blob: 2d7d03d7724c8746a069bc535e655113dce2157d [file] [log] [blame]
/*
* QEMU AHCI Emulation
*
* Copyright (c) 2010 qiaochong@loongson.cn
* Copyright (c) 2010 Roland Elek <elek.roland@gmail.com>
* Copyright (c) 2010 Sebastian Herbszt <herbszt@gmx.de>
* Copyright (c) 2010 Alexander Graf <agraf@suse.de>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*
*/
#include <hw/hw.h>
#include <hw/msi.h>
#include <hw/pc.h>
#include <hw/pci.h>
#include <hw/sysbus.h>
#include "monitor.h"
#include "dma.h"
#include "cpu-common.h"
#include "internal.h"
#include <hw/ide/pci.h>
#include <hw/ide/ahci.h>
/* #define DEBUG_AHCI */
#ifdef DEBUG_AHCI
#define DPRINTF(port, fmt, ...) \
do { fprintf(stderr, "ahci: %s: [%d] ", __FUNCTION__, port); \
fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(port, fmt, ...) do {} while(0)
#endif
static void check_cmd(AHCIState *s, int port);
static int handle_cmd(AHCIState *s,int port,int slot);
static void ahci_reset_port(AHCIState *s, int port);
static void ahci_write_fis_d2h(AHCIDevice *ad, uint8_t *cmd_fis);
static void ahci_init_d2h(AHCIDevice *ad);
static uint32_t ahci_port_read(AHCIState *s, int port, int offset)
{
uint32_t val;
AHCIPortRegs *pr;
pr = &s->dev[port].port_regs;
switch (offset) {
case PORT_LST_ADDR:
val = pr->lst_addr;
break;
case PORT_LST_ADDR_HI:
val = pr->lst_addr_hi;
break;
case PORT_FIS_ADDR:
val = pr->fis_addr;
break;
case PORT_FIS_ADDR_HI:
val = pr->fis_addr_hi;
break;
case PORT_IRQ_STAT:
val = pr->irq_stat;
break;
case PORT_IRQ_MASK:
val = pr->irq_mask;
break;
case PORT_CMD:
val = pr->cmd;
break;
case PORT_TFDATA:
val = ((uint16_t)s->dev[port].port.ifs[0].error << 8) |
s->dev[port].port.ifs[0].status;
break;
case PORT_SIG:
val = pr->sig;
break;
case PORT_SCR_STAT:
if (s->dev[port].port.ifs[0].bs) {
val = SATA_SCR_SSTATUS_DET_DEV_PRESENT_PHY_UP |
SATA_SCR_SSTATUS_SPD_GEN1 | SATA_SCR_SSTATUS_IPM_ACTIVE;
} else {
val = SATA_SCR_SSTATUS_DET_NODEV;
}
break;
case PORT_SCR_CTL:
val = pr->scr_ctl;
break;
case PORT_SCR_ERR:
val = pr->scr_err;
break;
case PORT_SCR_ACT:
pr->scr_act &= ~s->dev[port].finished;
s->dev[port].finished = 0;
val = pr->scr_act;
break;
case PORT_CMD_ISSUE:
val = pr->cmd_issue;
break;
case PORT_RESERVED:
default:
val = 0;
}
DPRINTF(port, "offset: 0x%x val: 0x%x\n", offset, val);
return val;
}
static void ahci_irq_raise(AHCIState *s, AHCIDevice *dev)
{
struct AHCIPCIState *d = container_of(s, AHCIPCIState, ahci);
DPRINTF(0, "raise irq\n");
if (msi_enabled(&d->card)) {
msi_notify(&d->card, 0);
} else {
qemu_irq_raise(s->irq);
}
}
static void ahci_irq_lower(AHCIState *s, AHCIDevice *dev)
{
struct AHCIPCIState *d = container_of(s, AHCIPCIState, ahci);
DPRINTF(0, "lower irq\n");
if (!msi_enabled(&d->card)) {
qemu_irq_lower(s->irq);
}
}
static void ahci_check_irq(AHCIState *s)
{
int i;
DPRINTF(-1, "check irq %#x\n", s->control_regs.irqstatus);
s->control_regs.irqstatus = 0;
for (i = 0; i < s->ports; i++) {
AHCIPortRegs *pr = &s->dev[i].port_regs;
if (pr->irq_stat & pr->irq_mask) {
s->control_regs.irqstatus |= (1 << i);
}
}
if (s->control_regs.irqstatus &&
(s->control_regs.ghc & HOST_CTL_IRQ_EN)) {
ahci_irq_raise(s, NULL);
} else {
ahci_irq_lower(s, NULL);
}
}
static void ahci_trigger_irq(AHCIState *s, AHCIDevice *d,
