|  | /* | 
|  | * Copyright (C) 2021, Mahmoud Mandour <ma.mandourr@gmail.com> | 
|  | * | 
|  | * License: GNU GPL, version 2 or later. | 
|  | *   See the COPYING file in the top-level directory. | 
|  | */ | 
|  |  | 
|  | #include <inttypes.h> | 
|  | #include <stdio.h> | 
|  | #include <glib.h> | 
|  |  | 
|  | #include <qemu-plugin.h> | 
|  |  | 
|  | #define STRTOLL(x) g_ascii_strtoll(x, NULL, 10) | 
|  |  | 
|  | QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION; | 
|  |  | 
|  | static enum qemu_plugin_mem_rw rw = QEMU_PLUGIN_MEM_RW; | 
|  |  | 
|  | static GHashTable *miss_ht; | 
|  |  | 
|  | static GMutex hashtable_lock; | 
|  | static GRand *rng; | 
|  |  | 
|  | static int limit; | 
|  | static bool sys; | 
|  |  | 
|  | enum EvictionPolicy { | 
|  | LRU, | 
|  | FIFO, | 
|  | RAND, | 
|  | }; | 
|  |  | 
|  | enum EvictionPolicy policy; | 
|  |  | 
|  | /* | 
|  | * A CacheSet is a set of cache blocks. A memory block that maps to a set can be | 
|  | * put in any of the blocks inside the set. The number of block per set is | 
|  | * called the associativity (assoc). | 
|  | * | 
|  | * Each block contains the stored tag and a valid bit. Since this is not | 
|  | * a functional simulator, the data itself is not stored. We only identify | 
|  | * whether a block is in the cache or not by searching for its tag. | 
|  | * | 
|  | * In order to search for memory data in the cache, the set identifier and tag | 
|  | * are extracted from the address and the set is probed to see whether a tag | 
|  | * match occur. | 
|  | * | 
|  | * An address is logically divided into three portions: The block offset, | 
|  | * the set number, and the tag. | 
|  | * | 
|  | * The set number is used to identify the set in which the block may exist. | 
|  | * The tag is compared against all the tags of a set to search for a match. If a | 
|  | * match is found, then the access is a hit. | 
|  | * | 
|  | * The CacheSet also contains bookkeaping information about eviction details. | 
|  | */ | 
|  |  | 
|  | typedef struct { | 
|  | uint64_t tag; | 
|  | bool valid; | 
|  | } CacheBlock; | 
|  |  | 
|  | typedef struct { | 
|  | CacheBlock *blocks; | 
|  | uint64_t *lru_priorities; | 
|  | uint64_t lru_gen_counter; | 
|  | GQueue *fifo_queue; | 
|  | } CacheSet; | 
|  |  | 
|  | typedef struct { | 
|  | CacheSet *sets; | 
|  | int num_sets; | 
|  | int cachesize; | 
|  | int assoc; | 
|  | int blksize_shift; | 
|  | uint64_t set_mask; | 
|  | uint64_t tag_mask; | 
|  | uint64_t accesses; | 
|  | uint64_t misses; | 
|  | } Cache; | 
|  |  | 
|  | typedef struct { | 
|  | char *disas_str; | 
|  | const char *symbol; | 
|  | uint64_t addr; | 
|  | uint64_t l1_dmisses; | 
|  | uint64_t l1_imisses; | 
|  | uint64_t l2_misses; | 
|  | } InsnData; | 
|  |  | 
|  | void (*update_hit)(Cache *cache, int set, int blk); | 
|  | void (*update_miss)(Cache *cache, int set, int blk); | 
|  |  | 
|  | void (*metadata_init)(Cache *cache); | 
|  | void (*metadata_destroy)(Cache *cache); | 
|  |  | 
|  | static int cores; | 
|  | static Cache **l1_dcaches, **l1_icaches; | 
|  |  | 
|  | static bool use_l2; | 
|  | static Cache **l2_ucaches; | 
|  |  | 
|  | static GMutex *l1_dcache_locks; | 
|  | static GMutex *l1_icache_locks; | 
|  | static GMutex *l2_ucache_locks; | 
|  |  | 
|  | static uint64_t l1_dmem_accesses; | 
|  | static uint64_t l1_imem_accesses; | 
