch, addr, value))
break;
return;
}
/* Fall through. */
case 0x000 ... 0x2fe:
reg = addr & 0x3f;
ch = (addr >> 6) & 0x0f;
if (omap_dma_ch_reg_write(s, &s->ch[ch], reg, value))
break;
return;
case 0x404 ... 0x4fe:
if (s->model <= omap_dma_3_1)
break;
case 0x400:
/* Fall through. */
if (omap_dma_sys_write(s, addr, value))
break;
return;
case 0xb00 ... 0xbfe:
if (s->model == omap_dma_3_2 && s->omap_3_1_mapping_disabled) {
if (omap_dma_3_2_lcd_write(&s->lcd_ch, addr, value))
break;
return;
}
break;
}
OMAP_BAD_REG(addr);
}
static CPUReadMemoryFunc * const omap_dma_readfn[] = {
omap_badwidth_read16,
omap_dma_read,
omap_badwidth_read16,
};
static CPUWriteMemoryFunc * const omap_dma_writefn[] = {
omap_badwidth_write16,
omap_dma_write,
omap_badwidth_write16,
};
static void omap_dma_request(void *opaque, int drq, int req)
{
struct omap_dma_s *s = (struct omap_dma_s *) opaque;
/* The request pins are level triggered in QEMU. */
if (req) {
if (~s->dma->drqbmp & (1 << drq)) {
s->dma->drqbmp |= 1 << drq;
omap_dma_process_request(s, drq);
}
} else
s->dma->drqbmp &= ~(1 << drq);
}
/* XXX: this won't be needed once soc_dma knows about clocks. */
static void omap_dma_clk_update(void *opaque, int line, int on)
{
struct omap_dma_s *s = (struct omap_dma_s *) opaque;
int i;
s->dma->freq = omap_clk_getrate(s->clk);
for (i = 0; i < s->chans; i ++)
if (s->ch[i].active)
soc_dma_set_request(s->ch[i].dma, on);
}
static void omap_dma_setcaps(struct omap_dma_s *s)
{
switch (s->model) {
default:
case omap_dma_3_1:
break;
case omap_dma_3_2:
case omap_dma_4:
/* XXX Only available for sDMA */
s->caps[0] =
(1 << 19) | /* Constant Fill Capability */
(1 << 18); /* Transparent BLT Capability */
s->caps[1] =
(1 << 1); /* 1-bit palettized capability (DMA 3.2 only) */
s->caps[2] =
(1 << 8) | /* SEPARATE_SRC_AND_DST_INDEX_CPBLTY */
(1 << 7) | /* DST_DOUBLE_INDEX_ADRS_CPBLTY */
(1 << 6) | /* DST_SINGLE_INDEX_ADRS_CPBLTY */
(1 << 5) | /* DST_POST_INCRMNT_ADRS_CPBLTY */
(1 << 4) | /* DST_CONST_ADRS_CPBLTY */
(1 << 3) | /* SRC_DOUBLE_INDEX_ADRS_CPBLTY */
(1 << 2) | /* SRC_SINGLE_INDEX_ADRS_CPBLTY */
(1 << 1) | /* SRC_POST_INCRMNT_ADRS_CPBLTY */
(1 << 0); /* SRC_CONST_ADRS_CPBLTY */
s->caps[3] =
(1 << 6) | /* BLOCK_SYNCHR_CPBLTY (DMA 4 only) */
(1 << 7) | /* PKT_SYNCHR_CPBLTY (DMA 4 only) */
(1 << 5) | /* CHANNEL_CHAINING_CPBLTY */
(1 << 4) | /* LCh_INTERLEAVE_CPBLTY */
(1 << 3) | /* AUTOINIT_REPEAT_CPBLTY (DMA 3.2 only) */
(1 << 2) | /* AUTOINIT_ENDPROG_CPBLTY (DMA 3.2 only) */
(1 << 1) | /* FRAME_SYNCHR_CPBLTY */
(1 << 0); /* ELMNT_SYNCHR_CPBLTY */
s->caps[4] =
(1 << 7) | /* PKT_INTERRUPT_CPBLTY (DMA 4 only) */
(1 << 6) | /* SYNC_STATUS_CPBLTY */
(1 << 5) | /* BLOCK_INTERRUPT_CPBLTY */
