| /* |
| * ARM implementation of KVM hooks |
| * |
| * Copyright Christoffer Dall 2009-2010 |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "qemu/osdep.h" |
| #include <sys/ioctl.h> |
| |
| #include <linux/kvm.h> |
| |
| #include "qemu/timer.h" |
| #include "qemu/error-report.h" |
| #include "qemu/main-loop.h" |
| #include "qom/object.h" |
| #include "qapi/error.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/kvm.h" |
| #include "sysemu/kvm_int.h" |
| #include "kvm_arm.h" |
| #include "cpu.h" |
| #include "trace.h" |
| #include "internals.h" |
| #include "hw/pci/pci.h" |
| #include "exec/memattrs.h" |
| #include "exec/address-spaces.h" |
| #include "hw/boards.h" |
| #include "hw/irq.h" |
| #include "qapi/visitor.h" |
| #include "qemu/log.h" |
| |
| const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
| KVM_CAP_LAST_INFO |
| }; |
| |
| static bool cap_has_mp_state; |
| static bool cap_has_inject_serror_esr; |
| static bool cap_has_inject_ext_dabt; |
| |
| static ARMHostCPUFeatures arm_host_cpu_features; |
| |
| int kvm_arm_vcpu_init(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| struct kvm_vcpu_init init; |
| |
| init.target = cpu->kvm_target; |
| memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); |
| |
| return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); |
| } |
| |
| int kvm_arm_vcpu_finalize(CPUState *cs, int feature) |
| { |
| return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature); |
| } |
| |
| void kvm_arm_init_serror_injection(CPUState *cs) |
| { |
| cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state, |
| KVM_CAP_ARM_INJECT_SERROR_ESR); |
| } |
| |
| bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, |
| int *fdarray, |
| struct kvm_vcpu_init *init) |
| { |
| int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1; |
| int max_vm_pa_size; |
| |
| kvmfd = qemu_open_old("/dev/kvm", O_RDWR); |
| if (kvmfd < 0) { |
| goto err; |
| } |
| max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE); |
| if (max_vm_pa_size < 0) { |
| max_vm_pa_size = 0; |
| } |
| do { |
| vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size); |
| } while (vmfd == -1 && errno == EINTR); |
| if (vmfd < 0) { |
| goto err; |
| } |
| cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); |
| if (cpufd < 0) { |
| goto err; |
| } |
| |
| if (!init) { |
| /* Caller doesn't want the VCPU to be initialized, so skip it */ |
| goto finish; |
| } |
| |
| if (init->target == -1) { |
| struct kvm_vcpu_init preferred; |
| |
| ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred); |
| if (!ret) { |
| init->target = preferred.target; |
| } |
| } |
| if (ret >= 0) { |
| ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); |
| if (ret < 0) { |
| goto err; |
| } |
| } else if (cpus_to_try) { |
| /* Old kernel which doesn't know about the |
| * PREFERRED_TARGET ioctl: we know it will only support |
| * creating one kind of guest CPU which is its preferred |
| * CPU type. |
| */ |
| struct kvm_vcpu_init try; |
| |
| while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { |
| try.target = *cpus_to_try++; |
| memcpy(try.features, init->features, sizeof(init->features)); |
| ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try); |
| if (ret >= 0) { |
| break; |
| } |
| } |
| if (ret < 0) { |
| goto err; |
| } |
| init->target = try.target; |
| } else { |
| /* Treat a NULL cpus_to_try argument the same as an empty |
| * list, which means we will fail the call since this must |
| * be an old kernel which doesn't support PREFERRED_TARGET. |
| */ |
| goto err; |
| } |
| |
| finish: |
| fdarray[0] = kvmfd; |
| fdarray[1] = vmfd; |
| fdarray[2] = cpufd; |
| |
| return true; |
| |
| err: |
| if (cpufd >= 0) { |
| close(cpufd); |
| } |
| if (vmfd >= 0) { |
| close(vmfd); |