|  | static uint64_t l1_imisses; | 
|  | static uint64_t l1_dmisses; | 
|  |  | 
|  | static uint64_t l2_mem_accesses; | 
|  | static uint64_t l2_misses; | 
|  |  | 
|  | static int pow_of_two(int num) | 
|  | { | 
|  | g_assert((num & (num - 1)) == 0); | 
|  | int ret = 0; | 
|  | while (num /= 2) { | 
|  | ret++; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * LRU evection policy: For each set, a generation counter is maintained | 
|  | * alongside a priority array. | 
|  | * | 
|  | * On each set access, the generation counter is incremented. | 
|  | * | 
|  | * On a cache hit: The hit-block is assigned the current generation counter, | 
|  | * indicating that it is the most recently used block. | 
|  | * | 
|  | * On a cache miss: The block with the least priority is searched and replaced | 
|  | * with the newly-cached block, of which the priority is set to the current | 
|  | * generation number. | 
|  | */ | 
|  |  | 
|  | static void lru_priorities_init(Cache *cache) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < cache->num_sets; i++) { | 
|  | cache->sets[i].lru_priorities = g_new0(uint64_t, cache->assoc); | 
|  | cache->sets[i].lru_gen_counter = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void lru_update_blk(Cache *cache, int set_idx, int blk_idx) | 
|  | { | 
|  | CacheSet *set = &cache->sets[set_idx]; | 
|  | set->lru_priorities[blk_idx] = cache->sets[set_idx].lru_gen_counter; | 
|  | set->lru_gen_counter++; | 
|  | } | 
|  |  | 
|  | static int lru_get_lru_block(Cache *cache, int set_idx) | 
|  | { | 
|  | int i, min_idx, min_priority; | 
|  |  | 
|  | min_priority = cache->sets[set_idx].lru_priorities[0]; | 
|  | min_idx = 0; | 
|  |  | 
|  | for (i = 1; i < cache->assoc; i++) { | 
|  | if (cache->sets[set_idx].lru_priorities[i] < min_priority) { | 
|  | min_priority = cache->sets[set_idx].lru_priorities[i]; | 
|  | min_idx = i; | 
|  | } | 
|  | } | 
|  | return min_idx; | 
|  | } | 
|  |  | 
|  | static void lru_priorities_destroy(Cache *cache) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < cache->num_sets; i++) { | 
|  | g_free(cache->sets[i].lru_priorities); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * FIFO eviction policy: a FIFO queue is maintained for each CacheSet that | 
|  | * stores accesses to the cache. | 
|  | * | 
|  | * On a compulsory miss: The block index is enqueued to the fifo_queue to | 
|  | * indicate that it's the latest cached block. | 
|  | * | 
|  | * On a conflict miss: The first-in block is removed from the cache and the new | 
|  | * block is put in its place and enqueued to the FIFO queue. | 
|  | */ | 
|  |  | 
|  | static void fifo_init(Cache *cache) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < cache->num_sets; i++) { | 
|  | cache->sets[i].fifo_queue = g_queue_new(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int fifo_get_first_block(Cache *cache, int set) | 
|  | { | 
|  | GQueue *q = cache->sets[set].fifo_queue; | 
|  | return GPOINTER_TO_INT(g_queue_pop_tail(q)); | 
|  | } | 
|  |  | 
|  | static void fifo_update_on_miss(Cache *cache, int set, int blk_idx) | 
|  | { | 
|  | GQueue *q = cache->sets[set].fifo_queue; | 
|  | g_queue_push_head(q, GINT_TO_POINTER(blk_idx)); | 
|  | } | 
|  |  | 
|  | static void fifo_destroy(Cache *cache) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < cache->num_sets; i++) { | 
