blob: e16d02a62c3f68897cc50133caadcbbe10dc708a [file] [log] [blame]
/*
* Common CPU TLB handling
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/main-loop.h"
#include "hw/core/tcg-cpu-ops.h"
#include "exec/exec-all.h"
#include "exec/memory.h"
#include "exec/cpu_ldst.h"
#include "exec/cputlb.h"
#include "exec/tb-flush.h"
#include "exec/memory-internal.h"
#include "exec/ram_addr.h"
#include "tcg/tcg.h"
#include "qemu/error-report.h"
#include "exec/log.h"
#include "exec/helper-proto-common.h"
#include "qemu/atomic.h"
#include "qemu/atomic128.h"
#include "exec/translate-all.h"
#include "trace.h"
#include "tb-hash.h"
#include "internal-common.h"
#include "internal-target.h"
#ifdef CONFIG_PLUGIN
#include "qemu/plugin-memory.h"
#endif
#include "tcg/tcg-ldst.h"
#include "tcg/oversized-guest.h"
/* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
/* #define DEBUG_TLB */
/* #define DEBUG_TLB_LOG */
#ifdef DEBUG_TLB
# define DEBUG_TLB_GATE 1
# ifdef DEBUG_TLB_LOG
# define DEBUG_TLB_LOG_GATE 1
# else
# define DEBUG_TLB_LOG_GATE 0
# endif
#else
# define DEBUG_TLB_GATE 0
# define DEBUG_TLB_LOG_GATE 0
#endif
#define tlb_debug(fmt, ...) do { \
if (DEBUG_TLB_LOG_GATE) { \
qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
## __VA_ARGS__); \
} else if (DEBUG_TLB_GATE) { \
fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
} \
} while (0)
#define assert_cpu_is_self(cpu) do { \
if (DEBUG_TLB_GATE) { \
g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
} \
} while (0)
/* run_on_cpu_data.target_ptr should always be big enough for a
* vaddr even on 32 bit builds
*/
QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data));
/* We currently can't handle more than 16 bits in the MMUIDX bitmask.
*/
QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
#define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
{
return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
}
static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
{
return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
}
static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
size_t max_entries)
{
desc->window_begin_ns = ns;
desc->window_max_entries = max_entries;
}
static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr)
{
CPUJumpCache *jc = cpu->tb_jmp_cache;
int i, i0;
if (unlikely(!jc)) {
return;
}
i0 = tb_jmp_cache_hash_page(page_addr);
for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
qatomic_set(&jc->array[i0 + i].tb, NULL);
}
}
/**
* tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
* @desc: The CPUTLBDesc portion of the TLB
* @fast: The CPUTLBDescFast portion of the same TLB
*
* Called with tlb_lock_held.
*
* We have two main constraints when resizing a TLB: (1) we only resize it
* on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
* the array or unnecessarily flushing it), which means we do not control how
* frequently the resizing can occur; (2) we don't have access to the guest's
* future scheduling decisions, and therefore have to decide the magnitude of
* the resize based on past observations.
*
* In general, a memory-hungry process can benefit greatly from an appropriately
* sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
* we just have to make the TLB as large as possible; while an oversized TLB
* results in minimal TLB miss rates, it also takes longer to be flushed
* (flushes can be _very_ frequent), and the reduced locality can also hurt
* performance.
*
* To achieve near-optimal performance for all kinds of workloads, we:
*
* 1. Aggressively increase the size of the TLB when the use rate of the
* TLB being flushed is high, since it is likely that in the near future this
* memory-hungry process will execute again, and its memory hungriness will
* probably be similar.
*
* 2. Slowly reduce the size of the TLB as the use rate declines over a
* reasonably large time window. The rationale is that if in such a time window
* we have not observed a high TLB use rate, it is likely that we won't observe
* it in the near future. In that case, once a time window expires we downsize
* the TLB to match the maximum use rate observed in the window.
*
* 3. Try to keep the maximum use rate in a time window in the 30-70% range,
* since in that range performance is likely near-optimal. Recall that the TLB
* is direct mapped, so we want the use rate to be low (or at least not too
* high), since otherwise we are likely to have a significant amount of
* conflict misses.
*/
static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
int64_t now)
{
size_t old_size = tlb_n_entries(fast);
size_t rate;
size_t new_size = old_size;
int64_t window_len_ms = 100;
int64_t window_len_ns = window_len_ms * 1000 * 1000;
bool window_expired = now > desc->window_begin_ns + window_len_ns;
if (desc->n_used_entries > desc->window_max_entries) {
desc->window_max_entries = desc->n_used_entries;
}
rate = desc->window_max_entries * 100 / old_size;
if (rate > 70) {
new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
} else if (rate < 30 && window_expired) {
size_t ceil = pow2ceil(desc->window_max_entries);
size_t expected_rate = desc->window_max_entries * 100 / ceil;
/*
* Avoid undersizing when the max number of entries seen is just below
* a pow2. For instance, if max_entries == 1025, the expected use rate
* would be 1025/2048==50%. However, if max_entries == 1023, we'd get
* 1023/1024==99.9% use rate, so we'd likely end up doubling the size
* later. Thus, make sure that the expected use rate remains below 70%.
* (and since we double the size, that means the lowest rate we'd
* expect to get is 35%, which is still in the 30-70% range where
* we consider that the size is appropriate.)
*/
if (expected_rate > 70) {
ceil *= 2;
}
new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
}
if (new_size == old_size) {
if (window_expired) {
tlb_window_reset(desc, now, desc->n_used_entries);
}
return;
}
g_free(fast->table);
g_free(desc->fulltlb);
tlb_window_reset(desc, now, 0);
/* desc->n_used_entries is cleared by the caller */
fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
fast->table = g_try_new(CPUTLBEntry, new_size);
desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
/*
* If the allocations fail, try smaller sizes. We just freed some
* memory, so going back to half of new_size has a good chance of working.
* Increased memory pressure elsewhere in the system might cause the
* allocations to fail though, so we progressively reduce the allocation
* size, aborting if we cannot even allocate the smallest TLB we support.
*/
while (fast->table == NULL || desc->fulltlb == NULL) {
if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
error_report("%s: %s", __func__, strerror(errno));
abort();
}
new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
g_free(fast->table);
g_free(desc->fulltlb);
fast->table = g_try_new(CPUTLBEntry, new_size);
desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
}
}
static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
{
desc->n_used_entries = 0;
desc->large_page_addr = -1;
desc->large_page_mask = -1;
desc->vindex = 0;
memset(fast->table, -1, sizeof_tlb(fast));
memset(desc->vtable, -1, sizeof(desc->vtable));
}
static void tlb_flush_one_mmuidx_locked(CPUState *cpu, int mmu_idx,
int64_t now)
{
CPUTLBDesc *desc = &cpu->neg.tlb.d[mmu_idx];
CPUTLBDescFast *fast = &cpu->neg.tlb.f[mmu_idx];
tlb_mmu_resize_locked(desc, fast, now);
tlb_mmu_flush_locked(desc, fast);
}
static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
{
size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
tlb_window_reset(desc, now, 0);
desc->n_used_entries = 0;
fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
fast->table = g_new(CPUTLBEntry, n_entries);
desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
tlb_mmu_flush_locked(desc, fast);
}
static inline void tlb_n_used_entries_inc(CPUState *cpu, uintptr_t mmu_idx)
{
cpu->neg.tlb.d[mmu_idx].n_used_entries++;
}
static inline void tlb_n_used_entries_dec(CPUState *cpu, uintptr_t mmu_idx)
{
cpu->neg.tlb.d[mmu_idx].n_used_entries--;
}
void tlb_init(CPUState *cpu)
{
int64_t now = get_clock_realtime();
int i;
qemu_spin_init(&cpu->neg.tlb.c.lock);
/* All tlbs are initialized flushed. */
cpu->neg.tlb.c.dirty = 0;
for (i = 0; i < NB_MMU_MODES; i++) {
tlb_mmu_init(&cpu->neg.tlb.d[i], &cpu->neg.tlb.f[i], now);
}
}
void tlb_destroy(CPUState *cpu)
{
int i;
qemu_spin_destroy(&cpu->neg.tlb.c.lock);
for (i = 0; i < NB_MMU_MODES; i++) {
CPUTLBDesc *desc = &cpu->neg.tlb.d[i];
CPUTLBDescFast *fast = &cpu->neg.tlb.f[i];
g_free(fast->table);
g_free(desc->fulltlb);
}
}
/* flush_all_helper: run fn across all cpus
*
* If the wait flag is set then the src cpu's helper will be queued as
* "safe" work and the loop exited creating a synchronisation point
* where all queued work will be finished before execution starts
* again.
