| |
| /*============================================================================ |
| |
| This C source fragment is part of the SoftFloat IEC/IEEE Floating-point |
| Arithmetic Package, Release 2b. |
| |
| Written by John R. Hauser. This work was made possible in part by the |
| International Computer Science Institute, located at Suite 600, 1947 Center |
| Street, Berkeley, California 94704. Funding was partially provided by the |
| National Science Foundation under grant MIP-9311980. The original version |
| of this code was written as part of a project to build a fixed-point vector |
| processor in collaboration with the University of California at Berkeley, |
| overseen by Profs. Nelson Morgan and John Wawrzynek. More information |
| is available through the Web page `http://www.cs.berkeley.edu/~jhauser/ |
| arithmetic/SoftFloat.html'. |
| |
| THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has |
| been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES |
| RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS |
| AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, |
| COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE |
| EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE |
| INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR |
| OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE. |
| |
| Derivative works are acceptable, even for commercial purposes, so long as |
| (1) the source code for the derivative work includes prominent notice that |
| the work is derivative, and (2) the source code includes prominent notice with |
| these four paragraphs for those parts of this code that are retained. |
| |
| =============================================================================*/ |
| |
| #if defined(TARGET_MIPS) || defined(TARGET_HPPA) |
| #define SNAN_BIT_IS_ONE 1 |
| #else |
| #define SNAN_BIT_IS_ONE 0 |
| #endif |
| |
| /*---------------------------------------------------------------------------- |
| | Underflow tininess-detection mode, statically initialized to default value. |
| | (The declaration in `softfloat.h' must match the `int8' type here.) |
| *----------------------------------------------------------------------------*/ |
| int8 float_detect_tininess = float_tininess_after_rounding; |
| |
| /*---------------------------------------------------------------------------- |
| | Raises the exceptions specified by `flags'. Floating-point traps can be |
| | defined here if desired. It is currently not possible for such a trap |
| | to substitute a result value. If traps are not implemented, this routine |
| | should be simply `float_exception_flags |= flags;'. |
| *----------------------------------------------------------------------------*/ |
| |
| void float_raise( int8 flags STATUS_PARAM ) |
| { |
| STATUS(float_exception_flags) |= flags; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Internal canonical NaN format. |
| *----------------------------------------------------------------------------*/ |
| typedef struct { |
| flag sign; |
| bits64 high, low; |
| } commonNaNT; |
| |
| /*---------------------------------------------------------------------------- |
| | The pattern for a default generated single-precision NaN. |
| *----------------------------------------------------------------------------*/ |
| #if SNAN_BIT_IS_ONE |
| #define float32_default_nan make_float32(0x7FBFFFFF) |
| #else |
| #define float32_default_nan make_float32(0xFFC00000) |
| #endif |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the single-precision floating-point value `a' is a quiet |
| | NaN; otherwise returns 0. |
| *----------------------------------------------------------------------------*/ |
| |
| int float32_is_nan( float32 a_ ) |
| { |
| uint32_t a = float32_val(a_); |
| #if SNAN_BIT_IS_ONE |
| return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); |
| #else |
| return ( 0xFF800000 <= (bits32) ( a<<1 ) ); |
| #endif |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the single-precision floating-point value `a' is a signaling |
| | NaN; otherwise returns 0. |
| *----------------------------------------------------------------------------*/ |
| |
| int float32_is_signaling_nan( float32 a_ ) |
| { |
| uint32_t a = float32_val(a_); |
| #if SNAN_BIT_IS_ONE |
| return ( 0xFF800000 <= (bits32) ( a<<1 ) ); |
| #else |
| return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); |
| #endif |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the single-precision floating-point NaN |
| | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid |
| | exception is raised. |
| *----------------------------------------------------------------------------*/ |
| |
| static commonNaNT float32ToCommonNaN( float32 a STATUS_PARAM ) |