|  | g_queue_free(cache->sets[i].fifo_queue); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline uint64_t extract_tag(Cache *cache, uint64_t addr) | 
|  | { | 
|  | return addr & cache->tag_mask; | 
|  | } | 
|  |  | 
|  | static inline uint64_t extract_set(Cache *cache, uint64_t addr) | 
|  | { | 
|  | return (addr & cache->set_mask) >> cache->blksize_shift; | 
|  | } | 
|  |  | 
|  | static const char *cache_config_error(int blksize, int assoc, int cachesize) | 
|  | { | 
|  | if (cachesize % blksize != 0) { | 
|  | return "cache size must be divisible by block size"; | 
|  | } else if (cachesize % (blksize * assoc) != 0) { | 
|  | return "cache size must be divisible by set size (assoc * block size)"; | 
|  | } else { | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool bad_cache_params(int blksize, int assoc, int cachesize) | 
|  | { | 
|  | return (cachesize % blksize) != 0 || (cachesize % (blksize * assoc) != 0); | 
|  | } | 
|  |  | 
|  | static Cache *cache_init(int blksize, int assoc, int cachesize) | 
|  | { | 
|  | Cache *cache; | 
|  | int i; | 
|  | uint64_t blk_mask; | 
|  |  | 
|  | /* | 
|  | * This function shall not be called directly, and hence expects suitable | 
|  | * parameters. | 
|  | */ | 
|  | g_assert(!bad_cache_params(blksize, assoc, cachesize)); | 
|  |  | 
|  | cache = g_new(Cache, 1); | 
|  | cache->assoc = assoc; | 
|  | cache->cachesize = cachesize; | 
|  | cache->num_sets = cachesize / (blksize * assoc); | 
|  | cache->sets = g_new(CacheSet, cache->num_sets); | 
|  | cache->blksize_shift = pow_of_two(blksize); | 
|  | cache->accesses = 0; | 
|  | cache->misses = 0; | 
|  |  | 
|  | for (i = 0; i < cache->num_sets; i++) { | 
|  | cache->sets[i].blocks = g_new0(CacheBlock, assoc); | 
|  | } | 
|  |  | 
|  | blk_mask = blksize - 1; | 
|  | cache->set_mask = ((cache->num_sets - 1) << cache->blksize_shift); | 
|  | cache->tag_mask = ~(cache->set_mask | blk_mask); | 
|  |  | 
|  | if (metadata_init) { | 
|  | metadata_init(cache); | 
|  | } | 
|  |  | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | static Cache **caches_init(int blksize, int assoc, int cachesize) | 
|  | { | 
|  | Cache **caches; | 
|  | int i; | 
|  |  | 
|  | if (bad_cache_params(blksize, assoc, cachesize)) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | caches = g_new(Cache *, cores); | 
|  |  | 
|  | for (i = 0; i < cores; i++) { | 
|  | caches[i] = cache_init(blksize, assoc, cachesize); | 
|  | } | 
|  |  | 
|  | return caches; | 
|  | } | 
|  |  | 
|  | static int get_invalid_block(Cache *cache, uint64_t set) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < cache->assoc; i++) { | 
|  | if (!cache->sets[set].blocks[i].valid) { | 
|  | return i; | 
|  | } | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int get_replaced_block(Cache *cache, int set) | 
|  | { | 
|  | switch (policy) { | 
|  | case RAND: | 
|  | return g_rand_int_range(rng, 0, cache->assoc); | 
|  | case LRU: | 
|  | return lru_get_lru_block(cache, set); | 
|  | case FIFO: | 
|  | return fifo_get_first_block(cache, set); | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int in_cache(Cache *cache, uint64_t addr) | 
|  | { | 
|  | int i; | 
|  | uint64_t tag, set; | 
|  |  | 
|  | tag = extract_tag(cache, addr); | 
|  | set = extract_set(cache, addr); | 
|  |  | 
|  | for (i = 0; i < cache->assoc; i++) { | 
|  | if (cache->sets[set].blocks[i].tag == tag && | 