| } |
| if (kvmfd >= 0) { |
| close(kvmfd); |
| } |
| |
| return false; |
| } |
| |
| void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) |
| { |
| int i; |
| |
| for (i = 2; i >= 0; i--) { |
| close(fdarray[i]); |
| } |
| } |
| |
| void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) |
| { |
| CPUARMState *env = &cpu->env; |
| |
| if (!arm_host_cpu_features.dtb_compatible) { |
| if (!kvm_enabled() || |
| !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { |
| /* We can't report this error yet, so flag that we need to |
| * in arm_cpu_realizefn(). |
| */ |
| cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; |
| cpu->host_cpu_probe_failed = true; |
| return; |
| } |
| } |
| |
| cpu->kvm_target = arm_host_cpu_features.target; |
| cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; |
| cpu->isar = arm_host_cpu_features.isar; |
| env->features = arm_host_cpu_features.features; |
| } |
| |
| static bool kvm_no_adjvtime_get(Object *obj, Error **errp) |
| { |
| return !ARM_CPU(obj)->kvm_adjvtime; |
| } |
| |
| static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp) |
| { |
| ARM_CPU(obj)->kvm_adjvtime = !value; |
| } |
| |
| static bool kvm_steal_time_get(Object *obj, Error **errp) |
| { |
| return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF; |
| } |
| |
| static void kvm_steal_time_set(Object *obj, bool value, Error **errp) |
| { |
| ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; |
| } |
| |
| /* KVM VCPU properties should be prefixed with "kvm-". */ |
| void kvm_arm_add_vcpu_properties(Object *obj) |
| { |
| ARMCPU *cpu = ARM_CPU(obj); |
| CPUARMState *env = &cpu->env; |
| |
| if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
| cpu->kvm_adjvtime = true; |
| object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get, |
| kvm_no_adjvtime_set); |
| object_property_set_description(obj, "kvm-no-adjvtime", |
| "Set on to disable the adjustment of " |
| "the virtual counter. VM stopped time " |
| "will be counted."); |
| } |
| |
| cpu->kvm_steal_time = ON_OFF_AUTO_AUTO; |
| object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get, |
| kvm_steal_time_set); |
| object_property_set_description(obj, "kvm-steal-time", |
| "Set off to disable KVM steal time."); |
| } |
| |
| bool kvm_arm_pmu_supported(void) |
| { |
| return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3); |
| } |
| |
| int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa) |
| { |
| KVMState *s = KVM_STATE(ms->accelerator); |
| int ret; |
| |
| ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE); |
| *fixed_ipa = ret <= 0; |
| |
| return ret > 0 ? ret : 40; |
| } |
| |
| int kvm_arch_get_default_type(MachineState *ms) |
| { |
| bool fixed_ipa; |
| int size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa); |
| return fixed_ipa ? 0 : size; |
| } |
| |
| int kvm_arch_init(MachineState *ms, KVMState *s) |
| { |
| int ret = 0; |
| /* For ARM interrupt delivery is always asynchronous, |
| * whether we are using an in-kernel VGIC or not. |
| */ |
| kvm_async_interrupts_allowed = true; |
| |
| /* |
| * PSCI wakes up secondary cores, so we always need to |
| * have vCPUs waiting in kernel space |
| */ |
| kvm_halt_in_kernel_allowed = true; |
| |
| cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); |
| |
| if (ms->smp.cpus > 256 && |
| !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) { |
| error_report("Using more than 256 vcpus requires a host kernel " |
| "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2"); |
| ret = -EINVAL; |
| } |
| |
| if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) { |
| if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) { |
| error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap"); |
| } else { |