*/
static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
run_on_cpu_data d)
{
CPUState *cpu;
CPU_FOREACH(cpu) {
if (cpu != src) {
async_run_on_cpu(cpu, fn, d);
}
}
}
static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
{
uint16_t asked = data.host_int;
uint16_t all_dirty, work, to_clean;
int64_t now = get_clock_realtime();
assert_cpu_is_self(cpu);
tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
qemu_spin_lock(&cpu->neg.tlb.c.lock);
all_dirty = cpu->neg.tlb.c.dirty;
to_clean = asked & all_dirty;
all_dirty &= ~to_clean;
cpu->neg.tlb.c.dirty = all_dirty;
for (work = to_clean; work != 0; work &= work - 1) {
int mmu_idx = ctz32(work);
tlb_flush_one_mmuidx_locked(cpu, mmu_idx, now);
}
qemu_spin_unlock(&cpu->neg.tlb.c.lock);
tcg_flush_jmp_cache(cpu);
if (to_clean == ALL_MMUIDX_BITS) {
qatomic_set(&cpu->neg.tlb.c.full_flush_count,
cpu->neg.tlb.c.full_flush_count + 1);
} else {
qatomic_set(&cpu->neg.tlb.c.part_flush_count,
cpu->neg.tlb.c.part_flush_count + ctpop16(to_clean));
if (to_clean != asked) {
qatomic_set(&cpu->neg.tlb.c.elide_flush_count,
cpu->neg.tlb.c.elide_flush_count +
ctpop16(asked & ~to_clean));
}
}
}
void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
{
tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
if (cpu->created && !qemu_cpu_is_self(cpu)) {
async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
RUN_ON_CPU_HOST_INT(idxmap));
} else {
tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
}
}
void tlb_flush(CPUState *cpu)
{
tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
}
void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
{
const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
}
void tlb_flush_all_cpus(CPUState *src_cpu)
{
tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
}
void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
{
const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
}
void tlb_flush_all_cpus_synced(CPUState *src_cpu)
{
tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
}
static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
vaddr page, vaddr mask)
{
page &= mask;
mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
return (page == (tlb_entry->addr_read & mask) ||
page == (tlb_addr_write(tlb_entry) & mask) ||
page == (tlb_entry->addr_code & mask));
}
static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page)
{
return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
}
/**
* tlb_entry_is_empty - return true if the entry is not in use
* @te: pointer to CPUTLBEntry
*/
static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
{
return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
}
/* Called with tlb_c.lock held */
static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
vaddr page,
vaddr mask)
{
if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
memset(tlb_entry, -1, sizeof(*tlb_entry));
return true;
}
return false;
}
static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page)
{
return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
}
/* Called with tlb_c.lock held */
static void tlb_flush_vtlb_page_mask_locked(CPUState *cpu, int mmu_idx,
vaddr page,
vaddr mask)
{
CPUTLBDesc *d = &cpu->neg.tlb.d[mmu_idx];
int k;
assert_cpu_is_self(cpu);
for (k = 0; k < CPU_VTLB_SIZE; k++) {
if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
tlb_n_used_entries_dec(cpu, mmu_idx);
}
}
}
static inline void tlb_flush_vtlb_page_locked(CPUState *cpu, int mmu_idx,
vaddr page)
{
tlb_flush_vtlb_page_mask_locked(cpu, mmu_idx, page, -1);
}
static void tlb_flush_page_locked(CPUState *cpu, int midx, vaddr page)
{
vaddr lp_addr = cpu->neg.tlb.d[midx].large_page_addr;
vaddr lp_mask = cpu->neg.tlb.d[midx].large_page_mask;
/* Check if we need to flush due to large pages. */
if ((page & lp_mask) == lp_addr) {
tlb_debug("forcing full flush midx %d (%016"
VADDR_PRIx "/%016" VADDR_PRIx ")\n",
midx, lp_addr, lp_mask);
tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
} else {
if (tlb_flush_entry_locked(tlb_entry(cpu, midx, page), page)) {
tlb_n_used_entries_dec(cpu, midx);
}
tlb_flush_vtlb_page_locked(cpu, midx, page);
}
}
/**
* tlb_flush_page_by_mmuidx_async_0:
* @cpu: cpu on which to flush
* @addr: page of virtual address to flush
* @idxmap: set of mmu_idx to flush
*
* Helper for tlb_flush_page_by_mmuidx and friends, flush one page
* at @addr from the tlbs indicated by @idxmap from @cpu.
*/
static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
vaddr addr,
uint16_t idxmap)
{
int mmu_idx;
assert_cpu_is_self(cpu);
tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap);
qemu_spin_lock(&cpu->neg.tlb.c.lock);
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
if ((idxmap >> mmu_idx) & 1) {
tlb_flush_page_locked(cpu, mmu_idx, addr);
}
}
qemu_spin_unlock(&cpu->neg.tlb.c.lock);
/*
* Discard jump cache entries for any tb which might potentially
* overlap the flushed page, which includes the previous.
*/
tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
tb_jmp_cache_clear_page(cpu, addr);
}
/**
* tlb_flush_page_by_mmuidx_async_1:
* @cpu: cpu on which to flush
* @data: encoded addr + idxmap
*
* Helper for tlb_flush_page_by_mmuidx and friends, called through
* async_run_on_cpu. The idxmap parameter is encoded in the page
* offset of the target_ptr field. This limits the set of mmu_idx
* that can be passed via this method.
*/
static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
run_on_cpu_data data)
{
vaddr addr_and_idxmap = data.target_ptr;
vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK;
uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
}
typedef struct {
vaddr addr;
uint16_t idxmap;
} TLBFlushPageByMMUIdxData;
/**
* tlb_flush_page_by_mmuidx_async_2:
* @cpu: cpu on which to flush
* @data: allocated addr + idxmap
*
* Helper for tlb_flush_page_by_mmuidx and friends, called through
* async_run_on_cpu. The addr+idxmap parameters are stored in a
* TLBFlushPageByMMUIdxData structure that has been allocated
* specifically for this helper. Free the structure when done.
*/
static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
run_on_cpu_data data)
{
TLBFlushPageByMMUIdxData *d = data.host_ptr;
tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
g_free(d);
}
void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap)
{
tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap);
/* This should already be page aligned */
addr &= TARGET_PAGE_MASK;
if (qemu_cpu_is_self(cpu)) {
tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
} else if (idxmap < TARGET_PAGE_SIZE) {
/*
* Most targets have only a few mmu_idx. In the case where
* we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
* allocating memory for this operation.
*/
async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
RUN_ON_CPU_TARGET_PTR(addr | idxmap));
} else {
TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
/* Otherwise allocate a structure, freed by the worker. */
d->addr = addr;
d->idxmap = idxmap;
async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
RUN_ON_CPU_HOST_PTR(d));
}
}
void tlb_flush_page(CPUState *cpu, vaddr addr)
{
tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
}
void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr,
uint16_t idxmap)
{
tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
/* This should already be page aligned */
addr &= TARGET_PAGE_MASK;
/*
* Allocate memory to hold addr+idxmap only when needed.
* See tlb_flush_page_by_mmuidx for details.
*/
if (idxmap < TARGET_PAGE_SIZE) {
flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
RUN_ON_CPU_TARGET_PTR(addr | idxmap));
} else {
CPUState *dst_cpu;
/* Allocate a separate data block for each destination cpu. */
CPU_FOREACH(dst_cpu) {
if (dst_cpu != src_cpu) {
TLBFlushPageByMMUIdxData *d
= g_new(TLBFlushPageByMMUIdxData, 1);
d->addr = addr;
d->idxmap = idxmap;
async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
RUN_ON_CPU_HOST_PTR(d));
}
}
}
tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
}
void tlb_flush_page_all_cpus(CPUState *src, vaddr addr)
{
tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
}
void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
vaddr addr,
uint16_t idxmap)
{
tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
/* This should already be page aligned */
addr &= TARGET_PAGE_MASK;
/*
* Allocate memory to hold addr+idxmap only when needed.
* See tlb_flush_page_by_mmuidx for details.
*/
if (idxmap < TARGET_PAGE_SIZE) {
flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
RUN_ON_CPU_TARGET_PTR(addr | idxmap));
async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
RUN_ON_CPU_TARGET_PTR(addr | idxmap));
} else {
CPUState *dst_cpu;
TLBFlushPageByMMUIdxData *d;
/* Allocate a separate data block for each destination cpu. */
CPU_FOREACH(dst_cpu) {
if (dst_cpu != src_cpu) {
d = g_new(TLBFlushPageByMMUIdxData, 1);
d->addr = addr;
d->idxmap = idxmap;
async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
RUN_ON_CPU_HOST_PTR(d));
}
}
d = g_new(TLBFlushPageByMMUIdxData, 1);
d->addr = addr;
d->idxmap = idxmap;
async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
RUN_ON_CPU_HOST_PTR(d));
}
}
void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr)
{
tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
}
static void tlb_flush_range_locked(CPUState *cpu, int midx,
vaddr addr, vaddr len,
unsigned bits)
{
CPUTLBDesc *d = &cpu->neg.tlb.d[midx];
CPUTLBDescFast *f = &cpu->neg.tlb.f[midx];
vaddr mask = MAKE_64BIT_MASK(0, bits);
/*
* If @bits is smaller than the tlb size, there may be multiple entries
* within the TLB; otherwise all addresses that match under @mask hit
* the same TLB entry.
* TODO: Perhaps allow bits to be a few bits less than the size.
* For now, just flush the entire TLB.
*
* If @len is larger than the tlb size, then it will take longer to
* test all of the entries in the TLB than it will to flush it all.
*/
if (mask < f->mask || len > f->mask) {
tlb_debug("forcing full flush midx %d ("
"%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n",
midx, addr, mask, len);
tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
return;
}
/*
* Check if we need to flush due to large pages.
* Because large_page_mask contains all 1's from the msb,
* we only need to test the end of the range.
*/
if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
tlb_debug("forcing full flush midx %d ("
"%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n",
midx, d->large_page_addr, d->large_page_mask);
tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
return;
}
for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) {
vaddr page = addr + i;
CPUTLBEntry *entry = tlb_entry(cpu, midx, page);
if (tlb_flush_entry_mask_locked(entry, page, mask)) {
tlb_n_used_entries_dec(cpu, midx);
}
tlb_flush_vtlb_page_mask_locked(cpu, midx, page, mask);
}
}
typedef struct {
vaddr addr;
vaddr len;
uint16_t idxmap;
uint16_t bits;
} TLBFlushRangeData;
static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
TLBFlushRangeData d)
{
int mmu_idx;
assert_cpu_is_self(cpu);
tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n",
d.addr, d.bits, d.len, d.idxmap);
qemu_spin_lock(&cpu->neg.tlb.c.lock);
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
if ((d.idxmap >> mmu_idx) & 1) {
tlb_flush_range_locked(cpu, mmu_idx, d.addr, d.len, d.bits);
}
}
qemu_spin_unlock(&cpu->neg.tlb.c.lock);
/*
* If the length is larger than the jump cache size, then it will take
* longer to clear each entry individually than it will to clear it all.
*/
if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
tcg_flush_jmp_cache(cpu);
return;
}
/*
* Discard jump cache entries for any tb which might potentially
* overlap the flushed pages, which includes the previous.
*/
d.addr -= TARGET_PAGE_SIZE;
for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
tb_jmp_cache_clear_page(cpu, d.addr);
d.addr += TARGET_PAGE_SIZE;
}
}
static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
run_on_cpu_data data)
{
TLBFlushRangeData *d = data.host_ptr;
tlb_flush_range_by_mmuidx_async_0(cpu, *d);
g_free(d);
}
void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr,
vaddr len, uint16_t idxmap,
unsigned bits)
{
TLBFlushRangeData d;
/*
* If all bits are significant, and len is small,
* this devolves to tlb_flush_page.