int irq_type)
{
DPRINTF(d->port_no, "trigger irq %#x -> %x\n",
irq_type, d->port_regs.irq_mask & irq_type);
d->port_regs.irq_stat |= irq_type;
ahci_check_irq(s);
}
static void map_page(uint8_t **ptr, uint64_t addr, uint32_t wanted)
{
target_phys_addr_t len = wanted;
if (*ptr) {
cpu_physical_memory_unmap(*ptr, len, 1, len);
}
*ptr = cpu_physical_memory_map(addr, &len, 1);
if (len < wanted) {
cpu_physical_memory_unmap(*ptr, len, 1, len);
*ptr = NULL;
}
}
static void ahci_port_write(AHCIState *s, int port, int offset, uint32_t val)
{
AHCIPortRegs *pr = &s->dev[port].port_regs;
DPRINTF(port, "offset: 0x%x val: 0x%x\n", offset, val);
switch (offset) {
case PORT_LST_ADDR:
pr->lst_addr = val;
map_page(&s->dev[port].lst,
((uint64_t)pr->lst_addr_hi << 32) | pr->lst_addr, 1024);
s->dev[port].cur_cmd = NULL;
break;
case PORT_LST_ADDR_HI:
pr->lst_addr_hi = val;
map_page(&s->dev[port].lst,
((uint64_t)pr->lst_addr_hi << 32) | pr->lst_addr, 1024);
s->dev[port].cur_cmd = NULL;
break;
case PORT_FIS_ADDR:
pr->fis_addr = val;
map_page(&s->dev[port].res_fis,
((uint64_t)pr->fis_addr_hi << 32) | pr->fis_addr, 256);
break;
case PORT_FIS_ADDR_HI:
pr->fis_addr_hi = val;
map_page(&s->dev[port].res_fis,
((uint64_t)pr->fis_addr_hi << 32) | pr->fis_addr, 256);
break;
case PORT_IRQ_STAT:
pr->irq_stat &= ~val;
ahci_check_irq(s);
break;
case PORT_IRQ_MASK:
pr->irq_mask = val & 0xfdc000ff;
ahci_check_irq(s);
break;
case PORT_CMD:
pr->cmd = val & ~(PORT_CMD_LIST_ON | PORT_CMD_FIS_ON);
if (pr->cmd & PORT_CMD_START) {
pr->cmd |= PORT_CMD_LIST_ON;
}
if (pr->cmd & PORT_CMD_FIS_RX) {
pr->cmd |= PORT_CMD_FIS_ON;
}
/* XXX usually the FIS would be pending on the bus here and
issuing deferred until the OS enables FIS receival.
Instead, we only submit it once - which works in most
cases, but is a hack. */
if ((pr->cmd & PORT_CMD_FIS_ON) &&
!s->dev[port].init_d2h_sent) {
ahci_init_d2h(&s->dev[port]);
s->dev[port].init_d2h_sent = 1;
}
check_cmd(s, port);
break;
case PORT_TFDATA:
s->dev[port].port.ifs[0].error = (val >> 8) & 0xff;
s->dev[port].port.ifs[0].status = val & 0xff;
break;
case PORT_SIG:
pr->sig = val;
break;
case PORT_SCR_STAT:
pr->scr_stat = val;
break;
case PORT_SCR_CTL:
if (((pr->scr_ctl & AHCI_SCR_SCTL_DET) == 1) &&
((val & AHCI_SCR_SCTL_DET) == 0)) {
ahci_reset_port(s, port);
}
pr->scr_ctl = val;
break;
case PORT_SCR_ERR:
pr->scr_err &= ~val;
break;
case PORT_SCR_ACT:
/* RW1 */
pr->scr_act |= val;
break;
case PORT_CMD_ISSUE:
pr->cmd_issue |= val;
check_cmd(s, port);
break;
default:
break;
}
}
static uint64_t ahci_mem_read(void *opaque, target_phys_addr_t addr,
unsigned size)
{
AHCIState *s = opaque;
uint32_t val = 0;
if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) {
switch (addr) {
case HOST_CAP:
val = s->control_regs.cap;
break;
case HOST_CTL:
val = s->control_regs.ghc;
break;
case HOST_IRQ_STAT:
val = s->control_regs.irqstatus;
break;
case HOST_PORTS_IMPL:
val = s->control_regs.impl;
break;
case HOST_VERSION:
val = s->control_regs.version;
break;
}
DPRINTF(-1, "(addr 0x%08X), val 0x%08X\n", (unsigned) addr, val);
} else if ((addr >= AHCI_PORT_REGS_START_ADDR) &&
(addr < (AHCI_PORT_REGS_START_ADDR +
(s->ports * AHCI_PORT_ADDR_OFFSET_LEN)))) {
