| /* |
| * QEMU NVM Express Controller |
| * |
| * Copyright (c) 2012, Intel Corporation |
| * |
| * Written by Keith Busch <keith.busch@intel.com> |
| * |
| * This code is licensed under the GNU GPL v2 or later. |
| */ |
| |
| /** |
| * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e |
| * |
| * https://nvmexpress.org/developers/nvme-specification/ |
| * |
| * |
| * Notes on coding style |
| * --------------------- |
| * While QEMU coding style prefers lowercase hexadecimals in constants, the |
| * NVMe subsystem use thes format from the NVMe specifications in the comments |
| * (i.e. 'h' suffix instead of '0x' prefix). |
| * |
| * Usage |
| * ----- |
| * See docs/system/nvme.rst for extensive documentation. |
| * |
| * Add options: |
| * -drive file=<file>,if=none,id=<drive_id> |
| * -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id> |
| * -device nvme,serial=<serial>,id=<bus_name>, \ |
| * cmb_size_mb=<cmb_size_mb[optional]>, \ |
| * [pmrdev=<mem_backend_file_id>,] \ |
| * max_ioqpairs=<N[optional]>, \ |
| * aerl=<N[optional]>,aer_max_queued=<N[optional]>, \ |
| * mdts=<N[optional]>,vsl=<N[optional]>, \ |
| * zoned.zasl=<N[optional]>, \ |
| * zoned.auto_transition=<on|off[optional]>, \ |
| * subsys=<subsys_id> |
| * -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\ |
| * zoned=<true|false[optional]>, \ |
| * subsys=<subsys_id>,detached=<true|false[optional]> |
| * |
| * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at |
| * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the |
| * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to |
| * always enable the CMBLOC and CMBSZ registers (v1.3 behavior). |
| * |
| * Enabling pmr emulation can be achieved by pointing to memory-backend-file. |
| * For example: |
| * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \ |
| * size=<size> .... -device nvme,...,pmrdev=<mem_id> |
| * |
| * The PMR will use BAR 4/5 exclusively. |
| * |
| * To place controller(s) and namespace(s) to a subsystem, then provide |
| * nvme-subsys device as above. |
| * |
| * nvme subsystem device parameters |
| * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| * - `nqn` |
| * This parameter provides the `<nqn_id>` part of the string |
| * `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field |
| * of subsystem controllers. Note that `<nqn_id>` should be unique per |
| * subsystem, but this is not enforced by QEMU. If not specified, it will |
| * default to the value of the `id` parameter (`<subsys_id>`). |
| * |
| * nvme device parameters |
| * ~~~~~~~~~~~~~~~~~~~~~~ |
| * - `subsys` |
| * Specifying this parameter attaches the controller to the subsystem and |
| * the SUBNQN field in the controller will report the NQN of the subsystem |
| * device. This also enables multi controller capability represented in |
| * Identify Controller data structure in CMIC (Controller Multi-path I/O and |
| * Namesapce Sharing Capabilities). |
| * |
| * - `aerl` |
| * The Asynchronous Event Request Limit (AERL). Indicates the maximum number |
| * of concurrently outstanding Asynchronous Event Request commands support |
| * by the controller. This is a 0's based value. |
| * |
| * - `aer_max_queued` |
| * This is the maximum number of events that the device will enqueue for |
| * completion when there are no outstanding AERs. When the maximum number of |
| * enqueued events are reached, subsequent events will be dropped. |
| * |
| * - `mdts` |
| * Indicates the maximum data transfer size for a command that transfers data |
| * between host-accessible memory and the controller. The value is specified |
| * as a power of two (2^n) and is in units of the minimum memory page size |
| * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB). |
| * |
| * - `vsl` |
| * Indicates the maximum data size limit for the Verify command. Like `mdts`, |
| * this value is specified as a power of two (2^n) and is in units of the |
| * minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512 |
| * KiB). |
| * |
| * - `zoned.zasl` |
| * Indicates the maximum data transfer size for the Zone Append command. Like |
| * `mdts`, the value is specified as a power of two (2^n) and is in units of |
| * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e. |
| * defaulting to the value of `mdts`). |
| * |
| * - `zoned.auto_transition` |
| * Indicates if zones in zone state implicitly opened can be automatically |
| * transitioned to zone state closed for resource management purposes. |
| * Defaults to 'on'. |
| * |
| * nvme namespace device parameters |
| * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| * - `shared` |
| * When the parent nvme device (as defined explicitly by the 'bus' parameter |
| * or implicitly by the most recently defined NvmeBus) is linked to an |
| * nvme-subsys device, the namespace will be attached to all controllers in |
| * the subsystem. If set to 'off' (the default), the namespace will remain a |
| * private namespace and may only be attached to a single controller at a |
| * time. |
| * |
| * - `detached` |
| * This parameter is only valid together with the `subsys` parameter. If left |
| * at the default value (`false/off`), the namespace will be attached to all |
| * controllers in the NVMe subsystem at boot-up. If set to `true/on`, the |
| * namespace will be be available in the subsystem not not attached to any |
| * controllers. |
| * |
| * Setting `zoned` to true selects Zoned Command Set at the namespace. |
| * In this case, the following namespace properties are available to configure |
| * zoned operation: |
| * zoned.zone_size=<zone size in bytes, default: 128MiB> |
| * The number may be followed by K, M, G as in kilo-, mega- or giga-. |
| * |
| * zoned.zone_capacity=<zone capacity in bytes, default: zone size> |
| * The value 0 (default) forces zone capacity to be the same as zone |
| * size. The value of this property may not exceed zone size. |
| * |
| * zoned.descr_ext_size=<zone descriptor extension size, default 0> |
| * This value needs to be specified in 64B units. If it is zero, |
| * namespace(s) will not support zone descriptor extensions. |
| * |
| * zoned.max_active=<Maximum Active Resources (zones), default: 0> |
| * The default value means there is no limit to the number of |
| * concurrently active zones. |
| * |
| * zoned.max_open=<Maximum Open Resources (zones), default: 0> |
| * The default value means there is no limit to the number of |
| * concurrently open zones. |
| * |
| * zoned.cross_read=<enable RAZB, default: false> |
| * Setting this property to true enables Read Across Zone Boundaries. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/cutils.h" |
| #include "qemu/error-report.h" |
| #include "qemu/log.h" |
| #include "qemu/units.h" |
| #include "qapi/error.h" |
| #include "qapi/visitor.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/block-backend.h" |
| #include "sysemu/hostmem.h" |
| #include "hw/pci/msix.h" |
| #include "migration/vmstate.h" |
| |
| #include "nvme.h" |
| #include "trace.h" |
| |
| #define NVME_MAX_IOQPAIRS 0xffff |
| #define NVME_DB_SIZE 4 |
| #define NVME_SPEC_VER 0x00010400 |
| #define NVME_CMB_BIR 2 |
| #define NVME_PMR_BIR 4 |
| #define NVME_TEMPERATURE 0x143 |
| #define NVME_TEMPERATURE_WARNING 0x157 |
| #define NVME_TEMPERATURE_CRITICAL 0x175 |
| #define NVME_NUM_FW_SLOTS 1 |
| #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB) |
| |
| #define NVME_GUEST_ERR(trace, fmt, ...) \ |
| do { \ |
| (trace_##trace)(__VA_ARGS__); \ |
| qemu_log_mask(LOG_GUEST_ERROR, #trace \ |
| " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \ |
| } while (0) |
| |
| static const bool nvme_feature_support[NVME_FID_MAX] = { |
| [NVME_ARBITRATION] = true, |
| [NVME_POWER_MANAGEMENT] = true, |
| [NVME_TEMPERATURE_THRESHOLD] = true, |
| [NVME_ERROR_RECOVERY] = true, |
| [NVME_VOLATILE_WRITE_CACHE] = true, |
| [NVME_NUMBER_OF_QUEUES] = true, |
| [NVME_INTERRUPT_COALESCING] = true, |
| [NVME_INTERRUPT_VECTOR_CONF] = true, |
| [NVME_WRITE_ATOMICITY] = true, |
| [NVME_ASYNCHRONOUS_EVENT_CONF] = true, |
| [NVME_TIMESTAMP] = true, |
| [NVME_COMMAND_SET_PROFILE] = true, |
| }; |
| |
| static const uint32_t nvme_feature_cap[NVME_FID_MAX] = { |
| [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE, |
| [NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS, |
| [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE, |
| [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE, |
| [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE, |
| [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE, |
| [NVME_COMMAND_SET_PROFILE] = NVME_FEAT_CAP_CHANGE, |
| }; |
| |
| static const uint32_t nvme_cse_acs[256] = { |
| [NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP, |
| [NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP, |
| [NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP, |
| [NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP, |
| [NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP, |
| [NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP, |
| [NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP, |
| [NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP, |
| [NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP, |
| [NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP, |
| [NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC, |
| [NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, |
| }; |
| |
| static const uint32_t nvme_cse_iocs_none[256]; |
| |
| static const uint32_t nvme_cse_iocs_nvm[256] = { |
| [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, |
| [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, |
| [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, |
| [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP, |
| [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, |
| [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP, |
| [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, |
| [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP, |
| }; |
| |
| static const uint32_t nvme_cse_iocs_zoned[256] = { |
| [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, |
| [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, |
| [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, |
| [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP, |
| [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, |
| [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP, |
| [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, |
| [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP, |
| [NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, |
| [NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, |
| [NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP, |
| }; |
| |
| static void nvme_process_sq(void *opaque); |
| |
| static uint16_t nvme_sqid(NvmeRequest *req) |
| { |
| return le16_to_cpu(req->sq->sqid); |
| } |
| |
| static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone, |
| NvmeZoneState state) |
| { |
| if (QTAILQ_IN_USE(zone, entry)) { |
| switch (nvme_get_zone_state(zone)) { |
| case NVME_ZONE_STATE_EXPLICITLY_OPEN: |
| QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry); |
| break; |
| case NVME_ZONE_STATE_IMPLICITLY_OPEN: |
| QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); |
| break; |
| case NVME_ZONE_STATE_CLOSED: |
| QTAILQ_REMOVE(&ns->closed_zones, zone, entry); |
| break; |
| case NVME_ZONE_STATE_FULL: |
| QTAILQ_REMOVE(&ns->full_zones, zone, entry); |
| default: |
| ; |
| } |
| } |
| |
| nvme_set_zone_state(zone, state); |
| |
| switch (state) { |
| case NVME_ZONE_STATE_EXPLICITLY_OPEN: |
| QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry); |
| break; |
| case NVME_ZONE_STATE_IMPLICITLY_OPEN: |
| QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry); |
| break; |
| case NVME_ZONE_STATE_CLOSED: |
| QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry); |
| break; |
| case NVME_ZONE_STATE_FULL: |
| QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry); |
| case NVME_ZONE_STATE_READ_ONLY: |
| break; |
| default: |
| zone->d.za = 0; |
| } |
| } |
| |
| /* |
| * Check if we can open a zone without exceeding open/active limits. |
| * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5). |
| */ |
| static int nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn) |
| { |
| if (ns->params.max_active_zones != 0 && |
| ns->nr_active_zones + act > ns->params.max_active_zones) { |
| trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones); |
| return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR; |
| } |
| if (ns->params.max_open_zones != 0 && |
| ns->nr_open_zones + opn > ns->params.max_open_zones) { |
| trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones); |
| return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR; |
| } |
| |
| return NVME_SUCCESS; |
| } |
| |
| static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr) |
| { |
| hwaddr hi, lo; |
| |
| if (!n->cmb.cmse) { |
| return false; |
| } |
| |
| lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba; |
| hi = lo + int128_get64(n->cmb.mem.size); |
| |
| return addr >= lo && addr < hi; |
| } |
| |
| static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr) |
| { |
| hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba; |
| return &n->cmb.buf[addr - base]; |
| } |
| |
| static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr) |
| { |
| hwaddr hi; |
| |
| if (!n->pmr.cmse) { |
| return false; |
| } |
| |
| hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size); |
| |
| return addr >= n->pmr.cba && addr < hi; |
| } |
| |
| static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr) |
| { |
| return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba); |
| } |
| |
| static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size) |
| { |
| hwaddr hi = addr + size - 1; |
| if (hi < addr) { |
| return 1; |
| } |
| |
| if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { |
| memcpy(buf, nvme_addr_to_cmb(n, addr), size); |
| return 0; |
| } |
| |
| if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) { |
| memcpy(buf, nvme_addr_to_pmr(n, addr), size); |
| return 0; |
| } |
| |
| return pci_dma_read(&n->parent_obj, addr, buf, size); |
| } |
| |
| static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, void *buf, int size) |
| { |
| hwaddr hi = addr + size - 1; |
| if (hi < addr) { |
| return 1; |
| } |
| |
| if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { |
| memcpy(nvme_addr_to_cmb(n, addr), buf, size); |
| return 0; |
| } |
| |
| if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) { |
| memcpy(nvme_addr_to_pmr(n, addr), buf, size); |
| return 0; |
| } |
| |
| return pci_dma_write(&n->parent_obj, addr, buf, size); |
| } |
| |
| static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid) |
| { |
| return nsid && |
| (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES); |
| } |
| |
| static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid) |
| { |
| return sqid < n->params.max_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1; |
| } |
| |
| static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid) |
| { |
| return cqid < n->params.max_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1; |
| } |
| |
| static void nvme_inc_cq_tail(NvmeCQueue *cq) |
| { |
| cq->tail++; |
| if (cq->tail >= cq->size) { |
| cq->tail = 0; |
| cq->phase = !cq->phase; |
| } |
| } |
| |
| static void nvme_inc_sq_head(NvmeSQueue *sq) |
| { |
| sq->head = (sq->head + 1) % sq->size; |
| } |
| |
| static uint8_t nvme_cq_full(NvmeCQueue *cq) |
| { |
| return (cq->tail + 1) % cq->size == cq->head; |
| } |
| |
| static uint8_t nvme_sq_empty(NvmeSQueue *sq) |
| { |
| return sq->head == sq->tail; |
| } |
| |
| static void nvme_irq_check(NvmeCtrl *n) |
| { |
| if (msix_enabled(&(n->parent_obj))) { |
| return; |
| } |
| if (~n->bar.intms & n->irq_status) { |
| pci_irq_assert(&n->parent_obj); |
| } else { |
| pci_irq_deassert(&n->parent_obj); |
| } |
| } |
| |
| static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq) |
| { |
| if (cq->irq_enabled) { |
| if (msix_enabled(&(n->parent_obj))) { |
| trace_pci_nvme_irq_msix(cq->vector); |
| msix_notify(&(n->parent_obj), cq->vector); |
| } else { |
| trace_pci_nvme_irq_pin(); |
| assert(cq->vector < 32); |
| n->irq_status |= 1 << cq->vector; |
| nvme_irq_check(n); |
| } |
| } else { |
| trace_pci_nvme_irq_masked(); |
| } |
| } |
| |
| static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq) |
| { |
| if (cq->irq_enabled) { |
| if (msix_enabled(&(n->parent_obj))) { |
| return; |
| } else { |
| assert(cq->vector < 32); |
| n->irq_status &= ~(1 << cq->vector); |
| nvme_irq_check(n); |
| } |
| } |
| } |
| |
| static void nvme_req_clear(NvmeRequest *req) |
| { |
| req->ns = NULL; |
| req->opaque = NULL; |
| req->aiocb = NULL; |
| memset(&req->cqe, 0x0, sizeof(req->cqe)); |
| req->status = NVME_SUCCESS; |
| } |
| |
| static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma) |
| { |
| if (dma) { |
| pci_dma_sglist_init(&sg->qsg, &n->parent_obj, 0); |
| sg->flags = NVME_SG_DMA; |
| } else { |
| qemu_iovec_init(&sg->iov, 0); |
| } |
| |
| sg->flags |= NVME_SG_ALLOC; |
| } |
| |
| static inline void nvme_sg_unmap(NvmeSg *sg) |
| { |
| if (!(sg->flags & NVME_SG_ALLOC)) { |
| return; |
| } |
| |
| if (sg->flags & NVME_SG_DMA) { |
| qemu_sglist_destroy(&sg->qsg); |
| } else { |
| qemu_iovec_destroy(&sg->iov); |
| } |
| |
| memset(sg, 0x0, sizeof(*sg)); |
| } |
| |
| /* |
| * When metadata is transfered as extended LBAs, the DPTR mapped into `sg` |
| * holds both data and metadata. This function splits the data and metadata |
| * into two separate QSG/IOVs. |
| */ |
| static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data, |
| NvmeSg *mdata) |
| { |
| NvmeSg *dst = data; |
| uint32_t trans_len, count = ns->lbasz; |
| uint64_t offset = 0; |
| bool dma = sg->flags & NVME_SG_DMA; |
| size_t sge_len; |
| size_t sg_len = dma ? sg->qsg.size : sg->iov.size; |
| int sg_idx = 0; |
| |
| assert(sg->flags & NVME_SG_ALLOC); |
| |
| while (sg_len) { |
| sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len; |
| |
| trans_len = MIN(sg_len, count); |
| trans_len = MIN(trans_len, sge_len - offset); |
| |
| if (dst) { |
| if (dma) { |
| qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset, |
| trans_len); |
| } else { |
| qemu_iovec_add(&dst->iov, |
| sg->iov.iov[sg_idx].iov_base + offset, |
| trans_len); |
| } |
| } |
| |
| sg_len -= trans_len; |
| count -= trans_len; |
| offset += trans_len; |
| |
| if (count == 0) { |
| dst = (dst == data) ? mdata : data; |
| count = (dst == data) ? ns->lbasz : ns->lbaf.ms; |
| } |
| |
| if (sge_len == offset) { |
| offset = 0; |
| sg_idx++; |
| } |
| } |
| } |
| |
| static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, |
| size_t len) |
| { |
| if (!len) { |
| return NVME_SUCCESS; |
| } |
| |
| trace_pci_nvme_map_addr_cmb(addr, len); |
| |
| if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) { |
| return NVME_DATA_TRAS_ERROR; |
| } |
| |
| qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len); |
| |
| return NVME_SUCCESS; |
| } |
| |
| static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, |
| size_t len) |
| { |
| if (!len) { |
| return NVME_SUCCESS; |
| } |
| |
| if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) { |
| return NVME_DATA_TRAS_ERROR; |
| } |
| |
| qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len); |
| |
| return NVME_SUCCESS; |
| } |
| |
| static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len) |
| { |
| bool cmb = false, pmr = false; |
| |
| if (!len) { |
| return NVME_SUCCESS; |
| } |
| |
| trace_pci_nvme_map_addr(addr, len); |
| |
| if (nvme_addr_is_cmb(n, addr)) { |
| cmb = true; |
| } else if (nvme_addr_is_pmr(n, addr)) { |
| pmr = true; |
| } |
| |
| if (cmb || pmr) { |
| if (sg->flags & NVME_SG_DMA) { |
| return NVME_INVALID_USE_OF_CMB | NVME_DNR; |
| } |
| |
| if (cmb) { |
| return nvme_map_addr_cmb(n, &sg->iov, addr, len); |
| } else { |
| return nvme_map_addr_pmr(n, &sg->iov, addr, len); |
| } |
| } |
| |
| if (!(sg->flags & NVME_SG_DMA)) { |
| return NVME_INVALID_USE_OF_CMB | NVME_DNR; |
| } |
| |
| qemu_sglist_add(&sg->qsg, addr, len); |
| |
| return NVME_SUCCESS; |
| } |
| |
| static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr) |
| { |
| return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr)); |
| } |
| |
| static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1, |
| uint64_t prp2, uint32_t len) |
| { |
| hwaddr trans_len = n->page_size - (prp1 % n->page_size); |
| trans_len = MIN(len, trans_len); |
| int num_prps = (len >> n->page_bits) + 1; |
| uint16_t status; |
| int ret; |
| |
| trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps); |
| |
| nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1)); |
| |
| status = nvme_map_addr(n, sg, prp1, trans_len); |
| if (status) { |
| goto unmap; |
| } |
| |
| len -= trans_len; |
| if (len) { |
| if (len > n->page_size) { |
| uint64_t prp_list[n->max_prp_ents]; |
| uint32_t nents, prp_trans; |
| int i = 0; |
| |
| /* |
| * The first PRP list entry, pointed to by PRP2 may contain offset. |
| * Hence, we need to calculate the number of entries in based on |
| * that offset. |
| */ |
| nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3; |
| prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t); |
| ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans); |
| if (ret) { |
| trace_pci_nvme_err_addr_read(prp2); |
| status = NVME_DATA_TRAS_ERROR; |
| goto unmap; |
| } |
| while (len != 0) { |
| uint64_t prp_ent = le64_to_cpu(prp_list[i]); |
| |
| if (i == nents - 1 && len > n->page_size) { |
| if (unlikely(prp_ent & (n->page_size - 1))) { |
| trace_pci_nvme_err_invalid_prplist_ent(prp_ent); |
| status = NVME_INVALID_PRP_OFFSET | NVME_DNR; |
| goto unmap; |
| } |
| |
| i = 0; |
| nents = (len + n->page_size - 1) >> n->page_bits; |
| nents = MIN(nents, n->max_prp_ents); |
| prp_trans = nents * sizeof(uint64_t); |