| { |
| commonNaNT z; |
| |
| if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR ); |
| z.sign = float32_val(a)>>31; |
| z.low = 0; |
| z.high = ( (bits64) float32_val(a) )<<41; |
| return z; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the canonical NaN `a' to the single- |
| | precision floating-point format. |
| *----------------------------------------------------------------------------*/ |
| |
| static float32 commonNaNToFloat32( commonNaNT a ) |
| { |
| return make_float32( |
| ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 ) ); |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Takes two single-precision floating-point values `a' and `b', one of which |
| | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a |
| | signaling NaN, the invalid exception is raised. |
| *----------------------------------------------------------------------------*/ |
| |
| static float32 propagateFloat32NaN( float32 a, float32 b STATUS_PARAM) |
| { |
| flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; |
| bits32 av, bv, res; |
| |
| aIsNaN = float32_is_nan( a ); |
| aIsSignalingNaN = float32_is_signaling_nan( a ); |
| bIsNaN = float32_is_nan( b ); |
| bIsSignalingNaN = float32_is_signaling_nan( b ); |
| av = float32_val(a); |
| bv = float32_val(b); |
| #if SNAN_BIT_IS_ONE |
| av &= ~0x00400000; |
| bv &= ~0x00400000; |
| #else |
| av |= 0x00400000; |
| bv |= 0x00400000; |
| #endif |
| if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR); |
| if ( aIsSignalingNaN ) { |
| if ( bIsSignalingNaN ) goto returnLargerSignificand; |
| res = bIsNaN ? bv : av; |
| } |
| else if ( aIsNaN ) { |
| if ( bIsSignalingNaN | ! bIsNaN ) |
| res = av; |
| else { |
| returnLargerSignificand: |
| if ( (bits32) ( av<<1 ) < (bits32) ( bv<<1 ) ) |
| res = bv; |
| else if ( (bits32) ( bv<<1 ) < (bits32) ( av<<1 ) ) |
| res = av; |
| else |
| res = ( av < bv ) ? av : bv; |
| } |
| } |
| else { |
| res = bv; |
| } |
| return make_float32(res); |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | The pattern for a default generated double-precision NaN. |
| *----------------------------------------------------------------------------*/ |
| #if SNAN_BIT_IS_ONE |
| #define float64_default_nan make_float64(LIT64( 0x7FF7FFFFFFFFFFFF )) |
| #else |
| #define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 )) |
| #endif |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the double-precision floating-point value `a' is a quiet |
| | NaN; otherwise returns 0. |
| *----------------------------------------------------------------------------*/ |
| |
| int float64_is_nan( float64 a_ ) |
| { |
| bits64 a = float64_val(a_); |
| #if SNAN_BIT_IS_ONE |
| return |
| ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) |
| && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); |
| #else |
| return ( LIT64( 0xFFF0000000000000 ) <= (bits64) ( a<<1 ) ); |
| #endif |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the double-precision floating-point value `a' is a signaling |
| | NaN; otherwise returns 0. |
| *----------------------------------------------------------------------------*/ |
| |
| int float64_is_signaling_nan( float64 a_ ) |
| { |
| bits64 a = float64_val(a_); |
| #if SNAN_BIT_IS_ONE |
| return ( LIT64( 0xFFF0000000000000 ) <= (bits64) ( a<<1 ) ); |
| #else |
| return |
| ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) |
| && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); |
| #endif |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the double-precision floating-point NaN |
| | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid |
| | exception is raised. |
| *----------------------------------------------------------------------------*/ |
| |
| static commonNaNT float64ToCommonNaN( float64 a STATUS_PARAM) |
| { |
| commonNaNT z; |
| |
| if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR); |
| z.sign = float64_val(a)>>63; |
| z.low = 0; |
| z.high = float64_val(a)<<12; |
| return z; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the canonical NaN `a' to the double- |
| | precision floating-point format. |
| *----------------------------------------------------------------------------*/ |
| |
| static float64 commonNaNToFloat64( commonNaNT a ) |
| { |
| return make_float64( |
| ( ( (bits64) a.sign )<<63 ) |
| | LIT64( 0x7FF8000000000000 ) |
| | ( a.high>>12 )); |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Takes two double-precision floating-point values `a' and `b', one of which |
| | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a |
| | signaling NaN, the invalid exception is raised. |
| *----------------------------------------------------------------------------*/ |