| /* Set status for supporting the external dabt injection */ |
| cap_has_inject_ext_dabt = kvm_check_extension(s, |
| KVM_CAP_ARM_INJECT_EXT_DABT); |
| } |
| } |
| |
| if (s->kvm_eager_split_size) { |
| uint32_t sizes; |
| |
| sizes = kvm_vm_check_extension(s, KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES); |
| if (!sizes) { |
| s->kvm_eager_split_size = 0; |
| warn_report("Eager Page Split support not available"); |
| } else if (!(s->kvm_eager_split_size & sizes)) { |
| error_report("Eager Page Split requested chunk size not valid"); |
| ret = -EINVAL; |
| } else { |
| ret = kvm_vm_enable_cap(s, KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE, 0, |
| s->kvm_eager_split_size); |
| if (ret < 0) { |
| error_report("Enabling of Eager Page Split failed: %s", |
| strerror(-ret)); |
| } |
| } |
| } |
| |
| kvm_arm_init_debug(s); |
| |
| return ret; |
| } |
| |
| unsigned long kvm_arch_vcpu_id(CPUState *cpu) |
| { |
| return cpu->cpu_index; |
| } |
| |
| /* We track all the KVM devices which need their memory addresses |
| * passing to the kernel in a list of these structures. |
| * When board init is complete we run through the list and |
| * tell the kernel the base addresses of the memory regions. |
| * We use a MemoryListener to track mapping and unmapping of |
| * the regions during board creation, so the board models don't |
| * need to do anything special for the KVM case. |
| * |
| * Sometimes the address must be OR'ed with some other fields |
| * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). |
| * @kda_addr_ormask aims at storing the value of those fields. |
| */ |
| typedef struct KVMDevice { |
| struct kvm_arm_device_addr kda; |
| struct kvm_device_attr kdattr; |
| uint64_t kda_addr_ormask; |
| MemoryRegion *mr; |
| QSLIST_ENTRY(KVMDevice) entries; |
| int dev_fd; |
| } KVMDevice; |
| |
| static QSLIST_HEAD(, KVMDevice) kvm_devices_head; |
| |
| static void kvm_arm_devlistener_add(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| KVMDevice *kd; |
| |
| QSLIST_FOREACH(kd, &kvm_devices_head, entries) { |
| if (section->mr == kd->mr) { |
| kd->kda.addr = section->offset_within_address_space; |
| } |
| } |
| } |
| |
| static void kvm_arm_devlistener_del(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| KVMDevice *kd; |
| |
| QSLIST_FOREACH(kd, &kvm_devices_head, entries) { |
| if (section->mr == kd->mr) { |
| kd->kda.addr = -1; |
| } |
| } |
| } |
| |
| static MemoryListener devlistener = { |
| .name = "kvm-arm", |
| .region_add = kvm_arm_devlistener_add, |
| .region_del = kvm_arm_devlistener_del, |
| .priority = MEMORY_LISTENER_PRIORITY_MIN, |
| }; |
| |
| static void kvm_arm_set_device_addr(KVMDevice *kd) |
| { |
| struct kvm_device_attr *attr = &kd->kdattr; |
| int ret; |
| |
| /* If the device control API is available and we have a device fd on the |
| * KVMDevice struct, let's use the newer API |
| */ |
| if (kd->dev_fd >= 0) { |
| uint64_t addr = kd->kda.addr; |
| |
| addr |= kd->kda_addr_ormask; |
| attr->addr = (uintptr_t)&addr; |
| ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); |
| } else { |
| ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); |
| } |
| |
| if (ret < 0) { |
| fprintf(stderr, "Failed to set device address: %s\n", |
| strerror(-ret)); |
| abort(); |
| } |
| } |
| |
| static void kvm_arm_machine_init_done(Notifier *notifier, void *data) |
| { |
| KVMDevice *kd, *tkd; |
| |
| QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { |
| if (kd->kda.addr != -1) { |
| kvm_arm_set_device_addr(kd); |
| } |
| memory_region_unref(kd->mr); |
| QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); |
| g_free(kd); |
| } |
| memory_listener_unregister(&devlistener); |
| } |
| |
| static Notifier notify = { |
| .notify = kvm_arm_machine_init_done, |
| }; |
| |