| ret = nvme_addr_read(n, prp_ent, (void *)prp_list, |
| prp_trans); |
| if (ret) { |
| trace_pci_nvme_err_addr_read(prp_ent); |
| status = NVME_DATA_TRAS_ERROR; |
| goto unmap; |
| } |
| prp_ent = le64_to_cpu(prp_list[i]); |
| } |
| |
| if (unlikely(prp_ent & (n->page_size - 1))) { |
| trace_pci_nvme_err_invalid_prplist_ent(prp_ent); |
| status = NVME_INVALID_PRP_OFFSET | NVME_DNR; |
| goto unmap; |
| } |
| |
| trans_len = MIN(len, n->page_size); |
| status = nvme_map_addr(n, sg, prp_ent, trans_len); |
| if (status) { |
| goto unmap; |
| } |
| |
| len -= trans_len; |
| i++; |
| } |
| } else { |
| if (unlikely(prp2 & (n->page_size - 1))) { |
| trace_pci_nvme_err_invalid_prp2_align(prp2); |
| status = NVME_INVALID_PRP_OFFSET | NVME_DNR; |
| goto unmap; |
| } |
| status = nvme_map_addr(n, sg, prp2, len); |
| if (status) { |
| goto unmap; |
| } |
| } |
| } |
| |
| return NVME_SUCCESS; |
| |
| unmap: |
| nvme_sg_unmap(sg); |
| return status; |
| } |
| |
| /* |
| * Map 'nsgld' data descriptors from 'segment'. The function will subtract the |
| * number of bytes mapped in len. |
| */ |
| static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg, |
| NvmeSglDescriptor *segment, uint64_t nsgld, |
| size_t *len, NvmeCmd *cmd) |
| { |
| dma_addr_t addr, trans_len; |
| uint32_t dlen; |
| uint16_t status; |
| |
| for (int i = 0; i < nsgld; i++) { |
| uint8_t type = NVME_SGL_TYPE(segment[i].type); |
| |
| switch (type) { |
| case NVME_SGL_DESCR_TYPE_BIT_BUCKET: |
| if (cmd->opcode == NVME_CMD_WRITE) { |
| continue; |
| } |
| case NVME_SGL_DESCR_TYPE_DATA_BLOCK: |
| break; |
| case NVME_SGL_DESCR_TYPE_SEGMENT: |
| case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: |
| return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR; |
| default: |
| return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR; |
| } |
| |
| dlen = le32_to_cpu(segment[i].len); |
| |
| if (!dlen) { |
| continue; |
| } |
| |
| if (*len == 0) { |
| /* |
| * All data has been mapped, but the SGL contains additional |
| * segments and/or descriptors. The controller might accept |
| * ignoring the rest of the SGL. |
| */ |
| uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls); |
| if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) { |
| break; |
| } |
| |
| trace_pci_nvme_err_invalid_sgl_excess_length(dlen); |
| return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; |
| } |
| |
| trans_len = MIN(*len, dlen); |
| |
| if (type == NVME_SGL_DESCR_TYPE_BIT_BUCKET) { |
| goto next; |
| } |
| |
| addr = le64_to_cpu(segment[i].addr); |
| |
| if (UINT64_MAX - addr < dlen) { |
| return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; |
| } |
| |
| status = nvme_map_addr(n, sg, addr, trans_len); |
| if (status) { |
| return status; |
| } |
| |
| next: |
| *len -= trans_len; |
| } |
| |
| return NVME_SUCCESS; |
| } |
| |
| static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl, |
| size_t len, NvmeCmd *cmd) |
| { |
| /* |
| * Read the segment in chunks of 256 descriptors (one 4k page) to avoid |
| * dynamically allocating a potentially huge SGL. The spec allows the SGL |
| * to be larger (as in number of bytes required to describe the SGL |
| * descriptors and segment chain) than the command transfer size, so it is |
| * not bounded by MDTS. |
| */ |
| const int SEG_CHUNK_SIZE = 256; |
| |
| NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld; |
| uint64_t nsgld; |
| uint32_t seg_len; |
| uint16_t status; |
| hwaddr addr; |
| int ret; |
| |
| sgld = &sgl; |
| addr = le64_to_cpu(sgl.addr); |
| |
| trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len); |
| |
| nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr)); |
| |
| /* |
| * If the entire transfer can be described with a single data block it can |
| * be mapped directly. |
| */ |
| if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) { |
| status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd); |
| if (status) { |
| goto unmap; |
| } |
| |
| goto out; |
| } |
| |
| for (;;) { |
| switch (NVME_SGL_TYPE(sgld->type)) { |
| case NVME_SGL_DESCR_TYPE_SEGMENT: |
| case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: |
| break; |
| default: |
| return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; |
| } |
| |
| seg_len = le32_to_cpu(sgld->len); |
| |
| /* check the length of the (Last) Segment descriptor */ |
| if ((!seg_len || seg_len & 0xf) && |
| (NVME_SGL_TYPE(sgld->type) != NVME_SGL_DESCR_TYPE_BIT_BUCKET)) { |
| return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; |
| } |
| |
| if (UINT64_MAX - addr < seg_len) { |
| return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; |
| } |
| |
| nsgld = seg_len / sizeof(NvmeSglDescriptor); |
| |
| while (nsgld > SEG_CHUNK_SIZE) { |
| if (nvme_addr_read(n, addr, segment, sizeof(segment))) { |
| trace_pci_nvme_err_addr_read(addr); |
| status = NVME_DATA_TRAS_ERROR; |
| goto unmap; |
| } |
| |
| status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE, |
| &len, cmd); |
| if (status) { |
| goto unmap; |
| } |
| |
| nsgld -= SEG_CHUNK_SIZE; |
| addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor); |
| } |
| |
| ret = nvme_addr_read(n, addr, segment, nsgld * |
| sizeof(NvmeSglDescriptor)); |
| if (ret) { |
| trace_pci_nvme_err_addr_read(addr); |
| status = NVME_DATA_TRAS_ERROR; |
| goto unmap; |
| } |
| |
| last_sgld = &segment[nsgld - 1]; |
| |
| /* |
| * If the segment ends with a Data Block or Bit Bucket Descriptor Type, |
| * then we are done. |
| */ |
| switch (NVME_SGL_TYPE(last_sgld->type)) { |
| case NVME_SGL_DESCR_TYPE_DATA_BLOCK: |
| case NVME_SGL_DESCR_TYPE_BIT_BUCKET: |
| status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd); |
| if (status) { |
| goto unmap; |
| } |
| |
| goto out; |
| |
| default: |
| break; |
| } |
| |
| /* |
| * If the last descriptor was not a Data Block or Bit Bucket, then the |
| * current segment must not be a Last Segment. |
| */ |
| if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) { |
| status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; |
| goto unmap; |
| } |
| |
| sgld = last_sgld; |
| addr = le64_to_cpu(sgld->addr); |
| |
| /* |
| * Do not map the last descriptor; it will be a Segment or Last Segment |
| * descriptor and is handled by the next iteration. |
| */ |
| status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd); |
| if (status) { |
| goto unmap; |
| } |
| } |
| |
| out: |
| /* if there is any residual left in len, the SGL was too short */ |
| if (len) { |
| status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR; |
| goto unmap; |
| } |
| |
| return NVME_SUCCESS; |
| |
| unmap: |
| nvme_sg_unmap(sg); |
| return status; |
| } |
| |
| uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len, |
| NvmeCmd *cmd) |
| { |
| uint64_t prp1, prp2; |
| |
| switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) { |
| case NVME_PSDT_PRP: |
| prp1 = le64_to_cpu(cmd->dptr.prp1); |
| prp2 = le64_to_cpu(cmd->dptr.prp2); |
| |
| return nvme_map_prp(n, sg, prp1, prp2, len); |
| case NVME_PSDT_SGL_MPTR_CONTIGUOUS: |
| case NVME_PSDT_SGL_MPTR_SGL: |
| return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd); |
| default: |
| return NVME_INVALID_FIELD; |
| } |
| } |
| |
| static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len, |
| NvmeCmd *cmd) |
| { |
| int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags); |
| hwaddr mptr = le64_to_cpu(cmd->mptr); |
| uint16_t status; |
| |
| if (psdt == NVME_PSDT_SGL_MPTR_SGL) { |
| NvmeSglDescriptor sgl; |
| |
| if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) { |
| return NVME_DATA_TRAS_ERROR; |
| } |
| |
| status = nvme_map_sgl(n, sg, sgl, len, cmd); |
| if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) { |
| status = NVME_MD_SGL_LEN_INVALID | NVME_DNR; |
| } |
| |
| return status; |
| } |
| |
| nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr)); |
| status = nvme_map_addr(n, sg, mptr, len); |
| if (status) { |
| nvme_sg_unmap(sg); |
| } |
| |
| return status; |
| } |
| |
| static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req) |
| { |
| NvmeNamespace *ns = req->ns; |
| NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; |
| uint16_t ctrl = le16_to_cpu(rw->control); |
| size_t len = nvme_l2b(ns, nlb); |
| uint16_t status; |
| |
| if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && |
| (ctrl & NVME_RW_PRINFO_PRACT && ns->lbaf.ms == 8)) { |
| goto out; |
| } |
| |
| if (nvme_ns_ext(ns)) { |
| NvmeSg sg; |
| |
| len += nvme_m2b(ns, nlb); |
| |
| status = nvme_map_dptr(n, &sg, len, &req->cmd); |
| if (status) { |
| return status; |
| } |
| |
| nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA); |
| nvme_sg_split(&sg, ns, &req->sg, NULL); |
| nvme_sg_unmap(&sg); |
| |
| return NVME_SUCCESS; |
| } |
| |
| out: |
| return nvme_map_dptr(n, &req->sg, len, &req->cmd); |
| } |
| |
| static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req) |
| { |
| NvmeNamespace *ns = req->ns; |
| size_t len = nvme_m2b(ns, nlb); |
| uint16_t status; |
| |
| if (nvme_ns_ext(ns)) { |
| NvmeSg sg; |
| |
| len += nvme_l2b(ns, nlb); |
| |
| status = nvme_map_dptr(n, &sg, len, &req->cmd); |
| if (status) { |
| return status; |
| } |
| |
| nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA); |
| nvme_sg_split(&sg, ns, NULL, &req->sg); |
| nvme_sg_unmap(&sg); |
| |
| return NVME_SUCCESS; |
| } |
| |
| return nvme_map_mptr(n, &req->sg, len, &req->cmd); |
| } |
| |
| static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr, |
| uint32_t len, uint32_t bytes, |
| int32_t skip_bytes, int64_t offset, |
| NvmeTxDirection dir) |
| { |
| hwaddr addr; |
| uint32_t trans_len, count = bytes; |
| bool dma = sg->flags & NVME_SG_DMA; |
| int64_t sge_len; |
| int sg_idx = 0; |
| int ret; |
| |
| assert(sg->flags & NVME_SG_ALLOC); |
| |
| while (len) { |
| sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len; |
| |
| if (sge_len - offset < 0) { |
| offset -= sge_len; |
| sg_idx++; |
| continue; |
| } |
| |
| if (sge_len == offset) { |
| offset = 0; |
| sg_idx++; |
| continue; |
| } |
| |
| trans_len = MIN(len, count); |
| trans_len = MIN(trans_len, sge_len - offset); |
| |
| if (dma) { |
| addr = sg->qsg.sg[sg_idx].base + offset; |
| } else { |
| addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset; |
| } |
| |
| if (dir == NVME_TX_DIRECTION_TO_DEVICE) { |
| ret = nvme_addr_read(n, addr, ptr, trans_len); |
| } else { |
| ret = nvme_addr_write(n, addr, ptr, trans_len); |
| } |
| |
| if (ret) { |
| return NVME_DATA_TRAS_ERROR; |
| } |
| |
| ptr += trans_len; |
| len -= trans_len; |
| count -= trans_len; |
| offset += trans_len; |
| |
| if (count == 0) { |
| count = bytes; |
| offset += skip_bytes; |
| } |
| } |
| |
| return NVME_SUCCESS; |
| } |
| |
| static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr, uint32_t len, |
| NvmeTxDirection dir) |
| { |
| assert(sg->flags & NVME_SG_ALLOC); |
| |
| if (sg->flags & NVME_SG_DMA) { |
| uint64_t residual; |
| |
| if (dir == NVME_TX_DIRECTION_TO_DEVICE) { |
| residual = dma_buf_write(ptr, len, &sg->qsg); |
| } else { |
| residual = dma_buf_read(ptr, len, &sg->qsg); |
| } |
| |
| if (unlikely(residual)) { |
| trace_pci_nvme_err_invalid_dma(); |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| } else { |
| size_t bytes; |
| |
| if (dir == NVME_TX_DIRECTION_TO_DEVICE) { |
| bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len); |
| } else { |
| bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len); |
| } |
| |
| if (unlikely(bytes != len)) { |
| trace_pci_nvme_err_invalid_dma(); |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| } |
| |
| return NVME_SUCCESS; |
| } |
| |
| static inline uint16_t nvme_c2h(NvmeCtrl *n, uint8_t *ptr, uint32_t len, |
| NvmeRequest *req) |
| { |
| uint16_t status; |
| |
| status = nvme_map_dptr(n, &req->sg, len, &req->cmd); |
| if (status) { |
| return status; |
| } |
| |
| return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE); |
| } |
| |
| static inline uint16_t nvme_h2c(NvmeCtrl *n, uint8_t *ptr, uint32_t len, |
| NvmeRequest *req) |
| { |
| uint16_t status; |
| |
| status = nvme_map_dptr(n, &req->sg, len, &req->cmd); |
| if (status) { |
| return status; |
| } |
| |
| return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE); |
| } |
| |
| uint16_t nvme_bounce_data(NvmeCtrl *n, uint8_t *ptr, uint32_t len, |
| NvmeTxDirection dir, NvmeRequest *req) |
| { |
| NvmeNamespace *ns = req->ns; |
| NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; |
| uint16_t ctrl = le16_to_cpu(rw->control); |
| |
| if (nvme_ns_ext(ns) && |
| !(ctrl & NVME_RW_PRINFO_PRACT && ns->lbaf.ms == 8)) { |
| return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz, |
| ns->lbaf.ms, 0, dir); |
| } |
| |
| return nvme_tx(n, &req->sg, ptr, len, dir); |
| } |
| |
| uint16_t nvme_bounce_mdata(NvmeCtrl *n, uint8_t *ptr, uint32_t len, |
| NvmeTxDirection dir, NvmeRequest *req) |
| { |
| NvmeNamespace *ns = req->ns; |
| uint16_t status; |
| |
| if (nvme_ns_ext(ns)) { |
| return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms, |
| ns->lbasz, ns->lbasz, dir); |
| } |
| |
| nvme_sg_unmap(&req->sg); |
| |
| status = nvme_map_mptr(n, &req->sg, len, &req->cmd); |
| if (status) { |
| return status; |
| } |
| |
| return nvme_tx(n, &req->sg, ptr, len, dir); |
| } |
| |
| static inline void nvme_blk_read(BlockBackend *blk, int64_t offset, |
| BlockCompletionFunc *cb, NvmeRequest *req) |
| { |
| assert(req->sg.flags & NVME_SG_ALLOC); |
| |
| if (req->sg.flags & NVME_SG_DMA) { |
| req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE, |
| cb, req); |
| } else { |
| req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req); |
| } |
| } |
| |
| static inline void nvme_blk_write(BlockBackend *blk, int64_t offset, |
| BlockCompletionFunc *cb, NvmeRequest *req) |
| { |
| assert(req->sg.flags & NVME_SG_ALLOC); |
| |
| if (req->sg.flags & NVME_SG_DMA) { |
| req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE, |
| cb, req); |
| } else { |
| req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req); |
| } |
| } |
| |
| static void nvme_post_cqes(void *opaque) |
| { |
| NvmeCQueue *cq = opaque; |
| NvmeCtrl *n = cq->ctrl; |
| NvmeRequest *req, *next; |
| int ret; |
| |
| QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) { |
| NvmeSQueue *sq; |
| hwaddr addr; |
| |
| if (nvme_cq_full(cq)) { |
| break; |
| } |
| |
| sq = req->sq; |
| req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase); |
| req->cqe.sq_id = cpu_to_le16(sq->sqid); |
| req->cqe.sq_head = cpu_to_le16(sq->head); |
| addr = cq->dma_addr + cq->tail * n->cqe_size; |
| ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe, |
| sizeof(req->cqe)); |
| if (ret) { |
| trace_pci_nvme_err_addr_write(addr); |
| trace_pci_nvme_err_cfs(); |
| n->bar.csts = NVME_CSTS_FAILED; |
| break; |
| } |
| QTAILQ_REMOVE(&cq->req_list, req, entry); |
| nvme_inc_cq_tail(cq); |
| nvme_sg_unmap(&req->sg); |
| QTAILQ_INSERT_TAIL(&sq->req_list, req, entry); |
| } |
| if (cq->tail != cq->head) { |
| nvme_irq_assert(n, cq); |
| } |
| } |
| |
| static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req) |
| { |
| assert(cq->cqid == req->sq->cqid); |
| trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid, |
| req->status); |
| |
| if (req->status) { |
| trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns), |
| req->status, req->cmd.opcode); |
| } |
| |
| QTAILQ_REMOVE(&req->sq->out_req_list, req, entry); |
| QTAILQ_INSERT_TAIL(&cq->req_list, req, entry); |
| timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500); |
| } |
| |
| static void nvme_process_aers(void *opaque) |
| { |
| NvmeCtrl *n = opaque; |
| NvmeAsyncEvent *event, *next; |
| |
| trace_pci_nvme_process_aers(n->aer_queued); |
| |
| QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) { |
| NvmeRequest *req; |
| NvmeAerResult *result; |
| |
| /* can't post cqe if there is nothing to complete */ |
| if (!n->outstanding_aers) { |
| trace_pci_nvme_no_outstanding_aers(); |
| break; |
| } |
| |
| /* ignore if masked (cqe posted, but event not cleared) */ |
| if (n->aer_mask & (1 << event->result.event_type)) { |
| trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask); |
| continue; |
| } |
| |
| QTAILQ_REMOVE(&n->aer_queue, event, entry); |
| n->aer_queued--; |
| |
| n->aer_mask |= 1 << event->result.event_type; |
| n->outstanding_aers--; |
| |
| req = n->aer_reqs[n->outstanding_aers]; |
| |
| result = (NvmeAerResult *) &req->cqe.result; |
| result->event_type = event->result.event_type; |
| result->event_info = event->result.event_info; |
| result->log_page = event->result.log_page; |
| g_free(event); |
| |
| trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info, |
| result->log_page); |
| |
| nvme_enqueue_req_completion(&n->admin_cq, req); |
| } |
| } |
| |
| static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type, |
| uint8_t event_info, uint8_t log_page) |
| { |
| NvmeAsyncEvent *event; |
| |
| trace_pci_nvme_enqueue_event(event_type, event_info, log_page); |
| |
| if (n->aer_queued == n->params.aer_max_queued) { |
| trace_pci_nvme_enqueue_event_noqueue(n->aer_queued); |
| return; |
| } |
| |
| event = g_new(NvmeAsyncEvent, 1); |
| event->result = (NvmeAerResult) { |
| .event_type = event_type, |
| .event_info = event_info, |
| .log_page = log_page, |
| }; |
| |
| QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry); |
| n->aer_queued++; |
| |
| nvme_process_aers(n); |
| } |
| |
| static void nvme_smart_event(NvmeCtrl *n, uint8_t event) |
| { |
| uint8_t aer_info; |
| |
| /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */ |
| if (!(NVME_AEC_SMART(n->features.async_config) & event)) { |
| return; |
| } |
| |
| switch (event) { |
| case NVME_SMART_SPARE: |
| aer_info = NVME_AER_INFO_SMART_SPARE_THRESH; |
| break; |
| case NVME_SMART_TEMPERATURE: |
| aer_info = NVME_AER_INFO_SMART_TEMP_THRESH; |
| break; |
| case NVME_SMART_RELIABILITY: |
| case NVME_SMART_MEDIA_READ_ONLY: |
| case NVME_SMART_FAILED_VOLATILE_MEDIA: |
| case NVME_SMART_PMR_UNRELIABLE: |
| aer_info = NVME_AER_INFO_SMART_RELIABILITY; |
| break; |
| default: |
| return; |
| } |
| |
| nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO); |
| } |
| |
| static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type) |
| { |
| n->aer_mask &= ~(1 << event_type); |
| if (!QTAILQ_EMPTY(&n->aer_queue)) { |
| nvme_process_aers(n); |
| } |
| } |
| |
| static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len) |
| { |
| uint8_t mdts = n->params.mdts; |
| |
| if (mdts && len > n->page_size << mdts) { |
| trace_pci_nvme_err_mdts(len); |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| return NVME_SUCCESS; |
| } |
| |
| static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba, |
| uint32_t nlb) |
| { |
| uint64_t nsze = le64_to_cpu(ns->id_ns.nsze); |
| |
| if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) { |
| trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze); |
| return NVME_LBA_RANGE | NVME_DNR; |
| } |
| |
| return NVME_SUCCESS; |
| } |
| |
| static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba, |
| uint32_t nlb, int flags) |
| { |
| BlockDriverState *bs = blk_bs(ns->blkconf.blk); |
| |
| int64_t pnum = 0, bytes = nvme_l2b(ns, nlb); |
| int64_t offset = nvme_l2b(ns, slba); |
| int ret; |
| |
| /* |
| * `pnum` holds the number of bytes after offset that shares the same |
| * allocation status as the byte at offset. If `pnum` is different from |
| * `bytes`, we should check the allocation status of the next range and |
| * continue this until all bytes have been checked. |
| */ |
| do { |
| bytes -= pnum; |
| |
| ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| |
| trace_pci_nvme_block_status(offset, bytes, pnum, ret, |
| !!(ret & BDRV_BLOCK_ZERO)); |
| |
| if (!(ret & flags)) { |
| return 1; |
| } |
| |
| offset += pnum; |
| } while (pnum != bytes); |
| |
| return 0; |
| } |
| |
| static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba, |
| uint32_t nlb) |
| { |
| int ret; |
| Error *err = NULL; |
| |
| ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA); |
| if (ret) { |
| if (ret < 0) { |
| error_setg_errno(&err, -ret, "unable to get block status"); |
| error_report_err(err); |
| |
| return NVME_INTERNAL_DEV_ERROR; |
| } |
| |
| return NVME_DULB; |
| } |
| |
| return NVME_SUCCESS; |
| } |
| |
| static void nvme_aio_err(NvmeRequest *req, int ret) |
| { |
| uint16_t status = NVME_SUCCESS; |
| Error *local_err = NULL; |
| |
| switch (req->cmd.opcode) { |
| case NVME_CMD_READ: |
| status = NVME_UNRECOVERED_READ; |
| break; |
| case NVME_CMD_FLUSH: |
| case NVME_CMD_WRITE: |
| case NVME_CMD_WRITE_ZEROES: |
| case NVME_CMD_ZONE_APPEND: |
| status = NVME_WRITE_FAULT; |
| break; |
| default: |
| status = NVME_INTERNAL_DEV_ERROR; |
| break; |
| } |
| |
| trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status); |
| |
| error_setg_errno(&local_err, -ret, "aio failed"); |
| error_report_err(local_err); |
| |
| /* |
| * Set the command status code to the first encountered error but allow a |
| * subsequent Internal Device Error to trump it. |
| */ |
| if (req->status && status != NVME_INTERNAL_DEV_ERROR) { |
| return; |
| } |
| |
| req->status = status; |
| } |
| |
| static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba) |
| { |
| return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 : |
| slba / ns->zone_size; |
| } |
| |
| static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba) |
| { |
| uint32_t zone_idx = nvme_zone_idx(ns, slba); |
| |
| if (zone_idx >= ns->num_zones) { |
| return NULL; |
| } |
| |
| return &ns->zone_array[zone_idx]; |
| } |
| |
| static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone) |
| { |
| uint64_t zslba = zone->d.zslba; |
| |
| switch (nvme_get_zone_state(zone)) { |
| case NVME_ZONE_STATE_EMPTY: |
| case NVME_ZONE_STATE_IMPLICITLY_OPEN: |
| case NVME_ZONE_STATE_EXPLICITLY_OPEN: |
| case NVME_ZONE_STATE_CLOSED: |
| return NVME_SUCCESS; |
| case NVME_ZONE_STATE_FULL: |
| trace_pci_nvme_err_zone_is_full(zslba); |