val = ahci_port_read(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7,
addr & AHCI_PORT_ADDR_OFFSET_MASK);
}
return val;
}
static void ahci_mem_write(void *opaque, target_phys_addr_t addr,
uint64_t val, unsigned size)
{
AHCIState *s = opaque;
/* Only aligned reads are allowed on AHCI */
if (addr & 3) {
fprintf(stderr, "ahci: Mis-aligned write to addr 0x"
TARGET_FMT_plx "\n", addr);
return;
}
if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) {
DPRINTF(-1, "(addr 0x%08X), val 0x%08"PRIX64"\n", (unsigned) addr, val);
switch (addr) {
case HOST_CAP: /* R/WO, RO */
/* FIXME handle R/WO */
break;
case HOST_CTL: /* R/W */
if (val & HOST_CTL_RESET) {
DPRINTF(-1, "HBA Reset\n");
ahci_reset(container_of(s, AHCIPCIState, ahci));
} else {
s->control_regs.ghc = (val & 0x3) | HOST_CTL_AHCI_EN;
ahci_check_irq(s);
}
break;
case HOST_IRQ_STAT: /* R/WC, RO */
s->control_regs.irqstatus &= ~val;
ahci_check_irq(s);
break;
case HOST_PORTS_IMPL: /* R/WO, RO */
/* FIXME handle R/WO */
break;
case HOST_VERSION: /* RO */
/* FIXME report write? */
break;
default:
DPRINTF(-1, "write to unknown register 0x%x\n", (unsigned)addr);
}
} else if ((addr >= AHCI_PORT_REGS_START_ADDR) &&
(addr < (AHCI_PORT_REGS_START_ADDR +
(s->ports * AHCI_PORT_ADDR_OFFSET_LEN)))) {
ahci_port_write(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7,
addr & AHCI_PORT_ADDR_OFFSET_MASK, val);
}
}
static const MemoryRegionOps ahci_mem_ops = {
.read = ahci_mem_read,
.write = ahci_mem_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static uint64_t ahci_idp_read(void *opaque, target_phys_addr_t addr,
unsigned size)
{
AHCIState *s = opaque;
if (addr == s->idp_offset) {
/* index register */
return s->idp_index;
} else if (addr == s->idp_offset + 4) {
/* data register - do memory read at location selected by index */
return ahci_mem_read(opaque, s->idp_index, size);
} else {
return 0;
}
}
static void ahci_idp_write(void *opaque, target_phys_addr_t addr,
uint64_t val, unsigned size)
{
AHCIState *s = opaque;
if (addr == s->idp_offset) {
/* index register - mask off reserved bits */
s->idp_index = (uint32_t)val & ((AHCI_MEM_BAR_SIZE - 1) & ~3);
} else if (addr == s->idp_offset + 4) {
/* data register - do memory write at location selected by index */
ahci_mem_write(opaque, s->idp_index, val, size);
}
}
static const MemoryRegionOps ahci_idp_ops = {
.read = ahci_idp_read,
.write = ahci_idp_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void ahci_reg_init(AHCIState *s)
{
int i;
s->control_regs.cap = (s->ports - 1) |
(AHCI_NUM_COMMAND_SLOTS << 8) |
(AHCI_SUPPORTED_SPEED_GEN1 << AHCI_SUPPORTED_SPEED) |
HOST_CAP_NCQ | HOST_CAP_AHCI;
s->control_regs.impl = (1 << s->ports) - 1;
s->control_regs.version = AHCI_VERSION_1_0;
for (i = 0; i < s->ports; i++) {
s->dev[i].port_state = STATE_RUN;
}
}
static void check_cmd(AHCIState *s, int port)
{
AHCIPortRegs *pr = &s->dev[port].port_regs;
int slot;
if ((pr->cmd & PORT_CMD_START) && pr->cmd_issue) {
for (slot = 0; (slot < 32) && pr->cmd_issue; slot++) {
if ((pr->cmd_issue & (1 << slot)) &&
!handle_cmd(s, port, slot)) {
pr->cmd_issue &= ~(1 << slot);
}
}
}
}
static void ahci_check_cmd_bh(void *opaque)
{
AHCIDevice *ad = opaque;
qemu_bh_delete(ad->check_bh);
ad->check_bh = NULL;
if ((ad->busy_slot != -1) &&