| void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, |
| uint64_t attr, int dev_fd, uint64_t addr_ormask) |
| { |
| KVMDevice *kd; |
| |
| if (!kvm_irqchip_in_kernel()) { |
| return; |
| } |
| |
| if (QSLIST_EMPTY(&kvm_devices_head)) { |
| memory_listener_register(&devlistener, &address_space_memory); |
| qemu_add_machine_init_done_notifier(¬ify); |
| } |
| kd = g_new0(KVMDevice, 1); |
| kd->mr = mr; |
| kd->kda.id = devid; |
| kd->kda.addr = -1; |
| kd->kdattr.flags = 0; |
| kd->kdattr.group = group; |
| kd->kdattr.attr = attr; |
| kd->dev_fd = dev_fd; |
| kd->kda_addr_ormask = addr_ormask; |
| QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); |
| memory_region_ref(kd->mr); |
| } |
| |
| static int compare_u64(const void *a, const void *b) |
| { |
| if (*(uint64_t *)a > *(uint64_t *)b) { |
| return 1; |
| } |
| if (*(uint64_t *)a < *(uint64_t *)b) { |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* |
| * cpreg_values are sorted in ascending order by KVM register ID |
| * (see kvm_arm_init_cpreg_list). This allows us to cheaply find |
| * the storage for a KVM register by ID with a binary search. |
| */ |
| static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx) |
| { |
| uint64_t *res; |
| |
| res = bsearch(®idx, cpu->cpreg_indexes, cpu->cpreg_array_len, |
| sizeof(uint64_t), compare_u64); |
| assert(res); |
| |
| return &cpu->cpreg_values[res - cpu->cpreg_indexes]; |
| } |
| |
| /* Initialize the ARMCPU cpreg list according to the kernel's |
| * definition of what CPU registers it knows about (and throw away |
| * the previous TCG-created cpreg list). |
| */ |
| int kvm_arm_init_cpreg_list(ARMCPU *cpu) |
| { |
| struct kvm_reg_list rl; |
| struct kvm_reg_list *rlp; |
| int i, ret, arraylen; |
| CPUState *cs = CPU(cpu); |
| |
| rl.n = 0; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); |
| if (ret != -E2BIG) { |
| return ret; |
| } |
| rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); |
| rlp->n = rl.n; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); |
| if (ret) { |
| goto out; |
| } |
| /* Sort the list we get back from the kernel, since cpreg_tuples |
| * must be in strictly ascending order. |
| */ |
| qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); |
| |
| for (i = 0, arraylen = 0; i < rlp->n; i++) { |
| if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { |
| continue; |
| } |
| switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { |
| case KVM_REG_SIZE_U32: |
| case KVM_REG_SIZE_U64: |
| break; |
| default: |
| fprintf(stderr, "Can't handle size of register in kernel list\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| arraylen++; |
| } |
| |
| cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); |
| cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); |
| cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, |
| arraylen); |
| cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, |
| arraylen); |
| cpu->cpreg_array_len = arraylen; |
| cpu->cpreg_vmstate_array_len = arraylen; |
| |
| for (i = 0, arraylen = 0; i < rlp->n; i++) { |
| uint64_t regidx = rlp->reg[i]; |
| if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { |
| continue; |
| } |
| cpu->cpreg_indexes[arraylen] = regidx; |
| arraylen++; |
| } |
| assert(cpu->cpreg_array_len == arraylen); |
| |
| if (!write_kvmstate_to_list(cpu)) { |
| /* Shouldn't happen unless kernel is inconsistent about |
| * what registers exist. |
| */ |
| fprintf(stderr, "Initial read of kernel register state failed\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| out: |
| g_free(rlp); |
| return ret; |
| } |
| |
| bool write_kvmstate_to_list(ARMCPU *cpu) |
| { |
| CPUState *cs = CPU(cpu); |
| int i; |
| bool ok = true; |
| |
| for (i = 0; i < cpu->cpreg_array_len; i++) { |