(1 << 4) | /* LAST_FRAME_INTERRUPT_CPBLTY */
(1 << 3) | /* FRAME_INTERRUPT_CPBLTY */
(1 << 2) | /* HALF_FRAME_INTERRUPT_CPBLTY */
(1 << 1) | /* EVENT_DROP_INTERRUPT_CPBLTY */
(1 << 0); /* TIMEOUT_INTERRUPT_CPBLTY (DMA 3.2 only) */
break;
}
}
struct soc_dma_s *omap_dma_init(target_phys_addr_t base, qemu_irq *irqs,
qemu_irq lcd_irq, struct omap_mpu_state_s *mpu, omap_clk clk,
enum omap_dma_model model)
{
int iomemtype, num_irqs, memsize, i;
struct omap_dma_s *s = (struct omap_dma_s *)
qemu_mallocz(sizeof(struct omap_dma_s));
if (model <= omap_dma_3_1) {
num_irqs = 6;
memsize = 0x800;
} else {
num_irqs = 16;
memsize = 0xc00;
}
s->model = model;
s->mpu = mpu;
s->clk = clk;
s->lcd_ch.irq = lcd_irq;
s->lcd_ch.mpu = mpu;
s->dma = soc_dma_init((model <= omap_dma_3_1) ? 9 : 16);
s->dma->freq = omap_clk_getrate(clk);
s->dma->transfer_fn = omap_dma_transfer_generic;
s->dma->setup_fn = omap_dma_transfer_setup;
s->dma->drq = qemu_allocate_irqs(omap_dma_request, s, 32);
s->dma->opaque = s;
while (num_irqs --)
s->ch[num_irqs].irq = irqs[num_irqs];
for (i = 0; i < 3; i ++) {
s->ch[i].sibling = &s->ch[i + 6];
s->ch[i + 6].sibling = &s->ch[i];
}
for (i = (model <= omap_dma_3_1) ? 8 : 15; i >= 0; i --) {
s->ch[i].dma = &s->dma->ch[i];
s->dma->ch[i].opaque = &s->ch[i];
}
omap_dma_setcaps(s);
omap_clk_adduser(s->clk, qemu_allocate_irqs(omap_dma_clk_update, s, 1)[0]);
omap_dma_reset(s->dma);
omap_dma_clk_update(s, 0, 1);
iomemtype = cpu_register_io_memory(omap_dma_readfn,
omap_dma_writefn, s);
cpu_register_physical_memory(base, memsize, iomemtype);
mpu->drq = s->dma->drq;
return s->dma;
}
static void omap_dma_interrupts_4_update(struct omap_dma_s *s)
{
struct omap_dma_channel_s *ch = s->ch;
uint32_t bmp, bit;
for (bmp = 0, bit = 1; bit; ch ++, bit <<= 1)
if (ch->status) {
bmp |= bit;
ch->cstatus |= ch->status;
ch->status = 0;
}
if ((s->irqstat[0] |= s->irqen[0] & bmp))
qemu_irq_raise(s->irq[0]);
if ((s->irqstat[1] |= s->irqen[1] & bmp))
qemu_irq_raise(s->irq[1]);
if ((s->irqstat[2] |= s->irqen[2] & bmp))
qemu_irq_raise(s->irq[2]);
if ((s->irqstat[3] |= s->irqen[3] & bmp))
qemu_irq_raise(s->irq[3]);
}
static uint32_t omap_dma4_read(void *opaque, target_phys_addr_t addr)
{
struct omap_dma_s *s = (struct omap_dma_s *) opaque;
int irqn = 0, chnum;
struct omap_dma_channel_s *ch;
switch (addr) {
case 0x00: /* DMA4_REVISION */
return 0x40;
case 0x14: /* DMA4_IRQSTATUS_L3 */
irqn ++;
case 0x10: /* DMA4_IRQSTATUS_L2 */
irqn ++;
case 0x0c: /* DMA4_IRQSTATUS_L1 */
irqn ++;
case 0x08: /* DMA4_IRQSTATUS_L0 */
return s->irqstat[irqn];
case 0x24: /* DMA4_IRQENABLE_L3 */
irqn ++;
case 0x20: /* DMA4_IRQENABLE_L2 */
irqn ++;
case 0x1c: /* DMA4_IRQENABLE_L1 */
irqn ++;
case 0x18: /* DMA4_IRQENABLE_L0 */
return s->irqen[irqn];