| return NVME_ZONE_FULL; |
| case NVME_ZONE_STATE_OFFLINE: |
| trace_pci_nvme_err_zone_is_offline(zslba); |
| return NVME_ZONE_OFFLINE; |
| case NVME_ZONE_STATE_READ_ONLY: |
| trace_pci_nvme_err_zone_is_read_only(zslba); |
| return NVME_ZONE_READ_ONLY; |
| default: |
| assert(false); |
| } |
| |
| return NVME_INTERNAL_DEV_ERROR; |
| } |
| |
| static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone, |
| uint64_t slba, uint32_t nlb) |
| { |
| uint64_t zcap = nvme_zone_wr_boundary(zone); |
| uint16_t status; |
| |
| status = nvme_check_zone_state_for_write(zone); |
| if (status) { |
| return status; |
| } |
| |
| if (unlikely(slba != zone->w_ptr)) { |
| trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba, zone->w_ptr); |
| return NVME_ZONE_INVALID_WRITE; |
| } |
| |
| if (unlikely((slba + nlb) > zcap)) { |
| trace_pci_nvme_err_zone_boundary(slba, nlb, zcap); |
| return NVME_ZONE_BOUNDARY_ERROR; |
| } |
| |
| return NVME_SUCCESS; |
| } |
| |
| static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone) |
| { |
| switch (nvme_get_zone_state(zone)) { |
| case NVME_ZONE_STATE_EMPTY: |
| case NVME_ZONE_STATE_IMPLICITLY_OPEN: |
| case NVME_ZONE_STATE_EXPLICITLY_OPEN: |
| case NVME_ZONE_STATE_FULL: |
| case NVME_ZONE_STATE_CLOSED: |
| case NVME_ZONE_STATE_READ_ONLY: |
| return NVME_SUCCESS; |
| case NVME_ZONE_STATE_OFFLINE: |
| trace_pci_nvme_err_zone_is_offline(zone->d.zslba); |
| return NVME_ZONE_OFFLINE; |
| default: |
| assert(false); |
| } |
| |
| return NVME_INTERNAL_DEV_ERROR; |
| } |
| |
| static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba, |
| uint32_t nlb) |
| { |
| NvmeZone *zone; |
| uint64_t bndry, end; |
| uint16_t status; |
| |
| zone = nvme_get_zone_by_slba(ns, slba); |
| assert(zone); |
| |
| bndry = nvme_zone_rd_boundary(ns, zone); |
| end = slba + nlb; |
| |
| status = nvme_check_zone_state_for_read(zone); |
| if (status) { |
| ; |
| } else if (unlikely(end > bndry)) { |
| if (!ns->params.cross_zone_read) { |
| status = NVME_ZONE_BOUNDARY_ERROR; |
| } else { |
| /* |
| * Read across zone boundary - check that all subsequent |
| * zones that are being read have an appropriate state. |
| */ |
| do { |
| zone++; |
| status = nvme_check_zone_state_for_read(zone); |
| if (status) { |
| break; |
| } |
| } while (end > nvme_zone_rd_boundary(ns, zone)); |
| } |
| } |
| |
| return status; |
| } |
| |
| static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone) |
| { |
| switch (nvme_get_zone_state(zone)) { |
| case NVME_ZONE_STATE_FULL: |
| return NVME_SUCCESS; |
| |
| case NVME_ZONE_STATE_IMPLICITLY_OPEN: |
| case NVME_ZONE_STATE_EXPLICITLY_OPEN: |
| nvme_aor_dec_open(ns); |
| /* fallthrough */ |
| case NVME_ZONE_STATE_CLOSED: |
| nvme_aor_dec_active(ns); |
| /* fallthrough */ |
| case NVME_ZONE_STATE_EMPTY: |
| nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL); |
| return NVME_SUCCESS; |
| |
| default: |
| return NVME_ZONE_INVAL_TRANSITION; |
| } |
| } |
| |
| static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone) |
| { |
| switch (nvme_get_zone_state(zone)) { |
| case NVME_ZONE_STATE_EXPLICITLY_OPEN: |
| case NVME_ZONE_STATE_IMPLICITLY_OPEN: |
| nvme_aor_dec_open(ns); |
| nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED); |
| /* fall through */ |
| case NVME_ZONE_STATE_CLOSED: |
| return NVME_SUCCESS; |
| |
| default: |
| return NVME_ZONE_INVAL_TRANSITION; |
| } |
| } |
| |
| static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns) |
| { |
| NvmeZone *zone; |
| |
| if (ns->params.max_open_zones && |
| ns->nr_open_zones == ns->params.max_open_zones) { |
| zone = QTAILQ_FIRST(&ns->imp_open_zones); |
| if (zone) { |
| /* |
| * Automatically close this implicitly open zone. |
| */ |
| QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); |
| nvme_zrm_close(ns, zone); |
| } |
| } |
| } |
| |
| enum { |
| NVME_ZRM_AUTO = 1 << 0, |
| }; |
| |
| static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns, |
| NvmeZone *zone, int flags) |
| { |
| int act = 0; |
| uint16_t status; |
| |
| switch (nvme_get_zone_state(zone)) { |
| case NVME_ZONE_STATE_EMPTY: |
| act = 1; |
| |
| /* fallthrough */ |
| |
| case NVME_ZONE_STATE_CLOSED: |
| if (n->params.auto_transition_zones) { |
| nvme_zrm_auto_transition_zone(ns); |
| } |
| status = nvme_aor_check(ns, act, 1); |
| if (status) { |
| return status; |
| } |
| |
| if (act) { |
| nvme_aor_inc_active(ns); |
| } |
| |
| nvme_aor_inc_open(ns); |
| |
| if (flags & NVME_ZRM_AUTO) { |
| nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN); |
| return NVME_SUCCESS; |
| } |
| |
| /* fallthrough */ |
| |
| case NVME_ZONE_STATE_IMPLICITLY_OPEN: |
| if (flags & NVME_ZRM_AUTO) { |
| return NVME_SUCCESS; |
| } |
| |
| nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN); |
| |
| /* fallthrough */ |
| |
| case NVME_ZONE_STATE_EXPLICITLY_OPEN: |
| return NVME_SUCCESS; |
| |
| default: |
| return NVME_ZONE_INVAL_TRANSITION; |
| } |
| } |
| |
| static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns, |
| NvmeZone *zone) |
| { |
| return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO); |
| } |
| |
| static inline uint16_t nvme_zrm_open(NvmeCtrl *n, NvmeNamespace *ns, |
| NvmeZone *zone) |
| { |
| return nvme_zrm_open_flags(n, ns, zone, 0); |
| } |
| |
| static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone, |
| uint32_t nlb) |
| { |
| zone->d.wp += nlb; |
| |
| if (zone->d.wp == nvme_zone_wr_boundary(zone)) { |
| nvme_zrm_finish(ns, zone); |
| } |
| } |
| |
| static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req) |
| { |
| NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; |
| NvmeZone *zone; |
| uint64_t slba; |
| uint32_t nlb; |
| |
| slba = le64_to_cpu(rw->slba); |
| nlb = le16_to_cpu(rw->nlb) + 1; |
| zone = nvme_get_zone_by_slba(ns, slba); |
| assert(zone); |
| |
| nvme_advance_zone_wp(ns, zone, nlb); |
| } |
| |
| static inline bool nvme_is_write(NvmeRequest *req) |
| { |
| NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; |
| |
| return rw->opcode == NVME_CMD_WRITE || |
| rw->opcode == NVME_CMD_ZONE_APPEND || |
| rw->opcode == NVME_CMD_WRITE_ZEROES; |
| } |
| |
| static AioContext *nvme_get_aio_context(BlockAIOCB *acb) |
| { |
| return qemu_get_aio_context(); |
| } |
| |
| static void nvme_misc_cb(void *opaque, int ret) |
| { |
| NvmeRequest *req = opaque; |
| |
| trace_pci_nvme_misc_cb(nvme_cid(req)); |
| |
| if (ret) { |
| nvme_aio_err(req, ret); |
| } |
| |
| nvme_enqueue_req_completion(nvme_cq(req), req); |
| } |
| |
| void nvme_rw_complete_cb(void *opaque, int ret) |
| { |
| NvmeRequest *req = opaque; |
| NvmeNamespace *ns = req->ns; |
| BlockBackend *blk = ns->blkconf.blk; |
| BlockAcctCookie *acct = &req->acct; |
| BlockAcctStats *stats = blk_get_stats(blk); |
| |
| trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk)); |
| |
| if (ret) { |
| block_acct_failed(stats, acct); |
| nvme_aio_err(req, ret); |
| } else { |
| block_acct_done(stats, acct); |
| } |
| |
| if (ns->params.zoned && nvme_is_write(req)) { |
| nvme_finalize_zoned_write(ns, req); |
| } |
| |
| nvme_enqueue_req_completion(nvme_cq(req), req); |
| } |
| |
| static void nvme_rw_cb(void *opaque, int ret) |
| { |
| NvmeRequest *req = opaque; |
| NvmeNamespace *ns = req->ns; |
| |
| BlockBackend *blk = ns->blkconf.blk; |
| |
| trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk)); |
| |
| if (ret) { |
| goto out; |
| } |
| |
| if (ns->lbaf.ms) { |
| NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; |
| uint64_t slba = le64_to_cpu(rw->slba); |
| uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; |
| uint64_t offset = nvme_moff(ns, slba); |
| |
| if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) { |
| size_t mlen = nvme_m2b(ns, nlb); |
| |
| req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen, |
| BDRV_REQ_MAY_UNMAP, |
| nvme_rw_complete_cb, req); |
| return; |
| } |
| |
| if (nvme_ns_ext(ns) || req->cmd.mptr) { |
| uint16_t status; |
| |
| nvme_sg_unmap(&req->sg); |
| status = nvme_map_mdata(nvme_ctrl(req), nlb, req); |
| if (status) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| if (req->cmd.opcode == NVME_CMD_READ) { |
| return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req); |
| } |
| |
| return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req); |
| } |
| } |
| |
| out: |
| nvme_rw_complete_cb(req, ret); |
| } |
| |
| struct nvme_aio_format_ctx { |
| NvmeRequest *req; |
| NvmeNamespace *ns; |
| |
| /* number of outstanding write zeroes for this namespace */ |
| int *count; |
| }; |
| |
| static void nvme_aio_format_cb(void *opaque, int ret) |
| { |
| struct nvme_aio_format_ctx *ctx = opaque; |
| NvmeRequest *req = ctx->req; |
| NvmeNamespace *ns = ctx->ns; |
| uintptr_t *num_formats = (uintptr_t *)&req->opaque; |
| int *count = ctx->count; |
| |
| g_free(ctx); |
| |
| if (ret) { |
| nvme_aio_err(req, ret); |
| } |
| |
| if (--(*count)) { |
| return; |
| } |
| |
| g_free(count); |
| ns->status = 0x0; |
| |
| if (--(*num_formats)) { |
| return; |
| } |
| |
| nvme_enqueue_req_completion(nvme_cq(req), req); |
| } |
| |
| static void nvme_verify_cb(void *opaque, int ret) |
| { |
| NvmeBounceContext *ctx = opaque; |
| NvmeRequest *req = ctx->req; |
| NvmeNamespace *ns = req->ns; |
| BlockBackend *blk = ns->blkconf.blk; |
| BlockAcctCookie *acct = &req->acct; |
| BlockAcctStats *stats = blk_get_stats(blk); |
| NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; |
| uint64_t slba = le64_to_cpu(rw->slba); |
| uint16_t ctrl = le16_to_cpu(rw->control); |
| uint16_t apptag = le16_to_cpu(rw->apptag); |
| uint16_t appmask = le16_to_cpu(rw->appmask); |
| uint32_t reftag = le32_to_cpu(rw->reftag); |
| uint16_t status; |
| |
| trace_pci_nvme_verify_cb(nvme_cid(req), NVME_RW_PRINFO(ctrl), apptag, |
| appmask, reftag); |
| |
| if (ret) { |
| block_acct_failed(stats, acct); |
| nvme_aio_err(req, ret); |
| goto out; |
| } |
| |
| block_acct_done(stats, acct); |
| |
| if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { |
| status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce, |
| ctx->mdata.iov.size, slba); |
| if (status) { |
| req->status = status; |
| goto out; |
| } |
| |
| req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size, |
| ctx->mdata.bounce, ctx->mdata.iov.size, |
| ctrl, slba, apptag, appmask, &reftag); |
| } |
| |
| out: |
| qemu_iovec_destroy(&ctx->data.iov); |
| g_free(ctx->data.bounce); |
| |
| qemu_iovec_destroy(&ctx->mdata.iov); |
| g_free(ctx->mdata.bounce); |
| |
| g_free(ctx); |
| |
| nvme_enqueue_req_completion(nvme_cq(req), req); |
| } |
| |
| |
| static void nvme_verify_mdata_in_cb(void *opaque, int ret) |
| { |
| NvmeBounceContext *ctx = opaque; |
| NvmeRequest *req = ctx->req; |
| NvmeNamespace *ns = req->ns; |
| NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; |
| uint64_t slba = le64_to_cpu(rw->slba); |
| uint32_t nlb = le16_to_cpu(rw->nlb) + 1; |
| size_t mlen = nvme_m2b(ns, nlb); |
| uint64_t offset = nvme_moff(ns, slba); |
| BlockBackend *blk = ns->blkconf.blk; |
| |
| trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk)); |
| |
| if (ret) { |
| goto out; |
| } |
| |
| ctx->mdata.bounce = g_malloc(mlen); |
| |
| qemu_iovec_reset(&ctx->mdata.iov); |
| qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen); |
| |
| req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0, |
| nvme_verify_cb, ctx); |
| return; |
| |
| out: |
| nvme_verify_cb(ctx, ret); |
| } |
| |
| struct nvme_zone_reset_ctx { |
| NvmeRequest *req; |
| NvmeZone *zone; |
| }; |
| |
| static void nvme_aio_zone_reset_complete_cb(void *opaque, int ret) |
| { |
| struct nvme_zone_reset_ctx *ctx = opaque; |
| NvmeRequest *req = ctx->req; |
| NvmeNamespace *ns = req->ns; |
| NvmeZone *zone = ctx->zone; |
| uintptr_t *resets = (uintptr_t *)&req->opaque; |
| |
| if (ret) { |
| nvme_aio_err(req, ret); |
| goto out; |
| } |
| |
| switch (nvme_get_zone_state(zone)) { |
| case NVME_ZONE_STATE_EXPLICITLY_OPEN: |
| case NVME_ZONE_STATE_IMPLICITLY_OPEN: |
| nvme_aor_dec_open(ns); |
| /* fall through */ |
| case NVME_ZONE_STATE_CLOSED: |
| nvme_aor_dec_active(ns); |
| /* fall through */ |
| case NVME_ZONE_STATE_FULL: |
| zone->w_ptr = zone->d.zslba; |
| zone->d.wp = zone->w_ptr; |
| nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY); |
| /* fall through */ |
| default: |
| break; |
| } |
| |
| out: |
| g_free(ctx); |
| |
| (*resets)--; |
| |
| if (*resets) { |
| return; |
| } |
| |
| nvme_enqueue_req_completion(nvme_cq(req), req); |
| } |
| |
| static void nvme_aio_zone_reset_cb(void *opaque, int ret) |
| { |
| struct nvme_zone_reset_ctx *ctx = opaque; |
| NvmeRequest *req = ctx->req; |
| NvmeNamespace *ns = req->ns; |
| NvmeZone *zone = ctx->zone; |
| |
| trace_pci_nvme_aio_zone_reset_cb(nvme_cid(req), zone->d.zslba); |
| |
| if (ret) { |
| goto out; |
| } |
| |
| if (ns->lbaf.ms) { |
| int64_t offset = nvme_moff(ns, zone->d.zslba); |
| |
| blk_aio_pwrite_zeroes(ns->blkconf.blk, offset, |
| nvme_m2b(ns, ns->zone_size), BDRV_REQ_MAY_UNMAP, |
| nvme_aio_zone_reset_complete_cb, ctx); |
| return; |
| } |
| |
| out: |
| nvme_aio_zone_reset_complete_cb(opaque, ret); |
| } |
| |
| struct nvme_copy_ctx { |
| int copies; |
| uint8_t *bounce; |
| uint8_t *mbounce; |
| uint32_t nlb; |
| NvmeCopySourceRange *ranges; |
| }; |
| |
| struct nvme_copy_in_ctx { |
| NvmeRequest *req; |
| QEMUIOVector iov; |
| NvmeCopySourceRange *range; |
| }; |
| |
| static void nvme_copy_complete_cb(void *opaque, int ret) |
| { |
| NvmeRequest *req = opaque; |
| NvmeNamespace *ns = req->ns; |
| struct nvme_copy_ctx *ctx = req->opaque; |
| |
| if (ret) { |
| block_acct_failed(blk_get_stats(ns->blkconf.blk), &req->acct); |
| nvme_aio_err(req, ret); |
| goto out; |
| } |
| |
| block_acct_done(blk_get_stats(ns->blkconf.blk), &req->acct); |
| |
| out: |
| if (ns->params.zoned) { |
| NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; |
| uint64_t sdlba = le64_to_cpu(copy->sdlba); |
| NvmeZone *zone = nvme_get_zone_by_slba(ns, sdlba); |
| |
| nvme_advance_zone_wp(ns, zone, ctx->nlb); |
| } |
| |
| g_free(ctx->bounce); |
| g_free(ctx->mbounce); |
| g_free(ctx); |
| |
| nvme_enqueue_req_completion(nvme_cq(req), req); |
| } |
| |
| static void nvme_copy_cb(void *opaque, int ret) |
| { |
| NvmeRequest *req = opaque; |
| NvmeNamespace *ns = req->ns; |
| struct nvme_copy_ctx *ctx = req->opaque; |
| |
| trace_pci_nvme_copy_cb(nvme_cid(req)); |
| |
| if (ret) { |
| goto out; |
| } |
| |
| if (ns->lbaf.ms) { |
| NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; |
| uint64_t sdlba = le64_to_cpu(copy->sdlba); |
| int64_t offset = nvme_moff(ns, sdlba); |
| |
| qemu_iovec_reset(&req->sg.iov); |
| qemu_iovec_add(&req->sg.iov, ctx->mbounce, nvme_m2b(ns, ctx->nlb)); |
| |
| req->aiocb = blk_aio_pwritev(ns->blkconf.blk, offset, &req->sg.iov, 0, |
| nvme_copy_complete_cb, req); |
| return; |
| } |
| |
| out: |
| nvme_copy_complete_cb(opaque, ret); |
| } |
| |
| static void nvme_copy_in_complete(NvmeRequest *req) |
| { |
| NvmeNamespace *ns = req->ns; |
| NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; |
| struct nvme_copy_ctx *ctx = req->opaque; |
| uint64_t sdlba = le64_to_cpu(copy->sdlba); |
| uint16_t status; |
| |
| trace_pci_nvme_copy_in_complete(nvme_cid(req)); |
| |
| block_acct_done(blk_get_stats(ns->blkconf.blk), &req->acct); |
| |
| if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { |
| uint16_t prinfor = (copy->control[0] >> 4) & 0xf; |
| uint16_t prinfow = (copy->control[2] >> 2) & 0xf; |
| uint16_t nr = copy->nr + 1; |
| NvmeCopySourceRange *range; |
| uint64_t slba; |
| uint32_t nlb; |
| uint16_t apptag, appmask; |
| uint32_t reftag; |
| uint8_t *buf = ctx->bounce, *mbuf = ctx->mbounce; |
| size_t len, mlen; |
| int i; |
| |
| /* |
| * The dif helpers expects prinfo to be similar to the control field of |
| * the NvmeRwCmd, so shift by 10 to fake it. |
| */ |
| prinfor = prinfor << 10; |
| prinfow = prinfow << 10; |
| |
| for (i = 0; i < nr; i++) { |
| range = &ctx->ranges[i]; |
| slba = le64_to_cpu(range->slba); |
| nlb = le16_to_cpu(range->nlb) + 1; |
| len = nvme_l2b(ns, nlb); |
| mlen = nvme_m2b(ns, nlb); |
| apptag = le16_to_cpu(range->apptag); |
| appmask = le16_to_cpu(range->appmask); |
| reftag = le32_to_cpu(range->reftag); |
| |
| status = nvme_dif_check(ns, buf, len, mbuf, mlen, prinfor, slba, |
| apptag, appmask, &reftag); |
| if (status) { |
| goto invalid; |
| } |
| |
| buf += len; |
| mbuf += mlen; |
| } |
| |
| apptag = le16_to_cpu(copy->apptag); |
| appmask = le16_to_cpu(copy->appmask); |
| reftag = le32_to_cpu(copy->reftag); |
| |
| if (prinfow & NVME_RW_PRINFO_PRACT) { |
| size_t len = nvme_l2b(ns, ctx->nlb); |
| size_t mlen = nvme_m2b(ns, ctx->nlb); |
| |
| status = nvme_check_prinfo(ns, prinfow, sdlba, reftag); |
| if (status) { |
| goto invalid; |
| } |
| |
| nvme_dif_pract_generate_dif(ns, ctx->bounce, len, ctx->mbounce, |
| mlen, apptag, &reftag); |
| } else { |
| status = nvme_dif_check(ns, ctx->bounce, len, ctx->mbounce, mlen, |
| prinfow, sdlba, apptag, appmask, &reftag); |
| if (status) { |
| goto invalid; |
| } |
| } |
| } |
| |
| status = nvme_check_bounds(ns, sdlba, ctx->nlb); |
| if (status) { |
| goto invalid; |
| } |
| |
| if (ns->params.zoned) { |
| NvmeZone *zone = nvme_get_zone_by_slba(ns, sdlba); |
| |
| status = nvme_check_zone_write(ns, zone, sdlba, ctx->nlb); |
| if (status) { |
| goto invalid; |
| } |
| |
| status = nvme_zrm_auto(nvme_ctrl(req), ns, zone); |
| if (status) { |
| goto invalid; |
| } |
| |
| zone->w_ptr += ctx->nlb; |
| } |
| |
| qemu_iovec_init(&req->sg.iov, 1); |
| qemu_iovec_add(&req->sg.iov, ctx->bounce, nvme_l2b(ns, ctx->nlb)); |
| |
| block_acct_start(blk_get_stats(ns->blkconf.blk), &req->acct, 0, |
| BLOCK_ACCT_WRITE); |
| |
| req->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, sdlba), |
| &req->sg.iov, 0, nvme_copy_cb, req); |
| |
| return; |
| |
| invalid: |
| req->status = status; |
| |
| g_free(ctx->bounce); |
| g_free(ctx); |
| |
| nvme_enqueue_req_completion(nvme_cq(req), req); |
| } |
| |
| static void nvme_aio_copy_in_cb(void *opaque, int ret) |
| { |
| struct nvme_copy_in_ctx *in_ctx = opaque; |
| NvmeRequest *req = in_ctx->req; |
| NvmeNamespace *ns = req->ns; |
| struct nvme_copy_ctx *ctx = req->opaque; |
| |
| qemu_iovec_destroy(&in_ctx->iov); |
| g_free(in_ctx); |
| |
| trace_pci_nvme_aio_copy_in_cb(nvme_cid(req)); |
| |
| if (ret) { |
| nvme_aio_err(req, ret); |
| } |
| |
| ctx->copies--; |
| |
| if (ctx->copies) { |
| return; |
| } |
| |
| if (req->status) { |
| block_acct_failed(blk_get_stats(ns->blkconf.blk), &req->acct); |
| |
| g_free(ctx->bounce); |
| g_free(ctx->mbounce); |
| g_free(ctx); |
| |
| nvme_enqueue_req_completion(nvme_cq(req), req); |
| |
| return; |
| } |
| |
| nvme_copy_in_complete(req); |
| } |
| |
| struct nvme_compare_ctx { |
| struct { |
| QEMUIOVector iov; |
| uint8_t *bounce; |
| } data; |
| |
| struct { |
| QEMUIOVector iov; |
| uint8_t *bounce; |
| } mdata; |
| }; |
| |
| static void nvme_compare_mdata_cb(void *opaque, int ret) |
| { |
| NvmeRequest *req = opaque; |
| NvmeNamespace *ns = req->ns; |
| NvmeCtrl *n = nvme_ctrl(req); |
| NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; |
| uint16_t ctrl = le16_to_cpu(rw->control); |
| uint16_t apptag = le16_to_cpu(rw->apptag); |
| uint16_t appmask = le16_to_cpu(rw->appmask); |
| uint32_t reftag = le32_to_cpu(rw->reftag); |
| struct nvme_compare_ctx *ctx = req->opaque; |
| g_autofree uint8_t *buf = NULL; |
| BlockBackend *blk = ns->blkconf.blk; |
| BlockAcctCookie *acct = &req->acct; |
| BlockAcctStats *stats = blk_get_stats(blk); |
| uint16_t status = NVME_SUCCESS; |
| |
| trace_pci_nvme_compare_mdata_cb(nvme_cid(req)); |
| |
| if (ret) { |
| block_acct_failed(stats, acct); |
| nvme_aio_err(req, ret); |
| goto out; |
| } |
| |
| buf = g_malloc(ctx->mdata.iov.size); |
| |
| status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size, |
| NVME_TX_DIRECTION_TO_DEVICE, req); |
| if (status) { |
| req->status = status; |
| goto out; |
| } |
| |
| if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { |
| uint64_t slba = le64_to_cpu(rw->slba); |
| uint8_t *bufp; |
| uint8_t *mbufp = ctx->mdata.bounce; |
| uint8_t *end = mbufp + ctx->mdata.iov.size; |
| int16_t pil = 0; |
| |
| status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size, |
| ctx->mdata.bounce, ctx->mdata.iov.size, ctrl, |
| slba, apptag, appmask, &reftag); |
| if (status) { |
| req->status = status; |
| goto out; |
| } |
| |
| /* |
| * When formatted with protection information, do not compare the DIF |
| * tuple. |
| */ |
| if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) { |
| pil = ns->lbaf.ms - sizeof(NvmeDifTuple); |
| } |
| |
| for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) { |
| if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) { |
| req->status = NVME_CMP_FAILURE; |
| goto out; |
| } |
| } |
| |
| goto out; |
| } |
| |
| if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) { |
| req->status = NVME_CMP_FAILURE; |
| goto out; |
| } |
| |
| block_acct_done(stats, acct); |
| |
| out: |
| qemu_iovec_destroy(&ctx->data.iov); |
| g_free(ctx->data.bounce); |
| |
| qemu_iovec_destroy(&ctx->mdata.iov); |
| g_free(ctx->mdata.bounce); |
| |
| g_free(ctx); |
| |
| nvme_enqueue_req_completion(nvme_cq(req), req); |
| } |
| |
| static void nvme_compare_data_cb(void *opaque, int ret) |
| { |
| NvmeRequest *req = opaque; |
| NvmeCtrl *n = nvme_ctrl(req); |
| NvmeNamespace *ns = req->ns; |
| BlockBackend *blk = ns->blkconf.blk; |
| BlockAcctCookie *acct = &req->acct; |
| BlockAcctStats *stats = blk_get_stats(blk); |
| |
| struct nvme_compare_ctx *ctx = req->opaque; |
| g_autofree uint8_t *buf = NULL; |
| uint16_t status; |
| |
| trace_pci_nvme_compare_data_cb(nvme_cid(req)); |
| |
| if (ret) { |
| block_acct_failed(stats, acct); |
| nvme_aio_err(req, ret); |
| goto out; |
| } |
| |
| buf = g_malloc(ctx->data.iov.size); |
| |
| status = nvme_bounce_data(n, buf, ctx->data.iov.size, |
| NVME_TX_DIRECTION_TO_DEVICE, req); |
| if (status) { |
| req->status = status; |
| goto out; |
| } |
| |