|  | cache->sets[set].blocks[i].valid) { | 
|  | return i; | 
|  | } | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * access_cache(): Simulate a cache access | 
|  | * @cache: The cache under simulation | 
|  | * @addr: The address of the requested memory location | 
|  | * | 
|  | * Returns true if the requested data is hit in the cache and false when missed. | 
|  | * The cache is updated on miss for the next access. | 
|  | */ | 
|  | static bool access_cache(Cache *cache, uint64_t addr) | 
|  | { | 
|  | int hit_blk, replaced_blk; | 
|  | uint64_t tag, set; | 
|  |  | 
|  | tag = extract_tag(cache, addr); | 
|  | set = extract_set(cache, addr); | 
|  |  | 
|  | hit_blk = in_cache(cache, addr); | 
|  | if (hit_blk != -1) { | 
|  | if (update_hit) { | 
|  | update_hit(cache, set, hit_blk); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | replaced_blk = get_invalid_block(cache, set); | 
|  |  | 
|  | if (replaced_blk == -1) { | 
|  | replaced_blk = get_replaced_block(cache, set); | 
|  | } | 
|  |  | 
|  | if (update_miss) { | 
|  | update_miss(cache, set, replaced_blk); | 
|  | } | 
|  |  | 
|  | cache->sets[set].blocks[replaced_blk].tag = tag; | 
|  | cache->sets[set].blocks[replaced_blk].valid = true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void vcpu_mem_access(unsigned int vcpu_index, qemu_plugin_meminfo_t info, | 
|  | uint64_t vaddr, void *userdata) | 
|  | { | 
|  | uint64_t effective_addr; | 
|  | struct qemu_plugin_hwaddr *hwaddr; | 
|  | int cache_idx; | 
|  | InsnData *insn; | 
|  | bool hit_in_l1; | 
|  |  | 
|  | hwaddr = qemu_plugin_get_hwaddr(info, vaddr); | 
|  | if (hwaddr && qemu_plugin_hwaddr_is_io(hwaddr)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | effective_addr = hwaddr ? qemu_plugin_hwaddr_phys_addr(hwaddr) : vaddr; | 
|  | cache_idx = vcpu_index % cores; | 
|  |  | 
|  | g_mutex_lock(&l1_dcache_locks[cache_idx]); | 
|  | hit_in_l1 = access_cache(l1_dcaches[cache_idx], effective_addr); | 
|  | if (!hit_in_l1) { | 
|  | insn = userdata; | 
|  | __atomic_fetch_add(&insn->l1_dmisses, 1, __ATOMIC_SEQ_CST); | 
|  | l1_dcaches[cache_idx]->misses++; | 
|  | } | 
|  | l1_dcaches[cache_idx]->accesses++; | 
|  | g_mutex_unlock(&l1_dcache_locks[cache_idx]); | 
|  |  | 
|  | if (hit_in_l1 || !use_l2) { | 
|  | /* No need to access L2 */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | g_mutex_lock(&l2_ucache_locks[cache_idx]); | 
|  | if (!access_cache(l2_ucaches[cache_idx], effective_addr)) { | 
|  | insn = userdata; | 
|  | __atomic_fetch_add(&insn->l2_misses, 1, __ATOMIC_SEQ_CST); | 
|  | l2_ucaches[cache_idx]->misses++; | 
|  | } | 
|  | l2_ucaches[cache_idx]->accesses++; | 
|  | g_mutex_unlock(&l2_ucache_locks[cache_idx]); | 
|  | } | 
|  |  | 
|  | static void vcpu_insn_exec(unsigned int vcpu_index, void *userdata) | 
|  | { | 
|  | uint64_t insn_addr; | 
|  | InsnData *insn; | 
|  | int cache_idx; | 
|  | bool hit_in_l1; | 
|  |  | 
|  | insn_addr = ((InsnData *) userdata)->addr; | 
|  |  | 
|  | cache_idx = vcpu_index % cores; | 
|  | g_mutex_lock(&l1_icache_locks[cache_idx]); | 
|  | hit_in_l1 = access_cache(l1_icaches[cache_idx], insn_addr); | 
|  | if (!hit_in_l1) { | 
|  | insn = userdata; | 
|  | __atomic_fetch_add(&insn->l1_imisses, 1, __ATOMIC_SEQ_CST); | 
|  | l1_icaches[cache_idx]->misses++; | 
|  | } | 
|  | l1_icaches[cache_idx]->accesses++; | 
|  | g_mutex_unlock(&l1_icache_locks[cache_idx]); | 