case 0x28: /* DMA4_SYSSTATUS */
return 1; /* RESETDONE */
case 0x2c: /* DMA4_OCP_SYSCONFIG */
return s->ocp;
case 0x64: /* DMA4_CAPS_0 */
return s->caps[0];
case 0x6c: /* DMA4_CAPS_2 */
return s->caps[2];
case 0x70: /* DMA4_CAPS_3 */
return s->caps[3];
case 0x74: /* DMA4_CAPS_4 */
return s->caps[4];
case 0x78: /* DMA4_GCR */
return s->gcr;
case 0x80 ... 0xfff:
addr -= 0x80;
chnum = addr / 0x60;
ch = s->ch + chnum;
addr -= chnum * 0x60;
break;
default:
OMAP_BAD_REG(addr);
return 0;
}
/* Per-channel registers */
switch (addr) {
case 0x00: /* DMA4_CCR */
return (ch->buf_disable << 25) |
(ch->src_sync << 24) |
(ch->prefetch << 23) |
((ch->sync & 0x60) << 14) |
(ch->bs << 18) |
(ch->transparent_copy << 17) |
(ch->constant_fill << 16) |
(ch->mode[1] << 14) |
(ch->mode[0] << 12) |
(0 << 10) | (0 << 9) |
(ch->suspend << 8) |
(ch->enable << 7) |
(ch->priority << 6) |
(ch->fs << 5) | (ch->sync & 0x1f);
case 0x04: /* DMA4_CLNK_CTRL */
return (ch->link_enabled << 15) | ch->link_next_ch;
case 0x08: /* DMA4_CICR */
return ch->interrupts;
case 0x0c: /* DMA4_CSR */
return ch->cstatus;
case 0x10: /* DMA4_CSDP */
return (ch->endian[0] << 21) |
(ch->endian_lock[0] << 20) |
(ch->endian[1] << 19) |
(ch->endian_lock[1] << 18) |
(ch->write_mode << 16) |
(ch->burst[1] << 14) |
(ch->pack[1] << 13) |
(ch->translate[1] << 9) |
(ch->burst[0] << 7) |
(ch->pack[0] << 6) |
(ch->translate[0] << 2) |
(ch->data_type >> 1);
case 0x14: /* DMA4_CEN */
return ch->elements;
case 0x18: /* DMA4_CFN */
return ch->frames;
case 0x1c: /* DMA4_CSSA */
return ch->addr[0];
case 0x20: /* DMA4_CDSA */
return ch->addr[1];
case 0x24: /* DMA4_CSEI */
return ch->element_index[0];
case 0x28: /* DMA4_CSFI */
return ch->frame_index[0];
case 0x2c: /* DMA4_CDEI */
return ch->element_index[1];
case 0x30: /* DMA4_CDFI */
return ch->frame_index[1];
case 0x34: /* DMA4_CSAC */
return ch->active_set.src & 0xffff;
case 0x38: /* DMA4_CDAC */
return ch->active_set.dest & 0xffff;
case 0x3c: /* DMA4_CCEN */
return ch->active_set.element;
case 0x40: /* DMA4_CCFN */
return ch->active_set.frame;
case 0x44: /* DMA4_COLOR */
/* XXX only in sDMA */
return ch->color;
default:
OMAP_BAD_REG(addr);
return 0;
}
}
static void omap_dma4_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_dma_s *s = (struct omap_dma_s *) opaque;
int chnum, irqn = 0;
struct omap_dma_channel_s *ch;
switch (addr) {
case 0x14: /* DMA4_IRQSTATUS_L3 */
irqn ++;
case 0x10: /* DMA4_IRQSTATUS_L2 */
irqn ++;
case 0x0c: /* DMA4_IRQSTATUS_L1 */
irqn ++;
case 0x08: /* DMA4_IRQSTATUS_L0 */
s->irqstat[irqn] &= ~value;
if (!s->irqstat[irqn])
qemu_irq_lower(s->irq[irqn]);
return;
case 0x24: /* DMA4_IRQENABLE_L3 */
irqn ++;
case 0x20: /* DMA4_IRQENABLE_L2 */
irqn ++;