| struct kvm_one_reg r; |
| uint64_t regidx = cpu->cpreg_indexes[i]; |
| uint32_t v32; |
| int ret; |
| |
| r.id = regidx; |
| |
| switch (regidx & KVM_REG_SIZE_MASK) { |
| case KVM_REG_SIZE_U32: |
| r.addr = (uintptr_t)&v32; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); |
| if (!ret) { |
| cpu->cpreg_values[i] = v32; |
| } |
| break; |
| case KVM_REG_SIZE_U64: |
| r.addr = (uintptr_t)(cpu->cpreg_values + i); |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| if (ret) { |
| ok = false; |
| } |
| } |
| return ok; |
| } |
| |
| bool write_list_to_kvmstate(ARMCPU *cpu, int level) |
| { |
| CPUState *cs = CPU(cpu); |
| int i; |
| bool ok = true; |
| |
| for (i = 0; i < cpu->cpreg_array_len; i++) { |
| struct kvm_one_reg r; |
| uint64_t regidx = cpu->cpreg_indexes[i]; |
| uint32_t v32; |
| int ret; |
| |
| if (kvm_arm_cpreg_level(regidx) > level) { |
| continue; |
| } |
| |
| r.id = regidx; |
| switch (regidx & KVM_REG_SIZE_MASK) { |
| case KVM_REG_SIZE_U32: |
| v32 = cpu->cpreg_values[i]; |
| r.addr = (uintptr_t)&v32; |
| break; |
| case KVM_REG_SIZE_U64: |
| r.addr = (uintptr_t)(cpu->cpreg_values + i); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); |
| if (ret) { |
| /* We might fail for "unknown register" and also for |
| * "you tried to set a register which is constant with |
| * a different value from what it actually contains". |
| */ |
| ok = false; |
| } |
| } |
| return ok; |
| } |
| |
| void kvm_arm_cpu_pre_save(ARMCPU *cpu) |
| { |
| /* KVM virtual time adjustment */ |
| if (cpu->kvm_vtime_dirty) { |
| *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime; |
| } |
| } |
| |
| void kvm_arm_cpu_post_load(ARMCPU *cpu) |
| { |
| /* KVM virtual time adjustment */ |
| if (cpu->kvm_adjvtime) { |
| cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT); |
| cpu->kvm_vtime_dirty = true; |
| } |
| } |
| |
| void kvm_arm_reset_vcpu(ARMCPU *cpu) |
| { |
| int ret; |
| |
| /* Re-init VCPU so that all registers are set to |
| * their respective reset values. |
| */ |
| ret = kvm_arm_vcpu_init(CPU(cpu)); |
| if (ret < 0) { |
| fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); |
| abort(); |
| } |
| if (!write_kvmstate_to_list(cpu)) { |
| fprintf(stderr, "write_kvmstate_to_list failed\n"); |
| abort(); |
| } |
| /* |
| * Sync the reset values also into the CPUState. This is necessary |
| * because the next thing we do will be a kvm_arch_put_registers() |
| * which will update the list values from the CPUState before copying |
| * the list values back to KVM. It's OK to ignore failure returns here |
| * for the same reason we do so in kvm_arch_get_registers(). |
| */ |
| write_list_to_cpustate(cpu); |
| } |
| |
| /* |
| * Update KVM's MP_STATE based on what QEMU thinks it is |
| */ |
| int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) |
| { |
| if (cap_has_mp_state) { |
| struct kvm_mp_state mp_state = { |
| .mp_state = (cpu->power_state == PSCI_OFF) ? |
| KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE |
| }; |
| int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); |
| if (ret) { |
| fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", |
| __func__, ret, strerror(-ret)); |
| return -1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Sync the KVM MP_STATE into QEMU |
| */ |
| int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) |
| { |
| if (cap_has_mp_state) { |
| struct kvm_mp_state mp_state; |
| int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); |
| if (ret) { |
| fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", |
| __func__, ret, strerror(-ret)); |
| abort(); |
| } |
| cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? |
| PSCI_OFF : PSCI_ON; |
| } |
| |
| return 0; |
| } |
| |