| if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) { |
| req->status = NVME_CMP_FAILURE; |
| goto out; |
| } |
| |
| if (ns->lbaf.ms) { |
| NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; |
| uint64_t slba = le64_to_cpu(rw->slba); |
| uint32_t nlb = le16_to_cpu(rw->nlb) + 1; |
| size_t mlen = nvme_m2b(ns, nlb); |
| uint64_t offset = nvme_moff(ns, slba); |
| |
| ctx->mdata.bounce = g_malloc(mlen); |
| |
| qemu_iovec_init(&ctx->mdata.iov, 1); |
| qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen); |
| |
| req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0, |
| nvme_compare_mdata_cb, req); |
| return; |
| } |
| |
| block_acct_done(stats, acct); |
| |
| out: |
| qemu_iovec_destroy(&ctx->data.iov); |
| g_free(ctx->data.bounce); |
| g_free(ctx); |
| |
| nvme_enqueue_req_completion(nvme_cq(req), req); |
| } |
| |
| typedef struct NvmeDSMAIOCB { |
| BlockAIOCB common; |
| BlockAIOCB *aiocb; |
| NvmeRequest *req; |
| QEMUBH *bh; |
| int ret; |
| |
| NvmeDsmRange *range; |
| unsigned int nr; |
| unsigned int idx; |
| } NvmeDSMAIOCB; |
| |
| static void nvme_dsm_cancel(BlockAIOCB *aiocb) |
| { |
| NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common); |
| |
| /* break nvme_dsm_cb loop */ |
| iocb->idx = iocb->nr; |
| iocb->ret = -ECANCELED; |
| |
| if (iocb->aiocb) { |
| blk_aio_cancel_async(iocb->aiocb); |
| iocb->aiocb = NULL; |
| } else { |
| /* |
| * We only reach this if nvme_dsm_cancel() has already been called or |
| * the command ran to completion and nvme_dsm_bh is scheduled to run. |
| */ |
| assert(iocb->idx == iocb->nr); |
| } |
| } |
| |
| static const AIOCBInfo nvme_dsm_aiocb_info = { |
| .aiocb_size = sizeof(NvmeDSMAIOCB), |
| .cancel_async = nvme_dsm_cancel, |
| }; |
| |
| static void nvme_dsm_bh(void *opaque) |
| { |
| NvmeDSMAIOCB *iocb = opaque; |
| |
| iocb->common.cb(iocb->common.opaque, iocb->ret); |
| |
| qemu_bh_delete(iocb->bh); |
| iocb->bh = NULL; |
| qemu_aio_unref(iocb); |
| } |
| |
| static void nvme_dsm_cb(void *opaque, int ret); |
| |
| static void nvme_dsm_md_cb(void *opaque, int ret) |
| { |
| NvmeDSMAIOCB *iocb = opaque; |
| NvmeRequest *req = iocb->req; |
| NvmeNamespace *ns = req->ns; |
| NvmeDsmRange *range; |
| uint64_t slba; |
| uint32_t nlb; |
| |
| if (ret < 0) { |
| iocb->ret = ret; |
| goto done; |
| } |
| |
| if (!ns->lbaf.ms) { |
| nvme_dsm_cb(iocb, 0); |
| return; |
| } |
| |
| range = &iocb->range[iocb->idx - 1]; |
| slba = le64_to_cpu(range->slba); |
| nlb = le32_to_cpu(range->nlb); |
| |
| /* |
| * Check that all block were discarded (zeroed); otherwise we do not zero |
| * the metadata. |
| */ |
| |
| ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO); |
| if (ret) { |
| if (ret < 0) { |
| iocb->ret = ret; |
| goto done; |
| } |
| |
| nvme_dsm_cb(iocb, 0); |
| } |
| |
| iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba), |
| nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP, |
| nvme_dsm_cb, iocb); |
| return; |
| |
| done: |
| iocb->aiocb = NULL; |
| qemu_bh_schedule(iocb->bh); |
| } |
| |
| static void nvme_dsm_cb(void *opaque, int ret) |
| { |
| NvmeDSMAIOCB *iocb = opaque; |
| NvmeRequest *req = iocb->req; |
| NvmeCtrl *n = nvme_ctrl(req); |
| NvmeNamespace *ns = req->ns; |
| NvmeDsmRange *range; |
| uint64_t slba; |
| uint32_t nlb; |
| |
| if (ret < 0) { |
| iocb->ret = ret; |
| goto done; |
| } |
| |
| next: |
| if (iocb->idx == iocb->nr) { |
| goto done; |
| } |
| |
| range = &iocb->range[iocb->idx++]; |
| slba = le64_to_cpu(range->slba); |
| nlb = le32_to_cpu(range->nlb); |
| |
| trace_pci_nvme_dsm_deallocate(slba, nlb); |
| |
| if (nlb > n->dmrsl) { |
| trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl); |
| goto next; |
| } |
| |
| if (nvme_check_bounds(ns, slba, nlb)) { |
| trace_pci_nvme_err_invalid_lba_range(slba, nlb, |
| ns->id_ns.nsze); |
| goto next; |
| } |
| |
| iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba), |
| nvme_l2b(ns, nlb), |
| nvme_dsm_md_cb, iocb); |
| return; |
| |
| done: |
| iocb->aiocb = NULL; |
| qemu_bh_schedule(iocb->bh); |
| } |
| |
| static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req) |
| { |
| NvmeNamespace *ns = req->ns; |
| NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd; |
| uint32_t attr = le32_to_cpu(dsm->attributes); |
| uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1; |
| uint16_t status = NVME_SUCCESS; |
| |
| trace_pci_nvme_dsm(nr, attr); |
| |
| if (attr & NVME_DSMGMT_AD) { |
| NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk, |
| nvme_misc_cb, req); |
| |
| iocb->req = req; |
| iocb->bh = qemu_bh_new(nvme_dsm_bh, iocb); |
| iocb->ret = 0; |
| iocb->range = g_new(NvmeDsmRange, nr); |
| iocb->nr = nr; |
| iocb->idx = 0; |
| |
| status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr, |
| req); |
| if (status) { |
| return status; |
| } |
| |
| req->aiocb = &iocb->common; |
| nvme_dsm_cb(iocb, 0); |
| |
| return NVME_NO_COMPLETE; |
| } |
| |
| return status; |
| } |
| |
| static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req) |
| { |
| NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; |
| NvmeNamespace *ns = req->ns; |
| BlockBackend *blk = ns->blkconf.blk; |
| uint64_t slba = le64_to_cpu(rw->slba); |
| uint32_t nlb = le16_to_cpu(rw->nlb) + 1; |
| size_t len = nvme_l2b(ns, nlb); |
| int64_t offset = nvme_l2b(ns, slba); |
| uint16_t ctrl = le16_to_cpu(rw->control); |
| uint32_t reftag = le32_to_cpu(rw->reftag); |
| NvmeBounceContext *ctx = NULL; |
| uint16_t status; |
| |
| trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb); |
| |
| if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { |
| status = nvme_check_prinfo(ns, ctrl, slba, reftag); |
| if (status) { |
| return status; |
| } |
| |
| if (ctrl & NVME_RW_PRINFO_PRACT) { |
| return NVME_INVALID_PROT_INFO | NVME_DNR; |
| } |
| } |
| |
| if (len > n->page_size << n->params.vsl) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| status = nvme_check_bounds(ns, slba, nlb); |
| if (status) { |
| return status; |
| } |
| |
| if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { |
| status = nvme_check_dulbe(ns, slba, nlb); |
| if (status) { |
| return status; |
| } |
| } |
| |
| ctx = g_new0(NvmeBounceContext, 1); |
| ctx->req = req; |
| |
| ctx->data.bounce = g_malloc(len); |
| |
| qemu_iovec_init(&ctx->data.iov, 1); |
| qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len); |
| |
| block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size, |
| BLOCK_ACCT_READ); |
| |
| req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0, |
| nvme_verify_mdata_in_cb, ctx); |
| return NVME_NO_COMPLETE; |
| } |
| |
| static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req) |
| { |
| NvmeNamespace *ns = req->ns; |
| NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; |
| |
| uint16_t nr = copy->nr + 1; |
| uint8_t format = copy->control[0] & 0xf; |
| |
| /* |
| * Shift the PRINFOR/PRINFOW values by 10 to allow reusing the |
| * NVME_RW_PRINFO constants. |
| */ |
| uint16_t prinfor = ((copy->control[0] >> 4) & 0xf) << 10; |
| uint16_t prinfow = ((copy->control[2] >> 2) & 0xf) << 10; |
| |
| uint32_t nlb = 0; |
| uint8_t *bounce = NULL, *bouncep = NULL; |
| uint8_t *mbounce = NULL, *mbouncep = NULL; |
| struct nvme_copy_ctx *ctx; |
| uint16_t status; |
| int i; |
| |
| trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format); |
| |
| if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && |
| ((prinfor & NVME_RW_PRINFO_PRACT) != (prinfow & NVME_RW_PRINFO_PRACT))) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| if (!(n->id_ctrl.ocfs & (1 << format))) { |
| trace_pci_nvme_err_copy_invalid_format(format); |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| if (nr > ns->id_ns.msrc + 1) { |
| return NVME_CMD_SIZE_LIMIT | NVME_DNR; |
| } |
| |
| ctx = g_new(struct nvme_copy_ctx, 1); |
| ctx->ranges = g_new(NvmeCopySourceRange, nr); |
| |
| status = nvme_h2c(n, (uint8_t *)ctx->ranges, |
| nr * sizeof(NvmeCopySourceRange), req); |
| if (status) { |
| goto out; |
| } |
| |
| for (i = 0; i < nr; i++) { |
| uint64_t slba = le64_to_cpu(ctx->ranges[i].slba); |
| uint32_t _nlb = le16_to_cpu(ctx->ranges[i].nlb) + 1; |
| |
| if (_nlb > le16_to_cpu(ns->id_ns.mssrl)) { |
| status = NVME_CMD_SIZE_LIMIT | NVME_DNR; |
| goto out; |
| } |
| |
| status = nvme_check_bounds(ns, slba, _nlb); |
| if (status) { |
| goto out; |
| } |
| |
| if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { |
| status = nvme_check_dulbe(ns, slba, _nlb); |
| if (status) { |
| goto out; |
| } |
| } |
| |
| if (ns->params.zoned) { |
| status = nvme_check_zone_read(ns, slba, _nlb); |
| if (status) { |
| goto out; |
| } |
| } |
| |
| nlb += _nlb; |
| } |
| |
| if (nlb > le32_to_cpu(ns->id_ns.mcl)) { |
| status = NVME_CMD_SIZE_LIMIT | NVME_DNR; |
| goto out; |
| } |
| |
| bounce = bouncep = g_malloc(nvme_l2b(ns, nlb)); |
| if (ns->lbaf.ms) { |
| mbounce = mbouncep = g_malloc(nvme_m2b(ns, nlb)); |
| } |
| |
| block_acct_start(blk_get_stats(ns->blkconf.blk), &req->acct, 0, |
| BLOCK_ACCT_READ); |
| |
| ctx->bounce = bounce; |
| ctx->mbounce = mbounce; |
| ctx->nlb = nlb; |
| ctx->copies = 1; |
| |
| req->opaque = ctx; |
| |
| for (i = 0; i < nr; i++) { |
| uint64_t slba = le64_to_cpu(ctx->ranges[i].slba); |
| uint32_t nlb = le16_to_cpu(ctx->ranges[i].nlb) + 1; |
| |
| size_t len = nvme_l2b(ns, nlb); |
| int64_t offset = nvme_l2b(ns, slba); |
| |
| trace_pci_nvme_copy_source_range(slba, nlb); |
| |
| struct nvme_copy_in_ctx *in_ctx = g_new(struct nvme_copy_in_ctx, 1); |
| in_ctx->req = req; |
| |
| qemu_iovec_init(&in_ctx->iov, 1); |
| qemu_iovec_add(&in_ctx->iov, bouncep, len); |
| |
| ctx->copies++; |
| |
| blk_aio_preadv(ns->blkconf.blk, offset, &in_ctx->iov, 0, |
| nvme_aio_copy_in_cb, in_ctx); |
| |
| bouncep += len; |
| |
| if (ns->lbaf.ms) { |
| len = nvme_m2b(ns, nlb); |
| offset = nvme_moff(ns, slba); |
| |
| in_ctx = g_new(struct nvme_copy_in_ctx, 1); |
| in_ctx->req = req; |
| |
| qemu_iovec_init(&in_ctx->iov, 1); |
| qemu_iovec_add(&in_ctx->iov, mbouncep, len); |
| |
| ctx->copies++; |
| |
| blk_aio_preadv(ns->blkconf.blk, offset, &in_ctx->iov, 0, |
| nvme_aio_copy_in_cb, in_ctx); |
| |
| mbouncep += len; |
| } |
| } |
| |
| /* account for the 1-initialization */ |
| ctx->copies--; |
| |
| if (!ctx->copies) { |
| nvme_copy_in_complete(req); |
| } |
| |
| return NVME_NO_COMPLETE; |
| |
| out: |
| g_free(ctx->ranges); |
| g_free(ctx); |
| |
| return status; |
| } |
| |
| static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req) |
| { |
| NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; |
| NvmeNamespace *ns = req->ns; |
| BlockBackend *blk = ns->blkconf.blk; |
| uint64_t slba = le64_to_cpu(rw->slba); |
| uint32_t nlb = le16_to_cpu(rw->nlb) + 1; |
| uint16_t ctrl = le16_to_cpu(rw->control); |
| size_t data_len = nvme_l2b(ns, nlb); |
| size_t len = data_len; |
| int64_t offset = nvme_l2b(ns, slba); |
| struct nvme_compare_ctx *ctx = NULL; |
| uint16_t status; |
| |
| trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb); |
| |
| if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (ctrl & NVME_RW_PRINFO_PRACT)) { |
| return NVME_INVALID_PROT_INFO | NVME_DNR; |
| } |
| |
| if (nvme_ns_ext(ns)) { |
| len += nvme_m2b(ns, nlb); |
| } |
| |
| status = nvme_check_mdts(n, len); |
| if (status) { |
| return status; |
| } |
| |
| status = nvme_check_bounds(ns, slba, nlb); |
| if (status) { |
| return status; |
| } |
| |
| if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { |
| status = nvme_check_dulbe(ns, slba, nlb); |
| if (status) { |
| return status; |
| } |
| } |
| |
| status = nvme_map_dptr(n, &req->sg, len, &req->cmd); |
| if (status) { |
| return status; |
| } |
| |
| ctx = g_new(struct nvme_compare_ctx, 1); |
| ctx->data.bounce = g_malloc(data_len); |
| |
| req->opaque = ctx; |
| |
| qemu_iovec_init(&ctx->data.iov, 1); |
| qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len); |
| |
| block_acct_start(blk_get_stats(blk), &req->acct, data_len, |
| BLOCK_ACCT_READ); |
| req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0, |
| nvme_compare_data_cb, req); |
| |
| return NVME_NO_COMPLETE; |
| } |
| |
| typedef struct NvmeFlushAIOCB { |
| BlockAIOCB common; |
| BlockAIOCB *aiocb; |
| NvmeRequest *req; |
| QEMUBH *bh; |
| int ret; |
| |
| NvmeNamespace *ns; |
| uint32_t nsid; |
| bool broadcast; |
| } NvmeFlushAIOCB; |
| |
| static void nvme_flush_cancel(BlockAIOCB *acb) |
| { |
| NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common); |
| |
| iocb->ret = -ECANCELED; |
| |
| if (iocb->aiocb) { |
| blk_aio_cancel_async(iocb->aiocb); |
| } |
| } |
| |
| static const AIOCBInfo nvme_flush_aiocb_info = { |
| .aiocb_size = sizeof(NvmeFlushAIOCB), |
| .cancel_async = nvme_flush_cancel, |
| .get_aio_context = nvme_get_aio_context, |
| }; |
| |
| static void nvme_flush_ns_cb(void *opaque, int ret) |
| { |
| NvmeFlushAIOCB *iocb = opaque; |
| NvmeNamespace *ns = iocb->ns; |
| |
| if (ret < 0) { |
| iocb->ret = ret; |
| goto out; |
| } else if (iocb->ret < 0) { |
| goto out; |
| } |
| |
| if (ns) { |
| trace_pci_nvme_flush_ns(iocb->nsid); |
| |
| iocb->ns = NULL; |
| iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb); |
| return; |
| } |
| |
| out: |
| iocb->aiocb = NULL; |
| qemu_bh_schedule(iocb->bh); |
| } |
| |
| static void nvme_flush_bh(void *opaque) |
| { |
| NvmeFlushAIOCB *iocb = opaque; |
| NvmeRequest *req = iocb->req; |
| NvmeCtrl *n = nvme_ctrl(req); |
| int i; |
| |
| if (iocb->ret < 0) { |
| goto done; |
| } |
| |
| if (iocb->broadcast) { |
| for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) { |
| iocb->ns = nvme_ns(n, i); |
| if (iocb->ns) { |
| iocb->nsid = i; |
| break; |
| } |
| } |
| } |
| |
| if (!iocb->ns) { |
| goto done; |
| } |
| |
| nvme_flush_ns_cb(iocb, 0); |
| return; |
| |
| done: |
| qemu_bh_delete(iocb->bh); |
| iocb->bh = NULL; |
| |
| iocb->common.cb(iocb->common.opaque, iocb->ret); |
| |
| qemu_aio_unref(iocb); |
| |
| return; |
| } |
| |
| static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req) |
| { |
| NvmeFlushAIOCB *iocb; |
| uint32_t nsid = le32_to_cpu(req->cmd.nsid); |
| uint16_t status; |
| |
| iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req); |
| |
| iocb->req = req; |
| iocb->bh = qemu_bh_new(nvme_flush_bh, iocb); |
| iocb->ret = 0; |
| iocb->ns = NULL; |
| iocb->nsid = 0; |
| iocb->broadcast = (nsid == NVME_NSID_BROADCAST); |
| |
| if (!iocb->broadcast) { |
| if (!nvme_nsid_valid(n, nsid)) { |
| status = NVME_INVALID_NSID | NVME_DNR; |
| goto out; |
| } |
| |
| iocb->ns = nvme_ns(n, nsid); |
| if (!iocb->ns) { |
| status = NVME_INVALID_FIELD | NVME_DNR; |
| goto out; |
| } |
| |
| iocb->nsid = nsid; |
| } |
| |
| req->aiocb = &iocb->common; |
| qemu_bh_schedule(iocb->bh); |
| |
| return NVME_NO_COMPLETE; |
| |
| out: |
| qemu_bh_delete(iocb->bh); |
| iocb->bh = NULL; |
| qemu_aio_unref(iocb); |
| |
| return status; |
| } |
| |
| static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req) |
| { |
| NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; |
| NvmeNamespace *ns = req->ns; |
| uint64_t slba = le64_to_cpu(rw->slba); |
| uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; |
| uint16_t ctrl = le16_to_cpu(rw->control); |
| uint64_t data_size = nvme_l2b(ns, nlb); |
| uint64_t mapped_size = data_size; |
| uint64_t data_offset; |
| BlockBackend *blk = ns->blkconf.blk; |
| uint16_t status; |
| |
| if (nvme_ns_ext(ns)) { |
| mapped_size += nvme_m2b(ns, nlb); |
| |
| if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { |
| bool pract = ctrl & NVME_RW_PRINFO_PRACT; |
| |
| if (pract && ns->lbaf.ms == 8) { |
| mapped_size = data_size; |
| } |
| } |
| } |
| |
| trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba); |
| |
| status = nvme_check_mdts(n, mapped_size); |
| if (status) { |
| goto invalid; |
| } |
| |
| status = nvme_check_bounds(ns, slba, nlb); |
| if (status) { |
| goto invalid; |
| } |
| |
| if (ns->params.zoned) { |
| status = nvme_check_zone_read(ns, slba, nlb); |
| if (status) { |
| trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status); |
| goto invalid; |
| } |
| } |
| |
| if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { |
| status = nvme_check_dulbe(ns, slba, nlb); |
| if (status) { |
| goto invalid; |
| } |
| } |
| |
| if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { |
| return nvme_dif_rw(n, req); |
| } |
| |
| status = nvme_map_data(n, nlb, req); |
| if (status) { |
| goto invalid; |
| } |
| |
| data_offset = nvme_l2b(ns, slba); |
| |
| block_acct_start(blk_get_stats(blk), &req->acct, data_size, |
| BLOCK_ACCT_READ); |
| nvme_blk_read(blk, data_offset, nvme_rw_cb, req); |
| return NVME_NO_COMPLETE; |
| |
| invalid: |
| block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ); |
| return status | NVME_DNR; |
| } |
| |
| static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append, |
| bool wrz) |
| { |
| NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; |
| NvmeNamespace *ns = req->ns; |
| uint64_t slba = le64_to_cpu(rw->slba); |
| uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; |
| uint16_t ctrl = le16_to_cpu(rw->control); |
| uint64_t data_size = nvme_l2b(ns, nlb); |
| uint64_t mapped_size = data_size; |
| uint64_t data_offset; |
| NvmeZone *zone; |
| NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe; |
| BlockBackend *blk = ns->blkconf.blk; |
| uint16_t status; |
| |
| if (nvme_ns_ext(ns)) { |
| mapped_size += nvme_m2b(ns, nlb); |
| |
| if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { |
| bool pract = ctrl & NVME_RW_PRINFO_PRACT; |
| |
| if (pract && ns->lbaf.ms == 8) { |
| mapped_size -= nvme_m2b(ns, nlb); |
| } |
| } |
| } |
| |
| trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode), |
| nvme_nsid(ns), nlb, mapped_size, slba); |
| |
| if (!wrz) { |
| status = nvme_check_mdts(n, mapped_size); |
| if (status) { |
| goto invalid; |
| } |
| } |
| |
| status = nvme_check_bounds(ns, slba, nlb); |
| if (status) { |
| goto invalid; |
| } |
| |
| if (ns->params.zoned) { |
| zone = nvme_get_zone_by_slba(ns, slba); |
| assert(zone); |
| |
| if (append) { |
| bool piremap = !!(ctrl & NVME_RW_PIREMAP); |
| |
| if (unlikely(slba != zone->d.zslba)) { |
| trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba); |
| status = NVME_INVALID_FIELD; |
| goto invalid; |
| } |
| |
| if (n->params.zasl && |
| data_size > (uint64_t)n->page_size << n->params.zasl) { |
| trace_pci_nvme_err_zasl(data_size); |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| slba = zone->w_ptr; |
| rw->slba = cpu_to_le64(slba); |
| res->slba = cpu_to_le64(slba); |
| |
| switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { |
| case NVME_ID_NS_DPS_TYPE_1: |
| if (!piremap) { |
| return NVME_INVALID_PROT_INFO | NVME_DNR; |
| } |
| |
| /* fallthrough */ |
| |
| case NVME_ID_NS_DPS_TYPE_2: |
| if (piremap) { |
| uint32_t reftag = le32_to_cpu(rw->reftag); |
| rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba)); |
| } |
| |
| break; |
| |
| case NVME_ID_NS_DPS_TYPE_3: |
| if (piremap) { |
| return NVME_INVALID_PROT_INFO | NVME_DNR; |
| } |
| |
| break; |
| } |
| } |
| |
| status = nvme_check_zone_write(ns, zone, slba, nlb); |
| if (status) { |
| goto invalid; |
| } |
| |
| status = nvme_zrm_auto(n, ns, zone); |
| if (status) { |
| goto invalid; |
| } |
| |
| zone->w_ptr += nlb; |
| } |
| |
| data_offset = nvme_l2b(ns, slba); |
| |
| if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { |
| return nvme_dif_rw(n, req); |
| } |
| |
| if (!wrz) { |
| status = nvme_map_data(n, nlb, req); |
| if (status) { |
| goto invalid; |
| } |
| |
| block_acct_start(blk_get_stats(blk), &req->acct, data_size, |
| BLOCK_ACCT_WRITE); |
| nvme_blk_write(blk, data_offset, nvme_rw_cb, req); |
| } else { |
| req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size, |
| BDRV_REQ_MAY_UNMAP, nvme_rw_cb, |
| req); |
| } |
| |
| return NVME_NO_COMPLETE; |
| |
| invalid: |
| block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE); |
| return status | NVME_DNR; |
| } |
| |
| static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req) |
| { |
| return nvme_do_write(n, req, false, false); |
| } |
| |
| static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req) |
| { |
| return nvme_do_write(n, req, false, true); |
| } |
| |
| static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req) |
| { |
| return nvme_do_write(n, req, true, false); |
| } |
| |
| static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c, |
| uint64_t *slba, uint32_t *zone_idx) |
| { |
| uint32_t dw10 = le32_to_cpu(c->cdw10); |
| uint32_t dw11 = le32_to_cpu(c->cdw11); |
| |
| if (!ns->params.zoned) { |
| trace_pci_nvme_err_invalid_opc(c->opcode); |
| return NVME_INVALID_OPCODE | NVME_DNR; |
| } |
| |
| *slba = ((uint64_t)dw11) << 32 | dw10; |
| if (unlikely(*slba >= ns->id_ns.nsze)) { |
| trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze); |
| *slba = 0; |
| return NVME_LBA_RANGE | NVME_DNR; |
| } |
| |
| *zone_idx = nvme_zone_idx(ns, *slba); |
| assert(*zone_idx < ns->num_zones); |
| |
| return NVME_SUCCESS; |
| } |
| |
| typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState, |
| NvmeRequest *); |
| |
| enum NvmeZoneProcessingMask { |
| NVME_PROC_CURRENT_ZONE = 0, |
| NVME_PROC_OPENED_ZONES = 1 << 0, |
| NVME_PROC_CLOSED_ZONES = 1 << 1, |
| NVME_PROC_READ_ONLY_ZONES = 1 << 2, |
| NVME_PROC_FULL_ZONES = 1 << 3, |
| }; |
| |
| static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone, |
| NvmeZoneState state, NvmeRequest *req) |
| { |
| return nvme_zrm_open(nvme_ctrl(req), ns, zone); |
| } |
| |
| static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone, |
| NvmeZoneState state, NvmeRequest *req) |
| { |
| return nvme_zrm_close(ns, zone); |
| } |
| |
| static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone, |
| NvmeZoneState state, NvmeRequest *req) |
| { |
| return nvme_zrm_finish(ns, zone); |
| } |
| |
| static uint16_t nvme_reset_zone(NvmeNamespace *ns, NvmeZone *zone, |
| NvmeZoneState state, NvmeRequest *req) |
| { |
| uintptr_t *resets = (uintptr_t *)&req->opaque; |
| struct nvme_zone_reset_ctx *ctx; |