case 0x1c: /* DMA4_IRQENABLE_L1 */
irqn ++;
case 0x18: /* DMA4_IRQENABLE_L0 */
s->irqen[irqn] = value;
return;
case 0x2c: /* DMA4_OCP_SYSCONFIG */
if (value & 2) /* SOFTRESET */
omap_dma_reset(s->dma);
s->ocp = value & 0x3321;
if (((s->ocp >> 12) & 3) == 3) /* MIDLEMODE */
fprintf(stderr, "%s: invalid DMA power mode\n", __FUNCTION__);
return;
case 0x78: /* DMA4_GCR */
s->gcr = value & 0x00ff00ff;
if ((value & 0xff) == 0x00) /* MAX_CHANNEL_FIFO_DEPTH */
fprintf(stderr, "%s: wrong FIFO depth in GCR\n", __FUNCTION__);
return;
case 0x80 ... 0xfff:
addr -= 0x80;
chnum = addr / 0x60;
ch = s->ch + chnum;
addr -= chnum * 0x60;
break;
case 0x00: /* DMA4_REVISION */
case 0x28: /* DMA4_SYSSTATUS */
case 0x64: /* DMA4_CAPS_0 */
case 0x6c: /* DMA4_CAPS_2 */
case 0x70: /* DMA4_CAPS_3 */
case 0x74: /* DMA4_CAPS_4 */
OMAP_RO_REG(addr);
return;
default:
OMAP_BAD_REG(addr);
return;
}
/* Per-channel registers */
switch (addr) {
case 0x00: /* DMA4_CCR */
ch->buf_disable = (value >> 25) & 1;
ch->src_sync = (value >> 24) & 1; /* XXX For CamDMA must be 1 */
if (ch->buf_disable && !ch->src_sync)
fprintf(stderr, "%s: Buffering disable is not allowed in "
"destination synchronised mode\n", __FUNCTION__);
ch->prefetch = (value >> 23) & 1;
ch->bs = (value >> 18) & 1;
ch->transparent_copy = (value >> 17) & 1;
ch->constant_fill = (value >> 16) & 1;
ch->mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14);
ch->mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12);
ch->suspend = (value & 0x0100) >> 8;
ch->priority = (value & 0x0040) >> 6;
ch->fs = (value & 0x0020) >> 5;
if (ch->fs && ch->bs && ch->mode[0] && ch->mode[1])
fprintf(stderr, "%s: For a packet transfer at least one port "
"must be constant-addressed\n", __FUNCTION__);
ch->sync = (value & 0x001f) | ((value >> 14) & 0x0060);
/* XXX must be 0x01 for CamDMA */
if (value & 0x0080)
omap_dma_enable_channel(s, ch);
else
omap_dma_disable_channel(s, ch);
break;
case 0x04: /* DMA4_CLNK_CTRL */
ch->link_enabled = (value >> 15) & 0x1;
ch->link_next_ch = value & 0x1f;
break;
case 0x08: /* DMA4_CICR */
ch->interrupts = value & 0x09be;
break;
case 0x0c: /* DMA4_CSR */
ch->cstatus &= ~value;
break;
case 0x10: /* DMA4_CSDP */
ch->endian[0] =(value >> 21) & 1;
ch->endian_lock[0] =(value >> 20) & 1;
ch->endian[1] =(value >> 19) & 1;
ch->endian_lock[1] =(value >> 18) & 1;
if (ch->endian[0] != ch->endian[1])
fprintf(stderr, "%s: DMA endiannes conversion enable attempt\n",
__FUNCTION__);
ch->write_mode = (value >> 16) & 3;
ch->burst[1] = (value & 0xc000) >> 14;
ch->pack[1] = (value & 0x2000) >> 13;
ch->translate[1] = (value & 0x1e00) >> 9;
ch->burst[0] = (value & 0x0180) >> 7;
ch->pack[0] = (value & 0x0040) >> 6;
ch->translate[0] = (value & 0x003c) >> 2;