!(ad->port.ifs[0].status & (BUSY_STAT|DRQ_STAT))) {
/* no longer busy */
ad->port_regs.cmd_issue &= ~(1 << ad->busy_slot);
ad->busy_slot = -1;
}
check_cmd(ad->hba, ad->port_no);
}
static void ahci_init_d2h(AHCIDevice *ad)
{
uint8_t init_fis[20];
IDEState *ide_state = &ad->port.ifs[0];
memset(init_fis, 0, sizeof(init_fis));
init_fis[4] = 1;
init_fis[12] = 1;
if (ide_state->drive_kind == IDE_CD) {
init_fis[5] = ide_state->lcyl;
init_fis[6] = ide_state->hcyl;
}
ahci_write_fis_d2h(ad, init_fis);
}
static void ahci_reset_port(AHCIState *s, int port)
{
AHCIDevice *d = &s->dev[port];
AHCIPortRegs *pr = &d->port_regs;
IDEState *ide_state = &d->port.ifs[0];
int i;
DPRINTF(port, "reset port\n");
ide_bus_reset(&d->port);
ide_state->ncq_queues = AHCI_MAX_CMDS;
pr->scr_stat = 0;
pr->scr_err = 0;
pr->scr_act = 0;
d->busy_slot = -1;
d->init_d2h_sent = 0;
ide_state = &s->dev[port].port.ifs[0];
if (!ide_state->bs) {
return;
}
/* reset ncq queue */
for (i = 0; i < AHCI_MAX_CMDS; i++) {
NCQTransferState *ncq_tfs = &s->dev[port].ncq_tfs[i];
if (!ncq_tfs->used) {
continue;
}
if (ncq_tfs->aiocb) {
bdrv_aio_cancel(ncq_tfs->aiocb);
ncq_tfs->aiocb = NULL;
}
/* Maybe we just finished the request thanks to bdrv_aio_cancel() */
if (!ncq_tfs->used) {
continue;
}
qemu_sglist_destroy(&ncq_tfs->sglist);
ncq_tfs->used = 0;
}
s->dev[port].port_state = STATE_RUN;
if (!ide_state->bs) {
s->dev[port].port_regs.sig = 0;
ide_state->status = SEEK_STAT | WRERR_STAT;
} else if (ide_state->drive_kind == IDE_CD) {
s->dev[port].port_regs.sig = SATA_SIGNATURE_CDROM;
ide_state->lcyl = 0x14;
ide_state->hcyl = 0xeb;
DPRINTF(port, "set lcyl = %d\n", ide_state->lcyl);
ide_state->status = SEEK_STAT | WRERR_STAT | READY_STAT;
} else {
s->dev[port].port_regs.sig = SATA_SIGNATURE_DISK;
ide_state->status = SEEK_STAT | WRERR_STAT;
}
ide_state->error = 1;
ahci_init_d2h(d);
}
static void debug_print_fis(uint8_t *fis, int cmd_len)
{
#ifdef DEBUG_AHCI
int i;
fprintf(stderr, "fis:");
for (i = 0; i < cmd_len; i++) {
if ((i & 0xf) == 0) {
fprintf(stderr, "\n%02x:",i);
}
fprintf(stderr, "%02x ",fis[i]);
}
fprintf(stderr, "\n");
#endif
}
static void ahci_write_fis_sdb(AHCIState *s, int port, uint32_t finished)
{
AHCIPortRegs *pr = &s->dev[port].port_regs;
IDEState *ide_state;
uint8_t *sdb_fis;
if (!s->dev[port].res_fis ||
!(pr->cmd & PORT_CMD_FIS_RX)) {
return;
}
sdb_fis = &s->dev[port].res_fis[RES_FIS_SDBFIS];
ide_state = &s->dev[port].port.ifs[0];
/* clear memory */
*(uint32_t*)sdb_fis = 0;
/* write values */
sdb_fis[0] = ide_state->error;
sdb_fis[2] = ide_state->status & 0x77;
s->dev[port].finished |= finished;
*(uint32_t*)(sdb_fis + 4) = cpu_to_le32(s->dev[port].finished);
ahci_trigger_irq(s, &s->dev[port], PORT_IRQ_STAT_SDBS);
}
static void ahci_write_fis_d2h(AHCIDevice *ad, uint8_t *cmd_fis)
{
AHCIPortRegs *pr = &ad->port_regs;
uint8_t *d2h_fis;
int i;
target_phys_addr_t cmd_len = 0x80;
int cmd_mapped = 0;
if (!ad->res_fis || !(pr->cmd & PORT_CMD_FIS_RX)) {
return;
}
if (!cmd_fis) {
/* map cmd_fis */
uint64_t tbl_addr = le64_to_cpu(ad->cur_cmd->tbl_addr);
cmd_fis = cpu_physical_memory_map(tbl_addr, &cmd_len, 0);
cmd_mapped = 1;
}
d2h_fis = &ad->res_fis[RES_FIS_RFIS];
d2h_fis[0] = 0x34;