| |
| switch (state) { |
| case NVME_ZONE_STATE_EMPTY: |
| return NVME_SUCCESS; |
| case NVME_ZONE_STATE_EXPLICITLY_OPEN: |
| case NVME_ZONE_STATE_IMPLICITLY_OPEN: |
| case NVME_ZONE_STATE_CLOSED: |
| case NVME_ZONE_STATE_FULL: |
| break; |
| default: |
| return NVME_ZONE_INVAL_TRANSITION; |
| } |
| |
| /* |
| * The zone reset aio callback needs to know the zone that is being reset |
| * in order to transition the zone on completion. |
| */ |
| ctx = g_new(struct nvme_zone_reset_ctx, 1); |
| ctx->req = req; |
| ctx->zone = zone; |
| |
| (*resets)++; |
| |
| blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_l2b(ns, zone->d.zslba), |
| nvme_l2b(ns, ns->zone_size), BDRV_REQ_MAY_UNMAP, |
| nvme_aio_zone_reset_cb, ctx); |
| |
| return NVME_NO_COMPLETE; |
| } |
| |
| static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone, |
| NvmeZoneState state, NvmeRequest *req) |
| { |
| switch (state) { |
| case NVME_ZONE_STATE_READ_ONLY: |
| nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE); |
| /* fall through */ |
| case NVME_ZONE_STATE_OFFLINE: |
| return NVME_SUCCESS; |
| default: |
| return NVME_ZONE_INVAL_TRANSITION; |
| } |
| } |
| |
| static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone) |
| { |
| uint16_t status; |
| uint8_t state = nvme_get_zone_state(zone); |
| |
| if (state == NVME_ZONE_STATE_EMPTY) { |
| status = nvme_aor_check(ns, 1, 0); |
| if (status) { |
| return status; |
| } |
| nvme_aor_inc_active(ns); |
| zone->d.za |= NVME_ZA_ZD_EXT_VALID; |
| nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED); |
| return NVME_SUCCESS; |
| } |
| |
| return NVME_ZONE_INVAL_TRANSITION; |
| } |
| |
| static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone, |
| enum NvmeZoneProcessingMask proc_mask, |
| op_handler_t op_hndlr, NvmeRequest *req) |
| { |
| uint16_t status = NVME_SUCCESS; |
| NvmeZoneState zs = nvme_get_zone_state(zone); |
| bool proc_zone; |
| |
| switch (zs) { |
| case NVME_ZONE_STATE_IMPLICITLY_OPEN: |
| case NVME_ZONE_STATE_EXPLICITLY_OPEN: |
| proc_zone = proc_mask & NVME_PROC_OPENED_ZONES; |
| break; |
| case NVME_ZONE_STATE_CLOSED: |
| proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES; |
| break; |
| case NVME_ZONE_STATE_READ_ONLY: |
| proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES; |
| break; |
| case NVME_ZONE_STATE_FULL: |
| proc_zone = proc_mask & NVME_PROC_FULL_ZONES; |
| break; |
| default: |
| proc_zone = false; |
| } |
| |
| if (proc_zone) { |
| status = op_hndlr(ns, zone, zs, req); |
| } |
| |
| return status; |
| } |
| |
| static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone, |
| enum NvmeZoneProcessingMask proc_mask, |
| op_handler_t op_hndlr, NvmeRequest *req) |
| { |
| NvmeZone *next; |
| uint16_t status = NVME_SUCCESS; |
| int i; |
| |
| if (!proc_mask) { |
| status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req); |
| } else { |
| if (proc_mask & NVME_PROC_CLOSED_ZONES) { |
| QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) { |
| status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, |
| req); |
| if (status && status != NVME_NO_COMPLETE) { |
| goto out; |
| } |
| } |
| } |
| if (proc_mask & NVME_PROC_OPENED_ZONES) { |
| QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) { |
| status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, |
| req); |
| if (status && status != NVME_NO_COMPLETE) { |
| goto out; |
| } |
| } |
| |
| QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) { |
| status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, |
| req); |
| if (status && status != NVME_NO_COMPLETE) { |
| goto out; |
| } |
| } |
| } |
| if (proc_mask & NVME_PROC_FULL_ZONES) { |
| QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) { |
| status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, |
| req); |
| if (status && status != NVME_NO_COMPLETE) { |
| goto out; |
| } |
| } |
| } |
| |
| if (proc_mask & NVME_PROC_READ_ONLY_ZONES) { |
| for (i = 0; i < ns->num_zones; i++, zone++) { |
| status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, |
| req); |
| if (status && status != NVME_NO_COMPLETE) { |
| goto out; |
| } |
| } |
| } |
| } |
| |
| out: |
| return status; |
| } |
| |
| static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req) |
| { |
| NvmeCmd *cmd = (NvmeCmd *)&req->cmd; |
| NvmeNamespace *ns = req->ns; |
| NvmeZone *zone; |
| uintptr_t *resets; |
| uint8_t *zd_ext; |
| uint32_t dw13 = le32_to_cpu(cmd->cdw13); |
| uint64_t slba = 0; |
| uint32_t zone_idx = 0; |
| uint16_t status; |
| uint8_t action; |
| bool all; |
| enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE; |
| |
| action = dw13 & 0xff; |
| all = dw13 & 0x100; |
| |
| req->status = NVME_SUCCESS; |
| |
| if (!all) { |
| status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx); |
| if (status) { |
| return status; |
| } |
| } |
| |
| zone = &ns->zone_array[zone_idx]; |
| if (slba != zone->d.zslba) { |
| trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba); |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| switch (action) { |
| |
| case NVME_ZONE_ACTION_OPEN: |
| if (all) { |
| proc_mask = NVME_PROC_CLOSED_ZONES; |
| } |
| trace_pci_nvme_open_zone(slba, zone_idx, all); |
| status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req); |
| break; |
| |
| case NVME_ZONE_ACTION_CLOSE: |
| if (all) { |
| proc_mask = NVME_PROC_OPENED_ZONES; |
| } |
| trace_pci_nvme_close_zone(slba, zone_idx, all); |
| status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req); |
| break; |
| |
| case NVME_ZONE_ACTION_FINISH: |
| if (all) { |
| proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES; |
| } |
| trace_pci_nvme_finish_zone(slba, zone_idx, all); |
| status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req); |
| break; |
| |
| case NVME_ZONE_ACTION_RESET: |
| resets = (uintptr_t *)&req->opaque; |
| |
| if (all) { |
| proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES | |
| NVME_PROC_FULL_ZONES; |
| } |
| trace_pci_nvme_reset_zone(slba, zone_idx, all); |
| |
| *resets = 1; |
| |
| status = nvme_do_zone_op(ns, zone, proc_mask, nvme_reset_zone, req); |
| |
| (*resets)--; |
| |
| return *resets ? NVME_NO_COMPLETE : req->status; |
| |
| case NVME_ZONE_ACTION_OFFLINE: |
| if (all) { |
| proc_mask = NVME_PROC_READ_ONLY_ZONES; |
| } |
| trace_pci_nvme_offline_zone(slba, zone_idx, all); |
| status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req); |
| break; |
| |
| case NVME_ZONE_ACTION_SET_ZD_EXT: |
| trace_pci_nvme_set_descriptor_extension(slba, zone_idx); |
| if (all || !ns->params.zd_extension_size) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| zd_ext = nvme_get_zd_extension(ns, zone_idx); |
| status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req); |
| if (status) { |
| trace_pci_nvme_err_zd_extension_map_error(zone_idx); |
| return status; |
| } |
| |
| status = nvme_set_zd_ext(ns, zone); |
| if (status == NVME_SUCCESS) { |
| trace_pci_nvme_zd_extension_set(zone_idx); |
| return status; |
| } |
| break; |
| |
| default: |
| trace_pci_nvme_err_invalid_mgmt_action(action); |
| status = NVME_INVALID_FIELD; |
| } |
| |
| if (status == NVME_ZONE_INVAL_TRANSITION) { |
| trace_pci_nvme_err_invalid_zone_state_transition(action, slba, |
| zone->d.za); |
| } |
| if (status) { |
| status |= NVME_DNR; |
| } |
| |
| return status; |
| } |
| |
| static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl) |
| { |
| NvmeZoneState zs = nvme_get_zone_state(zl); |
| |
| switch (zafs) { |
| case NVME_ZONE_REPORT_ALL: |
| return true; |
| case NVME_ZONE_REPORT_EMPTY: |
| return zs == NVME_ZONE_STATE_EMPTY; |
| case NVME_ZONE_REPORT_IMPLICITLY_OPEN: |
| return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN; |
| case NVME_ZONE_REPORT_EXPLICITLY_OPEN: |
| return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN; |
| case NVME_ZONE_REPORT_CLOSED: |
| return zs == NVME_ZONE_STATE_CLOSED; |
| case NVME_ZONE_REPORT_FULL: |
| return zs == NVME_ZONE_STATE_FULL; |
| case NVME_ZONE_REPORT_READ_ONLY: |
| return zs == NVME_ZONE_STATE_READ_ONLY; |
| case NVME_ZONE_REPORT_OFFLINE: |
| return zs == NVME_ZONE_STATE_OFFLINE; |
| default: |
| return false; |
| } |
| } |
| |
| static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req) |
| { |
| NvmeCmd *cmd = (NvmeCmd *)&req->cmd; |
| NvmeNamespace *ns = req->ns; |
| /* cdw12 is zero-based number of dwords to return. Convert to bytes */ |
| uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2; |
| uint32_t dw13 = le32_to_cpu(cmd->cdw13); |
| uint32_t zone_idx, zra, zrasf, partial; |
| uint64_t max_zones, nr_zones = 0; |
| uint16_t status; |
| uint64_t slba; |
| NvmeZoneDescr *z; |
| NvmeZone *zone; |
| NvmeZoneReportHeader *header; |
| void *buf, *buf_p; |
| size_t zone_entry_sz; |
| int i; |
| |
| req->status = NVME_SUCCESS; |
| |
| status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx); |
| if (status) { |
| return status; |
| } |
| |
| zra = dw13 & 0xff; |
| if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| zrasf = (dw13 >> 8) & 0xff; |
| if (zrasf > NVME_ZONE_REPORT_OFFLINE) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| if (data_size < sizeof(NvmeZoneReportHeader)) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| status = nvme_check_mdts(n, data_size); |
| if (status) { |
| return status; |
| } |
| |
| partial = (dw13 >> 16) & 0x01; |
| |
| zone_entry_sz = sizeof(NvmeZoneDescr); |
| if (zra == NVME_ZONE_REPORT_EXTENDED) { |
| zone_entry_sz += ns->params.zd_extension_size; |
| } |
| |
| max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz; |
| buf = g_malloc0(data_size); |
| |
| zone = &ns->zone_array[zone_idx]; |
| for (i = zone_idx; i < ns->num_zones; i++) { |
| if (partial && nr_zones >= max_zones) { |
| break; |
| } |
| if (nvme_zone_matches_filter(zrasf, zone++)) { |
| nr_zones++; |
| } |
| } |
| header = (NvmeZoneReportHeader *)buf; |
| header->nr_zones = cpu_to_le64(nr_zones); |
| |
| buf_p = buf + sizeof(NvmeZoneReportHeader); |
| for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) { |
| zone = &ns->zone_array[zone_idx]; |
| if (nvme_zone_matches_filter(zrasf, zone)) { |
| z = (NvmeZoneDescr *)buf_p; |
| buf_p += sizeof(NvmeZoneDescr); |
| |
| z->zt = zone->d.zt; |
| z->zs = zone->d.zs; |
| z->zcap = cpu_to_le64(zone->d.zcap); |
| z->zslba = cpu_to_le64(zone->d.zslba); |
| z->za = zone->d.za; |
| |
| if (nvme_wp_is_valid(zone)) { |
| z->wp = cpu_to_le64(zone->d.wp); |
| } else { |
| z->wp = cpu_to_le64(~0ULL); |
| } |
| |
| if (zra == NVME_ZONE_REPORT_EXTENDED) { |
| if (zone->d.za & NVME_ZA_ZD_EXT_VALID) { |
| memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx), |
| ns->params.zd_extension_size); |
| } |
| buf_p += ns->params.zd_extension_size; |
| } |
| |
| max_zones--; |
| } |
| } |
| |
| status = nvme_c2h(n, (uint8_t *)buf, data_size, req); |
| |
| g_free(buf); |
| |
| return status; |
| } |
| |
| static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req) |
| { |
| NvmeNamespace *ns; |
| uint32_t nsid = le32_to_cpu(req->cmd.nsid); |
| |
| trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req), |
| req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode)); |
| |
| if (!nvme_nsid_valid(n, nsid)) { |
| return NVME_INVALID_NSID | NVME_DNR; |
| } |
| |
| /* |
| * In the base NVM command set, Flush may apply to all namespaces |
| * (indicated by NSID being set to FFFFFFFFh). But if that feature is used |
| * along with TP 4056 (Namespace Types), it may be pretty screwed up. |
| * |
| * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the |
| * opcode with a specific command since we cannot determine a unique I/O |
| * command set. Opcode 0h could have any other meaning than something |
| * equivalent to flushing and say it DOES have completely different |
| * semantics in some other command set - does an NSID of FFFFFFFFh then |
| * mean "for all namespaces, apply whatever command set specific command |
| * that uses the 0h opcode?" Or does it mean "for all namespaces, apply |
| * whatever command that uses the 0h opcode if, and only if, it allows NSID |
| * to be FFFFFFFFh"? |
| * |
| * Anyway (and luckily), for now, we do not care about this since the |
| * device only supports namespace types that includes the NVM Flush command |
| * (NVM and Zoned), so always do an NVM Flush. |
| */ |
| if (req->cmd.opcode == NVME_CMD_FLUSH) { |
| return nvme_flush(n, req); |
| } |
| |
| ns = nvme_ns(n, nsid); |
| if (unlikely(!ns)) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) { |
| trace_pci_nvme_err_invalid_opc(req->cmd.opcode); |
| return NVME_INVALID_OPCODE | NVME_DNR; |
| } |
| |
| if (ns->status) { |
| return ns->status; |
| } |
| |
| req->ns = ns; |
| |
| switch (req->cmd.opcode) { |
| case NVME_CMD_WRITE_ZEROES: |
| return nvme_write_zeroes(n, req); |
| case NVME_CMD_ZONE_APPEND: |
| return nvme_zone_append(n, req); |
| case NVME_CMD_WRITE: |
| return nvme_write(n, req); |
| case NVME_CMD_READ: |
| return nvme_read(n, req); |
| case NVME_CMD_COMPARE: |
| return nvme_compare(n, req); |
| case NVME_CMD_DSM: |
| return nvme_dsm(n, req); |
| case NVME_CMD_VERIFY: |
| return nvme_verify(n, req); |
| case NVME_CMD_COPY: |
| return nvme_copy(n, req); |
| case NVME_CMD_ZONE_MGMT_SEND: |
| return nvme_zone_mgmt_send(n, req); |
| case NVME_CMD_ZONE_MGMT_RECV: |
| return nvme_zone_mgmt_recv(n, req); |
| default: |
| assert(false); |
| } |
| |
| return NVME_INVALID_OPCODE | NVME_DNR; |
| } |
| |
| static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n) |
| { |
| n->sq[sq->sqid] = NULL; |
| timer_free(sq->timer); |
| g_free(sq->io_req); |
| if (sq->sqid) { |
| g_free(sq); |
| } |
| } |
| |
| static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req) |
| { |
| NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; |
| NvmeRequest *r, *next; |
| NvmeSQueue *sq; |
| NvmeCQueue *cq; |
| uint16_t qid = le16_to_cpu(c->qid); |
| uint32_t nsid; |
| |
| if (unlikely(!qid || nvme_check_sqid(n, qid))) { |
| trace_pci_nvme_err_invalid_del_sq(qid); |
| return NVME_INVALID_QID | NVME_DNR; |
| } |
| |
| trace_pci_nvme_del_sq(qid); |
| |
| sq = n->sq[qid]; |
| while (!QTAILQ_EMPTY(&sq->out_req_list)) { |
| r = QTAILQ_FIRST(&sq->out_req_list); |
| if (r->aiocb) { |
| blk_aio_cancel(r->aiocb); |
| } |
| } |
| |
| /* |
| * Drain all namespaces if there are still outstanding requests that we |
| * could not cancel explicitly. |
| */ |
| if (!QTAILQ_EMPTY(&sq->out_req_list)) { |
| for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) { |
| NvmeNamespace *ns = nvme_ns(n, nsid); |
| if (ns) { |
| nvme_ns_drain(ns); |
| } |
| } |
| } |
| |
| assert(QTAILQ_EMPTY(&sq->out_req_list)); |
| |
| if (!nvme_check_cqid(n, sq->cqid)) { |
| cq = n->cq[sq->cqid]; |
| QTAILQ_REMOVE(&cq->sq_list, sq, entry); |
| |
| nvme_post_cqes(cq); |
| QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) { |
| if (r->sq == sq) { |
| QTAILQ_REMOVE(&cq->req_list, r, entry); |
| QTAILQ_INSERT_TAIL(&sq->req_list, r, entry); |
| } |
| } |
| } |
| |
| nvme_free_sq(sq, n); |
| return NVME_SUCCESS; |
| } |
| |
| static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr, |
| uint16_t sqid, uint16_t cqid, uint16_t size) |
| { |
| int i; |
| NvmeCQueue *cq; |
| |
| sq->ctrl = n; |
| sq->dma_addr = dma_addr; |
| sq->sqid = sqid; |
| sq->size = size; |
| sq->cqid = cqid; |
| sq->head = sq->tail = 0; |
| sq->io_req = g_new0(NvmeRequest, sq->size); |
| |
| QTAILQ_INIT(&sq->req_list); |
| QTAILQ_INIT(&sq->out_req_list); |
| for (i = 0; i < sq->size; i++) { |
| sq->io_req[i].sq = sq; |
| QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry); |
| } |
| sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq); |
| |
| assert(n->cq[cqid]); |
| cq = n->cq[cqid]; |
| QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry); |
| n->sq[sqid] = sq; |
| } |
| |
| static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req) |
| { |
| NvmeSQueue *sq; |
| NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd; |
| |
| uint16_t cqid = le16_to_cpu(c->cqid); |
| uint16_t sqid = le16_to_cpu(c->sqid); |
| uint16_t qsize = le16_to_cpu(c->qsize); |
| uint16_t qflags = le16_to_cpu(c->sq_flags); |
| uint64_t prp1 = le64_to_cpu(c->prp1); |
| |
| trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags); |
| |
| if (unlikely(!cqid || nvme_check_cqid(n, cqid))) { |
| trace_pci_nvme_err_invalid_create_sq_cqid(cqid); |
| return NVME_INVALID_CQID | NVME_DNR; |
| } |
| if (unlikely(!sqid || sqid > n->params.max_ioqpairs || |
| n->sq[sqid] != NULL)) { |
| trace_pci_nvme_err_invalid_create_sq_sqid(sqid); |
| return NVME_INVALID_QID | NVME_DNR; |
| } |
| if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) { |
| trace_pci_nvme_err_invalid_create_sq_size(qsize); |
| return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; |
| } |
| if (unlikely(prp1 & (n->page_size - 1))) { |
| trace_pci_nvme_err_invalid_create_sq_addr(prp1); |
| return NVME_INVALID_PRP_OFFSET | NVME_DNR; |
| } |
| if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) { |
| trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags)); |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| sq = g_malloc0(sizeof(*sq)); |
| nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1); |
| return NVME_SUCCESS; |
| } |
| |
| struct nvme_stats { |
| uint64_t units_read; |
| uint64_t units_written; |
| uint64_t read_commands; |
| uint64_t write_commands; |
| }; |
| |
| static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats) |
| { |
| BlockAcctStats *s = blk_get_stats(ns->blkconf.blk); |
| |
| stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS; |
| stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS; |
| stats->read_commands += s->nr_ops[BLOCK_ACCT_READ]; |
| stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE]; |
| } |
| |
| static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, |
| uint64_t off, NvmeRequest *req) |
| { |
| uint32_t nsid = le32_to_cpu(req->cmd.nsid); |
| struct nvme_stats stats = { 0 }; |
| NvmeSmartLog smart = { 0 }; |
| uint32_t trans_len; |
| NvmeNamespace *ns; |
| time_t current_ms; |
| |
| if (off >= sizeof(smart)) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| if (nsid != 0xffffffff) { |
| ns = nvme_ns(n, nsid); |
| if (!ns) { |
| return NVME_INVALID_NSID | NVME_DNR; |
| } |
| nvme_set_blk_stats(ns, &stats); |
| } else { |
| int i; |
| |
| for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { |
| ns = nvme_ns(n, i); |
| if (!ns) { |
| continue; |
| } |
| nvme_set_blk_stats(ns, &stats); |
| } |
| } |
| |
| trans_len = MIN(sizeof(smart) - off, buf_len); |
| smart.critical_warning = n->smart_critical_warning; |
| |
| smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read, |
| 1000)); |
| smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written, |
| 1000)); |
| smart.host_read_commands[0] = cpu_to_le64(stats.read_commands); |
| smart.host_write_commands[0] = cpu_to_le64(stats.write_commands); |
| |
| smart.temperature = cpu_to_le16(n->temperature); |
| |
| if ((n->temperature >= n->features.temp_thresh_hi) || |
| (n->temperature <= n->features.temp_thresh_low)) { |
| smart.critical_warning |= NVME_SMART_TEMPERATURE; |
| } |
| |
| current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); |
| smart.power_on_hours[0] = |
| cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60); |
| |
| if (!rae) { |
| nvme_clear_events(n, NVME_AER_TYPE_SMART); |
| } |
| |
| return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req); |
| } |
| |
| static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off, |
| NvmeRequest *req) |
| { |
| uint32_t trans_len; |
| NvmeFwSlotInfoLog fw_log = { |
| .afi = 0x1, |
| }; |
| |
| if (off >= sizeof(fw_log)) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' '); |
| trans_len = MIN(sizeof(fw_log) - off, buf_len); |
| |
| return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req); |
| } |
| |
| static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, |
| uint64_t off, NvmeRequest *req) |
| { |
| uint32_t trans_len; |
| NvmeErrorLog errlog; |
| |
| if (off >= sizeof(errlog)) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| if (!rae) { |
| nvme_clear_events(n, NVME_AER_TYPE_ERROR); |
| } |
| |
| memset(&errlog, 0x0, sizeof(errlog)); |
| trans_len = MIN(sizeof(errlog) - off, buf_len); |
| |
| return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req); |
| } |
| |
| static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, |
| uint64_t off, NvmeRequest *req) |
| { |
| uint32_t nslist[1024]; |
| uint32_t trans_len; |
| int i = 0; |
| uint32_t nsid; |
| |
| memset(nslist, 0x0, sizeof(nslist)); |
| trans_len = MIN(sizeof(nslist) - off, buf_len); |
| |
| while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) != |
| NVME_CHANGED_NSID_SIZE) { |
| /* |
| * If more than 1024 namespaces, the first entry in the log page should |
| * be set to FFFFFFFFh and the others to 0 as spec. |
| */ |
| if (i == ARRAY_SIZE(nslist)) { |
| memset(nslist, 0x0, sizeof(nslist)); |
| nslist[0] = 0xffffffff; |
| break; |
| } |
| |
| nslist[i++] = nsid; |
| clear_bit(nsid, n->changed_nsids); |
| } |
| |
| /* |
| * Remove all the remaining list entries in case returns directly due to |
| * more than 1024 namespaces. |
| */ |
| if (nslist[0] == 0xffffffff) { |
| bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE); |
| } |
| |
| if (!rae) { |
| nvme_clear_events(n, NVME_AER_TYPE_NOTICE); |
| } |
| |
| return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req); |
| } |
| |
| static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len, |
| uint64_t off, NvmeRequest *req) |
| { |
| NvmeEffectsLog log = {}; |
| const uint32_t *src_iocs = NULL; |
| uint32_t trans_len; |
| |
| if (off >= sizeof(log)) { |
| trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log)); |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| switch (NVME_CC_CSS(n->bar.cc)) { |
| case NVME_CC_CSS_NVM: |
| src_iocs = nvme_cse_iocs_nvm; |
| /* fall through */ |
| case NVME_CC_CSS_ADMIN_ONLY: |
| break; |
| case NVME_CC_CSS_CSI: |
| switch (csi) { |