|  |  | 
|  | if (hit_in_l1 || !use_l2) { | 
|  | /* No need to access L2 */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | g_mutex_lock(&l2_ucache_locks[cache_idx]); | 
|  | if (!access_cache(l2_ucaches[cache_idx], insn_addr)) { | 
|  | insn = userdata; | 
|  | __atomic_fetch_add(&insn->l2_misses, 1, __ATOMIC_SEQ_CST); | 
|  | l2_ucaches[cache_idx]->misses++; | 
|  | } | 
|  | l2_ucaches[cache_idx]->accesses++; | 
|  | g_mutex_unlock(&l2_ucache_locks[cache_idx]); | 
|  | } | 
|  |  | 
|  | static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb) | 
|  | { | 
|  | size_t n_insns; | 
|  | size_t i; | 
|  | InsnData *data; | 
|  |  | 
|  | n_insns = qemu_plugin_tb_n_insns(tb); | 
|  | for (i = 0; i < n_insns; i++) { | 
|  | struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i); | 
|  | uint64_t effective_addr; | 
|  |  | 
|  | if (sys) { | 
|  | effective_addr = (uint64_t) qemu_plugin_insn_haddr(insn); | 
|  | } else { | 
|  | effective_addr = (uint64_t) qemu_plugin_insn_vaddr(insn); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Instructions might get translated multiple times, we do not create | 
|  | * new entries for those instructions. Instead, we fetch the same | 
|  | * entry from the hash table and register it for the callback again. | 
|  | */ | 
|  | g_mutex_lock(&hashtable_lock); | 
|  | data = g_hash_table_lookup(miss_ht, GUINT_TO_POINTER(effective_addr)); | 
|  | if (data == NULL) { | 
|  | data = g_new0(InsnData, 1); | 
|  | data->disas_str = qemu_plugin_insn_disas(insn); | 
|  | data->symbol = qemu_plugin_insn_symbol(insn); | 
|  | data->addr = effective_addr; | 
|  | g_hash_table_insert(miss_ht, GUINT_TO_POINTER(effective_addr), | 
|  | (gpointer) data); | 
|  | } | 
|  | g_mutex_unlock(&hashtable_lock); | 
|  |  | 
|  | qemu_plugin_register_vcpu_mem_cb(insn, vcpu_mem_access, | 
|  | QEMU_PLUGIN_CB_NO_REGS, | 
|  | rw, data); | 
|  |  | 
|  | qemu_plugin_register_vcpu_insn_exec_cb(insn, vcpu_insn_exec, | 
|  | QEMU_PLUGIN_CB_NO_REGS, data); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void insn_free(gpointer data) | 
|  | { | 
|  | InsnData *insn = (InsnData *) data; | 
|  | g_free(insn->disas_str); | 
|  | g_free(insn); | 
|  | } | 
|  |  | 
|  | static void cache_free(Cache *cache) | 
|  | { | 
|  | for (int i = 0; i < cache->num_sets; i++) { | 
|  | g_free(cache->sets[i].blocks); | 
|  | } | 
|  |  | 
|  | if (metadata_destroy) { | 
|  | metadata_destroy(cache); | 
|  | } | 
|  |  | 
|  | g_free(cache->sets); | 
|  | g_free(cache); | 
|  | } | 
|  |  | 
|  | static void caches_free(Cache **caches) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < cores; i++) { | 
|  | cache_free(caches[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void append_stats_line(GString *line, | 
|  | uint64_t l1_daccess, uint64_t l1_dmisses, | 
|  | uint64_t l1_iaccess, uint64_t l1_imisses, | 
|  | uint64_t l2_access, uint64_t l2_misses) | 
|  | { | 
|  | double l1_dmiss_rate = ((double) l1_dmisses) / (l1_daccess) * 100.0; | 
|  | double l1_imiss_rate = ((double) l1_imisses) / (l1_iaccess) * 100.0; | 
|  |  | 
|  | g_string_append_printf(line, "%-14" PRIu64 " %-12" PRIu64 " %9.4lf%%" | 
|  | "  %-14" PRIu64 " %-12" PRIu64 " %9.4lf%%", | 
|  | l1_daccess, | 
|  | l1_dmisses, | 
|  | l1_daccess ? l1_dmiss_rate : 0.0, | 
|  | l1_iaccess, | 
|  | l1_imisses, | 
|  | l1_iaccess ? l1_imiss_rate : 0.0); | 
|  |  | 