| void kvm_arm_get_virtual_time(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| struct kvm_one_reg reg = { |
| .id = KVM_REG_ARM_TIMER_CNT, |
| .addr = (uintptr_t)&cpu->kvm_vtime, |
| }; |
| int ret; |
| |
| if (cpu->kvm_vtime_dirty) { |
| return; |
| } |
| |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
| if (ret) { |
| error_report("Failed to get KVM_REG_ARM_TIMER_CNT"); |
| abort(); |
| } |
| |
| cpu->kvm_vtime_dirty = true; |
| } |
| |
| void kvm_arm_put_virtual_time(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| struct kvm_one_reg reg = { |
| .id = KVM_REG_ARM_TIMER_CNT, |
| .addr = (uintptr_t)&cpu->kvm_vtime, |
| }; |
| int ret; |
| |
| if (!cpu->kvm_vtime_dirty) { |
| return; |
| } |
| |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
| if (ret) { |
| error_report("Failed to set KVM_REG_ARM_TIMER_CNT"); |
| abort(); |
| } |
| |
| cpu->kvm_vtime_dirty = false; |
| } |
| |
| int kvm_put_vcpu_events(ARMCPU *cpu) |
| { |
| CPUARMState *env = &cpu->env; |
| struct kvm_vcpu_events events; |
| int ret; |
| |
| if (!kvm_has_vcpu_events()) { |
| return 0; |
| } |
| |
| memset(&events, 0, sizeof(events)); |
| events.exception.serror_pending = env->serror.pending; |
| |
| /* Inject SError to guest with specified syndrome if host kernel |
| * supports it, otherwise inject SError without syndrome. |
| */ |
| if (cap_has_inject_serror_esr) { |
| events.exception.serror_has_esr = env->serror.has_esr; |
| events.exception.serror_esr = env->serror.esr; |
| } |
| |
| ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); |
| if (ret) { |
| error_report("failed to put vcpu events"); |
| } |
| |
| return ret; |
| } |
| |
| int kvm_get_vcpu_events(ARMCPU *cpu) |
| { |
| CPUARMState *env = &cpu->env; |
| struct kvm_vcpu_events events; |
| int ret; |
| |
| if (!kvm_has_vcpu_events()) { |
| return 0; |
| } |
| |
| memset(&events, 0, sizeof(events)); |
| ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); |
| if (ret) { |
| error_report("failed to get vcpu events"); |
| return ret; |
| } |
| |
| env->serror.pending = events.exception.serror_pending; |
| env->serror.has_esr = events.exception.serror_has_esr; |
| env->serror.esr = events.exception.serror_esr; |
| |
| return 0; |
| } |
| |
| void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| |
| if (unlikely(env->ext_dabt_raised)) { |
| /* |
| * Verifying that the ext DABT has been properly injected, |
| * otherwise risking indefinitely re-running the faulting instruction |
| * Covering a very narrow case for kernels 5.5..5.5.4 |
| * when injected abort was misconfigured to be |
| * an IMPLEMENTATION DEFINED exception (for 32-bit EL1) |
| */ |
| if (!arm_feature(env, ARM_FEATURE_AARCH64) && |
| unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) { |
| |
| error_report("Data abort exception with no valid ISS generated by " |
| "guest memory access. KVM unable to emulate faulting " |
| "instruction. Failed to inject an external data abort " |
| "into the guest."); |
| abort(); |
| } |
| /* Clear the status */ |
| env->ext_dabt_raised = 0; |
| } |
| } |
| |
| MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) |
| { |
| ARMCPU *cpu; |
| uint32_t switched_level; |
| |
| if (kvm_irqchip_in_kernel()) { |
| /* |
| * We only need to sync timer states with user-space interrupt |
| * controllers, so return early and save cycles if we don't. |
| */ |
| return MEMTXATTRS_UNSPECIFIED; |
| } |
| |
| cpu = ARM_CPU(cs); |
| |
| /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ |
| if (run->s.regs.device_irq_level != cpu->device_irq_level) { |
| switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; |
| |
| qemu_mutex_lock_iothread(); |
| |
| if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { |
| qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], |
| !!(run->s.regs.device_irq_level & |