| case NVME_CSI_NVM: |
| src_iocs = nvme_cse_iocs_nvm; |
| break; |
| case NVME_CSI_ZONED: |
| src_iocs = nvme_cse_iocs_zoned; |
| break; |
| } |
| } |
| |
| memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs)); |
| |
| if (src_iocs) { |
| memcpy(log.iocs, src_iocs, sizeof(log.iocs)); |
| } |
| |
| trans_len = MIN(sizeof(log) - off, buf_len); |
| |
| return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req); |
| } |
| |
| static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req) |
| { |
| NvmeCmd *cmd = &req->cmd; |
| |
| uint32_t dw10 = le32_to_cpu(cmd->cdw10); |
| uint32_t dw11 = le32_to_cpu(cmd->cdw11); |
| uint32_t dw12 = le32_to_cpu(cmd->cdw12); |
| uint32_t dw13 = le32_to_cpu(cmd->cdw13); |
| uint8_t lid = dw10 & 0xff; |
| uint8_t lsp = (dw10 >> 8) & 0xf; |
| uint8_t rae = (dw10 >> 15) & 0x1; |
| uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24; |
| uint32_t numdl, numdu; |
| uint64_t off, lpol, lpou; |
| size_t len; |
| uint16_t status; |
| |
| numdl = (dw10 >> 16); |
| numdu = (dw11 & 0xffff); |
| lpol = dw12; |
| lpou = dw13; |
| |
| len = (((numdu << 16) | numdl) + 1) << 2; |
| off = (lpou << 32ULL) | lpol; |
| |
| if (off & 0x3) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off); |
| |
| status = nvme_check_mdts(n, len); |
| if (status) { |
| return status; |
| } |
| |
| switch (lid) { |
| case NVME_LOG_ERROR_INFO: |
| return nvme_error_info(n, rae, len, off, req); |
| case NVME_LOG_SMART_INFO: |
| return nvme_smart_info(n, rae, len, off, req); |
| case NVME_LOG_FW_SLOT_INFO: |
| return nvme_fw_log_info(n, len, off, req); |
| case NVME_LOG_CHANGED_NSLIST: |
| return nvme_changed_nslist(n, rae, len, off, req); |
| case NVME_LOG_CMD_EFFECTS: |
| return nvme_cmd_effects(n, csi, len, off, req); |
| default: |
| trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid); |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| } |
| |
| static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n) |
| { |
| n->cq[cq->cqid] = NULL; |
| timer_free(cq->timer); |
| if (msix_enabled(&n->parent_obj)) { |
| msix_vector_unuse(&n->parent_obj, cq->vector); |
| } |
| if (cq->cqid) { |
| g_free(cq); |
| } |
| } |
| |
| static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req) |
| { |
| NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; |
| NvmeCQueue *cq; |
| uint16_t qid = le16_to_cpu(c->qid); |
| |
| if (unlikely(!qid || nvme_check_cqid(n, qid))) { |
| trace_pci_nvme_err_invalid_del_cq_cqid(qid); |
| return NVME_INVALID_CQID | NVME_DNR; |
| } |
| |
| cq = n->cq[qid]; |
| if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) { |
| trace_pci_nvme_err_invalid_del_cq_notempty(qid); |
| return NVME_INVALID_QUEUE_DEL; |
| } |
| nvme_irq_deassert(n, cq); |
| trace_pci_nvme_del_cq(qid); |
| nvme_free_cq(cq, n); |
| return NVME_SUCCESS; |
| } |
| |
| static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr, |
| uint16_t cqid, uint16_t vector, uint16_t size, |
| uint16_t irq_enabled) |
| { |
| int ret; |
| |
| if (msix_enabled(&n->parent_obj)) { |
| ret = msix_vector_use(&n->parent_obj, vector); |
| assert(ret == 0); |
| } |
| cq->ctrl = n; |
| cq->cqid = cqid; |
| cq->size = size; |
| cq->dma_addr = dma_addr; |
| cq->phase = 1; |
| cq->irq_enabled = irq_enabled; |
| cq->vector = vector; |
| cq->head = cq->tail = 0; |
| QTAILQ_INIT(&cq->req_list); |
| QTAILQ_INIT(&cq->sq_list); |
| n->cq[cqid] = cq; |
| cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq); |
| } |
| |
| static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req) |
| { |
| NvmeCQueue *cq; |
| NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd; |
| uint16_t cqid = le16_to_cpu(c->cqid); |
| uint16_t vector = le16_to_cpu(c->irq_vector); |
| uint16_t qsize = le16_to_cpu(c->qsize); |
| uint16_t qflags = le16_to_cpu(c->cq_flags); |
| uint64_t prp1 = le64_to_cpu(c->prp1); |
| |
| trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags, |
| NVME_CQ_FLAGS_IEN(qflags) != 0); |
| |
| if (unlikely(!cqid || cqid > n->params.max_ioqpairs || |
| n->cq[cqid] != NULL)) { |
| trace_pci_nvme_err_invalid_create_cq_cqid(cqid); |
| return NVME_INVALID_QID | NVME_DNR; |
| } |
| if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) { |
| trace_pci_nvme_err_invalid_create_cq_size(qsize); |
| return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; |
| } |
| if (unlikely(prp1 & (n->page_size - 1))) { |
| trace_pci_nvme_err_invalid_create_cq_addr(prp1); |
| return NVME_INVALID_PRP_OFFSET | NVME_DNR; |
| } |
| if (unlikely(!msix_enabled(&n->parent_obj) && vector)) { |
| trace_pci_nvme_err_invalid_create_cq_vector(vector); |
| return NVME_INVALID_IRQ_VECTOR | NVME_DNR; |
| } |
| if (unlikely(vector >= n->params.msix_qsize)) { |
| trace_pci_nvme_err_invalid_create_cq_vector(vector); |
| return NVME_INVALID_IRQ_VECTOR | NVME_DNR; |
| } |
| if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) { |
| trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags)); |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| cq = g_malloc0(sizeof(*cq)); |
| nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1, |
| NVME_CQ_FLAGS_IEN(qflags)); |
| |
| /* |
| * It is only required to set qs_created when creating a completion queue; |
| * creating a submission queue without a matching completion queue will |
| * fail. |
| */ |
| n->qs_created = true; |
| return NVME_SUCCESS; |
| } |
| |
| static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req) |
| { |
| uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {}; |
| |
| return nvme_c2h(n, id, sizeof(id), req); |
| } |
| |
| static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req) |
| { |
| trace_pci_nvme_identify_ctrl(); |
| |
| return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req); |
| } |
| |
| static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req) |
| { |
| NvmeIdentify *c = (NvmeIdentify *)&req->cmd; |
| uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {}; |
| NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id; |
| |
| trace_pci_nvme_identify_ctrl_csi(c->csi); |
| |
| switch (c->csi) { |
| case NVME_CSI_NVM: |
| id_nvm->vsl = n->params.vsl; |
| id_nvm->dmrsl = cpu_to_le32(n->dmrsl); |
| break; |
| |
| case NVME_CSI_ZONED: |
| ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl; |
| break; |
| |
| default: |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| return nvme_c2h(n, id, sizeof(id), req); |
| } |
| |
| static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active) |
| { |
| NvmeNamespace *ns; |
| NvmeIdentify *c = (NvmeIdentify *)&req->cmd; |
| uint32_t nsid = le32_to_cpu(c->nsid); |
| |
| trace_pci_nvme_identify_ns(nsid); |
| |
| if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { |
| return NVME_INVALID_NSID | NVME_DNR; |
| } |
| |
| ns = nvme_ns(n, nsid); |
| if (unlikely(!ns)) { |
| if (!active) { |
| ns = nvme_subsys_ns(n->subsys, nsid); |
| if (!ns) { |
| return nvme_rpt_empty_id_struct(n, req); |
| } |
| } else { |
| return nvme_rpt_empty_id_struct(n, req); |
| } |
| } |
| |
| if (active || ns->csi == NVME_CSI_NVM) { |
| return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req); |
| } |
| |
| return NVME_INVALID_CMD_SET | NVME_DNR; |
| } |
| |
| static uint16_t nvme_identify_ns_attached_list(NvmeCtrl *n, NvmeRequest *req) |
| { |
| NvmeIdentify *c = (NvmeIdentify *)&req->cmd; |
| uint16_t min_id = le16_to_cpu(c->ctrlid); |
| uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; |
| uint16_t *ids = &list[1]; |
| NvmeNamespace *ns; |
| NvmeCtrl *ctrl; |
| int cntlid, nr_ids = 0; |
| |
| trace_pci_nvme_identify_ns_attached_list(min_id); |
| |
| if (c->nsid == NVME_NSID_BROADCAST) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| ns = nvme_subsys_ns(n->subsys, c->nsid); |
| if (!ns) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) { |
| ctrl = nvme_subsys_ctrl(n->subsys, cntlid); |
| if (!ctrl) { |
| continue; |
| } |
| |
| if (!nvme_ns(ctrl, c->nsid)) { |
| continue; |
| } |
| |
| ids[nr_ids++] = cntlid; |
| } |
| |
| list[0] = nr_ids; |
| |
| return nvme_c2h(n, (uint8_t *)list, sizeof(list), req); |
| } |
| |
| static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req, |
| bool active) |
| { |
| NvmeNamespace *ns; |
| NvmeIdentify *c = (NvmeIdentify *)&req->cmd; |
| uint32_t nsid = le32_to_cpu(c->nsid); |
| |
| trace_pci_nvme_identify_ns_csi(nsid, c->csi); |
| |
| if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { |
| return NVME_INVALID_NSID | NVME_DNR; |
| } |
| |
| ns = nvme_ns(n, nsid); |
| if (unlikely(!ns)) { |
| if (!active) { |
| ns = nvme_subsys_ns(n->subsys, nsid); |
| if (!ns) { |
| return nvme_rpt_empty_id_struct(n, req); |
| } |
| } else { |
| return nvme_rpt_empty_id_struct(n, req); |
| } |
| } |
| |
| if (c->csi == NVME_CSI_NVM) { |
| return nvme_rpt_empty_id_struct(n, req); |
| } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) { |
| return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned), |
| req); |
| } |
| |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req, |
| bool active) |
| { |
| NvmeNamespace *ns; |
| NvmeIdentify *c = (NvmeIdentify *)&req->cmd; |
| uint32_t min_nsid = le32_to_cpu(c->nsid); |
| uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; |
| static const int data_len = sizeof(list); |
| uint32_t *list_ptr = (uint32_t *)list; |
| int i, j = 0; |
| |
| trace_pci_nvme_identify_nslist(min_nsid); |
| |
| /* |
| * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values |
| * since the Active Namespace ID List should return namespaces with ids |
| * *higher* than the NSID specified in the command. This is also specified |
| * in the spec (NVM Express v1.3d, Section 5.15.4). |
| */ |
| if (min_nsid >= NVME_NSID_BROADCAST - 1) { |
| return NVME_INVALID_NSID | NVME_DNR; |
| } |
| |
| for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { |
| ns = nvme_ns(n, i); |
| if (!ns) { |
| if (!active) { |
| ns = nvme_subsys_ns(n->subsys, i); |
| if (!ns) { |
| continue; |
| } |
| } else { |
| continue; |
| } |
| } |
| if (ns->params.nsid <= min_nsid) { |
| continue; |
| } |
| list_ptr[j++] = cpu_to_le32(ns->params.nsid); |
| if (j == data_len / sizeof(uint32_t)) { |
| break; |
| } |
| } |
| |
| return nvme_c2h(n, list, data_len, req); |
| } |
| |
| static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req, |
| bool active) |
| { |
| NvmeNamespace *ns; |
| NvmeIdentify *c = (NvmeIdentify *)&req->cmd; |
| uint32_t min_nsid = le32_to_cpu(c->nsid); |
| uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; |
| static const int data_len = sizeof(list); |
| uint32_t *list_ptr = (uint32_t *)list; |
| int i, j = 0; |
| |
| trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi); |
| |
| /* |
| * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid. |
| */ |
| if (min_nsid >= NVME_NSID_BROADCAST - 1) { |
| return NVME_INVALID_NSID | NVME_DNR; |
| } |
| |
| if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { |
| ns = nvme_ns(n, i); |
| if (!ns) { |
| if (!active) { |
| ns = nvme_subsys_ns(n->subsys, i); |
| if (!ns) { |
| continue; |
| } |
| } else { |
| continue; |
| } |
| } |
| if (ns->params.nsid <= min_nsid || c->csi != ns->csi) { |
| continue; |
| } |
| list_ptr[j++] = cpu_to_le32(ns->params.nsid); |
| if (j == data_len / sizeof(uint32_t)) { |
| break; |
| } |
| } |
| |
| return nvme_c2h(n, list, data_len, req); |
| } |
| |
| static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req) |
| { |
| NvmeNamespace *ns; |
| NvmeIdentify *c = (NvmeIdentify *)&req->cmd; |
| uint32_t nsid = le32_to_cpu(c->nsid); |
| uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; |
| uint8_t *pos = list; |
| struct { |
| NvmeIdNsDescr hdr; |
| uint8_t v[NVME_NIDL_UUID]; |
| } QEMU_PACKED uuid; |
| struct { |
| NvmeIdNsDescr hdr; |
| uint64_t v; |
| } QEMU_PACKED eui64; |
| struct { |
| NvmeIdNsDescr hdr; |
| uint8_t v; |
| } QEMU_PACKED csi; |
| |
| trace_pci_nvme_identify_ns_descr_list(nsid); |
| |
| if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { |
| return NVME_INVALID_NSID | NVME_DNR; |
| } |
| |
| ns = nvme_ns(n, nsid); |
| if (unlikely(!ns)) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| /* |
| * If the EUI-64 field is 0 and the NGUID field is 0, the namespace must |
| * provide a valid Namespace UUID in the Namespace Identification Descriptor |
| * data structure. QEMU does not yet support setting NGUID. |
| */ |
| uuid.hdr.nidt = NVME_NIDT_UUID; |
| uuid.hdr.nidl = NVME_NIDL_UUID; |
| memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID); |
| memcpy(pos, &uuid, sizeof(uuid)); |
| pos += sizeof(uuid); |
| |
| if (ns->params.eui64) { |
| eui64.hdr.nidt = NVME_NIDT_EUI64; |
| eui64.hdr.nidl = NVME_NIDL_EUI64; |
| eui64.v = cpu_to_be64(ns->params.eui64); |
| memcpy(pos, &eui64, sizeof(eui64)); |
| pos += sizeof(eui64); |
| } |
| |
| csi.hdr.nidt = NVME_NIDT_CSI; |
| csi.hdr.nidl = NVME_NIDL_CSI; |
| csi.v = ns->csi; |
| memcpy(pos, &csi, sizeof(csi)); |
| pos += sizeof(csi); |
| |
| return nvme_c2h(n, list, sizeof(list), req); |
| } |
| |
| static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req) |
| { |
| uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; |
| static const int data_len = sizeof(list); |
| |
| trace_pci_nvme_identify_cmd_set(); |
| |
| NVME_SET_CSI(*list, NVME_CSI_NVM); |
| NVME_SET_CSI(*list, NVME_CSI_ZONED); |
| |
| return nvme_c2h(n, list, data_len, req); |
| } |
| |
| static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req) |
| { |
| NvmeIdentify *c = (NvmeIdentify *)&req->cmd; |
| |
| trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid), |
| c->csi); |
| |
| switch (c->cns) { |
| case NVME_ID_CNS_NS: |
| return nvme_identify_ns(n, req, true); |
| case NVME_ID_CNS_NS_PRESENT: |
| return nvme_identify_ns(n, req, false); |
| case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST: |
| return nvme_identify_ns_attached_list(n, req); |
| case NVME_ID_CNS_CS_NS: |
| return nvme_identify_ns_csi(n, req, true); |
| case NVME_ID_CNS_CS_NS_PRESENT: |
| return nvme_identify_ns_csi(n, req, false); |
| case NVME_ID_CNS_CTRL: |
| return nvme_identify_ctrl(n, req); |
| case NVME_ID_CNS_CS_CTRL: |
| return nvme_identify_ctrl_csi(n, req); |
| case NVME_ID_CNS_NS_ACTIVE_LIST: |
| return nvme_identify_nslist(n, req, true); |
| case NVME_ID_CNS_NS_PRESENT_LIST: |
| return nvme_identify_nslist(n, req, false); |
| case NVME_ID_CNS_CS_NS_ACTIVE_LIST: |
| return nvme_identify_nslist_csi(n, req, true); |
| case NVME_ID_CNS_CS_NS_PRESENT_LIST: |
| return nvme_identify_nslist_csi(n, req, false); |
| case NVME_ID_CNS_NS_DESCR_LIST: |
| return nvme_identify_ns_descr_list(n, req); |
| case NVME_ID_CNS_IO_COMMAND_SET: |
| return nvme_identify_cmd_set(n, req); |
| default: |
| trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns)); |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| } |
| |
| static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req) |
| { |
| uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff; |
| |
| req->cqe.result = 1; |
| if (nvme_check_sqid(n, sqid)) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| return NVME_SUCCESS; |
| } |
| |
| static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts) |
| { |
| trace_pci_nvme_setfeat_timestamp(ts); |
| |
| n->host_timestamp = le64_to_cpu(ts); |
| n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); |
| } |
| |
| static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n) |
| { |
| uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); |
| uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms; |
| |
| union nvme_timestamp { |
| struct { |
| uint64_t timestamp:48; |
| uint64_t sync:1; |
| uint64_t origin:3; |
| uint64_t rsvd1:12; |
| }; |
| uint64_t all; |
| }; |
| |
| union nvme_timestamp ts; |
| ts.all = 0; |
| ts.timestamp = n->host_timestamp + elapsed_time; |
| |
| /* If the host timestamp is non-zero, set the timestamp origin */ |
| ts.origin = n->host_timestamp ? 0x01 : 0x00; |
| |
| trace_pci_nvme_getfeat_timestamp(ts.all); |
| |
| return cpu_to_le64(ts.all); |
| } |
| |
| static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) |
| { |
| uint64_t timestamp = nvme_get_timestamp(n); |
| |
| return nvme_c2h(n, (uint8_t *)×tamp, sizeof(timestamp), req); |
| } |
| |
| static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req) |
| { |
| NvmeCmd *cmd = &req->cmd; |
| uint32_t dw10 = le32_to_cpu(cmd->cdw10); |
| uint32_t dw11 = le32_to_cpu(cmd->cdw11); |
| uint32_t nsid = le32_to_cpu(cmd->nsid); |
| uint32_t result; |
| uint8_t fid = NVME_GETSETFEAT_FID(dw10); |
| NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10); |
| uint16_t iv; |
| NvmeNamespace *ns; |
| int i; |
| |
| static const uint32_t nvme_feature_default[NVME_FID_MAX] = { |
| [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT, |
| }; |
| |
| trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11); |
| |
| if (!nvme_feature_support[fid]) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { |
| if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { |
| /* |
| * The Reservation Notification Mask and Reservation Persistence |
| * features require a status code of Invalid Field in Command when |
| * NSID is FFFFFFFFh. Since the device does not support those |
| * features we can always return Invalid Namespace or Format as we |
| * should do for all other features. |
| */ |
| return NVME_INVALID_NSID | NVME_DNR; |
| } |
| |
| if (!nvme_ns(n, nsid)) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| } |
| |
| switch (sel) { |
| case NVME_GETFEAT_SELECT_CURRENT: |
| break; |
| case NVME_GETFEAT_SELECT_SAVED: |
| /* no features are saveable by the controller; fallthrough */ |
| case NVME_GETFEAT_SELECT_DEFAULT: |
| goto defaults; |
| case NVME_GETFEAT_SELECT_CAP: |
| result = nvme_feature_cap[fid]; |
| goto out; |
| } |
| |
| switch (fid) { |
| case NVME_TEMPERATURE_THRESHOLD: |
| result = 0; |
| |
| /* |
| * The controller only implements the Composite Temperature sensor, so |
| * return 0 for all other sensors. |
| */ |
| if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { |
| goto out; |
| } |
| |
| switch (NVME_TEMP_THSEL(dw11)) { |
| case NVME_TEMP_THSEL_OVER: |
| result = n->features.temp_thresh_hi; |
| goto out; |
| case NVME_TEMP_THSEL_UNDER: |
| result = n->features.temp_thresh_low; |
| goto out; |
| } |
| |
| return NVME_INVALID_FIELD | NVME_DNR; |
| case NVME_ERROR_RECOVERY: |
| if (!nvme_nsid_valid(n, nsid)) { |
| return NVME_INVALID_NSID | NVME_DNR; |
| } |
| |
| ns = nvme_ns(n, nsid); |
| if (unlikely(!ns)) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| result = ns->features.err_rec; |
| goto out; |
| case NVME_VOLATILE_WRITE_CACHE: |
| result = 0; |
| for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { |
| ns = nvme_ns(n, i); |
| if (!ns) { |
| continue; |
| } |
| |
| result = blk_enable_write_cache(ns->blkconf.blk); |
| if (result) { |
| break; |
| } |
| } |
| trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled"); |
| goto out; |
| case NVME_ASYNCHRONOUS_EVENT_CONF: |
| result = n->features.async_config; |
| goto out; |
| case NVME_TIMESTAMP: |
| return nvme_get_feature_timestamp(n, req); |
| default: |
| break; |
| } |
| |
| defaults: |
| switch (fid) { |
| case NVME_TEMPERATURE_THRESHOLD: |
| result = 0; |
| |
| if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { |
| break; |
| } |
| |
| if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) { |
| result = NVME_TEMPERATURE_WARNING; |
| } |
| |
| break; |
| case NVME_NUMBER_OF_QUEUES: |
| result = (n->params.max_ioqpairs - 1) | |
| ((n->params.max_ioqpairs - 1) << 16); |
| trace_pci_nvme_getfeat_numq(result); |
| break; |
| case NVME_INTERRUPT_VECTOR_CONF: |
| iv = dw11 & 0xffff; |
| if (iv >= n->params.max_ioqpairs + 1) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| result = iv; |
| if (iv == n->admin_cq.vector) { |
| result |= NVME_INTVC_NOCOALESCING; |
| } |
| break; |
| default: |
| result = nvme_feature_default[fid]; |
| break; |
| } |
| |
| out: |
| req->cqe.result = cpu_to_le32(result); |
| return NVME_SUCCESS; |
| } |
| |
| static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) |
| { |
| uint16_t ret; |
| uint64_t timestamp; |
| |
| ret = nvme_h2c(n, (uint8_t *)×tamp, sizeof(timestamp), req); |
| if (ret) { |
| return ret; |
| } |
| |
| nvme_set_timestamp(n, timestamp); |
| |
| return NVME_SUCCESS; |
| } |
| |
| static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req) |
| { |
| NvmeNamespace *ns = NULL; |
| |
| NvmeCmd *cmd = &req->cmd; |
| uint32_t dw10 = le32_to_cpu(cmd->cdw10); |
| uint32_t dw11 = le32_to_cpu(cmd->cdw11); |
| uint32_t nsid = le32_to_cpu(cmd->nsid); |
| uint8_t fid = NVME_GETSETFEAT_FID(dw10); |
| uint8_t save = NVME_SETFEAT_SAVE(dw10); |
| int i; |
| |
| trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11); |
| |
| if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) { |
| return NVME_FID_NOT_SAVEABLE | NVME_DNR; |
| } |
| |
| if (!nvme_feature_support[fid]) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { |
| if (nsid != NVME_NSID_BROADCAST) { |
| if (!nvme_nsid_valid(n, nsid)) { |
| return NVME_INVALID_NSID | NVME_DNR; |
| } |
| |
| ns = nvme_ns(n, nsid); |
| if (unlikely(!ns)) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| } |
| } else if (nsid && nsid != NVME_NSID_BROADCAST) { |
| if (!nvme_nsid_valid(n, nsid)) { |
| return NVME_INVALID_NSID | NVME_DNR; |
| } |
| |
| return NVME_FEAT_NOT_NS_SPEC | NVME_DNR; |
| } |
| |
| if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) { |
| return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; |
| } |
| |
| switch (fid) { |
| case NVME_TEMPERATURE_THRESHOLD: |
| if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { |
| break; |
| } |
| |
| switch (NVME_TEMP_THSEL(dw11)) { |
| case NVME_TEMP_THSEL_OVER: |
| n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11); |
| break; |
| case NVME_TEMP_THSEL_UNDER: |
| n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11); |
| break; |
| default: |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| if ((n->temperature >= n->features.temp_thresh_hi) || |