|  | if (l2_access && l2_misses) { | 
|  | double l2_miss_rate =  ((double) l2_misses) / (l2_access) * 100.0; | 
|  | g_string_append_printf(line, | 
|  | "  %-12" PRIu64 " %-11" PRIu64 " %10.4lf%%", | 
|  | l2_access, | 
|  | l2_misses, | 
|  | l2_access ? l2_miss_rate : 0.0); | 
|  | } | 
|  |  | 
|  | g_string_append(line, "\n"); | 
|  | } | 
|  |  | 
|  | static void sum_stats(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | g_assert(cores > 1); | 
|  | for (i = 0; i < cores; i++) { | 
|  | l1_imisses += l1_icaches[i]->misses; | 
|  | l1_dmisses += l1_dcaches[i]->misses; | 
|  | l1_imem_accesses += l1_icaches[i]->accesses; | 
|  | l1_dmem_accesses += l1_dcaches[i]->accesses; | 
|  |  | 
|  | if (use_l2) { | 
|  | l2_misses += l2_ucaches[i]->misses; | 
|  | l2_mem_accesses += l2_ucaches[i]->accesses; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int dcmp(gconstpointer a, gconstpointer b) | 
|  | { | 
|  | InsnData *insn_a = (InsnData *) a; | 
|  | InsnData *insn_b = (InsnData *) b; | 
|  |  | 
|  | return insn_a->l1_dmisses < insn_b->l1_dmisses ? 1 : -1; | 
|  | } | 
|  |  | 
|  | static int icmp(gconstpointer a, gconstpointer b) | 
|  | { | 
|  | InsnData *insn_a = (InsnData *) a; | 
|  | InsnData *insn_b = (InsnData *) b; | 
|  |  | 
|  | return insn_a->l1_imisses < insn_b->l1_imisses ? 1 : -1; | 
|  | } | 
|  |  | 
|  | static int l2_cmp(gconstpointer a, gconstpointer b) | 
|  | { | 
|  | InsnData *insn_a = (InsnData *) a; | 
|  | InsnData *insn_b = (InsnData *) b; | 
|  |  | 
|  | return insn_a->l2_misses < insn_b->l2_misses ? 1 : -1; | 
|  | } | 
|  |  | 
|  | static void log_stats(void) | 
|  | { | 
|  | int i; | 
|  | Cache *icache, *dcache, *l2_cache; | 
|  |  | 
|  | g_autoptr(GString) rep = g_string_new("core #, data accesses, data misses," | 
|  | " dmiss rate, insn accesses," | 
|  | " insn misses, imiss rate"); | 
|  |  | 
|  | if (use_l2) { | 
|  | g_string_append(rep, ", l2 accesses, l2 misses, l2 miss rate"); | 
|  | } | 
|  |  | 
|  | g_string_append(rep, "\n"); | 
|  |  | 
|  | for (i = 0; i < cores; i++) { | 
|  | g_string_append_printf(rep, "%-8d", i); | 
|  | dcache = l1_dcaches[i]; | 
|  | icache = l1_icaches[i]; | 
|  | l2_cache = use_l2 ? l2_ucaches[i] : NULL; | 
|  | append_stats_line(rep, dcache->accesses, dcache->misses, | 
|  | icache->accesses, icache->misses, | 
|  | l2_cache ? l2_cache->accesses : 0, | 
|  | l2_cache ? l2_cache->misses : 0); | 
|  | } | 
|  |  | 
|  | if (cores > 1) { | 
|  | sum_stats(); | 
|  | g_string_append_printf(rep, "%-8s", "sum"); | 
|  | append_stats_line(rep, l1_dmem_accesses, l1_dmisses, | 
|  | l1_imem_accesses, l1_imisses, | 
|  | l2_cache ? l2_mem_accesses : 0, l2_cache ? l2_misses : 0); | 
|  | } | 
|  |  | 
|  | g_string_append(rep, "\n"); | 
|  | qemu_plugin_outs(rep->str); | 
|  | } | 
|  |  | 
|  | static void log_top_insns(void) | 
|  | { | 
|  | int i; | 
|  | GList *curr, *miss_insns; | 
|  | InsnData *insn; | 
|  |  | 
|  | miss_insns = g_hash_table_get_values(miss_ht); | 
|  | miss_insns = g_list_sort(miss_insns, dcmp); | 
|  | g_autoptr(GString) rep = g_string_new(""); | 
|  | g_string_append_printf(rep, "%s", "address, data misses, instruction\n"); | 
|  |  | 
|  | for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) { | 
|  | insn = (InsnData *) curr->data; | 
|  | g_string_append_printf(rep, "0x%" PRIx64, insn->addr); | 
|  | if (insn->symbol) { | 