| KVM_ARM_DEV_EL1_VTIMER)); |
| switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; |
| } |
| |
| if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { |
| qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], |
| !!(run->s.regs.device_irq_level & |
| KVM_ARM_DEV_EL1_PTIMER)); |
| switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; |
| } |
| |
| if (switched_level & KVM_ARM_DEV_PMU) { |
| qemu_set_irq(cpu->pmu_interrupt, |
| !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); |
| switched_level &= ~KVM_ARM_DEV_PMU; |
| } |
| |
| if (switched_level) { |
| qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", |
| __func__, switched_level); |
| } |
| |
| /* We also mark unknown levels as processed to not waste cycles */ |
| cpu->device_irq_level = run->s.regs.device_irq_level; |
| qemu_mutex_unlock_iothread(); |
| } |
| |
| return MEMTXATTRS_UNSPECIFIED; |
| } |
| |
| void kvm_arm_vm_state_change(void *opaque, bool running, RunState state) |
| { |
| CPUState *cs = opaque; |
| ARMCPU *cpu = ARM_CPU(cs); |
| |
| if (running) { |
| if (cpu->kvm_adjvtime) { |
| kvm_arm_put_virtual_time(cs); |
| } |
| } else { |
| if (cpu->kvm_adjvtime) { |
| kvm_arm_get_virtual_time(cs); |
| } |
| } |
| } |
| |
| /** |
| * kvm_arm_handle_dabt_nisv: |
| * @cs: CPUState |
| * @esr_iss: ISS encoding (limited) for the exception from Data Abort |
| * ISV bit set to '0b0' -> no valid instruction syndrome |
| * @fault_ipa: faulting address for the synchronous data abort |
| * |
| * Returns: 0 if the exception has been handled, < 0 otherwise |
| */ |
| static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss, |
| uint64_t fault_ipa) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| /* |
| * Request KVM to inject the external data abort into the guest |
| */ |
| if (cap_has_inject_ext_dabt) { |
| struct kvm_vcpu_events events = { }; |
| /* |
| * The external data abort event will be handled immediately by KVM |
| * using the address fault that triggered the exit on given VCPU. |
| * Requesting injection of the external data abort does not rely |
| * on any other VCPU state. Therefore, in this particular case, the VCPU |
| * synchronization can be exceptionally skipped. |
| */ |
| events.exception.ext_dabt_pending = 1; |
| /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */ |
| if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) { |
| env->ext_dabt_raised = 1; |
| return 0; |
| } |
| } else { |
| error_report("Data abort exception triggered by guest memory access " |
| "at physical address: 0x" TARGET_FMT_lx, |
| (target_ulong)fault_ipa); |
| error_printf("KVM unable to emulate faulting instruction.\n"); |
| } |
| return -1; |
| } |
| |
| int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
| { |
| int ret = 0; |
| |
| switch (run->exit_reason) { |
| case KVM_EXIT_DEBUG: |
| if (kvm_arm_handle_debug(cs, &run->debug.arch)) { |
| ret = EXCP_DEBUG; |
| } /* otherwise return to guest */ |
| break; |
| case KVM_EXIT_ARM_NISV: |
| /* External DABT with no valid iss to decode */ |
| ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss, |
| run->arm_nisv.fault_ipa); |
| break; |
| default: |
| qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", |
| __func__, run->exit_reason); |
| break; |
| } |
| return ret; |
| } |
| |
| bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
| { |
| return true; |
| } |
| |
| int kvm_arch_process_async_events(CPUState *cs) |
| { |
| return 0; |
| } |
| |
| void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) |
| { |
| if (kvm_sw_breakpoints_active(cs)) { |
| dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
| } |
| if (kvm_arm_hw_debug_active(cs)) { |
| dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; |
| kvm_arm_copy_hw_debug_data(&dbg->arch); |