d2h_fis[1] = (ad->hba->control_regs.irqstatus ? (1 << 6) : 0);
d2h_fis[2] = ad->port.ifs[0].status;
d2h_fis[3] = ad->port.ifs[0].error;
d2h_fis[4] = cmd_fis[4];
d2h_fis[5] = cmd_fis[5];
d2h_fis[6] = cmd_fis[6];
d2h_fis[7] = cmd_fis[7];
d2h_fis[8] = cmd_fis[8];
d2h_fis[9] = cmd_fis[9];
d2h_fis[10] = cmd_fis[10];
d2h_fis[11] = cmd_fis[11];
d2h_fis[12] = cmd_fis[12];
d2h_fis[13] = cmd_fis[13];
for (i = 14; i < 20; i++) {
d2h_fis[i] = 0;
}
if (d2h_fis[2] & ERR_STAT) {
ahci_trigger_irq(ad->hba, ad, PORT_IRQ_STAT_TFES);
}
ahci_trigger_irq(ad->hba, ad, PORT_IRQ_D2H_REG_FIS);
if (cmd_mapped) {
cpu_physical_memory_unmap(cmd_fis, cmd_len, 0, cmd_len);
}
}
static int ahci_populate_sglist(AHCIDevice *ad, QEMUSGList *sglist)
{
AHCICmdHdr *cmd = ad->cur_cmd;
uint32_t opts = le32_to_cpu(cmd->opts);
uint64_t prdt_addr = le64_to_cpu(cmd->tbl_addr) + 0x80;
int sglist_alloc_hint = opts >> AHCI_CMD_HDR_PRDT_LEN;
target_phys_addr_t prdt_len = (sglist_alloc_hint * sizeof(AHCI_SG));
target_phys_addr_t real_prdt_len = prdt_len;
uint8_t *prdt;
int i;
int r = 0;
if (!sglist_alloc_hint) {
DPRINTF(ad->port_no, "no sg list given by guest: 0x%08x\n", opts);
return -1;
}
/* map PRDT */
if (!(prdt = cpu_physical_memory_map(prdt_addr, &prdt_len, 0))){
DPRINTF(ad->port_no, "map failed\n");
return -1;
}
if (prdt_len < real_prdt_len) {
DPRINTF(ad->port_no, "mapped less than expected\n");
r = -1;
goto out;
}
/* Get entries in the PRDT, init a qemu sglist accordingly */
if (sglist_alloc_hint > 0) {
AHCI_SG *tbl = (AHCI_SG *)prdt;
qemu_sglist_init(sglist, sglist_alloc_hint);
for (i = 0; i < sglist_alloc_hint; i++) {
/* flags_size is zero-based */
qemu_sglist_add(sglist, le64_to_cpu(tbl[i].addr),
le32_to_cpu(tbl[i].flags_size) + 1);
}
}
out:
cpu_physical_memory_unmap(prdt, prdt_len, 0, prdt_len);
return r;
}
static void ncq_cb(void *opaque, int ret)
{
NCQTransferState *ncq_tfs = (NCQTransferState *)opaque;
IDEState *ide_state = &ncq_tfs->drive->port.ifs[0];
/* Clear bit for this tag in SActive */
ncq_tfs->drive->port_regs.scr_act &= ~(1 << ncq_tfs->tag);
if (ret < 0) {
/* error */
ide_state->error = ABRT_ERR;
ide_state->status = READY_STAT | ERR_STAT;
ncq_tfs->drive->port_regs.scr_err |= (1 << ncq_tfs->tag);
} else {
ide_state->status = READY_STAT | SEEK_STAT;
}
ahci_write_fis_sdb(ncq_tfs->drive->hba, ncq_tfs->drive->port_no,
(1 << ncq_tfs->tag));
DPRINTF(ncq_tfs->drive->port_no, "NCQ transfer tag %d finished\n",
ncq_tfs->tag);
bdrv_acct_done(ncq_tfs->drive->port.ifs[0].bs, &ncq_tfs->acct);
qemu_sglist_destroy(&ncq_tfs->sglist);
ncq_tfs->used = 0;
}
static void process_ncq_command(AHCIState *s, int port, uint8_t *cmd_fis,
int slot)
{
NCQFrame *ncq_fis = (NCQFrame*)cmd_fis;
uint8_t tag = ncq_fis->tag >> 3;
NCQTransferState *ncq_tfs = &s->dev[port].ncq_tfs[tag];
if (ncq_tfs->used) {
/* error - already in use */
fprintf(stderr, "%s: tag %d already used\n", __FUNCTION__, tag);
return;
}
ncq_tfs->used = 1;
ncq_tfs->drive = &s->dev[port];
ncq_tfs->slot = slot;
ncq_tfs->lba = ((uint64_t)ncq_fis->lba5 << 40) |
((uint64_t)ncq_fis->lba4 << 32) |
((uint64_t)ncq_fis->lba3 << 24) |
((uint64_t)ncq_fis->lba2 << 16) |
((uint64_t)ncq_fis->lba1 << 8) |
(uint64_t)ncq_fis->lba0;
/* Note: We calculate the sector count, but don't currently rely on it.