|  | g_string_append_printf(rep, " (%s)", insn->symbol); | 
|  | } | 
|  | g_string_append_printf(rep, ", %" PRId64 ", %s\n", | 
|  | insn->l1_dmisses, insn->disas_str); | 
|  | } | 
|  |  | 
|  | miss_insns = g_list_sort(miss_insns, icmp); | 
|  | g_string_append_printf(rep, "%s", "\naddress, fetch misses, instruction\n"); | 
|  |  | 
|  | for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) { | 
|  | insn = (InsnData *) curr->data; | 
|  | g_string_append_printf(rep, "0x%" PRIx64, insn->addr); | 
|  | if (insn->symbol) { | 
|  | g_string_append_printf(rep, " (%s)", insn->symbol); | 
|  | } | 
|  | g_string_append_printf(rep, ", %" PRId64 ", %s\n", | 
|  | insn->l1_imisses, insn->disas_str); | 
|  | } | 
|  |  | 
|  | if (!use_l2) { | 
|  | goto finish; | 
|  | } | 
|  |  | 
|  | miss_insns = g_list_sort(miss_insns, l2_cmp); | 
|  | g_string_append_printf(rep, "%s", "\naddress, L2 misses, instruction\n"); | 
|  |  | 
|  | for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) { | 
|  | insn = (InsnData *) curr->data; | 
|  | g_string_append_printf(rep, "0x%" PRIx64, insn->addr); | 
|  | if (insn->symbol) { | 
|  | g_string_append_printf(rep, " (%s)", insn->symbol); | 
|  | } | 
|  | g_string_append_printf(rep, ", %" PRId64 ", %s\n", | 
|  | insn->l2_misses, insn->disas_str); | 
|  | } | 
|  |  | 
|  | finish: | 
|  | qemu_plugin_outs(rep->str); | 
|  | g_list_free(miss_insns); | 
|  | } | 
|  |  | 
|  | static void plugin_exit(qemu_plugin_id_t id, void *p) | 
|  | { | 
|  | log_stats(); | 
|  | log_top_insns(); | 
|  |  | 
|  | caches_free(l1_dcaches); | 
|  | caches_free(l1_icaches); | 
|  |  | 
|  | g_free(l1_dcache_locks); | 
|  | g_free(l1_icache_locks); | 
|  |  | 
|  | if (use_l2) { | 
|  | caches_free(l2_ucaches); | 
|  | g_free(l2_ucache_locks); | 
|  | } | 
|  |  | 
|  | g_hash_table_destroy(miss_ht); | 
|  | } | 
|  |  | 
|  | static void policy_init(void) | 
|  | { | 
|  | switch (policy) { | 
|  | case LRU: | 
|  | update_hit = lru_update_blk; | 
|  | update_miss = lru_update_blk; | 
|  | metadata_init = lru_priorities_init; | 
|  | metadata_destroy = lru_priorities_destroy; | 
|  | break; | 
|  | case FIFO: | 
|  | update_miss = fifo_update_on_miss; | 
|  | metadata_init = fifo_init; | 
|  | metadata_destroy = fifo_destroy; | 
|  | break; | 
|  | case RAND: | 
|  | rng = g_rand_new(); | 
|  | break; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  |  | 
|  | QEMU_PLUGIN_EXPORT | 
|  | int qemu_plugin_install(qemu_plugin_id_t id, const qemu_info_t *info, | 
|  | int argc, char **argv) | 
|  | { | 
|  | int i; | 
|  | int l1_iassoc, l1_iblksize, l1_icachesize; | 
|  | int l1_dassoc, l1_dblksize, l1_dcachesize; | 
|  | int l2_assoc, l2_blksize, l2_cachesize; | 
|  |  | 
|  | limit = 32; | 
|  | sys = info->system_emulation; | 
|  |  | 
|  | l1_dassoc = 8; | 
|  | l1_dblksize = 64; | 
|  | l1_dcachesize = l1_dblksize * l1_dassoc * 32; | 
|  |  | 
|  | l1_iassoc = 8; | 
|  | l1_iblksize = 64; | 
|  | l1_icachesize = l1_iblksize * l1_iassoc * 32; | 
|  |  | 
|  | l2_assoc = 16; | 
|  | l2_blksize = 64; | 
|  | l2_cachesize = l2_assoc * l2_blksize * 2048; | 
|  |  | 
|  | policy = LRU; | 
|  |  | 
|  | cores = sys ? qemu_plugin_n_vcpus() : 1; | 
|  |  | 
|  | for (i = 0; i < argc; i++) { | 
|  | char *opt = argv[i]; | 
|  | g_auto(GStrv) tokens = g_strsplit(opt, "=", 2); | 
|  |  | 
|  | if (g_strcmp0(tokens[0], "iblksize") == 0) { | 