*/
if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
return;
}
/* If no page bits are significant, this devolves to tlb_flush. */
if (bits < TARGET_PAGE_BITS) {
tlb_flush_by_mmuidx(cpu, idxmap);
return;
}
/* This should already be page aligned */
d.addr = addr & TARGET_PAGE_MASK;
d.len = len;
d.idxmap = idxmap;
d.bits = bits;
if (qemu_cpu_is_self(cpu)) {
tlb_flush_range_by_mmuidx_async_0(cpu, d);
} else {
/* Otherwise allocate a structure, freed by the worker. */
TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
RUN_ON_CPU_HOST_PTR(p));
}
}
void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr,
uint16_t idxmap, unsigned bits)
{
tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
}
void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
vaddr addr, vaddr len,
uint16_t idxmap, unsigned bits)
{
TLBFlushRangeData d;
CPUState *dst_cpu;
/*
* If all bits are significant, and len is small,
* this devolves to tlb_flush_page.
*/
if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
return;
}
/* If no page bits are significant, this devolves to tlb_flush. */
if (bits < TARGET_PAGE_BITS) {
tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
return;
}
/* This should already be page aligned */
d.addr = addr & TARGET_PAGE_MASK;
d.len = len;
d.idxmap = idxmap;
d.bits = bits;
/* Allocate a separate data block for each destination cpu. */
CPU_FOREACH(dst_cpu) {
if (dst_cpu != src_cpu) {
TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
async_run_on_cpu(dst_cpu,
tlb_flush_range_by_mmuidx_async_1,
RUN_ON_CPU_HOST_PTR(p));
}
}
tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
}
void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
vaddr addr, uint16_t idxmap,
unsigned bits)
{
tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
idxmap, bits);
}
void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
vaddr addr,
vaddr len,
uint16_t idxmap,
unsigned bits)
{
TLBFlushRangeData d, *p;
CPUState *dst_cpu;
/*
* If all bits are significant, and len is small,
* this devolves to tlb_flush_page.
*/
if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
return;
}
/* If no page bits are significant, this devolves to tlb_flush. */
if (bits < TARGET_PAGE_BITS) {
tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
return;
}
/* This should already be page aligned */
d.addr = addr & TARGET_PAGE_MASK;
d.len = len;
d.idxmap = idxmap;
d.bits = bits;
/* Allocate a separate data block for each destination cpu. */
CPU_FOREACH(dst_cpu) {
if (dst_cpu != src_cpu) {
p = g_memdup(&d, sizeof(d));
async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
RUN_ON_CPU_HOST_PTR(p));
}
}
p = g_memdup(&d, sizeof(d));
async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
RUN_ON_CPU_HOST_PTR(p));
}
void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
vaddr addr,
uint16_t idxmap,
unsigned bits)
{
tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
idxmap, bits);
}
/* update the TLBs so that writes to code in the virtual page 'addr'
can be detected */
void tlb_protect_code(ram_addr_t ram_addr)
{
cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
TARGET_PAGE_SIZE,
DIRTY_MEMORY_CODE);
}
/* update the TLB so that writes in physical page 'phys_addr' are no longer
tested for self modifying code */
void tlb_unprotect_code(ram_addr_t ram_addr)
{
cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
}
/*
* Dirty write flag handling
*
* When the TCG code writes to a location it looks up the address in
* the TLB and uses that data to compute the final address. If any of
* the lower bits of the address are set then the slow path is forced.
* There are a number of reasons to do this but for normal RAM the
* most usual is detecting writes to code regions which may invalidate
* generated code.
*
* Other vCPUs might be reading their TLBs during guest execution, so we update
* te->addr_write with qatomic_set. We don't need to worry about this for
* oversized guests as MTTCG is disabled for them.
*
* Called with tlb_c.lock held.
*/
static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
uintptr_t start, uintptr_t length)
{
uintptr_t addr = tlb_entry->addr_write;
if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
addr &= TARGET_PAGE_MASK;
addr += tlb_entry->addend;
if ((addr - start) < length) {
#if TARGET_LONG_BITS == 32
uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write;
ptr_write += HOST_BIG_ENDIAN;
qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY);
#elif TCG_OVERSIZED_GUEST
tlb_entry->addr_write |= TLB_NOTDIRTY;
#else
qatomic_set(&tlb_entry->addr_write,
tlb_entry->addr_write | TLB_NOTDIRTY);
#endif
}
}
}
/*
* Called with tlb_c.lock held.
* Called only from the vCPU context, i.e. the TLB's owner thread.
*/
static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
{
*d = *s;
}
/* This is a cross vCPU call (i.e. another vCPU resetting the flags of
* the target vCPU).
* We must take tlb_c.lock to avoid racing with another vCPU update. The only
* thing actually updated is the target TLB entry ->addr_write flags.
*/
void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
{
int mmu_idx;
qemu_spin_lock(&cpu->neg.tlb.c.lock);
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
unsigned int i;
unsigned int n = tlb_n_entries(&cpu->neg.tlb.f[mmu_idx]);
for (i = 0; i < n; i++) {
tlb_reset_dirty_range_locked(&cpu->neg.tlb.f[mmu_idx].table[i],
start1, length);
}
for (i = 0; i < CPU_VTLB_SIZE; i++) {
tlb_reset_dirty_range_locked(&cpu->neg.tlb.d[mmu_idx].vtable[i],
start1, length);
}
}
qemu_spin_unlock(&cpu->neg.tlb.c.lock);
}
/* Called with tlb_c.lock held */
static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
vaddr addr)
{
if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) {
tlb_entry->addr_write = addr;
}
}
/* update the TLB corresponding to virtual page vaddr
so that it is no longer dirty */
static void tlb_set_dirty(CPUState *cpu, vaddr addr)
{
int mmu_idx;
assert_cpu_is_self(cpu);
addr &= TARGET_PAGE_MASK;
qemu_spin_lock(&cpu->neg.tlb.c.lock);
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
tlb_set_dirty1_locked(tlb_entry(cpu, mmu_idx, addr), addr);
}
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
int k;
for (k = 0; k < CPU_VTLB_SIZE; k++) {
tlb_set_dirty1_locked(&cpu->neg.tlb.d[mmu_idx].vtable[k], addr);
}
}
qemu_spin_unlock(&cpu->neg.tlb.c.lock);
}
/* Our TLB does not support large pages, so remember the area covered by
large pages and trigger a full TLB flush if these are invalidated. */
static void tlb_add_large_page(CPUState *cpu, int mmu_idx,
vaddr addr, uint64_t size)
{
vaddr lp_addr = cpu->neg.tlb.d[mmu_idx].large_page_addr;
vaddr lp_mask = ~(size - 1);
if (lp_addr == (vaddr)-1) {
/* No previous large page. */
lp_addr = addr;
} else {
/* Extend the existing region to include the new page.
This is a compromise between unnecessary flushes and
the cost of maintaining a full variable size TLB. */
lp_mask &= cpu->neg.tlb.d[mmu_idx].large_page_mask;
while (((lp_addr ^ addr) & lp_mask) != 0) {
lp_mask <<= 1;
}
}
cpu->neg.tlb.d[mmu_idx].large_page_addr = lp_addr & lp_mask;
cpu->neg.tlb.d[mmu_idx].large_page_mask = lp_mask;
}
static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent,
vaddr address, int flags,
MMUAccessType access_type, bool enable)
{
if (enable) {
address |= flags & TLB_FLAGS_MASK;
flags &= TLB_SLOW_FLAGS_MASK;
if (flags) {
address |= TLB_FORCE_SLOW;
}
} else {
address = -1;
flags = 0;
}
ent->addr_idx[access_type] = address;
full->slow_flags[access_type] = flags;
}
/*
* Add a new TLB entry. At most one entry for a given virtual address
* is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
* supplied size is only used by tlb_flush_page.
*
* Called from TCG-generated code, which is under an RCU read-side
* critical section.
*/
void tlb_set_page_full(CPUState *cpu, int mmu_idx,
vaddr addr, CPUTLBEntryFull *full)
{
CPUTLB *tlb = &cpu->neg.tlb;
CPUTLBDesc *desc = &tlb->d[mmu_idx];
MemoryRegionSection *section;
unsigned int index, read_flags, write_flags;
uintptr_t addend;
CPUTLBEntry *te, tn;
hwaddr iotlb, xlat, sz, paddr_page;
vaddr addr_page;
int asidx, wp_flags, prot;
bool is_ram, is_romd;
assert_cpu_is_self(cpu);
if (full->lg_page_size <= TARGET_PAGE_BITS) {
sz = TARGET_PAGE_SIZE;
} else {
sz = (hwaddr)1 << full->lg_page_size;
tlb_add_large_page(cpu, mmu_idx, addr, sz);
}
addr_page = addr & TARGET_PAGE_MASK;
paddr_page = full->phys_addr & TARGET_PAGE_MASK;
prot = full->prot;
asidx = cpu_asidx_from_attrs(cpu, full->attrs);
section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
&xlat, &sz, full->attrs, &prot);
assert(sz >= TARGET_PAGE_SIZE);
tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx
" prot=%x idx=%d\n",
addr, full->phys_addr, prot, mmu_idx);
read_flags = full->tlb_fill_flags;
if (full->lg_page_size < TARGET_PAGE_BITS) {
/* Repeat the MMU check and TLB fill on every access. */
read_flags |= TLB_INVALID_MASK;
}
is_ram = memory_region_is_ram(section->mr);
is_romd = memory_region_is_romd(section->mr);
if (is_ram || is_romd) {
/* RAM and ROMD both have associated host memory. */
addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
} else {
/* I/O does not; force the host address to NULL. */
addend = 0;
}
write_flags = read_flags;
if (is_ram) {
iotlb = memory_region_get_ram_addr(section->mr) + xlat;
assert(!(iotlb & ~TARGET_PAGE_MASK));
/*
* Computing is_clean is expensive; avoid all that unless
* the page is actually writable.
*/
if (prot & PAGE_WRITE) {
if (section->readonly) {
write_flags |= TLB_DISCARD_WRITE;
} else if (cpu_physical_memory_is_clean(iotlb)) {
write_flags |= TLB_NOTDIRTY;
}
}
} else {
/* I/O or ROMD */
iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
/*
* Writes to romd devices must go through MMIO to enable write.