if (ch->translate[0] | ch->translate[1])
fprintf(stderr, "%s: bad MReqAddressTranslate sideband signal\n",
__FUNCTION__);
ch->data_type = 1 << (value & 3);
if ((value & 3) == 3)
printf("%s: bad data_type for DMA channel\n", __FUNCTION__);
break;
case 0x14: /* DMA4_CEN */
ch->set_update = 1;
ch->elements = value & 0xffffff;
break;
case 0x18: /* DMA4_CFN */
ch->frames = value & 0xffff;
ch->set_update = 1;
break;
case 0x1c: /* DMA4_CSSA */
ch->addr[0] = (target_phys_addr_t) (uint32_t) value;
ch->set_update = 1;
break;
case 0x20: /* DMA4_CDSA */
ch->addr[1] = (target_phys_addr_t) (uint32_t) value;
ch->set_update = 1;
break;
case 0x24: /* DMA4_CSEI */
ch->element_index[0] = (int16_t) value;
ch->set_update = 1;
break;
case 0x28: /* DMA4_CSFI */
ch->frame_index[0] = (int32_t) value;
ch->set_update = 1;
break;
case 0x2c: /* DMA4_CDEI */
ch->element_index[1] = (int16_t) value;
ch->set_update = 1;
break;
case 0x30: /* DMA4_CDFI */
ch->frame_index[1] = (int32_t) value;
ch->set_update = 1;
break;
case 0x44: /* DMA4_COLOR */
/* XXX only in sDMA */
ch->color = value;
break;
case 0x34: /* DMA4_CSAC */
case 0x38: /* DMA4_CDAC */
case 0x3c: /* DMA4_CCEN */
case 0x40: /* DMA4_CCFN */
OMAP_RO_REG(addr);
break;
default:
OMAP_BAD_REG(addr);
}
}
static CPUReadMemoryFunc * const omap_dma4_readfn[] = {
omap_badwidth_read16,
omap_dma4_read,
omap_dma4_read,
};
static CPUWriteMemoryFunc * const omap_dma4_writefn[] = {
omap_badwidth_write16,
omap_dma4_write,
omap_dma4_write,
};
struct soc_dma_s *omap_dma4_init(target_phys_addr_t base, qemu_irq *irqs,
struct omap_mpu_state_s *mpu, int fifo,
int chans, omap_clk iclk, omap_clk fclk)
{
int iomemtype, i;
struct omap_dma_s *s = (struct omap_dma_s *)
qemu_mallocz(sizeof(struct omap_dma_s));
s->model = omap_dma_4;
s->chans = chans;
s->mpu = mpu;
s->clk = fclk;
s->dma = soc_dma_init(s->chans);
s->dma->freq = omap_clk_getrate(fclk);
s->dma->transfer_fn = omap_dma_transfer_generic;
s->dma->setup_fn = omap_dma_transfer_setup;
s->dma->drq = qemu_allocate_irqs(omap_dma_request, s, 64);
s->dma->opaque = s;
for (i = 0; i < s->chans; i ++) {
s->ch[i].dma = &s->dma->ch[i];
s->dma->ch[i].opaque = &s->ch[i];
}
memcpy(&s->irq, irqs, sizeof(s->irq));
s->intr_update = omap_dma_interrupts_4_update;
omap_dma_setcaps(s);
omap_clk_adduser(s->clk, qemu_allocate_irqs(omap_dma_clk_update, s, 1)[0]);
omap_dma_reset(s->dma);
omap_dma_clk_update(s, 0, !!s->dma->freq);
iomemtype = cpu_register_io_memory(omap_dma4_readfn,
omap_dma4_writefn, s);
cpu_register_physical_memory(base, 0x1000, iomemtype);
mpu->drq = s->dma->drq;
return s->dma;
}
struct omap_dma_lcd_channel_s *omap_dma_get_lcdch(struct soc_dma_s *dma)
{
struct omap_dma_s *s = dma->opaque;
return &s->lcd_ch;
}