| (n->temperature <= n->features.temp_thresh_low)) { |
| nvme_smart_event(n, NVME_AER_INFO_SMART_TEMP_THRESH); |
| } |
| |
| break; |
| case NVME_ERROR_RECOVERY: |
| if (nsid == NVME_NSID_BROADCAST) { |
| for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { |
| ns = nvme_ns(n, i); |
| |
| if (!ns) { |
| continue; |
| } |
| |
| if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) { |
| ns->features.err_rec = dw11; |
| } |
| } |
| |
| break; |
| } |
| |
| assert(ns); |
| if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) { |
| ns->features.err_rec = dw11; |
| } |
| break; |
| case NVME_VOLATILE_WRITE_CACHE: |
| for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { |
| ns = nvme_ns(n, i); |
| if (!ns) { |
| continue; |
| } |
| |
| if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) { |
| blk_flush(ns->blkconf.blk); |
| } |
| |
| blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1); |
| } |
| |
| break; |
| |
| case NVME_NUMBER_OF_QUEUES: |
| if (n->qs_created) { |
| return NVME_CMD_SEQ_ERROR | NVME_DNR; |
| } |
| |
| /* |
| * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR |
| * and NSQR. |
| */ |
| if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1, |
| ((dw11 >> 16) & 0xffff) + 1, |
| n->params.max_ioqpairs, |
| n->params.max_ioqpairs); |
| req->cqe.result = cpu_to_le32((n->params.max_ioqpairs - 1) | |
| ((n->params.max_ioqpairs - 1) << 16)); |
| break; |
| case NVME_ASYNCHRONOUS_EVENT_CONF: |
| n->features.async_config = dw11; |
| break; |
| case NVME_TIMESTAMP: |
| return nvme_set_feature_timestamp(n, req); |
| case NVME_COMMAND_SET_PROFILE: |
| if (dw11 & 0x1ff) { |
| trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff); |
| return NVME_CMD_SET_CMB_REJECTED | NVME_DNR; |
| } |
| break; |
| default: |
| return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; |
| } |
| return NVME_SUCCESS; |
| } |
| |
| static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req) |
| { |
| trace_pci_nvme_aer(nvme_cid(req)); |
| |
| if (n->outstanding_aers > n->params.aerl) { |
| trace_pci_nvme_aer_aerl_exceeded(); |
| return NVME_AER_LIMIT_EXCEEDED; |
| } |
| |
| n->aer_reqs[n->outstanding_aers] = req; |
| n->outstanding_aers++; |
| |
| if (!QTAILQ_EMPTY(&n->aer_queue)) { |
| nvme_process_aers(n); |
| } |
| |
| return NVME_NO_COMPLETE; |
| } |
| |
| static void nvme_update_dmrsl(NvmeCtrl *n) |
| { |
| int nsid; |
| |
| for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) { |
| NvmeNamespace *ns = nvme_ns(n, nsid); |
| if (!ns) { |
| continue; |
| } |
| |
| n->dmrsl = MIN_NON_ZERO(n->dmrsl, |
| BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1)); |
| } |
| } |
| |
| static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns) |
| { |
| ns->iocs = nvme_cse_iocs_none; |
| switch (ns->csi) { |
| case NVME_CSI_NVM: |
| if (NVME_CC_CSS(n->bar.cc) != NVME_CC_CSS_ADMIN_ONLY) { |
| ns->iocs = nvme_cse_iocs_nvm; |
| } |
| break; |
| case NVME_CSI_ZONED: |
| if (NVME_CC_CSS(n->bar.cc) == NVME_CC_CSS_CSI) { |
| ns->iocs = nvme_cse_iocs_zoned; |
| } else if (NVME_CC_CSS(n->bar.cc) == NVME_CC_CSS_NVM) { |
| ns->iocs = nvme_cse_iocs_nvm; |
| } |
| break; |
| } |
| } |
| |
| static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req) |
| { |
| NvmeNamespace *ns; |
| NvmeCtrl *ctrl; |
| uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; |
| uint32_t nsid = le32_to_cpu(req->cmd.nsid); |
| uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); |
| bool attach = !(dw10 & 0xf); |
| uint16_t *nr_ids = &list[0]; |
| uint16_t *ids = &list[1]; |
| uint16_t ret; |
| int i; |
| |
| trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf); |
| |
| if (!nvme_nsid_valid(n, nsid)) { |
| return NVME_INVALID_NSID | NVME_DNR; |
| } |
| |
| ns = nvme_subsys_ns(n->subsys, nsid); |
| if (!ns) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| ret = nvme_h2c(n, (uint8_t *)list, 4096, req); |
| if (ret) { |
| return ret; |
| } |
| |
| if (!*nr_ids) { |
| return NVME_NS_CTRL_LIST_INVALID | NVME_DNR; |
| } |
| |
| *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1); |
| for (i = 0; i < *nr_ids; i++) { |
| ctrl = nvme_subsys_ctrl(n->subsys, ids[i]); |
| if (!ctrl) { |
| return NVME_NS_CTRL_LIST_INVALID | NVME_DNR; |
| } |
| |
| if (attach) { |
| if (nvme_ns(ctrl, nsid)) { |
| return NVME_NS_ALREADY_ATTACHED | NVME_DNR; |
| } |
| |
| if (ns->attached && !ns->params.shared) { |
| return NVME_NS_PRIVATE | NVME_DNR; |
| } |
| |
| nvme_attach_ns(ctrl, ns); |
| nvme_select_iocs_ns(ctrl, ns); |
| } else { |
| if (!nvme_ns(ctrl, nsid)) { |
| return NVME_NS_NOT_ATTACHED | NVME_DNR; |
| } |
| |
| ctrl->namespaces[nsid] = NULL; |
| ns->attached--; |
| |
| nvme_update_dmrsl(ctrl); |
| } |
| |
| /* |
| * Add namespace id to the changed namespace id list for event clearing |
| * via Get Log Page command. |
| */ |
| if (!test_and_set_bit(nsid, ctrl->changed_nsids)) { |
| nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE, |
| NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED, |
| NVME_LOG_CHANGED_NSLIST); |
| } |
| } |
| |
| return NVME_SUCCESS; |
| } |
| |
| static uint16_t nvme_format_ns(NvmeCtrl *n, NvmeNamespace *ns, uint8_t lbaf, |
| uint8_t mset, uint8_t pi, uint8_t pil, |
| NvmeRequest *req) |
| { |
| int64_t len, offset; |
| struct nvme_aio_format_ctx *ctx; |
| BlockBackend *blk = ns->blkconf.blk; |
| uint16_t ms; |
| uintptr_t *num_formats = (uintptr_t *)&req->opaque; |
| int *count; |
| |
| if (ns->params.zoned) { |
| return NVME_INVALID_FORMAT | NVME_DNR; |
| } |
| |
| trace_pci_nvme_format_ns(nvme_cid(req), nvme_nsid(ns), lbaf, mset, pi, pil); |
| |
| if (lbaf > ns->id_ns.nlbaf) { |
| return NVME_INVALID_FORMAT | NVME_DNR; |
| } |
| |
| ms = ns->id_ns.lbaf[lbaf].ms; |
| |
| if (pi && (ms < sizeof(NvmeDifTuple))) { |
| return NVME_INVALID_FORMAT | NVME_DNR; |
| } |
| |
| if (pi && pi > NVME_ID_NS_DPS_TYPE_3) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| nvme_ns_drain(ns); |
| nvme_ns_shutdown(ns); |
| nvme_ns_cleanup(ns); |
| |
| ns->id_ns.dps = (pil << 3) | pi; |
| ns->id_ns.flbas = lbaf | (mset << 4); |
| |
| nvme_ns_init_format(ns); |
| |
| ns->status = NVME_FORMAT_IN_PROGRESS; |
| |
| len = ns->size; |
| offset = 0; |
| |
| count = g_new(int, 1); |
| *count = 1; |
| |
| (*num_formats)++; |
| |
| while (len) { |
| ctx = g_new(struct nvme_aio_format_ctx, 1); |
| ctx->req = req; |
| ctx->ns = ns; |
| ctx->count = count; |
| |
| size_t bytes = MIN(BDRV_REQUEST_MAX_BYTES, len); |
| |
| (*count)++; |
| |
| blk_aio_pwrite_zeroes(blk, offset, bytes, BDRV_REQ_MAY_UNMAP, |
| nvme_aio_format_cb, ctx); |
| |
| offset += bytes; |
| len -= bytes; |
| |
| } |
| |
| if (--(*count)) { |
| return NVME_NO_COMPLETE; |
| } |
| |
| g_free(count); |
| ns->status = 0x0; |
| (*num_formats)--; |
| |
| return NVME_SUCCESS; |
| } |
| |
| static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req) |
| { |
| NvmeNamespace *ns; |
| uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); |
| uint32_t nsid = le32_to_cpu(req->cmd.nsid); |
| uint8_t lbaf = dw10 & 0xf; |
| uint8_t mset = (dw10 >> 4) & 0x1; |
| uint8_t pi = (dw10 >> 5) & 0x7; |
| uint8_t pil = (dw10 >> 8) & 0x1; |
| uintptr_t *num_formats = (uintptr_t *)&req->opaque; |
| uint16_t status; |
| int i; |
| |
| trace_pci_nvme_format(nvme_cid(req), nsid, lbaf, mset, pi, pil); |
| |
| /* 1-initialize; see the comment in nvme_dsm */ |
| *num_formats = 1; |
| |
| if (nsid != NVME_NSID_BROADCAST) { |
| if (!nvme_nsid_valid(n, nsid)) { |
| return NVME_INVALID_NSID | NVME_DNR; |
| } |
| |
| ns = nvme_ns(n, nsid); |
| if (!ns) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| status = nvme_format_ns(n, ns, lbaf, mset, pi, pil, req); |
| if (status && status != NVME_NO_COMPLETE) { |
| req->status = status; |
| } |
| } else { |
| for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { |
| ns = nvme_ns(n, i); |
| if (!ns) { |
| continue; |
| } |
| |
| status = nvme_format_ns(n, ns, lbaf, mset, pi, pil, req); |
| if (status && status != NVME_NO_COMPLETE) { |
| req->status = status; |
| break; |
| } |
| } |
| } |
| |
| /* account for the 1-initialization */ |
| if (--(*num_formats)) { |
| return NVME_NO_COMPLETE; |
| } |
| |
| return req->status; |
| } |
| |
| static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req) |
| { |
| trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode, |
| nvme_adm_opc_str(req->cmd.opcode)); |
| |
| if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) { |
| trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode); |
| return NVME_INVALID_OPCODE | NVME_DNR; |
| } |
| |
| /* SGLs shall not be used for Admin commands in NVMe over PCIe */ |
| if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| switch (req->cmd.opcode) { |
| case NVME_ADM_CMD_DELETE_SQ: |
| return nvme_del_sq(n, req); |
| case NVME_ADM_CMD_CREATE_SQ: |
| return nvme_create_sq(n, req); |
| case NVME_ADM_CMD_GET_LOG_PAGE: |
| return nvme_get_log(n, req); |
| case NVME_ADM_CMD_DELETE_CQ: |
| return nvme_del_cq(n, req); |
| case NVME_ADM_CMD_CREATE_CQ: |
| return nvme_create_cq(n, req); |
| case NVME_ADM_CMD_IDENTIFY: |
| return nvme_identify(n, req); |
| case NVME_ADM_CMD_ABORT: |
| return nvme_abort(n, req); |
| case NVME_ADM_CMD_SET_FEATURES: |
| return nvme_set_feature(n, req); |
| case NVME_ADM_CMD_GET_FEATURES: |
| return nvme_get_feature(n, req); |
| case NVME_ADM_CMD_ASYNC_EV_REQ: |
| return nvme_aer(n, req); |
| case NVME_ADM_CMD_NS_ATTACHMENT: |
| return nvme_ns_attachment(n, req); |
| case NVME_ADM_CMD_FORMAT_NVM: |
| return nvme_format(n, req); |
| default: |
| assert(false); |
| } |
| |
| return NVME_INVALID_OPCODE | NVME_DNR; |
| } |
| |
| static void nvme_process_sq(void *opaque) |
| { |
| NvmeSQueue *sq = opaque; |
| NvmeCtrl *n = sq->ctrl; |
| NvmeCQueue *cq = n->cq[sq->cqid]; |
| |
| uint16_t status; |
| hwaddr addr; |
| NvmeCmd cmd; |
| NvmeRequest *req; |
| |
| while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) { |
| addr = sq->dma_addr + sq->head * n->sqe_size; |
| if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) { |
| trace_pci_nvme_err_addr_read(addr); |
| trace_pci_nvme_err_cfs(); |
| n->bar.csts = NVME_CSTS_FAILED; |
| break; |
| } |
| nvme_inc_sq_head(sq); |
| |
| req = QTAILQ_FIRST(&sq->req_list); |
| QTAILQ_REMOVE(&sq->req_list, req, entry); |
| QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry); |
| nvme_req_clear(req); |
| req->cqe.cid = cmd.cid; |
| memcpy(&req->cmd, &cmd, sizeof(NvmeCmd)); |
| |
| status = sq->sqid ? nvme_io_cmd(n, req) : |
| nvme_admin_cmd(n, req); |
| if (status != NVME_NO_COMPLETE) { |
| req->status = status; |
| nvme_enqueue_req_completion(cq, req); |
| } |
| } |
| } |
| |
| static void nvme_ctrl_reset(NvmeCtrl *n) |
| { |
| NvmeNamespace *ns; |
| int i; |
| |
| for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { |
| ns = nvme_ns(n, i); |
| if (!ns) { |
| continue; |
| } |
| |
| nvme_ns_drain(ns); |
| } |
| |
| for (i = 0; i < n->params.max_ioqpairs + 1; i++) { |
| if (n->sq[i] != NULL) { |
| nvme_free_sq(n->sq[i], n); |
| } |
| } |
| for (i = 0; i < n->params.max_ioqpairs + 1; i++) { |
| if (n->cq[i] != NULL) { |
| nvme_free_cq(n->cq[i], n); |
| } |
| } |
| |
| while (!QTAILQ_EMPTY(&n->aer_queue)) { |
| NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue); |
| QTAILQ_REMOVE(&n->aer_queue, event, entry); |
| g_free(event); |
| } |
| |
| n->aer_queued = 0; |
| n->outstanding_aers = 0; |
| n->qs_created = false; |
| |
| n->bar.cc = 0; |
| } |
| |
| static void nvme_ctrl_shutdown(NvmeCtrl *n) |
| { |
| NvmeNamespace *ns; |
| int i; |
| |
| if (n->pmr.dev) { |
| memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size); |
| } |
| |
| for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { |
| ns = nvme_ns(n, i); |
| if (!ns) { |
| continue; |
| } |
| |
| nvme_ns_shutdown(ns); |
| } |
| } |
| |
| static void nvme_select_iocs(NvmeCtrl *n) |
| { |
| NvmeNamespace *ns; |
| int i; |
| |
| for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { |
| ns = nvme_ns(n, i); |
| if (!ns) { |
| continue; |
| } |
| |
| nvme_select_iocs_ns(n, ns); |
| } |
| } |
| |
| static int nvme_start_ctrl(NvmeCtrl *n) |
| { |
| uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12; |
| uint32_t page_size = 1 << page_bits; |
| |
| if (unlikely(n->cq[0])) { |
| trace_pci_nvme_err_startfail_cq(); |
| return -1; |
| } |
| if (unlikely(n->sq[0])) { |
| trace_pci_nvme_err_startfail_sq(); |
| return -1; |
| } |
| if (unlikely(!n->bar.asq)) { |
| trace_pci_nvme_err_startfail_nbarasq(); |
| return -1; |
| } |
| if (unlikely(!n->bar.acq)) { |
| trace_pci_nvme_err_startfail_nbaracq(); |
| return -1; |
| } |
| if (unlikely(n->bar.asq & (page_size - 1))) { |
| trace_pci_nvme_err_startfail_asq_misaligned(n->bar.asq); |
| return -1; |
| } |
| if (unlikely(n->bar.acq & (page_size - 1))) { |
| trace_pci_nvme_err_startfail_acq_misaligned(n->bar.acq); |
| return -1; |
| } |
| if (unlikely(!(NVME_CAP_CSS(n->bar.cap) & (1 << NVME_CC_CSS(n->bar.cc))))) { |
| trace_pci_nvme_err_startfail_css(NVME_CC_CSS(n->bar.cc)); |
| return -1; |
| } |
| if (unlikely(NVME_CC_MPS(n->bar.cc) < |
| NVME_CAP_MPSMIN(n->bar.cap))) { |
| trace_pci_nvme_err_startfail_page_too_small( |
| NVME_CC_MPS(n->bar.cc), |
| NVME_CAP_MPSMIN(n->bar.cap)); |
| return -1; |
| } |
| if (unlikely(NVME_CC_MPS(n->bar.cc) > |
| NVME_CAP_MPSMAX(n->bar.cap))) { |
| trace_pci_nvme_err_startfail_page_too_large( |
| NVME_CC_MPS(n->bar.cc), |
| NVME_CAP_MPSMAX(n->bar.cap)); |
| return -1; |
| } |
| if (unlikely(NVME_CC_IOCQES(n->bar.cc) < |
| NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) { |
| trace_pci_nvme_err_startfail_cqent_too_small( |
| NVME_CC_IOCQES(n->bar.cc), |
| NVME_CTRL_CQES_MIN(n->bar.cap)); |
| return -1; |
| } |
| if (unlikely(NVME_CC_IOCQES(n->bar.cc) > |
| NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) { |
| trace_pci_nvme_err_startfail_cqent_too_large( |
| NVME_CC_IOCQES(n->bar.cc), |
| NVME_CTRL_CQES_MAX(n->bar.cap)); |
| return -1; |
| } |
| if (unlikely(NVME_CC_IOSQES(n->bar.cc) < |
| NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) { |
| trace_pci_nvme_err_startfail_sqent_too_small( |
| NVME_CC_IOSQES(n->bar.cc), |
| NVME_CTRL_SQES_MIN(n->bar.cap)); |
| return -1; |
| } |
| if (unlikely(NVME_CC_IOSQES(n->bar.cc) > |
| NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) { |
| trace_pci_nvme_err_startfail_sqent_too_large( |
| NVME_CC_IOSQES(n->bar.cc), |
| NVME_CTRL_SQES_MAX(n->bar.cap)); |
| return -1; |
| } |
| if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) { |
| trace_pci_nvme_err_startfail_asqent_sz_zero(); |
| return -1; |
| } |
| if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) { |
| trace_pci_nvme_err_startfail_acqent_sz_zero(); |
| return -1; |
| } |
| |
| n->page_bits = page_bits; |
| n->page_size = page_size; |
| n->max_prp_ents = n->page_size / sizeof(uint64_t); |
| n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc); |
| n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc); |
| nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0, |
| NVME_AQA_ACQS(n->bar.aqa) + 1, 1); |
| nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0, |
| NVME_AQA_ASQS(n->bar.aqa) + 1); |
| |
| nvme_set_timestamp(n, 0ULL); |
| |
| QTAILQ_INIT(&n->aer_queue); |
| |
| nvme_select_iocs(n); |
| |
| return 0; |
| } |
| |
| static void nvme_cmb_enable_regs(NvmeCtrl *n) |
| { |
| NVME_CMBLOC_SET_CDPCILS(n->bar.cmbloc, 1); |
| NVME_CMBLOC_SET_CDPMLS(n->bar.cmbloc, 1); |
| NVME_CMBLOC_SET_BIR(n->bar.cmbloc, NVME_CMB_BIR); |
| |
| NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1); |
| NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0); |
| NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 1); |
| NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1); |
| NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1); |
| NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */ |
| NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->params.cmb_size_mb); |
| } |
| |
| static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data, |
| unsigned size) |
| { |
| if (unlikely(offset & (sizeof(uint32_t) - 1))) { |
| NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32, |
| "MMIO write not 32-bit aligned," |
| " offset=0x%"PRIx64"", offset); |
| /* should be ignored, fall through for now */ |
| } |
| |
| if (unlikely(size < sizeof(uint32_t))) { |
| NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall, |
| "MMIO write smaller than 32-bits," |
| " offset=0x%"PRIx64", size=%u", |
| offset, size); |
| /* should be ignored, fall through for now */ |
| } |
| |
| switch (offset) { |
| case 0xc: /* INTMS */ |
| if (unlikely(msix_enabled(&(n->parent_obj)))) { |
| NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, |
| "undefined access to interrupt mask set" |
| " when MSI-X is enabled"); |
| /* should be ignored, fall through for now */ |
| } |
| n->bar.intms |= data & 0xffffffff; |
| n->bar.intmc = n->bar.intms; |
| trace_pci_nvme_mmio_intm_set(data & 0xffffffff, n->bar.intmc); |
| nvme_irq_check(n); |
| break; |
| case 0x10: /* INTMC */ |
| if (unlikely(msix_enabled(&(n->parent_obj)))) { |
| NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, |
| "undefined access to interrupt mask clr" |
| " when MSI-X is enabled"); |
| /* should be ignored, fall through for now */ |
| } |
| n->bar.intms &= ~(data & 0xffffffff); |
| n->bar.intmc = n->bar.intms; |
| trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, n->bar.intmc); |
| nvme_irq_check(n); |
| break; |
| case 0x14: /* CC */ |
| trace_pci_nvme_mmio_cfg(data & 0xffffffff); |
| /* Windows first sends data, then sends enable bit */ |
| if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) && |
| !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc)) |
| { |
| n->bar.cc = data; |
| } |
| |
| if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) { |
| n->bar.cc = data; |
| if (unlikely(nvme_start_ctrl(n))) { |
| trace_pci_nvme_err_startfail(); |
| n->bar.csts = NVME_CSTS_FAILED; |
| } else { |
| trace_pci_nvme_mmio_start_success(); |
| n->bar.csts = NVME_CSTS_READY; |
| } |
| } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) { |
| trace_pci_nvme_mmio_stopped(); |
| nvme_ctrl_reset(n); |
| n->bar.csts &= ~NVME_CSTS_READY; |
| } |
| if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) { |
| trace_pci_nvme_mmio_shutdown_set(); |
| nvme_ctrl_shutdown(n); |
| n->bar.cc = data; |
| n->bar.csts |= NVME_CSTS_SHST_COMPLETE; |
| } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) { |
| trace_pci_nvme_mmio_shutdown_cleared(); |
| n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE; |
| n->bar.cc = data; |
| } |
| break; |
| case 0x1c: /* CSTS */ |
| if (data & (1 << 4)) { |
| NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported, |
| "attempted to W1C CSTS.NSSRO" |
| " but CAP.NSSRS is zero (not supported)"); |
| } else if (data != 0) { |
| NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts, |
| "attempted to set a read only bit" |
| " of controller status"); |
| } |
| break; |
| case 0x20: /* NSSR */ |
| if (data == 0x4e564d65) { |
| trace_pci_nvme_ub_mmiowr_ssreset_unsupported(); |
| } else { |
| /* The spec says that writes of other values have no effect */ |
| return; |
| } |
| break; |
| case 0x24: /* AQA */ |
| n->bar.aqa = data & 0xffffffff; |
| trace_pci_nvme_mmio_aqattr(data & 0xffffffff); |
| break; |
| case 0x28: /* ASQ */ |
| n->bar.asq = size == 8 ? data : |
| (n->bar.asq & ~0xffffffffULL) | (data & 0xffffffff); |
| trace_pci_nvme_mmio_asqaddr(data); |
| break; |
| case 0x2c: /* ASQ hi */ |
| n->bar.asq = (n->bar.asq & 0xffffffff) | (data << 32); |
| trace_pci_nvme_mmio_asqaddr_hi(data, n->bar.asq); |
| break; |
| case 0x30: /* ACQ */ |
| trace_pci_nvme_mmio_acqaddr(data); |
| n->bar.acq = size == 8 ? data : |
| (n->bar.acq & ~0xffffffffULL) | (data & 0xffffffff); |
| break; |
| case 0x34: /* ACQ hi */ |
| n->bar.acq = (n->bar.acq & 0xffffffff) | (data << 32); |
| trace_pci_nvme_mmio_acqaddr_hi(data, n->bar.acq); |
| break; |
| case 0x38: /* CMBLOC */ |
| NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved, |
| "invalid write to reserved CMBLOC" |
| " when CMBSZ is zero, ignored"); |
| return; |
| case 0x3C: /* CMBSZ */ |
| NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly, |
| "invalid write to read only CMBSZ, ignored"); |
| return; |
| case 0x50: /* CMBMSC */ |
| if (!NVME_CAP_CMBS(n->bar.cap)) { |
| return; |
| } |
| |
| n->bar.cmbmsc = size == 8 ? data : |
| (n->bar.cmbmsc & ~0xffffffff) | (data & 0xffffffff); |
| n->cmb.cmse = false; |
| |
| if (NVME_CMBMSC_CRE(data)) { |
| nvme_cmb_enable_regs(n); |
| |
| if (NVME_CMBMSC_CMSE(data)) { |
| hwaddr cba = NVME_CMBMSC_CBA(data) << CMBMSC_CBA_SHIFT; |
| if (cba + int128_get64(n->cmb.mem.size) < cba) { |
| NVME_CMBSTS_SET_CBAI(n->bar.cmbsts, 1); |
| return; |
| } |
| |
| n->cmb.cba = cba; |
| n->cmb.cmse = true; |
| } |
| } else { |
| n->bar.cmbsz = 0; |
| n->bar.cmbloc = 0; |
| } |
| |
| return; |
| case 0x54: /* CMBMSC hi */ |
| n->bar.cmbmsc = (n->bar.cmbmsc & 0xffffffff) | (data << 32); |
| return; |
| |
| case 0xe00: /* PMRCAP */ |
| NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly, |
| "invalid write to PMRCAP register, ignored"); |
| return; |
| case 0xe04: /* PMRCTL */ |
| n->bar.pmrctl = data; |
| if (NVME_PMRCTL_EN(data)) { |
| memory_region_set_enabled(&n->pmr.dev->mr, true); |
| n->bar.pmrsts = 0; |
| } else { |
| memory_region_set_enabled(&n->pmr.dev->mr, false); |
| NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 1); |
| n->pmr.cmse = false; |
| } |
| return; |
| case 0xe08: /* PMRSTS */ |
| NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly, |
| "invalid write to PMRSTS register, ignored"); |
| return; |
| case 0xe0C: /* PMREBS */ |
| NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly, |
| "invalid write to PMREBS register, ignored"); |
| return; |
| case 0xe10: /* PMRSWTP */ |
| NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly, |
| "invalid write to PMRSWTP register, ignored"); |
| return; |
| case 0xe14: /* PMRMSCL */ |