* Reads to romd devices go through the ram_ptr found above,
* but of course reads to I/O must go through MMIO.
*/
write_flags |= TLB_MMIO;
if (!is_romd) {
read_flags = write_flags;
}
}
wp_flags = cpu_watchpoint_address_matches(cpu, addr_page,
TARGET_PAGE_SIZE);
index = tlb_index(cpu, mmu_idx, addr_page);
te = tlb_entry(cpu, mmu_idx, addr_page);
/*
* Hold the TLB lock for the rest of the function. We could acquire/release
* the lock several times in the function, but it is faster to amortize the
* acquisition cost by acquiring it just once. Note that this leads to
* a longer critical section, but this is not a concern since the TLB lock
* is unlikely to be contended.
*/
qemu_spin_lock(&tlb->c.lock);
/* Note that the tlb is no longer clean. */
tlb->c.dirty |= 1 << mmu_idx;
/* Make sure there's no cached translation for the new page. */
tlb_flush_vtlb_page_locked(cpu, mmu_idx, addr_page);
/*
* Only evict the old entry to the victim tlb if it's for a
* different page; otherwise just overwrite the stale data.
*/
if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) {
unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
CPUTLBEntry *tv = &desc->vtable[vidx];
/* Evict the old entry into the victim tlb. */
copy_tlb_helper_locked(tv, te);
desc->vfulltlb[vidx] = desc->fulltlb[index];
tlb_n_used_entries_dec(cpu, mmu_idx);
}
/* refill the tlb */
/*
* When memory region is ram, iotlb contains a TARGET_PAGE_BITS
* aligned ram_addr_t of the page base of the target RAM.
* Otherwise, iotlb contains
* - a physical section number in the lower TARGET_PAGE_BITS
* - the offset within section->mr of the page base (I/O, ROMD) with the
* TARGET_PAGE_BITS masked off.
* We subtract addr_page (which is page aligned and thus won't
* disturb the low bits) to give an offset which can be added to the
* (non-page-aligned) vaddr of the eventual memory access to get
* the MemoryRegion offset for the access. Note that the vaddr we
* subtract here is that of the page base, and not the same as the
* vaddr we add back in io_prepare()/get_page_addr_code().
*/
desc->fulltlb[index] = *full;
full = &desc->fulltlb[index];
full->xlat_section = iotlb - addr_page;
full->phys_addr = paddr_page;
/* Now calculate the new entry */
tn.addend = addend - addr_page;
tlb_set_compare(full, &tn, addr_page, read_flags,
MMU_INST_FETCH, prot & PAGE_EXEC);
if (wp_flags & BP_MEM_READ) {
read_flags |= TLB_WATCHPOINT;
}
tlb_set_compare(full, &tn, addr_page, read_flags,
MMU_DATA_LOAD, prot & PAGE_READ);
if (prot & PAGE_WRITE_INV) {
write_flags |= TLB_INVALID_MASK;
}
if (wp_flags & BP_MEM_WRITE) {
write_flags |= TLB_WATCHPOINT;
}
tlb_set_compare(full, &tn, addr_page, write_flags,
MMU_DATA_STORE, prot & PAGE_WRITE);
copy_tlb_helper_locked(te, &tn);
tlb_n_used_entries_inc(cpu, mmu_idx);
qemu_spin_unlock(&tlb->c.lock);
}
void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr,
hwaddr paddr, MemTxAttrs attrs, int prot,
int mmu_idx, uint64_t size)
{
CPUTLBEntryFull full = {
.phys_addr = paddr,
.attrs = attrs,
.prot = prot,
.lg_page_size = ctz64(size)
};
assert(is_power_of_2(size));
tlb_set_page_full(cpu, mmu_idx, addr, &full);
}
void tlb_set_page(CPUState *cpu, vaddr addr,
hwaddr paddr, int prot,
int mmu_idx, uint64_t size)
{
tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED,
prot, mmu_idx, size);
}
/*
* Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
* caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
* be discarded and looked up again (e.g. via tlb_entry()).
*/
static void tlb_fill(CPUState *cpu, vaddr addr, int size,
MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
{
bool ok;
/*
* This is not a probe, so only valid return is success; failure
* should result in exception + longjmp to the cpu loop.
*/
ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
access_type, mmu_idx, false, retaddr);
assert(ok);
}
static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr)
{
cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
mmu_idx, retaddr);
}
static MemoryRegionSection *
io_prepare(hwaddr *out_offset, CPUState *cpu, hwaddr xlat,
MemTxAttrs attrs, vaddr addr, uintptr_t retaddr)
{
MemoryRegionSection *section;
hwaddr mr_offset;
section = iotlb_to_section(cpu, xlat, attrs);
mr_offset = (xlat & TARGET_PAGE_MASK) + addr;
cpu->mem_io_pc = retaddr;
if (!cpu->neg.can_do_io) {
cpu_io_recompile(cpu, retaddr);
}
*out_offset = mr_offset;
return section;
}
static void io_failed(CPUState *cpu, CPUTLBEntryFull *full, vaddr addr,
unsigned size, MMUAccessType access_type, int mmu_idx,
MemTxResult response, uintptr_t retaddr)
{
if (!cpu->ignore_memory_transaction_failures
&& cpu->cc->tcg_ops->do_transaction_failed) {
hwaddr physaddr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
cpu->cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
access_type, mmu_idx,
full->attrs, response, retaddr);
}
}
/* Return true if ADDR is present in the victim tlb, and has been copied
back to the main tlb. */
static bool victim_tlb_hit(CPUState *cpu, size_t mmu_idx, size_t index,
MMUAccessType access_type, vaddr page)
{
size_t vidx;
assert_cpu_is_self(cpu);
for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
CPUTLBEntry *vtlb = &cpu->neg.tlb.d[mmu_idx].vtable[vidx];
uint64_t cmp = tlb_read_idx(vtlb, access_type);
if (cmp == page) {
/* Found entry in victim tlb, swap tlb and iotlb. */
CPUTLBEntry tmptlb, *tlb = &cpu->neg.tlb.f[mmu_idx].table[index];
qemu_spin_lock(&cpu->neg.tlb.c.lock);
copy_tlb_helper_locked(&tmptlb, tlb);
copy_tlb_helper_locked(tlb, vtlb);
copy_tlb_helper_locked(vtlb, &tmptlb);
qemu_spin_unlock(&cpu->neg.tlb.c.lock);
CPUTLBEntryFull *f1 = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
CPUTLBEntryFull *f2 = &cpu->neg.tlb.d[mmu_idx].vfulltlb[vidx];
CPUTLBEntryFull tmpf;
tmpf = *f1; *f1 = *f2; *f2 = tmpf;
return true;
}
}
return false;
}
static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
CPUTLBEntryFull *full, uintptr_t retaddr)
{
ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
}
/*
* Set both VGA and migration bits for simplicity and to remove
* the notdirty callback faster.
*/
cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
/* We remove the notdirty callback only if the code has been flushed. */
if (!cpu_physical_memory_is_clean(ram_addr)) {
trace_memory_notdirty_set_dirty(mem_vaddr);
tlb_set_dirty(cpu, mem_vaddr);
}
}
static int probe_access_internal(CPUState *cpu, vaddr addr,
int fault_size, MMUAccessType access_type,
int mmu_idx, bool nonfault,
void **phost, CPUTLBEntryFull **pfull,
uintptr_t retaddr, bool check_mem_cbs)
{
uintptr_t index = tlb_index(cpu, mmu_idx, addr);
CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr);
uint64_t tlb_addr = tlb_read_idx(entry, access_type);
vaddr page_addr = addr & TARGET_PAGE_MASK;
int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW;
bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(cpu);
CPUTLBEntryFull *full;
if (!tlb_hit_page(tlb_addr, page_addr)) {
if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, page_addr)) {
if (!cpu->cc->tcg_ops->tlb_fill(cpu, addr, fault_size, access_type,
mmu_idx, nonfault, retaddr)) {
/* Non-faulting page table read failed. */
*phost = NULL;
*pfull = NULL;
return TLB_INVALID_MASK;
}
/* TLB resize via tlb_fill may have moved the entry. */
index = tlb_index(cpu, mmu_idx, addr);
entry = tlb_entry(cpu, mmu_idx, addr);
/*
* With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
* to force the next access through tlb_fill. We've just
* called tlb_fill, so we know that this entry *is* valid.