* The total size of the DMA buffer tells us the transfer size instead. */
ncq_tfs->sector_count = ((uint16_t)ncq_fis->sector_count_high << 8) |
ncq_fis->sector_count_low;
DPRINTF(port, "NCQ transfer LBA from %"PRId64" to %"PRId64", "
"drive max %"PRId64"\n",
ncq_tfs->lba, ncq_tfs->lba + ncq_tfs->sector_count - 2,
s->dev[port].port.ifs[0].nb_sectors - 1);
ahci_populate_sglist(&s->dev[port], &ncq_tfs->sglist);
ncq_tfs->tag = tag;
switch(ncq_fis->command) {
case READ_FPDMA_QUEUED:
DPRINTF(port, "NCQ reading %d sectors from LBA %"PRId64", "
"tag %d\n",
ncq_tfs->sector_count-1, ncq_tfs->lba, ncq_tfs->tag);
DPRINTF(port, "tag %d aio read %"PRId64"\n",
ncq_tfs->tag, ncq_tfs->lba);
dma_acct_start(ncq_tfs->drive->port.ifs[0].bs, &ncq_tfs->acct,
&ncq_tfs->sglist, BDRV_ACCT_READ);
ncq_tfs->aiocb = dma_bdrv_read(ncq_tfs->drive->port.ifs[0].bs,
&ncq_tfs->sglist, ncq_tfs->lba,
ncq_cb, ncq_tfs);
break;
case WRITE_FPDMA_QUEUED:
DPRINTF(port, "NCQ writing %d sectors to LBA %"PRId64", tag %d\n",
ncq_tfs->sector_count-1, ncq_tfs->lba, ncq_tfs->tag);
DPRINTF(port, "tag %d aio write %"PRId64"\n",
ncq_tfs->tag, ncq_tfs->lba);
dma_acct_start(ncq_tfs->drive->port.ifs[0].bs, &ncq_tfs->acct,
&ncq_tfs->sglist, BDRV_ACCT_WRITE);
ncq_tfs->aiocb = dma_bdrv_write(ncq_tfs->drive->port.ifs[0].bs,
&ncq_tfs->sglist, ncq_tfs->lba,
ncq_cb, ncq_tfs);
break;
default:
DPRINTF(port, "error: tried to process non-NCQ command as NCQ\n");
qemu_sglist_destroy(&ncq_tfs->sglist);
break;
}
}
static int handle_cmd(AHCIState *s, int port, int slot)
{
IDEState *ide_state;
uint32_t opts;
uint64_t tbl_addr;
AHCICmdHdr *cmd;
uint8_t *cmd_fis;
target_phys_addr_t cmd_len;
if (s->dev[port].port.ifs[0].status & (BUSY_STAT|DRQ_STAT)) {
/* Engine currently busy, try again later */
DPRINTF(port, "engine busy\n");
return -1;
}
cmd = &((AHCICmdHdr *)s->dev[port].lst)[slot];
if (!s->dev[port].lst) {
DPRINTF(port, "error: lst not given but cmd handled");
return -1;
}
/* remember current slot handle for later */
s->dev[port].cur_cmd = cmd;
opts = le32_to_cpu(cmd->opts);
tbl_addr = le64_to_cpu(cmd->tbl_addr);
cmd_len = 0x80;
cmd_fis = cpu_physical_memory_map(tbl_addr, &cmd_len, 1);
if (!cmd_fis) {
DPRINTF(port, "error: guest passed us an invalid cmd fis\n");
return -1;
}
/* The device we are working for */
ide_state = &s->dev[port].port.ifs[0];
if (!ide_state->bs) {
DPRINTF(port, "error: guest accessed unused port");
goto out;
}
debug_print_fis(cmd_fis, 0x90);
//debug_print_fis(cmd_fis, (opts & AHCI_CMD_HDR_CMD_FIS_LEN) * 4);
switch (cmd_fis[0]) {
case SATA_FIS_TYPE_REGISTER_H2D:
break;
default:
DPRINTF(port, "unknown command cmd_fis[0]=%02x cmd_fis[1]=%02x "
"cmd_fis[2]=%02x\n", cmd_fis[0], cmd_fis[1],
cmd_fis[2]);
goto out;
break;
}
switch (cmd_fis[1]) {
case SATA_FIS_REG_H2D_UPDATE_COMMAND_REGISTER:
break;
case 0:
break;
default:
DPRINTF(port, "unknown command cmd_fis[0]=%02x cmd_fis[1]=%02x "
"cmd_fis[2]=%02x\n", cmd_fis[0], cmd_fis[1],
cmd_fis[2]);
goto out;
break;
}
switch (s->dev[port].port_state) {
case STATE_RUN:
if (cmd_fis[15] & ATA_SRST) {
s->dev[port].port_state = STATE_RESET;
}
break;
case STATE_RESET:
if (!(cmd_fis[15] & ATA_SRST)) {
ahci_reset_port(s, port);
}
break;
}
if (cmd_fis[1] == SATA_FIS_REG_H2D_UPDATE_COMMAND_REGISTER) {
/* Check for NCQ command */
if ((cmd_fis[2] == READ_FPDMA_QUEUED) ||
(cmd_fis[2] == WRITE_FPDMA_QUEUED)) {
process_ncq_command(s, port, cmd_fis, slot);
goto out;
}
/* Decompose the FIS */
ide_state->nsector = (int64_t)((cmd_fis[13] << 8) | cmd_fis[12]);
ide_state->feature = cmd_fis[3];
if (!ide_state->nsector) {
ide_state->nsector = 256;
}
if (ide_state->drive_kind != IDE_CD) {
/*
* We set the sector depending on the sector defined in the FIS.
* Unfortunately, the spec isn't exactly obvious on this one.
*
* Apparently LBA48 commands set fis bytes 10,9,8,6,5,4 to the
* 48 bit sector number. ATA_CMD_READ_DMA_EXT is an example for
* such a command.
*
* Non-LBA48 commands however use 7[lower 4 bits],6,5,4 to define a
* 28-bit sector number. ATA_CMD_READ_DMA is an example for such
* a command.