|  | l1_iblksize = STRTOLL(tokens[1]); | 
|  | } else if (g_strcmp0(tokens[0], "iassoc") == 0) { | 
|  | l1_iassoc = STRTOLL(tokens[1]); | 
|  | } else if (g_strcmp0(tokens[0], "icachesize") == 0) { | 
|  | l1_icachesize = STRTOLL(tokens[1]); | 
|  | } else if (g_strcmp0(tokens[0], "dblksize") == 0) { | 
|  | l1_dblksize = STRTOLL(tokens[1]); | 
|  | } else if (g_strcmp0(tokens[0], "dassoc") == 0) { | 
|  | l1_dassoc = STRTOLL(tokens[1]); | 
|  | } else if (g_strcmp0(tokens[0], "dcachesize") == 0) { | 
|  | l1_dcachesize = STRTOLL(tokens[1]); | 
|  | } else if (g_strcmp0(tokens[0], "limit") == 0) { | 
|  | limit = STRTOLL(tokens[1]); | 
|  | } else if (g_strcmp0(tokens[0], "cores") == 0) { | 
|  | cores = STRTOLL(tokens[1]); | 
|  | } else if (g_strcmp0(tokens[0], "l2cachesize") == 0) { | 
|  | use_l2 = true; | 
|  | l2_cachesize = STRTOLL(tokens[1]); | 
|  | } else if (g_strcmp0(tokens[0], "l2blksize") == 0) { | 
|  | use_l2 = true; | 
|  | l2_blksize = STRTOLL(tokens[1]); | 
|  | } else if (g_strcmp0(tokens[0], "l2assoc") == 0) { | 
|  | use_l2 = true; | 
|  | l2_assoc = STRTOLL(tokens[1]); | 
|  | } else if (g_strcmp0(tokens[0], "l2") == 0) { | 
|  | if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &use_l2)) { | 
|  | fprintf(stderr, "boolean argument parsing failed: %s\n", opt); | 
|  | return -1; | 
|  | } | 
|  | } else if (g_strcmp0(tokens[0], "evict") == 0) { | 
|  | if (g_strcmp0(tokens[1], "rand") == 0) { | 
|  | policy = RAND; | 
|  | } else if (g_strcmp0(tokens[1], "lru") == 0) { | 
|  | policy = LRU; | 
|  | } else if (g_strcmp0(tokens[1], "fifo") == 0) { | 
|  | policy = FIFO; | 
|  | } else { | 
|  | fprintf(stderr, "invalid eviction policy: %s\n", opt); | 
|  | return -1; | 
|  | } | 
|  | } else { | 
|  | fprintf(stderr, "option parsing failed: %s\n", opt); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | policy_init(); | 
|  |  | 
|  | l1_dcaches = caches_init(l1_dblksize, l1_dassoc, l1_dcachesize); | 
|  | if (!l1_dcaches) { | 
|  | const char *err = cache_config_error(l1_dblksize, l1_dassoc, l1_dcachesize); | 
|  | fprintf(stderr, "dcache cannot be constructed from given parameters\n"); | 
|  | fprintf(stderr, "%s\n", err); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | l1_icaches = caches_init(l1_iblksize, l1_iassoc, l1_icachesize); | 
|  | if (!l1_icaches) { | 
|  | const char *err = cache_config_error(l1_iblksize, l1_iassoc, l1_icachesize); | 
|  | fprintf(stderr, "icache cannot be constructed from given parameters\n"); | 
|  | fprintf(stderr, "%s\n", err); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | l2_ucaches = use_l2 ? caches_init(l2_blksize, l2_assoc, l2_cachesize) : NULL; | 
|  | if (!l2_ucaches && use_l2) { | 
|  | const char *err = cache_config_error(l2_blksize, l2_assoc, l2_cachesize); | 
|  | fprintf(stderr, "L2 cache cannot be constructed from given parameters\n"); | 
|  | fprintf(stderr, "%s\n", err); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | l1_dcache_locks = g_new0(GMutex, cores); | 
|  | l1_icache_locks = g_new0(GMutex, cores); | 
|  | l2_ucache_locks = use_l2 ? g_new0(GMutex, cores) : NULL; | 
|  |  | 
|  | qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans); | 
|  | qemu_plugin_register_atexit_cb(id, plugin_exit, NULL); | 
|  |  | 
|  | miss_ht = g_hash_table_new_full(NULL, g_direct_equal, NULL, insn_free); | 
|  |  | 
|  | return 0; | 
|  | } |