*/
flags &= ~TLB_INVALID_MASK;
}
tlb_addr = tlb_read_idx(entry, access_type);
}
flags &= tlb_addr;
*pfull = full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
flags |= full->slow_flags[access_type];
/* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY | TLB_CHECK_ALIGNED))
|| (access_type != MMU_INST_FETCH && force_mmio)) {
*phost = NULL;
return TLB_MMIO;
}
/* Everything else is RAM. */
*phost = (void *)((uintptr_t)addr + entry->addend);
return flags;
}
int probe_access_full(CPUArchState *env, vaddr addr, int size,
MMUAccessType access_type, int mmu_idx,
bool nonfault, void **phost, CPUTLBEntryFull **pfull,
uintptr_t retaddr)
{
int flags = probe_access_internal(env_cpu(env), addr, size, access_type,
mmu_idx, nonfault, phost, pfull, retaddr,
true);
/* Handle clean RAM pages. */
if (unlikely(flags & TLB_NOTDIRTY)) {
int dirtysize = size == 0 ? 1 : size;
notdirty_write(env_cpu(env), addr, dirtysize, *pfull, retaddr);
flags &= ~TLB_NOTDIRTY;
}
return flags;
}
int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size,
MMUAccessType access_type, int mmu_idx,
void **phost, CPUTLBEntryFull **pfull)
{
void *discard_phost;
CPUTLBEntryFull *discard_tlb;
/* privately handle users that don't need full results */
phost = phost ? phost : &discard_phost;
pfull = pfull ? pfull : &discard_tlb;
int flags = probe_access_internal(env_cpu(env), addr, size, access_type,
mmu_idx, true, phost, pfull, 0, false);
/* Handle clean RAM pages. */
if (unlikely(flags & TLB_NOTDIRTY)) {
int dirtysize = size == 0 ? 1 : size;
notdirty_write(env_cpu(env), addr, dirtysize, *pfull, 0);
flags &= ~TLB_NOTDIRTY;
}
return flags;
}
int probe_access_flags(CPUArchState *env, vaddr addr, int size,
MMUAccessType access_type, int mmu_idx,
bool nonfault, void **phost, uintptr_t retaddr)
{
CPUTLBEntryFull *full;
int flags;
g_assert(-(addr | TARGET_PAGE_MASK) >= size);
flags = probe_access_internal(env_cpu(env), addr, size, access_type,
mmu_idx, nonfault, phost, &full, retaddr,
true);
/* Handle clean RAM pages. */
if (unlikely(flags & TLB_NOTDIRTY)) {
int dirtysize = size == 0 ? 1 : size;
notdirty_write(env_cpu(env), addr, dirtysize, full, retaddr);
flags &= ~TLB_NOTDIRTY;
}
return flags;
}
void *probe_access(CPUArchState *env, vaddr addr, int size,
MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
{
CPUTLBEntryFull *full;
void *host;
int flags;
g_assert(-(addr | TARGET_PAGE_MASK) >= size);
flags = probe_access_internal(env_cpu(env), addr, size, access_type,
mmu_idx, false, &host, &full, retaddr,
true);
/* Per the interface, size == 0 merely faults the access. */
if (size == 0) {
return NULL;
}
if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
/* Handle watchpoints. */
if (flags & TLB_WATCHPOINT) {
int wp_access = (access_type == MMU_DATA_STORE
? BP_MEM_WRITE : BP_MEM_READ);
cpu_check_watchpoint(env_cpu(env), addr, size,
full->attrs, wp_access, retaddr);
}
/* Handle clean RAM pages. */
if (flags & TLB_NOTDIRTY) {
notdirty_write(env_cpu(env), addr, size, full, retaddr);
}
}
return host;
}
void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
MMUAccessType access_type, int mmu_idx)
{
CPUTLBEntryFull *full;
void *host;
int flags;
flags = probe_access_internal(env_cpu(env), addr, 0, access_type,
mmu_idx, true, &host, &full, 0, false);
/* No combination of flags are expected by the caller. */
return flags ? NULL : host;
}
/*
* Return a ram_addr_t for the virtual address for execution.
*
* Return -1 if we can't translate and execute from an entire page
* of RAM. This will force us to execute by loading and translating
* one insn at a time, without caching.
*
* NOTE: This function will trigger an exception if the page is
* not executable.
*/
tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
void **hostp)
{
CPUTLBEntryFull *full;
void *p;
(void)probe_access_internal(env_cpu(env), addr, 1, MMU_INST_FETCH,
cpu_mmu_index(env_cpu(env), true), false,
&p, &full, 0, false);
if (p == NULL) {
return -1;
}
if (full->lg_page_size < TARGET_PAGE_BITS) {
return -1;
}
if (hostp) {
*hostp = p;
}
return qemu_ram_addr_from_host_nofail(p);
}
/* Load/store with atomicity primitives. */
#include "ldst_atomicity.c.inc"
#ifdef CONFIG_PLUGIN
/*
* Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
* This should be a hot path as we will have just looked this path up
* in the softmmu lookup code (or helper). We don't handle re-fills or
* checking the victim table. This is purely informational.
*
* The one corner case is i/o write, which can cause changes to the
* address space. Those changes, and the corresponding tlb flush,
* should be delayed until the next TB, so even then this ought not fail.
* But check, Just in Case.
*/
bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx,
bool is_store, struct qemu_plugin_hwaddr *data)
{
CPUTLBEntry *tlbe = tlb_entry(cpu, mmu_idx, addr);
uintptr_t index = tlb_index(cpu, mmu_idx, addr);
MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD;
uint64_t tlb_addr = tlb_read_idx(tlbe, access_type);
CPUTLBEntryFull *full;
if (unlikely(!tlb_hit(tlb_addr, addr))) {
return false;
}
full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
data->phys_addr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
/* We must have an iotlb entry for MMIO */
if (tlb_addr & TLB_MMIO) {
MemoryRegionSection *section =
iotlb_to_section(cpu, full->xlat_section & ~TARGET_PAGE_MASK,
full->attrs);
data->is_io = true;
data->mr = section->mr;
} else {
data->is_io = false;
data->mr = NULL;
}
return true;
}
#endif
/*
* Probe for a load/store operation.
* Return the host address and into @flags.
*/
typedef struct MMULookupPageData {
CPUTLBEntryFull *full;
void *haddr;
vaddr addr;
int flags;
int size;
} MMULookupPageData;
typedef struct MMULookupLocals {
MMULookupPageData page[2];
MemOp memop;
int mmu_idx;
} MMULookupLocals;
/**
* mmu_lookup1: translate one page
* @cpu: generic cpu state
* @data: lookup parameters
* @mmu_idx: virtual address context
* @access_type: load/store/code
* @ra: return address into tcg generated code, or 0
*
* Resolve the translation for the one page at @data.addr, filling in
* the rest of @data with the results. If the translation fails,
* tlb_fill will longjmp out. Return true if the softmmu tlb for
* @mmu_idx may have resized.
*/
static bool mmu_lookup1(CPUState *cpu, MMULookupPageData *data,
int mmu_idx, MMUAccessType access_type, uintptr_t ra)
{
vaddr addr = data->addr;
uintptr_t index = tlb_index(cpu, mmu_idx, addr);
CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr);
uint64_t tlb_addr = tlb_read_idx(entry, access_type);
bool maybe_resized = false;
CPUTLBEntryFull *full;
int flags;
/* If the TLB entry is for a different page, reload and try again. */
if (!tlb_hit(tlb_addr, addr)) {
if (!victim_tlb_hit(cpu, mmu_idx, index, access_type,
addr & TARGET_PAGE_MASK)) {
tlb_fill(cpu, addr, data->size, access_type, mmu_idx, ra);
maybe_resized = true;
index = tlb_index(cpu, mmu_idx, addr);
entry = tlb_entry(cpu, mmu_idx, addr);
}
tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
}
full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW);
flags |= full->slow_flags[access_type];
data->full = full;
data->flags = flags;
/* Compute haddr speculatively; depending on flags it might be invalid. */
data->haddr = (void *)((uintptr_t)addr + entry->addend);
return maybe_resized;
}
/**
* mmu_watch_or_dirty
* @cpu: generic cpu state
* @data: lookup parameters
* @access_type: load/store/code
* @ra: return address into tcg generated code, or 0
*
* Trigger watchpoints for @data.addr:@data.size;
* record writes to protected clean pages.
*/
static void mmu_watch_or_dirty(CPUState *cpu, MMULookupPageData *data,
MMUAccessType access_type, uintptr_t ra)
{
CPUTLBEntryFull *full = data->full;
vaddr addr = data->addr;
int flags = data->flags;
int size = data->size;
/* On watchpoint hit, this will longjmp out. */
if (flags & TLB_WATCHPOINT) {
int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
cpu_check_watchpoint(cpu, addr, size, full->attrs, wp, ra);
flags &= ~TLB_WATCHPOINT;
}
/* Note that notdirty is only set for writes. */
if (flags & TLB_NOTDIRTY) {
notdirty_write(cpu, addr, size, full, ra);
flags &= ~TLB_NOTDIRTY;
}
data->flags = flags;
}
/**
* mmu_lookup: translate page(s)
* @cpu: generic cpu state
* @addr: virtual address
* @oi: combined mmu_idx and MemOp
* @ra: return address into tcg generated code, or 0
* @access_type: load/store/code
* @l: output result
*
* Resolve the translation for the page(s) beginning at @addr, for MemOp.size
* bytes. Return true if the lookup crosses a page boundary.
*/
static bool mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
{
unsigned a_bits;
bool crosspage;
int flags;
l->memop = get_memop(oi);
l->mmu_idx = get_mmuidx(oi);
tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
/* Handle CPU specific unaligned behaviour */
a_bits = get_alignment_bits(l->memop);
if (addr & ((1 << a_bits) - 1)) {
cpu_unaligned_access(cpu, addr, type, l->mmu_idx, ra);
}
l->page[0].addr = addr;
l->page[0].size = memop_size(l->memop);
l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
l->page[1].size = 0;
crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
if (likely(!crosspage)) {
mmu_lookup1(cpu, &l->page[0], l->mmu_idx, type, ra);
flags = l->page[0].flags;
if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
mmu_watch_or_dirty(cpu, &l->page[0], type, ra);
}
if (unlikely(flags & TLB_BSWAP)) {
l->memop ^= MO_BSWAP;
}
} else {
/* Finish compute of page crossing. */
int size0 = l->page[1].addr - addr;
l->page[1].size = l->page[0].size - size0;
l->page[0].size = size0;
/*
* Lookup both pages, recognizing exceptions from either. If the
* second lookup potentially resized, refresh first CPUTLBEntryFull.
*/
mmu_lookup1(cpu, &l->page[0], l->mmu_idx, type, ra);
if (mmu_lookup1(cpu, &l->page[1], l->mmu_idx, type, ra)) {
uintptr_t index = tlb_index(cpu, l->mmu_idx, addr);
l->page[0].full = &cpu->neg.tlb.d[l->mmu_idx].fulltlb[index];
}
flags = l->page[0].flags | l->page[1].flags;
if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
mmu_watch_or_dirty(cpu, &l->page[0], type, ra);
mmu_watch_or_dirty(cpu, &l->page[1], type, ra);
}
/*
* Since target/sparc is the only user of TLB_BSWAP, and all
* Sparc accesses are aligned, any treatment across two pages
* would be arbitrary. Refuse it until there's a use.
*/
tcg_debug_assert((flags & TLB_BSWAP) == 0);
}
/*
* This alignment check differs from the one above, in that this is
* based on the atomicity of the operation. The intended use case is
* the ARM memory type field of each PTE, where access to pages with
* Device memory type require alignment.