*
* Since the spec doesn't explicitly state what each field should
* do, I simply assume non-used fields as reserved and OR everything
* together, independent of the command.
*/
ide_set_sector(ide_state, ((uint64_t)cmd_fis[10] << 40)
| ((uint64_t)cmd_fis[9] << 32)
/* This is used for LBA48 commands */
| ((uint64_t)cmd_fis[8] << 24)
/* This is used for non-LBA48 commands */
| ((uint64_t)(cmd_fis[7] & 0xf) << 24)
| ((uint64_t)cmd_fis[6] << 16)
| ((uint64_t)cmd_fis[5] << 8)
| cmd_fis[4]);
}
/* Copy the ACMD field (ATAPI packet, if any) from the AHCI command
* table to ide_state->io_buffer
*/
if (opts & AHCI_CMD_ATAPI) {
memcpy(ide_state->io_buffer, &cmd_fis[AHCI_COMMAND_TABLE_ACMD], 0x10);
ide_state->lcyl = 0x14;
ide_state->hcyl = 0xeb;
debug_print_fis(ide_state->io_buffer, 0x10);
ide_state->feature = IDE_FEATURE_DMA;
s->dev[port].done_atapi_packet = 0;
/* XXX send PIO setup FIS */
}
ide_state->error = 0;
/* Reset transferred byte counter */
cmd->status = 0;
/* We're ready to process the command in FIS byte 2. */
ide_exec_cmd(&s->dev[port].port, cmd_fis[2]);
if (s->dev[port].port.ifs[0].status & READY_STAT) {
ahci_write_fis_d2h(&s->dev[port], cmd_fis);
}
}
out:
cpu_physical_memory_unmap(cmd_fis, cmd_len, 1, cmd_len);
if (s->dev[port].port.ifs[0].status & (BUSY_STAT|DRQ_STAT)) {
/* async command, complete later */
s->dev[port].busy_slot = slot;
return -1;
}
/* done handling the command */
return 0;
}
/* DMA dev <-> ram */
static int ahci_start_transfer(IDEDMA *dma)
{
AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
IDEState *s = &ad->port.ifs[0];
uint32_t size = (uint32_t)(s->data_end - s->data_ptr);
/* write == ram -> device */
uint32_t opts = le32_to_cpu(ad->cur_cmd->opts);
int is_write = opts & AHCI_CMD_WRITE;
int is_atapi = opts & AHCI_CMD_ATAPI;
int has_sglist = 0;
if (is_atapi && !ad->done_atapi_packet) {
/* already prepopulated iobuffer */
ad->done_atapi_packet = 1;
goto out;
}
if (!ahci_populate_sglist(ad, &s->sg)) {
has_sglist = 1;
}
DPRINTF(ad->port_no, "%sing %d bytes on %s w/%s sglist\n",
is_write ? "writ" : "read", size, is_atapi ? "atapi" : "ata",
has_sglist ? "" : "o");
if (has_sglist && size) {
if (is_write) {
dma_buf_write(s->data_ptr, size, &s->sg);
} else {
dma_buf_read(s->data_ptr, size, &s->sg);
}
}
/* update number of transferred bytes */
ad->cur_cmd->status = cpu_to_le32(le32_to_cpu(ad->cur_cmd->status) + size);
out:
/* declare that we processed everything */
s->data_ptr = s->data_end;
if (has_sglist) {
qemu_sglist_destroy(&s->sg);
}
s->end_transfer_func(s);
if (!(s->status & DRQ_STAT)) {
/* done with DMA */
ahci_trigger_irq(ad->hba, ad, PORT_IRQ_STAT_DSS);
}
return 0;
}
static void ahci_start_dma(IDEDMA *dma, IDEState *s,
BlockDriverCompletionFunc *dma_cb)
{
AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
DPRINTF(ad->port_no, "\n");
ad->dma_cb = dma_cb;
ad->dma_status |= BM_STATUS_DMAING;
dma_cb(s, 0);
}
static int ahci_dma_prepare_buf(IDEDMA *dma, int is_write)
{
AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
IDEState *s = &ad->port.ifs[0];
ahci_populate_sglist(ad, &s->sg);
s->io_buffer_size = s->sg.size;
DPRINTF(ad->port_no, "len=%#x\n", s->io_buffer_size);
return s->io_buffer_size != 0;
}
static int ahci_dma_rw_buf(IDEDMA *dma, int is_write)
{
AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
IDEState *s = &ad->port.ifs[0];
uint8_t *p = s->io_buffer + s->io_buffer_index;
int l = s->io_buffer_size - s->io_buffer_index;
if (ahci_populate_sglist(ad, &s->sg)) {
return 0;
}
if (is_write) {
dma_buf_read(p, l, &s->sg);
} else {
dma_buf_write(p, l, &s->sg);
}
/* update number of transferred bytes */
ad->cur_cmd->status = cpu_to_le32(le32_to_cpu(ad->cur_cmd->status) + l);
s->io_buffer_index += l;