| } |
| } |
| |
| void kvm_arch_init_irq_routing(KVMState *s) |
| { |
| } |
| |
| int kvm_arch_irqchip_create(KVMState *s) |
| { |
| if (kvm_kernel_irqchip_split()) { |
| error_report("-machine kernel_irqchip=split is not supported on ARM."); |
| exit(1); |
| } |
| |
| /* If we can create the VGIC using the newer device control API, we |
| * let the device do this when it initializes itself, otherwise we |
| * fall back to the old API */ |
| return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); |
| } |
| |
| int kvm_arm_vgic_probe(void) |
| { |
| int val = 0; |
| |
| if (kvm_create_device(kvm_state, |
| KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { |
| val |= KVM_ARM_VGIC_V3; |
| } |
| if (kvm_create_device(kvm_state, |
| KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { |
| val |= KVM_ARM_VGIC_V2; |
| } |
| return val; |
| } |
| |
| int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level) |
| { |
| int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq; |
| int cpu_idx1 = cpu % 256; |
| int cpu_idx2 = cpu / 256; |
| |
| kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) | |
| (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT); |
| |
| return kvm_set_irq(kvm_state, kvm_irq, !!level); |
| } |
| |
| int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, |
| uint64_t address, uint32_t data, PCIDevice *dev) |
| { |
| AddressSpace *as = pci_device_iommu_address_space(dev); |
| hwaddr xlat, len, doorbell_gpa; |
| MemoryRegionSection mrs; |
| MemoryRegion *mr; |
| |
| if (as == &address_space_memory) { |
| return 0; |
| } |
| |
| /* MSI doorbell address is translated by an IOMMU */ |
| |
| RCU_READ_LOCK_GUARD(); |
| |
| mr = address_space_translate(as, address, &xlat, &len, true, |
| MEMTXATTRS_UNSPECIFIED); |
| |
| if (!mr) { |
| return 1; |
| } |
| |
| mrs = memory_region_find(mr, xlat, 1); |
| |
| if (!mrs.mr) { |
| return 1; |
| } |
| |
| doorbell_gpa = mrs.offset_within_address_space; |
| memory_region_unref(mrs.mr); |
| |
| route->u.msi.address_lo = doorbell_gpa; |
| route->u.msi.address_hi = doorbell_gpa >> 32; |
| |
| trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); |
| |
| return 0; |
| } |
| |
| int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, |
| int vector, PCIDevice *dev) |
| { |
| return 0; |
| } |
| |
| int kvm_arch_release_virq_post(int virq) |
| { |
| return 0; |
| } |
| |
| int kvm_arch_msi_data_to_gsi(uint32_t data) |
| { |
| return (data - 32) & 0xffff; |
| } |
| |
| bool kvm_arch_cpu_check_are_resettable(void) |
| { |
| return true; |
| } |
| |
| static void kvm_arch_get_eager_split_size(Object *obj, Visitor *v, |
| const char *name, void *opaque, |
| Error **errp) |
| { |
| KVMState *s = KVM_STATE(obj); |
| uint64_t value = s->kvm_eager_split_size; |
| |
| visit_type_size(v, name, &value, errp); |
| } |
| |
| static void kvm_arch_set_eager_split_size(Object *obj, Visitor *v, |
| const char *name, void *opaque, |
| Error **errp) |
| { |
| KVMState *s = KVM_STATE(obj); |
| uint64_t value; |
| |
| if (s->fd != -1) { |
| error_setg(errp, "Unable to set early-split-size after KVM has been initialized"); |
| return; |
| } |
| |
| if (!visit_type_size(v, name, &value, errp)) { |
| return; |
| } |
| |
| if (value && !is_power_of_2(value)) { |
| error_setg(errp, "early-split-size must be a power of two"); |
| return; |
| } |
| |
| s->kvm_eager_split_size = value; |
| } |
| |
| void kvm_arch_accel_class_init(ObjectClass *oc) |
| { |
| object_class_property_add(oc, "eager-split-size", "size", |
| kvm_arch_get_eager_split_size, |
| kvm_arch_set_eager_split_size, NULL, NULL); |
| |
| object_class_property_set_description(oc, "eager-split-size", |
| "Eager Page Split chunk size for hugepages. (default: 0, disabled)"); |
| } |