*/
if (unlikely(flags & TLB_CHECK_ALIGNED)) {
MemOp size = l->memop & MO_SIZE;
switch (l->memop & MO_ATOM_MASK) {
case MO_ATOM_NONE:
size = MO_8;
break;
case MO_ATOM_IFALIGN_PAIR:
case MO_ATOM_WITHIN16_PAIR:
size = size ? size - 1 : 0;
break;
default:
break;
}
if (addr & ((1 << size) - 1)) {
cpu_unaligned_access(cpu, addr, type, l->mmu_idx, ra);
}
}
return crosspage;
}
/*
* Probe for an atomic operation. Do not allow unaligned operations,
* or io operations to proceed. Return the host address.
*/
static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
int size, uintptr_t retaddr)
{
uintptr_t mmu_idx = get_mmuidx(oi);
MemOp mop = get_memop(oi);
int a_bits = get_alignment_bits(mop);
uintptr_t index;
CPUTLBEntry *tlbe;
vaddr tlb_addr;
void *hostaddr;
CPUTLBEntryFull *full;
tcg_debug_assert(mmu_idx < NB_MMU_MODES);
/* Adjust the given return address. */
retaddr -= GETPC_ADJ;
/* Enforce guest required alignment. */
if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
/* ??? Maybe indicate atomic op to cpu_unaligned_access */
cpu_unaligned_access(cpu, addr, MMU_DATA_STORE,
mmu_idx, retaddr);
}
/* Enforce qemu required alignment. */
if (unlikely(addr & (size - 1))) {
/* We get here if guest alignment was not requested,
or was not enforced by cpu_unaligned_access above.
We might widen the access and emulate, but for now
mark an exception and exit the cpu loop. */
goto stop_the_world;
}
index = tlb_index(cpu, mmu_idx, addr);
tlbe = tlb_entry(cpu, mmu_idx, addr);
/* Check TLB entry and enforce page permissions. */
tlb_addr = tlb_addr_write(tlbe);
if (!tlb_hit(tlb_addr, addr)) {
if (!victim_tlb_hit(cpu, mmu_idx, index, MMU_DATA_STORE,
addr & TARGET_PAGE_MASK)) {
tlb_fill(cpu, addr, size,
MMU_DATA_STORE, mmu_idx, retaddr);
index = tlb_index(cpu, mmu_idx, addr);
tlbe = tlb_entry(cpu, mmu_idx, addr);
}
tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
}
/*
* Let the guest notice RMW on a write-only page.
* We have just verified that the page is writable.
* Subpage lookups may have left TLB_INVALID_MASK set,
* but addr_read will only be -1 if PAGE_READ was unset.
*/
if (unlikely(tlbe->addr_read == -1)) {
tlb_fill(cpu, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
/*
* Since we don't support reads and writes to different
* addresses, and we do have the proper page loaded for
* write, this shouldn't ever return. But just in case,
* handle via stop-the-world.
*/
goto stop_the_world;
}
/* Collect tlb flags for read. */
tlb_addr |= tlbe->addr_read;
/* Notice an IO access or a needs-MMU-lookup access */
if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
/* There's really nothing that can be done to
support this apart from stop-the-world. */
goto stop_the_world;
}
hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
notdirty_write(cpu, addr, size, full, retaddr);
}
if (unlikely(tlb_addr & TLB_FORCE_SLOW)) {
int wp_flags = 0;
if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) {
wp_flags |= BP_MEM_WRITE;
}
if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) {
wp_flags |= BP_MEM_READ;
}
if (wp_flags) {
cpu_check_watchpoint(cpu, addr, size,
full->attrs, wp_flags, retaddr);
}
}
return hostaddr;
stop_the_world:
cpu_loop_exit_atomic(cpu, retaddr);
}
/*
* Load Helpers
*
* We support two different access types. SOFTMMU_CODE_ACCESS is
* specifically for reading instructions from system memory. It is
* called by the translation loop and in some helpers where the code
* is disassembled. It shouldn't be called directly by guest code.
*
* For the benefit of TCG generated code, we want to avoid the
* complication of ABI-specific return type promotion and always
* return a value extended to the register size of the host. This is
* tcg_target_long, except in the case of a 32-bit host and 64-bit
* data, and for that we always have uint64_t.
*
* We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
*/
/**
* do_ld_mmio_beN:
* @cpu: generic cpu state
* @full: page parameters
* @ret_be: accumulated data
* @addr: virtual address
* @size: number of bytes
* @mmu_idx: virtual address context
* @ra: return address into tcg generated code, or 0
* Context: BQL held
*
* Load @size bytes from @addr, which is memory-mapped i/o.
* The bytes are concatenated in big-endian order with @ret_be.
*/
static uint64_t int_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
uint64_t ret_be, vaddr addr, int size,
int mmu_idx, MMUAccessType type, uintptr_t ra,
MemoryRegion *mr, hwaddr mr_offset)
{
do {
MemOp this_mop;
unsigned this_size;
uint64_t val;
MemTxResult r;
/* Read aligned pieces up to 8 bytes. */
this_mop = ctz32(size | (int)addr | 8);
this_size = 1 << this_mop;
this_mop |= MO_BE;
r = memory_region_dispatch_read(mr, mr_offset, &val,
this_mop, full->attrs);
if (unlikely(r != MEMTX_OK)) {
io_failed(cpu, full, addr, this_size, type, mmu_idx, r, ra);
}
if (this_size == 8) {
return val;
}
ret_be = (ret_be << (this_size * 8)) | val;
addr += this_size;
mr_offset += this_size;
size -= this_size;
} while (size);
return ret_be;
}
static uint64_t do_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
uint64_t ret_be, vaddr addr, int size,
int mmu_idx, MMUAccessType type, uintptr_t ra)
{
MemoryRegionSection *section;
MemoryRegion *mr;
hwaddr mr_offset;
MemTxAttrs attrs;
tcg_debug_assert(size > 0 && size <= 8);
attrs = full->attrs;
section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
mr = section->mr;
BQL_LOCK_GUARD();
return int_ld_mmio_beN(cpu, full, ret_be, addr, size, mmu_idx,
type, ra, mr, mr_offset);
}
static Int128 do_ld16_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
uint64_t ret_be, vaddr addr, int size,
int mmu_idx, uintptr_t ra)
{
MemoryRegionSection *section;
MemoryRegion *mr;
hwaddr mr_offset;
MemTxAttrs attrs;
uint64_t a, b;
tcg_debug_assert(size > 8 && size <= 16);
attrs = full->attrs;
section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
mr = section->mr;
BQL_LOCK_GUARD();
a = int_ld_mmio_beN(cpu, full, ret_be, addr, size - 8, mmu_idx,
MMU_DATA_LOAD, ra, mr, mr_offset);
b = int_ld_mmio_beN(cpu, full, ret_be, addr + size - 8, 8, mmu_idx,
MMU_DATA_LOAD, ra, mr, mr_offset + size - 8);
return int128_make128(b, a);
}
/**
* do_ld_bytes_beN
* @p: translation parameters
* @ret_be: accumulated data
*
* Load @p->size bytes from @p->haddr, which is RAM.
* The bytes to concatenated in big-endian order with @ret_be.
*/
static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
{
uint8_t *haddr = p->haddr;
int i, size = p->size;
for (i = 0; i < size; i++) {
ret_be = (ret_be << 8) | haddr[i];
}
return ret_be;
}
/**
* do_ld_parts_beN
* @p: translation parameters
* @ret_be: accumulated data
*
* As do_ld_bytes_beN, but atomically on each aligned part.
*/
static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
{
void *haddr = p->haddr;
int size = p->size;
do {
uint64_t x;
int n;
/*
* Find minimum of alignment and size.
* This is slightly stronger than required by MO_ATOM_SUBALIGN, which
* would have only checked the low bits of addr|size once at the start,
* but is just as easy.
*/
switch (((uintptr_t)haddr | size) & 7) {
case 4:
x = cpu_to_be32(load_atomic4(haddr));
ret_be = (ret_be << 32) | x;
n = 4;
break;
case 2:
case 6:
x = cpu_to_be16(load_atomic2(haddr));
ret_be = (ret_be << 16) | x;
n = 2;
break;
default:
x = *(uint8_t *)haddr;
ret_be = (ret_be << 8) | x;
n = 1;
break;
case 0:
g_assert_not_reached();
}
haddr += n;
size -= n;
} while (size != 0);
return ret_be;
}
/**
* do_ld_parts_be4
* @p: translation parameters
* @ret_be: accumulated data
*
* As do_ld_bytes_beN, but with one atomic load.
* Four aligned bytes are guaranteed to cover the load.
*/
static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
{
int o = p->addr & 3;
uint32_t x = load_atomic4(p->haddr - o);
x = cpu_to_be32(x);
x <<= o * 8;
x >>= (4 - p->size) * 8;
return (ret_be << (p->size * 8)) | x;
}
/**
* do_ld_parts_be8
* @p: translation parameters
* @ret_be: accumulated data
*
* As do_ld_bytes_beN, but with one atomic load.
* Eight aligned bytes are guaranteed to cover the load.
*/
static uint64_t do_ld_whole_be8(CPUState *cpu, uintptr_t ra,
MMULookupPageData *p, uint64_t ret_be)
{
int o = p->addr & 7;
uint64_t x = load_atomic8_or_exit(cpu, ra, p->haddr - o);
x = cpu_to_be64(x);
x <<= o * 8;
x >>= (8 - p->size) * 8;
return (ret_be << (p->size * 8)) | x;
}
/**
* do_ld_parts_be16
* @p: translation parameters
* @ret_be: accumulated data
*
* As do_ld_bytes_beN, but with one atomic load.
* 16 aligned bytes are guaranteed to cover the load.
*/
static Int128 do_ld_whole_be16(CPUState *cpu, uintptr_t ra,
MMULookupPageData *p, uint64_t ret_be)
{
int o = p->addr & 15;
Int128 x, y = load_atomic16_or_exit(cpu, ra, p->haddr - o);
int size = p->size;
if (!HOST_BIG_ENDIAN) {
y = bswap128(y);
}
y = int128_lshift(y, o * 8);
y = int128_urshift(y, (16 - size) * 8);
x = int128_make64(ret_be);
x = int128_lshift(x, size * 8);
return int128_or(x, y);
}
/*
* Wrapper for the above.