DPRINTF(ad->port_no, "len=%#x\n", l);
return 1;
}
static int ahci_dma_set_unit(IDEDMA *dma, int unit)
{
/* only a single unit per link */
return 0;
}
static int ahci_dma_add_status(IDEDMA *dma, int status)
{
AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
ad->dma_status |= status;
DPRINTF(ad->port_no, "set status: %x\n", status);
if (status & BM_STATUS_INT) {
ahci_trigger_irq(ad->hba, ad, PORT_IRQ_STAT_DSS);
}
return 0;
}
static int ahci_dma_set_inactive(IDEDMA *dma)
{
AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
DPRINTF(ad->port_no, "dma done\n");
/* update d2h status */
ahci_write_fis_d2h(ad, NULL);
ad->dma_cb = NULL;
if (!ad->check_bh) {
/* maybe we still have something to process, check later */
ad->check_bh = qemu_bh_new(ahci_check_cmd_bh, ad);
qemu_bh_schedule(ad->check_bh);
}
return 0;
}
static void ahci_irq_set(void *opaque, int n, int level)
{
}
static void ahci_dma_restart_cb(void *opaque, int running, RunState state)
{
}
static int ahci_dma_reset(IDEDMA *dma)
{
return 0;
}
static const IDEDMAOps ahci_dma_ops = {
.start_dma = ahci_start_dma,
.start_transfer = ahci_start_transfer,
.prepare_buf = ahci_dma_prepare_buf,
.rw_buf = ahci_dma_rw_buf,
.set_unit = ahci_dma_set_unit,
.add_status = ahci_dma_add_status,
.set_inactive = ahci_dma_set_inactive,
.restart_cb = ahci_dma_restart_cb,
.reset = ahci_dma_reset,
};
void ahci_init(AHCIState *s, DeviceState *qdev, int ports)
{
qemu_irq *irqs;
int i;
s->ports = ports;
s->dev = g_malloc0(sizeof(AHCIDevice) * ports);
ahci_reg_init(s);
/* XXX BAR size should be 1k, but that breaks, so bump it to 4k for now */
memory_region_init_io(&s->mem, &ahci_mem_ops, s, "ahci", AHCI_MEM_BAR_SIZE);
memory_region_init_io(&s->idp, &ahci_idp_ops, s, "ahci-idp", 32);
irqs = qemu_allocate_irqs(ahci_irq_set, s, s->ports);
for (i = 0; i < s->ports; i++) {
AHCIDevice *ad = &s->dev[i];
ide_bus_new(&ad->port, qdev, i);
ide_init2(&ad->port, irqs[i]);
ad->hba = s;
ad->port_no = i;
ad->port.dma = &ad->dma;
ad->port.dma->ops = &ahci_dma_ops;
ad->port_regs.cmd = PORT_CMD_SPIN_UP | PORT_CMD_POWER_ON;
}
}
void ahci_uninit(AHCIState *s)
{
memory_region_destroy(&s->mem);
memory_region_destroy(&s->idp);
g_free(s->dev);
}
void ahci_reset(void *opaque)
{
struct AHCIPCIState *d = opaque;
AHCIPortRegs *pr;
int i;
d->ahci.control_regs.irqstatus = 0;
d->ahci.control_regs.ghc = 0;
for (i = 0; i < d->ahci.ports; i++) {
pr = &d->ahci.dev[i].port_regs;
pr->irq_stat = 0;
pr->irq_mask = 0;
pr->scr_ctl = 0;
ahci_reset_port(&d->ahci, i);
}
}
typedef struct SysbusAHCIState {
SysBusDevice busdev;
AHCIState ahci;
uint32_t num_ports;
} SysbusAHCIState;
static const VMStateDescription vmstate_sysbus_ahci = {
.name = "sysbus-ahci",
.unmigratable = 1,
};
static int sysbus_ahci_init(SysBusDevice *dev)
{
SysbusAHCIState *s = FROM_SYSBUS(SysbusAHCIState, dev);
ahci_init(&s->ahci, &dev->qdev, s->num_ports);
sysbus_init_mmio(dev, &s->ahci.mem);
sysbus_init_irq(dev, &s->ahci.irq);
qemu_register_reset(ahci_reset, &s->ahci);
return 0;
}
static Property sysbus_ahci_properties[] = {
DEFINE_PROP_UINT32("num-ports", SysbusAHCIState, num_ports, 1),
DEFINE_PROP_END_OF_LIST(),
};
static void sysbus_ahci_class_init(ObjectClass *klass, void *data)
{
SysBusDeviceClass *sbc = SYS_BUS_DEVICE_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
sbc->init = sysbus_ahci_init;
dc->vmsd = &vmstate_sysbus_ahci;
dc->props = sysbus_ahci_properties;
}
static TypeInfo sysbus_ahci_info = {
.name = "sysbus-ahci",
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(SysbusAHCIState),
.class_init = sysbus_ahci_class_init,
};
static void sysbus_ahci_register_types(void)
{
type_register_static(&sysbus_ahci_info);
}
type_init(sysbus_ahci_register_types)