| if (!NVME_CAP_PMRS(n->bar.cap)) { |
| return; |
| } |
| |
| n->bar.pmrmsc = (n->bar.pmrmsc & ~0xffffffff) | (data & 0xffffffff); |
| n->pmr.cmse = false; |
| |
| if (NVME_PMRMSC_CMSE(n->bar.pmrmsc)) { |
| hwaddr cba = NVME_PMRMSC_CBA(n->bar.pmrmsc) << PMRMSC_CBA_SHIFT; |
| if (cba + int128_get64(n->pmr.dev->mr.size) < cba) { |
| NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 1); |
| return; |
| } |
| |
| n->pmr.cmse = true; |
| n->pmr.cba = cba; |
| } |
| |
| return; |
| case 0xe18: /* PMRMSCU */ |
| if (!NVME_CAP_PMRS(n->bar.cap)) { |
| return; |
| } |
| |
| n->bar.pmrmsc = (n->bar.pmrmsc & 0xffffffff) | (data << 32); |
| return; |
| default: |
| NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid, |
| "invalid MMIO write," |
| " offset=0x%"PRIx64", data=%"PRIx64"", |
| offset, data); |
| break; |
| } |
| } |
| |
| static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| NvmeCtrl *n = (NvmeCtrl *)opaque; |
| uint8_t *ptr = (uint8_t *)&n->bar; |
| uint64_t val = 0; |
| |
| trace_pci_nvme_mmio_read(addr, size); |
| |
| if (unlikely(addr & (sizeof(uint32_t) - 1))) { |
| NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32, |
| "MMIO read not 32-bit aligned," |
| " offset=0x%"PRIx64"", addr); |
| /* should RAZ, fall through for now */ |
| } else if (unlikely(size < sizeof(uint32_t))) { |
| NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall, |
| "MMIO read smaller than 32-bits," |
| " offset=0x%"PRIx64"", addr); |
| /* should RAZ, fall through for now */ |
| } |
| |
| if (addr < sizeof(n->bar)) { |
| /* |
| * When PMRWBM bit 1 is set then read from |
| * from PMRSTS should ensure prior writes |
| * made it to persistent media |
| */ |
| if (addr == 0xe08 && |
| (NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) { |
| memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size); |
| } |
| memcpy(&val, ptr + addr, size); |
| } else { |
| NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs, |
| "MMIO read beyond last register," |
| " offset=0x%"PRIx64", returning 0", addr); |
| } |
| |
| return val; |
| } |
| |
| static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val) |
| { |
| uint32_t qid; |
| |
| if (unlikely(addr & ((1 << 2) - 1))) { |
| NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned, |
| "doorbell write not 32-bit aligned," |
| " offset=0x%"PRIx64", ignoring", addr); |
| return; |
| } |
| |
| if (((addr - 0x1000) >> 2) & 1) { |
| /* Completion queue doorbell write */ |
| |
| uint16_t new_head = val & 0xffff; |
| int start_sqs; |
| NvmeCQueue *cq; |
| |
| qid = (addr - (0x1000 + (1 << 2))) >> 3; |
| if (unlikely(nvme_check_cqid(n, qid))) { |
| NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq, |
| "completion queue doorbell write" |
| " for nonexistent queue," |
| " sqid=%"PRIu32", ignoring", qid); |
| |
| /* |
| * NVM Express v1.3d, Section 4.1 state: "If host software writes |
| * an invalid value to the Submission Queue Tail Doorbell or |
| * Completion Queue Head Doorbell regiter and an Asynchronous Event |
| * Request command is outstanding, then an asynchronous event is |
| * posted to the Admin Completion Queue with a status code of |
| * Invalid Doorbell Write Value." |
| * |
| * Also note that the spec includes the "Invalid Doorbell Register" |
| * status code, but nowhere does it specify when to use it. |
| * However, it seems reasonable to use it here in a similar |
| * fashion. |
| */ |
| if (n->outstanding_aers) { |
| nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, |
| NVME_AER_INFO_ERR_INVALID_DB_REGISTER, |
| NVME_LOG_ERROR_INFO); |
| } |
| |
| return; |
| } |
| |
| cq = n->cq[qid]; |
| if (unlikely(new_head >= cq->size)) { |
| NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead, |
| "completion queue doorbell write value" |
| " beyond queue size, sqid=%"PRIu32"," |
| " new_head=%"PRIu16", ignoring", |
| qid, new_head); |
| |
| if (n->outstanding_aers) { |
| nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, |
| NVME_AER_INFO_ERR_INVALID_DB_VALUE, |
| NVME_LOG_ERROR_INFO); |
| } |
| |
| return; |
| } |
| |
| trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head); |
| |
| start_sqs = nvme_cq_full(cq) ? 1 : 0; |
| cq->head = new_head; |
| if (start_sqs) { |
| NvmeSQueue *sq; |
| QTAILQ_FOREACH(sq, &cq->sq_list, entry) { |
| timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500); |
| } |
| timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500); |
| } |
| |
| if (cq->tail == cq->head) { |
| nvme_irq_deassert(n, cq); |
| } |
| } else { |
| /* Submission queue doorbell write */ |
| |
| uint16_t new_tail = val & 0xffff; |
| NvmeSQueue *sq; |
| |
| qid = (addr - 0x1000) >> 3; |
| if (unlikely(nvme_check_sqid(n, qid))) { |
| NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq, |
| "submission queue doorbell write" |
| " for nonexistent queue," |
| " sqid=%"PRIu32", ignoring", qid); |
| |
| if (n->outstanding_aers) { |
| nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, |
| NVME_AER_INFO_ERR_INVALID_DB_REGISTER, |
| NVME_LOG_ERROR_INFO); |
| } |
| |
| return; |
| } |
| |
| sq = n->sq[qid]; |
| if (unlikely(new_tail >= sq->size)) { |
| NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail, |
| "submission queue doorbell write value" |
| " beyond queue size, sqid=%"PRIu32"," |
| " new_tail=%"PRIu16", ignoring", |
| qid, new_tail); |
| |
| if (n->outstanding_aers) { |
| nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, |
| NVME_AER_INFO_ERR_INVALID_DB_VALUE, |
| NVME_LOG_ERROR_INFO); |
| } |
| |
| return; |
| } |
| |
| trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail); |
| |
| sq->tail = new_tail; |
| timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500); |
| } |
| } |
| |
| static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data, |
| unsigned size) |
| { |
| NvmeCtrl *n = (NvmeCtrl *)opaque; |
| |
| trace_pci_nvme_mmio_write(addr, data, size); |
| |
| if (addr < sizeof(n->bar)) { |
| nvme_write_bar(n, addr, data, size); |
| } else { |
| nvme_process_db(n, addr, data); |
| } |
| } |
| |
| static const MemoryRegionOps nvme_mmio_ops = { |
| .read = nvme_mmio_read, |
| .write = nvme_mmio_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| .impl = { |
| .min_access_size = 2, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data, |
| unsigned size) |
| { |
| NvmeCtrl *n = (NvmeCtrl *)opaque; |
| stn_le_p(&n->cmb.buf[addr], size, data); |
| } |
| |
| static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| NvmeCtrl *n = (NvmeCtrl *)opaque; |
| return ldn_le_p(&n->cmb.buf[addr], size); |
| } |
| |
| static const MemoryRegionOps nvme_cmb_ops = { |
| .read = nvme_cmb_read, |
| .write = nvme_cmb_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| .impl = { |
| .min_access_size = 1, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| static void nvme_check_constraints(NvmeCtrl *n, Error **errp) |
| { |
| NvmeParams *params = &n->params; |
| |
| if (params->num_queues) { |
| warn_report("num_queues is deprecated; please use max_ioqpairs " |
| "instead"); |
| |
| params->max_ioqpairs = params->num_queues - 1; |
| } |
| |
| if (n->namespace.blkconf.blk && n->subsys) { |
| error_setg(errp, "subsystem support is unavailable with legacy " |
| "namespace ('drive' property)"); |
| return; |
| } |
| |
| if (params->max_ioqpairs < 1 || |
| params->max_ioqpairs > NVME_MAX_IOQPAIRS) { |
| error_setg(errp, "max_ioqpairs must be between 1 and %d", |
| NVME_MAX_IOQPAIRS); |
| return; |
| } |
| |
| if (params->msix_qsize < 1 || |
| params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) { |
| error_setg(errp, "msix_qsize must be between 1 and %d", |
| PCI_MSIX_FLAGS_QSIZE + 1); |
| return; |
| } |
| |
| if (!params->serial) { |
| error_setg(errp, "serial property not set"); |
| return; |
| } |
| |
| if (n->pmr.dev) { |
| if (host_memory_backend_is_mapped(n->pmr.dev)) { |
| error_setg(errp, "can't use already busy memdev: %s", |
| object_get_canonical_path_component(OBJECT(n->pmr.dev))); |
| return; |
| } |
| |
| if (!is_power_of_2(n->pmr.dev->size)) { |
| error_setg(errp, "pmr backend size needs to be power of 2 in size"); |
| return; |
| } |
| |
| host_memory_backend_set_mapped(n->pmr.dev, true); |
| } |
| |
| if (n->params.zasl > n->params.mdts) { |
| error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less " |
| "than or equal to mdts (Maximum Data Transfer Size)"); |
| return; |
| } |
| |
| if (!n->params.vsl) { |
| error_setg(errp, "vsl must be non-zero"); |
| return; |
| } |
| } |
| |
| static void nvme_init_state(NvmeCtrl *n) |
| { |
| /* add one to max_ioqpairs to account for the admin queue pair */ |
| n->reg_size = pow2ceil(sizeof(NvmeBar) + |
| 2 * (n->params.max_ioqpairs + 1) * NVME_DB_SIZE); |
| n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1); |
| n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1); |
| n->temperature = NVME_TEMPERATURE; |
| n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING; |
| n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); |
| n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1); |
| } |
| |
| static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev) |
| { |
| uint64_t cmb_size = n->params.cmb_size_mb * MiB; |
| |
| n->cmb.buf = g_malloc0(cmb_size); |
| memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n, |
| "nvme-cmb", cmb_size); |
| pci_register_bar(pci_dev, NVME_CMB_BIR, |
| PCI_BASE_ADDRESS_SPACE_MEMORY | |
| PCI_BASE_ADDRESS_MEM_TYPE_64 | |
| PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem); |
| |
| NVME_CAP_SET_CMBS(n->bar.cap, 1); |
| |
| if (n->params.legacy_cmb) { |
| nvme_cmb_enable_regs(n); |
| n->cmb.cmse = true; |
| } |
| } |
| |
| static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev) |
| { |
| NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 1); |
| NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 1); |
| NVME_PMRCAP_SET_BIR(n->bar.pmrcap, NVME_PMR_BIR); |
| /* Turn on bit 1 support */ |
| NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02); |
| NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 1); |
| |
| pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap), |
| PCI_BASE_ADDRESS_SPACE_MEMORY | |
| PCI_BASE_ADDRESS_MEM_TYPE_64 | |
| PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr); |
| |
| memory_region_set_enabled(&n->pmr.dev->mr, false); |
| } |
| |
| static int nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp) |
| { |
| uint8_t *pci_conf = pci_dev->config; |
| uint64_t bar_size, msix_table_size, msix_pba_size; |
| unsigned msix_table_offset, msix_pba_offset; |
| int ret; |
| |
| Error *err = NULL; |
| |
| pci_conf[PCI_INTERRUPT_PIN] = 1; |
| pci_config_set_prog_interface(pci_conf, 0x2); |
| |
| if (n->params.use_intel_id) { |
| pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL); |
| pci_config_set_device_id(pci_conf, 0x5845); |
| } else { |
| pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT); |
| pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME); |
| } |
| |
| pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS); |
| pcie_endpoint_cap_init(pci_dev, 0x80); |
| |
| bar_size = QEMU_ALIGN_UP(n->reg_size, 4 * KiB); |
| msix_table_offset = bar_size; |
| msix_table_size = PCI_MSIX_ENTRY_SIZE * n->params.msix_qsize; |
| |
| bar_size += msix_table_size; |
| bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB); |
| msix_pba_offset = bar_size; |
| msix_pba_size = QEMU_ALIGN_UP(n->params.msix_qsize, 64) / 8; |
| |
| bar_size += msix_pba_size; |
| bar_size = pow2ceil(bar_size); |
| |
| memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size); |
| memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme", |
| n->reg_size); |
| memory_region_add_subregion(&n->bar0, 0, &n->iomem); |
| |
| pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY | |
| PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0); |
| ret = msix_init(pci_dev, n->params.msix_qsize, |
| &n->bar0, 0, msix_table_offset, |
| &n->bar0, 0, msix_pba_offset, 0, &err); |
| if (ret < 0) { |
| if (ret == -ENOTSUP) { |
| warn_report_err(err); |
| } else { |
| error_propagate(errp, err); |
| return ret; |
| } |
| } |
| |
| if (n->params.cmb_size_mb) { |
| nvme_init_cmb(n, pci_dev); |
| } |
| |
| if (n->pmr.dev) { |
| nvme_init_pmr(n, pci_dev); |
| } |
| |
| return 0; |
| } |
| |
| static void nvme_init_subnqn(NvmeCtrl *n) |
| { |
| NvmeSubsystem *subsys = n->subsys; |
| NvmeIdCtrl *id = &n->id_ctrl; |
| |
| if (!subsys) { |
| snprintf((char *)id->subnqn, sizeof(id->subnqn), |
| "nqn.2019-08.org.qemu:%s", n->params.serial); |
| } else { |
| pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn); |
| } |
| } |
| |
| static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev) |
| { |
| NvmeIdCtrl *id = &n->id_ctrl; |
| uint8_t *pci_conf = pci_dev->config; |
| |
| id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID)); |
| id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID)); |
| strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' '); |
| strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' '); |
| strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' '); |
| |
| id->cntlid = cpu_to_le16(n->cntlid); |
| |
| id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR); |
| |
| id->rab = 6; |
| |
| if (n->params.use_intel_id) { |
| id->ieee[0] = 0xb3; |
| id->ieee[1] = 0x02; |
| id->ieee[2] = 0x00; |
| } else { |
| id->ieee[0] = 0x00; |
| id->ieee[1] = 0x54; |
| id->ieee[2] = 0x52; |
| } |
| |
| id->mdts = n->params.mdts; |
| id->ver = cpu_to_le32(NVME_SPEC_VER); |
| id->oacs = cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT); |
| id->cntrltype = 0x1; |
| |
| /* |
| * Because the controller always completes the Abort command immediately, |
| * there can never be more than one concurrently executing Abort command, |
| * so this value is never used for anything. Note that there can easily be |
| * many Abort commands in the queues, but they are not considered |
| * "executing" until processed by nvme_abort. |
| * |
| * The specification recommends a value of 3 for Abort Command Limit (four |
| * concurrently outstanding Abort commands), so lets use that though it is |
| * inconsequential. |
| */ |
| id->acl = 3; |
| id->aerl = n->params.aerl; |
| id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO; |
| id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED; |
| |
| /* recommended default value (~70 C) */ |
| id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING); |
| id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL); |
| |
| id->sqes = (0x6 << 4) | 0x6; |
| id->cqes = (0x4 << 4) | 0x4; |
| id->nn = cpu_to_le32(NVME_MAX_NAMESPACES); |
| id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP | |
| NVME_ONCS_FEATURES | NVME_ONCS_DSM | |
| NVME_ONCS_COMPARE | NVME_ONCS_COPY); |
| |
| /* |
| * NOTE: If this device ever supports a command set that does NOT use 0x0 |
| * as a Flush-equivalent operation, support for the broadcast NSID in Flush |
| * should probably be removed. |
| * |
| * See comment in nvme_io_cmd. |
| */ |
| id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT; |
| |
| id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0); |
| id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN | |
| NVME_CTRL_SGLS_BITBUCKET); |
| |
| nvme_init_subnqn(n); |
| |
| id->psd[0].mp = cpu_to_le16(0x9c4); |
| id->psd[0].enlat = cpu_to_le32(0x10); |
| id->psd[0].exlat = cpu_to_le32(0x4); |
| |
| if (n->subsys) { |
| id->cmic |= NVME_CMIC_MULTI_CTRL; |
| } |
| |
| NVME_CAP_SET_MQES(n->bar.cap, 0x7ff); |
| NVME_CAP_SET_CQR(n->bar.cap, 1); |
| NVME_CAP_SET_TO(n->bar.cap, 0xf); |
| NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_NVM); |
| NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_CSI_SUPP); |
| NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_ADMIN_ONLY); |
| NVME_CAP_SET_MPSMAX(n->bar.cap, 4); |
| NVME_CAP_SET_CMBS(n->bar.cap, n->params.cmb_size_mb ? 1 : 0); |
| NVME_CAP_SET_PMRS(n->bar.cap, n->pmr.dev ? 1 : 0); |
| |
| n->bar.vs = NVME_SPEC_VER; |
| n->bar.intmc = n->bar.intms = 0; |
| } |
| |
| static int nvme_init_subsys(NvmeCtrl *n, Error **errp) |
| { |
| int cntlid; |
| |
| if (!n->subsys) { |
| return 0; |
| } |
| |
| cntlid = nvme_subsys_register_ctrl(n, errp); |
| if (cntlid < 0) { |
| return -1; |
| } |
| |
| n->cntlid = cntlid; |
| |
| return 0; |
| } |
| |
| void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns) |
| { |
| uint32_t nsid = ns->params.nsid; |
| assert(nsid && nsid <= NVME_MAX_NAMESPACES); |
| |
| n->namespaces[nsid] = ns; |
| ns->attached++; |
| |
| n->dmrsl = MIN_NON_ZERO(n->dmrsl, |
| BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1)); |
| } |
| |
| static void nvme_realize(PCIDevice *pci_dev, Error **errp) |
| { |
| NvmeCtrl *n = NVME(pci_dev); |
| NvmeNamespace *ns; |
| Error *local_err = NULL; |
| |
| nvme_check_constraints(n, &local_err); |
| if (local_err) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| |
| qbus_create_inplace(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS, |
| &pci_dev->qdev, n->parent_obj.qdev.id); |
| |
| nvme_init_state(n); |
| if (nvme_init_pci(n, pci_dev, errp)) { |
| return; |
| } |
| |
| if (nvme_init_subsys(n, errp)) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| nvme_init_ctrl(n, pci_dev); |
| |
| /* setup a namespace if the controller drive property was given */ |
| if (n->namespace.blkconf.blk) { |
| ns = &n->namespace; |
| ns->params.nsid = 1; |
| |
| if (nvme_ns_setup(n, ns, errp)) { |
| return; |
| } |
| |
| nvme_attach_ns(n, ns); |
| } |
| } |
| |
| static void nvme_exit(PCIDevice *pci_dev) |
| { |
| NvmeCtrl *n = NVME(pci_dev); |
| NvmeNamespace *ns; |
| int i; |
| |
| nvme_ctrl_reset(n); |
| |
| for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { |
| ns = nvme_ns(n, i); |
| if (!ns) { |
| continue; |
| } |
| |
| nvme_ns_cleanup(ns); |
| } |
| |
| g_free(n->cq); |
| g_free(n->sq); |
| g_free(n->aer_reqs); |
| |
| if (n->params.cmb_size_mb) { |
| g_free(n->cmb.buf); |
| } |
| |
| if (n->pmr.dev) { |
| host_memory_backend_set_mapped(n->pmr.dev, false); |
| } |
| msix_uninit(pci_dev, &n->bar0, &n->bar0); |
| memory_region_del_subregion(&n->bar0, &n->iomem); |
| } |
| |
| static Property nvme_props[] = { |
| DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf), |
| DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND, |
| HostMemoryBackend *), |
| DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS, |
| NvmeSubsystem *), |
| DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial), |
| DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0), |
| DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0), |
| DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64), |
| DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65), |
| DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3), |
| DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64), |
| DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7), |
| DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7), |
| DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false), |
| DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false), |
| DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0), |
| DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl, |
| params.auto_transition_zones, true), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name, |
| void *opaque, Error **errp) |
| { |
| NvmeCtrl *n = NVME(obj); |
| uint8_t value = n->smart_critical_warning; |
| |
| visit_type_uint8(v, name, &value, errp); |
| } |
| |
| static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name, |
| void *opaque, Error **errp) |
| { |
| NvmeCtrl *n = NVME(obj); |
| uint8_t value, old_value, cap = 0, index, event; |
| |
| if (!visit_type_uint8(v, name, &value, errp)) { |
| return; |
| } |
| |
| cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY |
| | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA; |
| if (NVME_CAP_PMRS(n->bar.cap)) { |
| cap |= NVME_SMART_PMR_UNRELIABLE; |
| } |
| |
| if ((value & cap) != value) { |
| error_setg(errp, "unsupported smart critical warning bits: 0x%x", |
| value & ~cap); |
| return; |
| } |
| |
| old_value = n->smart_critical_warning; |
| n->smart_critical_warning = value; |
| |
| /* only inject new bits of smart critical warning */ |
| for (index = 0; index < NVME_SMART_WARN_MAX; index++) { |
| event = 1 << index; |
| if (value & ~old_value & event) |
| nvme_smart_event(n, event); |
| } |
| } |
| |
| static const VMStateDescription nvme_vmstate = { |
| .name = "nvme", |
| .unmigratable = 1, |
| }; |
| |
| static void nvme_class_init(ObjectClass *oc, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(oc); |
| PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc); |
| |
| pc->realize = nvme_realize; |
| pc->exit = nvme_exit; |
| pc->class_id = PCI_CLASS_STORAGE_EXPRESS; |
| pc->revision = 2; |
| |
| set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); |
| dc->desc = "Non-Volatile Memory Express"; |
| device_class_set_props(dc, nvme_props); |
| dc->vmsd = &nvme_vmstate; |
| } |
| |
| static void nvme_instance_init(Object *obj) |
| { |
| NvmeCtrl *n = NVME(obj); |
| |
| device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex, |
| "bootindex", "/namespace@1,0", |
| DEVICE(obj)); |
| |
| object_property_add(obj, "smart_critical_warning", "uint8", |
| nvme_get_smart_warning, |
| nvme_set_smart_warning, NULL, NULL); |
| } |
| |
| static const TypeInfo nvme_info = { |
| .name = TYPE_NVME, |
| .parent = TYPE_PCI_DEVICE, |
| .instance_size = sizeof(NvmeCtrl), |
| .instance_init = nvme_instance_init, |
| .class_init = nvme_class_init, |
| .interfaces = (InterfaceInfo[]) { |
| { INTERFACE_PCIE_DEVICE }, |
| { } |
| }, |
| }; |
| |
| static const TypeInfo nvme_bus_info = { |
| .name = TYPE_NVME_BUS, |
| .parent = TYPE_BUS, |
| .instance_size = sizeof(NvmeBus), |
| }; |
| |
| static void nvme_register_types(void) |
| { |
| type_register_static(&nvme_info); |
| type_register_static(&nvme_bus_info); |
| } |
| |
| type_init(nvme_register_types) |