*/
static uint64_t do_ld_beN(CPUState *cpu, MMULookupPageData *p,
uint64_t ret_be, int mmu_idx, MMUAccessType type,
MemOp mop, uintptr_t ra)
{
MemOp atom;
unsigned tmp, half_size;
if (unlikely(p->flags & TLB_MMIO)) {
return do_ld_mmio_beN(cpu, p->full, ret_be, p->addr, p->size,
mmu_idx, type, ra);
}
/*
* It is a given that we cross a page and therefore there is no
* atomicity for the load as a whole, but subobjects may need attention.
*/
atom = mop & MO_ATOM_MASK;
switch (atom) {
case MO_ATOM_SUBALIGN:
return do_ld_parts_beN(p, ret_be);
case MO_ATOM_IFALIGN_PAIR:
case MO_ATOM_WITHIN16_PAIR:
tmp = mop & MO_SIZE;
tmp = tmp ? tmp - 1 : 0;
half_size = 1 << tmp;
if (atom == MO_ATOM_IFALIGN_PAIR
? p->size == half_size
: p->size >= half_size) {
if (!HAVE_al8_fast && p->size < 4) {
return do_ld_whole_be4(p, ret_be);
} else {
return do_ld_whole_be8(cpu, ra, p, ret_be);
}
}
/* fall through */
case MO_ATOM_IFALIGN:
case MO_ATOM_WITHIN16:
case MO_ATOM_NONE:
return do_ld_bytes_beN(p, ret_be);
default:
g_assert_not_reached();
}
}
/*
* Wrapper for the above, for 8 < size < 16.
*/
static Int128 do_ld16_beN(CPUState *cpu, MMULookupPageData *p,
uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
{
int size = p->size;
uint64_t b;
MemOp atom;
if (unlikely(p->flags & TLB_MMIO)) {
return do_ld16_mmio_beN(cpu, p->full, a, p->addr, size, mmu_idx, ra);
}
/*
* It is a given that we cross a page and therefore there is no
* atomicity for the load as a whole, but subobjects may need attention.
*/
atom = mop & MO_ATOM_MASK;
switch (atom) {
case MO_ATOM_SUBALIGN:
p->size = size - 8;
a = do_ld_parts_beN(p, a);
p->haddr += size - 8;
p->size = 8;
b = do_ld_parts_beN(p, 0);
break;
case MO_ATOM_WITHIN16_PAIR:
/* Since size > 8, this is the half that must be atomic. */
return do_ld_whole_be16(cpu, ra, p, a);
case MO_ATOM_IFALIGN_PAIR:
/*
* Since size > 8, both halves are misaligned,
* and so neither is atomic.
*/
case MO_ATOM_IFALIGN:
case MO_ATOM_WITHIN16:
case MO_ATOM_NONE:
p->size = size - 8;
a = do_ld_bytes_beN(p, a);
b = ldq_be_p(p->haddr + size - 8);
break;
default:
g_assert_not_reached();
}
return int128_make128(b, a);
}
static uint8_t do_ld_1(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
MMUAccessType type, uintptr_t ra)
{
if (unlikely(p->flags & TLB_MMIO)) {
return do_ld_mmio_beN(cpu, p->full, 0, p->addr, 1, mmu_idx, type, ra);
} else {
return *(uint8_t *)p->haddr;
}
}
static uint16_t do_ld_2(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
MMUAccessType type, MemOp memop, uintptr_t ra)
{
uint16_t ret;
if (unlikely(p->flags & TLB_MMIO)) {
ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 2, mmu_idx, type, ra);
if ((memop & MO_BSWAP) == MO_LE) {
ret = bswap16(ret);
}
} else {
/* Perform the load host endian, then swap if necessary. */
ret = load_atom_2(cpu, ra, p->haddr, memop);
if (memop & MO_BSWAP) {
ret = bswap16(ret);
}
}
return ret;
}
static uint32_t do_ld_4(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
MMUAccessType type, MemOp memop, uintptr_t ra)
{
uint32_t ret;
if (unlikely(p->flags & TLB_MMIO)) {
ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 4, mmu_idx, type, ra);
if ((memop & MO_BSWAP) == MO_LE) {
ret = bswap32(ret);
}
} else {
/* Perform the load host endian. */
ret = load_atom_4(cpu, ra, p->haddr, memop);
if (memop & MO_BSWAP) {
ret = bswap32(ret);
}
}
return ret;
}
static uint64_t do_ld_8(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
MMUAccessType type, MemOp memop, uintptr_t ra)
{
uint64_t ret;
if (unlikely(p->flags & TLB_MMIO)) {
ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 8, mmu_idx, type, ra);
if ((memop & MO_BSWAP) == MO_LE) {
ret = bswap64(ret);
}
} else {
/* Perform the load host endian. */
ret = load_atom_8(cpu, ra, p->haddr, memop);
if (memop & MO_BSWAP) {
ret = bswap64(ret);
}
}
return ret;
}
static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
uintptr_t ra, MMUAccessType access_type)
{
MMULookupLocals l;
bool crosspage;
cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
tcg_debug_assert(!crosspage);
return do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra);
}
static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
uintptr_t ra, MMUAccessType access_type)
{
MMULookupLocals l;
bool crosspage;
uint16_t ret;
uint8_t a, b;
cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
if (likely(!crosspage)) {
return do_ld_2(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
}
a = do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra);
b = do_ld_1(cpu, &l.page[1], l.mmu_idx, access_type, ra);
if ((l.memop & MO_BSWAP) == MO_LE) {
ret = a | (b << 8);
} else {
ret = b | (a << 8);
}
return ret;
}
static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
uintptr_t ra, MMUAccessType access_type)
{
MMULookupLocals l;
bool crosspage;
uint32_t ret;
cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
if (likely(!crosspage)) {
return do_ld_4(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
}
ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
if ((l.memop & MO_BSWAP) == MO_LE) {
ret = bswap32(ret);
}
return ret;
}
static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
uintptr_t ra, MMUAccessType access_type)
{
MMULookupLocals l;
bool crosspage;
uint64_t ret;
cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
if (likely(!crosspage)) {
return do_ld_8(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
}
ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
if ((l.memop & MO_BSWAP) == MO_LE) {
ret = bswap64(ret);
}
return ret;
}
static Int128 do_ld16_mmu(CPUState *cpu, vaddr addr,
MemOpIdx oi, uintptr_t ra)
{
MMULookupLocals l;
bool crosspage;
uint64_t a, b;
Int128 ret;
int first;
cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_LOAD, &l);
if (likely(!crosspage)) {
if (unlikely(l.page[0].flags & TLB_MMIO)) {
ret = do_ld16_mmio_beN(cpu, l.page[0].full, 0, addr, 16,
l.mmu_idx, ra);
if ((l.memop & MO_BSWAP) == MO_LE) {
ret = bswap128(ret);
}
} else {
/* Perform the load host endian. */
ret = load_atom_16(cpu, ra, l.page[0].haddr, l.memop);
if (l.memop & MO_BSWAP) {
ret = bswap128(ret);
}
}
return ret;
}
first = l.page[0].size;
if (first == 8) {
MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
a = do_ld_8(cpu, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
b = do_ld_8(cpu, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
if ((mop8 & MO_BSWAP) == MO_LE) {
ret = int128_make128(a, b);
} else {
ret = int128_make128(b, a);
}
return ret;
}
if (first < 8) {
a = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx,
MMU_DATA_LOAD, l.memop, ra);
ret = do_ld16_beN(cpu, &l.page[1], a, l.mmu_idx, l.memop, ra);
} else {
ret = do_ld16_beN(cpu, &l.page[0], 0, l.mmu_idx, l.memop, ra);
b = int128_getlo(ret);
ret = int128_lshift(ret, l.page[1].size * 8);
a = int128_gethi(ret);
b = do_ld_beN(cpu, &l.page[1], b, l.mmu_idx,
MMU_DATA_LOAD, l.memop, ra);
ret = int128_make128(b, a);
}
if ((l.memop & MO_BSWAP) == MO_LE) {
ret = bswap128(ret);
}
return ret;
}
/*
* Store Helpers
*/
/**
* do_st_mmio_leN:
* @cpu: generic cpu state
* @full: page parameters
* @val_le: data to store
* @addr: virtual address
* @size: number of bytes
* @mmu_idx: virtual address context
* @ra: return address into tcg generated code, or 0
* Context: BQL held
*
* Store @size bytes at @addr, which is memory-mapped i/o.
* The bytes to store are extracted in little-endian order from @val_le;
* return the bytes of @val_le beyond @p->size that have not been stored.
*/
static uint64_t int_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
uint64_t val_le, vaddr addr, int size,
int mmu_idx, uintptr_t ra,
MemoryRegion *mr, hwaddr mr_offset)
{
do {
MemOp this_mop;
unsigned this_size;
MemTxResult r;
/* Store aligned pieces up to 8 bytes. */
this_mop = ctz32(size | (int)addr | 8);
this_size = 1 << this_mop;
this_mop |= MO_LE;
r = memory_region_dispatch_write(mr, mr_offset, val_le,
this_mop, full->attrs);
if (unlikely(r != MEMTX_OK)) {
io_failed(cpu, full, addr, this_size, MMU_DATA_STORE,
mmu_idx, r, ra);
}
if (this_size == 8) {
return 0;
}
val_le >>= this_size * 8;
addr += this_size;
mr_offset += this_size;
size -= this_size;
} while (size);
return val_le;
}
static uint64_t do_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
uint64_t val_le, vaddr addr, int size,
int mmu_idx, uintptr_t ra)
{
MemoryRegionSection *section;
hwaddr mr_offset;
MemoryRegion *mr;
MemTxAttrs attrs;
tcg_debug_assert(size > 0 && size <= 8);
attrs = full->attrs;
section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
mr = section->mr;
BQL_LOCK_GUARD();
return int_st_mmio_leN(cpu, full, val_le, addr, size, mmu_idx,
ra, mr, mr_offset);
}
static uint64_t do_st16_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
Int128 val_le, vaddr addr, int size,
int mmu_idx, uintptr_t ra)
{
MemoryRegionSection *section;
MemoryRegion *mr;
hwaddr mr_offset;
MemTxAttrs attrs;
tcg_debug_assert(size > 8 && size <= 16);
attrs = full->attrs;
section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
mr = section->mr;
BQL_LOCK_GUARD();
int_st_mmio_leN(cpu, full, int128_getlo(val_le), addr, 8,
mmu_idx, ra, mr, mr_offset);
return int_st_mmio_leN(cpu, full, int128_gethi(val_le), addr + 8,
size - 8, mmu_idx, ra, mr, mr_offset + 8);
}
/*
* Wrapper for the above.