| |
| static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM) |
| { |
| flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; |
| bits64 av, bv, res; |
| |
| aIsNaN = float64_is_nan( a ); |
| aIsSignalingNaN = float64_is_signaling_nan( a ); |
| bIsNaN = float64_is_nan( b ); |
| bIsSignalingNaN = float64_is_signaling_nan( b ); |
| av = float64_val(a); |
| bv = float64_val(b); |
| #if SNAN_BIT_IS_ONE |
| av &= ~LIT64( 0x0008000000000000 ); |
| bv &= ~LIT64( 0x0008000000000000 ); |
| #else |
| av |= LIT64( 0x0008000000000000 ); |
| bv |= LIT64( 0x0008000000000000 ); |
| #endif |
| if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR); |
| if ( aIsSignalingNaN ) { |
| if ( bIsSignalingNaN ) goto returnLargerSignificand; |
| res = bIsNaN ? bv : av; |
| } |
| else if ( aIsNaN ) { |
| if ( bIsSignalingNaN | ! bIsNaN ) |
| res = av; |
| else { |
| returnLargerSignificand: |
| if ( (bits64) ( av<<1 ) < (bits64) ( bv<<1 ) ) |
| res = bv; |
| else if ( (bits64) ( bv<<1 ) < (bits64) ( av<<1 ) ) |
| res = av; |
| else |
| res = ( av < bv ) ? av : bv; |
| } |
| } |
| else { |
| res = bv; |
| } |
| return make_float64(res); |
| } |
| |
| #ifdef FLOATX80 |
| |
| /*---------------------------------------------------------------------------- |
| | The pattern for a default generated extended double-precision NaN. The |
| | `high' and `low' values hold the most- and least-significant bits, |
| | respectively. |
| *----------------------------------------------------------------------------*/ |
| #if SNAN_BIT_IS_ONE |
| #define floatx80_default_nan_high 0x7FFF |
| #define floatx80_default_nan_low LIT64( 0xBFFFFFFFFFFFFFFF ) |
| #else |
| #define floatx80_default_nan_high 0xFFFF |
| #define floatx80_default_nan_low LIT64( 0xC000000000000000 ) |
| #endif |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the extended double-precision floating-point value `a' is a |
| | quiet NaN; otherwise returns 0. |
| *----------------------------------------------------------------------------*/ |
| |
| int floatx80_is_nan( floatx80 a ) |
| { |
| #if SNAN_BIT_IS_ONE |
| bits64 aLow; |
| |
| aLow = a.low & ~ LIT64( 0x4000000000000000 ); |
| return |
| ( ( a.high & 0x7FFF ) == 0x7FFF ) |
| && (bits64) ( aLow<<1 ) |
| && ( a.low == aLow ); |
| #else |
| return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 ); |
| #endif |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the extended double-precision floating-point value `a' is a |
| | signaling NaN; otherwise returns 0. |
| *----------------------------------------------------------------------------*/ |
| |
| int floatx80_is_signaling_nan( floatx80 a ) |
| { |
| #if SNAN_BIT_IS_ONE |
| return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 ); |
| #else |
| bits64 aLow; |
| |
| aLow = a.low & ~ LIT64( 0x4000000000000000 ); |
| return |
| ( ( a.high & 0x7FFF ) == 0x7FFF ) |
| && (bits64) ( aLow<<1 ) |
| && ( a.low == aLow ); |
| #endif |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the extended double-precision floating- |
| | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the |
| | invalid exception is raised. |
| *----------------------------------------------------------------------------*/ |
| |
| static commonNaNT floatx80ToCommonNaN( floatx80 a STATUS_PARAM) |
| { |
| commonNaNT z; |
| |
| if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR); |
| z.sign = a.high>>15; |
| z.low = 0; |
| z.high = a.low<<1; |
| return z; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the canonical NaN `a' to the extended |
| | double-precision floating-point format. |
| *----------------------------------------------------------------------------*/ |
| |
| static floatx80 commonNaNToFloatx80( commonNaNT a ) |
| { |
| floatx80 z; |
| |
| z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 ); |
| z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF; |
| return z; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Takes two extended double-precision floating-point values `a' and `b', one |
| | of which is a NaN, and returns the appropriate NaN result. If either `a' or |
| | `b' is a signaling NaN, the invalid exception is raised. |
| *----------------------------------------------------------------------------*/ |
| |
| static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM) |
| { |
| flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; |
| |
| aIsNaN = floatx80_is_nan( a ); |
| aIsSignalingNaN = floatx80_is_signaling_nan( a ); |
| bIsNaN = floatx80_is_nan( b ); |
| bIsSignalingNaN = floatx80_is_signaling_nan( b ); |
| #if SNAN_BIT_IS_ONE |
| a.low &= ~LIT64( 0xC000000000000000 ); |
| b.low &= ~LIT64( 0xC000000000000000 ); |
| #else |
| a.low |= LIT64( 0xC000000000000000 ); |