*/
static uint64_t do_st_leN(CPUState *cpu, MMULookupPageData *p,
uint64_t val_le, int mmu_idx,
MemOp mop, uintptr_t ra)
{
MemOp atom;
unsigned tmp, half_size;
if (unlikely(p->flags & TLB_MMIO)) {
return do_st_mmio_leN(cpu, p->full, val_le, p->addr,
p->size, mmu_idx, ra);
} else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
return val_le >> (p->size * 8);
}
/*
* It is a given that we cross a page and therefore there is no atomicity
* for the store as a whole, but subobjects may need attention.
*/
atom = mop & MO_ATOM_MASK;
switch (atom) {
case MO_ATOM_SUBALIGN:
return store_parts_leN(p->haddr, p->size, val_le);
case MO_ATOM_IFALIGN_PAIR:
case MO_ATOM_WITHIN16_PAIR:
tmp = mop & MO_SIZE;
tmp = tmp ? tmp - 1 : 0;
half_size = 1 << tmp;
if (atom == MO_ATOM_IFALIGN_PAIR
? p->size == half_size
: p->size >= half_size) {
if (!HAVE_al8_fast && p->size <= 4) {
return store_whole_le4(p->haddr, p->size, val_le);
} else if (HAVE_al8) {
return store_whole_le8(p->haddr, p->size, val_le);
} else {
cpu_loop_exit_atomic(cpu, ra);
}
}
/* fall through */
case MO_ATOM_IFALIGN:
case MO_ATOM_WITHIN16:
case MO_ATOM_NONE:
return store_bytes_leN(p->haddr, p->size, val_le);
default:
g_assert_not_reached();
}
}
/*
* Wrapper for the above, for 8 < size < 16.
*/
static uint64_t do_st16_leN(CPUState *cpu, MMULookupPageData *p,
Int128 val_le, int mmu_idx,
MemOp mop, uintptr_t ra)
{
int size = p->size;
MemOp atom;
if (unlikely(p->flags & TLB_MMIO)) {
return do_st16_mmio_leN(cpu, p->full, val_le, p->addr,
size, mmu_idx, ra);
} else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
return int128_gethi(val_le) >> ((size - 8) * 8);
}
/*
* It is a given that we cross a page and therefore there is no atomicity
* for the store as a whole, but subobjects may need attention.
*/
atom = mop & MO_ATOM_MASK;
switch (atom) {
case MO_ATOM_SUBALIGN:
store_parts_leN(p->haddr, 8, int128_getlo(val_le));
return store_parts_leN(p->haddr + 8, p->size - 8,
int128_gethi(val_le));
case MO_ATOM_WITHIN16_PAIR:
/* Since size > 8, this is the half that must be atomic. */
if (!HAVE_CMPXCHG128) {
cpu_loop_exit_atomic(cpu, ra);
}
return store_whole_le16(p->haddr, p->size, val_le);
case MO_ATOM_IFALIGN_PAIR:
/*
* Since size > 8, both halves are misaligned,
* and so neither is atomic.
*/
case MO_ATOM_IFALIGN:
case MO_ATOM_WITHIN16:
case MO_ATOM_NONE:
stq_le_p(p->haddr, int128_getlo(val_le));
return store_bytes_leN(p->haddr + 8, p->size - 8,
int128_gethi(val_le));
default:
g_assert_not_reached();
}
}
static void do_st_1(CPUState *cpu, MMULookupPageData *p, uint8_t val,
int mmu_idx, uintptr_t ra)
{
if (unlikely(p->flags & TLB_MMIO)) {
do_st_mmio_leN(cpu, p->full, val, p->addr, 1, mmu_idx, ra);
} else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
/* nothing */
} else {
*(uint8_t *)p->haddr = val;
}
}
static void do_st_2(CPUState *cpu, MMULookupPageData *p, uint16_t val,
int mmu_idx, MemOp memop, uintptr_t ra)
{
if (unlikely(p->flags & TLB_MMIO)) {
if ((memop & MO_BSWAP) != MO_LE) {
val = bswap16(val);
}
do_st_mmio_leN(cpu, p->full, val, p->addr, 2, mmu_idx, ra);
} else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
/* nothing */
} else {
/* Swap to host endian if necessary, then store. */
if (memop & MO_BSWAP) {
val = bswap16(val);
}
store_atom_2(cpu, ra, p->haddr, memop, val);
}
}
static void do_st_4(CPUState *cpu, MMULookupPageData *p, uint32_t val,
int mmu_idx, MemOp memop, uintptr_t ra)
{
if (unlikely(p->flags & TLB_MMIO)) {
if ((memop & MO_BSWAP) != MO_LE) {
val = bswap32(val);
}
do_st_mmio_leN(cpu, p->full, val, p->addr, 4, mmu_idx, ra);
} else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
/* nothing */
} else {
/* Swap to host endian if necessary, then store. */
if (memop & MO_BSWAP) {
val = bswap32(val);
}
store_atom_4(cpu, ra, p->haddr, memop, val);
}
}
static void do_st_8(CPUState *cpu, MMULookupPageData *p, uint64_t val,
int mmu_idx, MemOp memop, uintptr_t ra)
{
if (unlikely(p->flags & TLB_MMIO)) {
if ((memop & MO_BSWAP) != MO_LE) {
val = bswap64(val);
}
do_st_mmio_leN(cpu, p->full, val, p->addr, 8, mmu_idx, ra);
} else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
/* nothing */
} else {
/* Swap to host endian if necessary, then store. */
if (memop & MO_BSWAP) {
val = bswap64(val);
}
store_atom_8(cpu, ra, p->haddr, memop, val);
}
}
static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val,
MemOpIdx oi, uintptr_t ra)
{
MMULookupLocals l;
bool crosspage;
cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
tcg_debug_assert(!crosspage);
do_st_1(cpu, &l.page[0], val, l.mmu_idx, ra);
}
static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val,
MemOpIdx oi, uintptr_t ra)
{
MMULookupLocals l;
bool crosspage;
uint8_t a, b;
cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
if (likely(!crosspage)) {
do_st_2(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
return;
}
if ((l.memop & MO_BSWAP) == MO_LE) {
a = val, b = val >> 8;
} else {
b = val, a = val >> 8;
}
do_st_1(cpu, &l.page[0], a, l.mmu_idx, ra);
do_st_1(cpu, &l.page[1], b, l.mmu_idx, ra);
}
static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val,
MemOpIdx oi, uintptr_t ra)
{
MMULookupLocals l;
bool crosspage;
cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
if (likely(!crosspage)) {
do_st_4(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
return;
}
/* Swap to little endian for simplicity, then store by bytes. */
if ((l.memop & MO_BSWAP) != MO_LE) {
val = bswap32(val);
}
val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
(void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
}
static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val,
MemOpIdx oi, uintptr_t ra)
{
MMULookupLocals l;
bool crosspage;
cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
if (likely(!crosspage)) {
do_st_8(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
return;
}
/* Swap to little endian for simplicity, then store by bytes. */
if ((l.memop & MO_BSWAP) != MO_LE) {
val = bswap64(val);
}
val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
(void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
}
static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val,
MemOpIdx oi, uintptr_t ra)
{
MMULookupLocals l;
bool crosspage;
uint64_t a, b;
int first;
cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
if (likely(!crosspage)) {
if (unlikely(l.page[0].flags & TLB_MMIO)) {
if ((l.memop & MO_BSWAP) != MO_LE) {
val = bswap128(val);
}
do_st16_mmio_leN(cpu, l.page[0].full, val, addr, 16, l.mmu_idx, ra);
} else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
/* nothing */
} else {
/* Swap to host endian if necessary, then store. */
if (l.memop & MO_BSWAP) {
val = bswap128(val);
}
store_atom_16(cpu, ra, l.page[0].haddr, l.memop, val);
}
return;
}
first = l.page[0].size;
if (first == 8) {
MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
if (l.memop & MO_BSWAP) {
val = bswap128(val);
}
if (HOST_BIG_ENDIAN) {
b = int128_getlo(val), a = int128_gethi(val);
} else {
a = int128_getlo(val), b = int128_gethi(val);
}
do_st_8(cpu, &l.page[0], a, l.mmu_idx, mop8, ra);
do_st_8(cpu, &l.page[1], b, l.mmu_idx, mop8, ra);
return;
}
if ((l.memop & MO_BSWAP) != MO_LE) {
val = bswap128(val);
}
if (first < 8) {
do_st_leN(cpu, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
val = int128_urshift(val, first * 8);
do_st16_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
} else {
b = do_st16_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
do_st_leN(cpu, &l.page[1], b, l.mmu_idx, l.memop, ra);
}
}
#include "ldst_common.c.inc"
/*
* First set of functions passes in OI and RETADDR.
* This makes them callable from other helpers.
*/
#define ATOMIC_NAME(X) \
glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
#define ATOMIC_MMU_CLEANUP
#include "atomic_common.c.inc"
#define DATA_SIZE 1
#include "atomic_template.h"
#define DATA_SIZE 2
#include "atomic_template.h"
#define DATA_SIZE 4
#include "atomic_template.h"
#ifdef CONFIG_ATOMIC64
#define DATA_SIZE 8
#include "atomic_template.h"
#endif
#if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
#define DATA_SIZE 16
#include "atomic_template.h"
#endif
/* Code access functions. */
uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
{
CPUState *cs = env_cpu(env);
MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(cs, true));
return do_ld1_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
}
uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
{
CPUState *cs = env_cpu(env);
MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(cs, true));
return do_ld2_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
}
uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
{
CPUState *cs = env_cpu(env);
MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(cs, true));
return do_ld4_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
}
uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
{
CPUState *cs = env_cpu(env);
MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(cs, true));
return do_ld8_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
}
uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t retaddr)
{
return do_ld1_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
}
uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t retaddr)
{
return do_ld2_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
}
uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t retaddr)
{
return do_ld4_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
}
uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t retaddr)
{
return do_ld8_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
}