| b.low |= LIT64( 0xC000000000000000 ); |
| #endif |
| if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR); |
| if ( aIsSignalingNaN ) { |
| if ( bIsSignalingNaN ) goto returnLargerSignificand; |
| return bIsNaN ? b : a; |
| } |
| else if ( aIsNaN ) { |
| if ( bIsSignalingNaN | ! bIsNaN ) return a; |
| returnLargerSignificand: |
| if ( a.low < b.low ) return b; |
| if ( b.low < a.low ) return a; |
| return ( a.high < b.high ) ? a : b; |
| } |
| else { |
| return b; |
| } |
| } |
| |
| #endif |
| |
| #ifdef FLOAT128 |
| |
| /*---------------------------------------------------------------------------- |
| | The pattern for a default generated quadruple-precision NaN. The `high' and |
| | `low' values hold the most- and least-significant bits, respectively. |
| *----------------------------------------------------------------------------*/ |
| #if SNAN_BIT_IS_ONE |
| #define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF ) |
| #define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF ) |
| #else |
| #define float128_default_nan_high LIT64( 0xFFFF800000000000 ) |
| #define float128_default_nan_low LIT64( 0x0000000000000000 ) |
| #endif |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the quadruple-precision floating-point value `a' is a quiet |
| | NaN; otherwise returns 0. |
| *----------------------------------------------------------------------------*/ |
| |
| int float128_is_nan( float128 a ) |
| { |
| #if SNAN_BIT_IS_ONE |
| return |
| ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE ) |
| && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) ); |
| #else |
| return |
| ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) ) |
| && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) ); |
| #endif |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the quadruple-precision floating-point value `a' is a |
| | signaling NaN; otherwise returns 0. |
| *----------------------------------------------------------------------------*/ |
| |
| int float128_is_signaling_nan( float128 a ) |
| { |
| #if SNAN_BIT_IS_ONE |
| return |
| ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) ) |
| && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) ); |
| #else |
| return |
| ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE ) |
| && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) ); |
| #endif |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the quadruple-precision floating-point NaN |
| | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid |
| | exception is raised. |
| *----------------------------------------------------------------------------*/ |
| |
| static commonNaNT float128ToCommonNaN( float128 a STATUS_PARAM) |
| { |
| commonNaNT z; |
| |
| if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR); |
| z.sign = a.high>>63; |
| shortShift128Left( a.high, a.low, 16, &z.high, &z.low ); |
| return z; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the canonical NaN `a' to the quadruple- |
| | precision floating-point format. |
| *----------------------------------------------------------------------------*/ |
| |
| static float128 commonNaNToFloat128( commonNaNT a ) |
| { |
| float128 z; |
| |
| shift128Right( a.high, a.low, 16, &z.high, &z.low ); |
| z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 ); |
| return z; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Takes two quadruple-precision floating-point values `a' and `b', one of |
| | which is a NaN, and returns the appropriate NaN result. If either `a' or |
| | `b' is a signaling NaN, the invalid exception is raised. |
| *----------------------------------------------------------------------------*/ |
| |
| static float128 propagateFloat128NaN( float128 a, float128 b STATUS_PARAM) |
| { |
| flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; |
| |
| aIsNaN = float128_is_nan( a ); |
| aIsSignalingNaN = float128_is_signaling_nan( a ); |
| bIsNaN = float128_is_nan( b ); |
| bIsSignalingNaN = float128_is_signaling_nan( b ); |
| #if SNAN_BIT_IS_ONE |
| a.high &= ~LIT64( 0x0000800000000000 ); |
| b.high &= ~LIT64( 0x0000800000000000 ); |
| #else |
| a.high |= LIT64( 0x0000800000000000 ); |
| b.high |= LIT64( 0x0000800000000000 ); |
| #endif |
| if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR); |
| if ( aIsSignalingNaN ) { |
| if ( bIsSignalingNaN ) goto returnLargerSignificand; |
| return bIsNaN ? b : a; |
| } |
| else if ( aIsNaN ) { |
| if ( bIsSignalingNaN | ! bIsNaN ) return a; |
| returnLargerSignificand: |
| if ( lt128( a.high<<1, a.low, b.high<<1, b.low ) ) return b; |
| if ( lt128( b.high<<1, b.low, a.high<<1, a.low ) ) return a; |
| return ( a.high < b.high ) ? a : b; |
| } |
| else { |
| return b; |
| } |
| } |
| |
| #endif |