| /* |
| * ARM mach-virt emulation |
| * |
| * Copyright (c) 2013 Linaro Limited |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2 or later, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program. If not, see <http://www.gnu.org/licenses/>. |
| * |
| * Emulate a virtual board which works by passing Linux all the information |
| * it needs about what devices are present via the device tree. |
| * There are some restrictions about what we can do here: |
| * + we can only present devices whose Linux drivers will work based |
| * purely on the device tree with no platform data at all |
| * + we want to present a very stripped-down minimalist platform, |
| * both because this reduces the security attack surface from the guest |
| * and also because it reduces our exposure to being broken when |
| * the kernel updates its device tree bindings and requires further |
| * information in a device binding that we aren't providing. |
| * This is essentially the same approach kvmtool uses. |
| */ |
| |
| #include "hw/sysbus.h" |
| #include "hw/arm/arm.h" |
| #include "hw/arm/primecell.h" |
| #include "hw/devices.h" |
| #include "net/net.h" |
| #include "sysemu/block-backend.h" |
| #include "sysemu/device_tree.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/kvm.h" |
| #include "hw/boards.h" |
| #include "hw/loader.h" |
| #include "exec/address-spaces.h" |
| #include "qemu/bitops.h" |
| #include "qemu/error-report.h" |
| #include "hw/pci-host/gpex.h" |
| |
| #define NUM_VIRTIO_TRANSPORTS 32 |
| |
| /* Number of external interrupt lines to configure the GIC with */ |
| #define NUM_IRQS 128 |
| |
| #define GIC_FDT_IRQ_TYPE_SPI 0 |
| #define GIC_FDT_IRQ_TYPE_PPI 1 |
| |
| #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1 |
| #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2 |
| #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4 |
| #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8 |
| |
| #define GIC_FDT_IRQ_PPI_CPU_START 8 |
| #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8 |
| |
| enum { |
| VIRT_FLASH, |
| VIRT_MEM, |
| VIRT_CPUPERIPHS, |
| VIRT_GIC_DIST, |
| VIRT_GIC_CPU, |
| VIRT_UART, |
| VIRT_MMIO, |
| VIRT_RTC, |
| VIRT_FW_CFG, |
| VIRT_PCIE, |
| }; |
| |
| typedef struct MemMapEntry { |
| hwaddr base; |
| hwaddr size; |
| } MemMapEntry; |
| |
| typedef struct VirtBoardInfo { |
| struct arm_boot_info bootinfo; |
| const char *cpu_model; |
| const MemMapEntry *memmap; |
| const int *irqmap; |
| int smp_cpus; |
| void *fdt; |
| int fdt_size; |
| uint32_t clock_phandle; |
| } VirtBoardInfo; |
| |
| typedef struct { |
| MachineClass parent; |
| VirtBoardInfo *daughterboard; |
| } VirtMachineClass; |
| |
| typedef struct { |
| MachineState parent; |
| bool secure; |
| } VirtMachineState; |
| |
| #define TYPE_VIRT_MACHINE "virt" |
| #define VIRT_MACHINE(obj) \ |
| OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE) |
| #define VIRT_MACHINE_GET_CLASS(obj) \ |
| OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE) |
| #define VIRT_MACHINE_CLASS(klass) \ |
| OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE) |
| |
| /* Addresses and sizes of our components. |
| * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. |
| * 128MB..256MB is used for miscellaneous device I/O. |
| * 256MB..1GB is reserved for possible future PCI support (ie where the |
| * PCI memory window will go if we add a PCI host controller). |
| * 1GB and up is RAM (which may happily spill over into the |
| * high memory region beyond 4GB). |
| * This represents a compromise between how much RAM can be given to |
| * a 32 bit VM and leaving space for expansion and in particular for PCI. |
| * Note that devices should generally be placed at multiples of 0x10000, |
| * to accommodate guests using 64K pages. |
| */ |
| static const MemMapEntry a15memmap[] = { |
| /* Space up to 0x8000000 is reserved for a boot ROM */ |
| [VIRT_FLASH] = { 0, 0x08000000 }, |
| [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, |
| /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ |
| [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, |
| [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, |
| [VIRT_UART] = { 0x09000000, 0x00001000 }, |
| [VIRT_RTC] = { 0x09010000, 0x00001000 }, |
| [VIRT_FW_CFG] = { 0x09020000, 0x0000000a }, |
| [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, |
| /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ |
| /* |
| * PCIE verbose map: |
| * |
| * MMIO window { 0x10000000, 0x2eff0000 }, |
| * PIO window { 0x3eff0000, 0x00010000 }, |
| * ECAM { 0x3f000000, 0x01000000 }, |
| */ |
| [VIRT_PCIE] = { 0x10000000, 0x30000000 }, |
| [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 }, |
| }; |
| |
| static const int a15irqmap[] = { |
| [VIRT_UART] = 1, |
| [VIRT_RTC] = 2, |
| [VIRT_PCIE] = 3, /* ... to 6 */ |
| [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ |
| }; |
| |
| static VirtBoardInfo machines[] = { |
| { |
| .cpu_model = "cortex-a15", |
| .memmap = a15memmap, |
| .irqmap = a15irqmap, |
| }, |
| { |
| .cpu_model = "cortex-a57", |
| .memmap = a15memmap, |
| .irqmap = a15irqmap, |
| }, |
| { |
| .cpu_model = "host", |
| .memmap = a15memmap, |
| .irqmap = a15irqmap, |
| }, |
| }; |
| |
| static VirtBoardInfo *find_machine_info(const char *cpu) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(machines); i++) { |
| if (strcmp(cpu, machines[i].cpu_model) == 0) { |
| return &machines[i]; |
| } |
| } |
| return NULL; |
| } |
| |
| static void create_fdt(VirtBoardInfo *vbi) |
| { |
| void *fdt = create_device_tree(&vbi->fdt_size); |
| |
| if (!fdt) { |
| error_report("create_device_tree() failed"); |
| exit(1); |
| } |
| |
| vbi->fdt = fdt; |
| |
| /* Header */ |
| qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); |
| qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); |
| qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); |
| |
| /* |
| * /chosen and /memory nodes must exist for load_dtb |
| * to fill in necessary properties later |
| */ |
| qemu_fdt_add_subnode(fdt, "/chosen"); |
| qemu_fdt_add_subnode(fdt, "/memory"); |
| qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); |
| |
| /* Clock node, for the benefit of the UART. The kernel device tree |
| * binding documentation claims the PL011 node clock properties are |
| * optional but in practice if you omit them the kernel refuses to |
| * probe for the device. |
| */ |
| vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt); |
| qemu_fdt_add_subnode(fdt, "/apb-pclk"); |
| qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); |
| qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); |
| qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); |
| qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", |
| "clk24mhz"); |
| qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle); |
| |
| } |
| |
| static void fdt_add_psci_node(const VirtBoardInfo *vbi) |
| { |
| uint32_t cpu_suspend_fn; |
| uint32_t cpu_off_fn; |
| uint32_t cpu_on_fn; |
| uint32_t migrate_fn; |
| void *fdt = vbi->fdt; |
| ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); |
| |
| qemu_fdt_add_subnode(fdt, "/psci"); |
| if (armcpu->psci_version == 2) { |
| const char comp[] = "arm,psci-0.2\0arm,psci"; |
| qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); |
| |
| cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; |
| if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { |
| cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; |
| cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; |
| migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; |
| } else { |
| cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; |
| cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; |
| migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; |
| } |
| } else { |
| qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); |
| |
| cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; |
| cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; |
| cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; |
| migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; |
| } |
| |
| /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer |
| * to the instruction that should be used to invoke PSCI functions. |
| * However, the device tree binding uses 'method' instead, so that is |
| * what we should use here. |
| */ |
| qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); |
| |
| qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); |
| qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); |
| qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); |
| qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); |
| } |
| |
| static void fdt_add_timer_nodes(const VirtBoardInfo *vbi) |
| { |
| /* Note that on A15 h/w these interrupts are level-triggered, |
| * but for the GIC implementation provided by both QEMU and KVM |
| * they are edge-triggered. |
| */ |
| ARMCPU *armcpu; |
| uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; |
| |
| irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, |
| GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1); |
| |
| qemu_fdt_add_subnode(vbi->fdt, "/timer"); |
| |
| armcpu = ARM_CPU(qemu_get_cpu(0)); |
| if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { |
| const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; |
| qemu_fdt_setprop(vbi->fdt, "/timer", "compatible", |
| compat, sizeof(compat)); |
| } else { |
| qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible", |
| "arm,armv7-timer"); |
| } |
| qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts", |
| GIC_FDT_IRQ_TYPE_PPI, 13, irqflags, |
| GIC_FDT_IRQ_TYPE_PPI, 14, irqflags, |
| GIC_FDT_IRQ_TYPE_PPI, 11, irqflags, |
| GIC_FDT_IRQ_TYPE_PPI, 10, irqflags); |
| } |
| |
| static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi) |
| { |
| int cpu; |
| |
| qemu_fdt_add_subnode(vbi->fdt, "/cpus"); |
| qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1); |
| qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0); |
| |
| for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) { |
| char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); |
| ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); |
| |
| qemu_fdt_add_subnode(vbi->fdt, nodename); |
| qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu"); |
| qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", |
| armcpu->dtb_compatible); |
| |
| if (vbi->smp_cpus > 1) { |
| qemu_fdt_setprop_string(vbi->fdt, nodename, |
| "enable-method", "psci"); |
| } |
| |
| qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu); |
| g_free(nodename); |
| } |
| } |
| |
| static uint32_t fdt_add_gic_node(const VirtBoardInfo *vbi) |
| { |
| uint32_t gic_phandle; |
| |
| gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt); |
| qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle); |
| |
| qemu_fdt_add_subnode(vbi->fdt, "/intc"); |
| /* 'cortex-a15-gic' means 'GIC v2' */ |
| qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", |
| "arm,cortex-a15-gic"); |
| qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3); |
| qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0); |
| qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", |
| 2, vbi->memmap[VIRT_GIC_DIST].base, |
| 2, vbi->memmap[VIRT_GIC_DIST].size, |
| 2, vbi->memmap[VIRT_GIC_CPU].base, |
| 2, vbi->memmap[VIRT_GIC_CPU].size); |
| qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle); |
| |
| return gic_phandle; |
| } |
| |
| static uint32_t create_gic(const VirtBoardInfo *vbi, qemu_irq *pic) |
| { |
| /* We create a standalone GIC v2 */ |
| DeviceState *gicdev; |
| SysBusDevice *gicbusdev; |
| const char *gictype = "arm_gic"; |
| int i; |
| |
| if (kvm_irqchip_in_kernel()) { |
| gictype = "kvm-arm-gic"; |
| } |
| |
| gicdev = qdev_create(NULL, gictype); |
| qdev_prop_set_uint32(gicdev, "revision", 2); |
| qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); |
| /* Note that the num-irq property counts both internal and external |
| * interrupts; there are always 32 of the former (mandated by GIC spec). |
| */ |
| qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); |
| qdev_init_nofail(gicdev); |
| gicbusdev = SYS_BUS_DEVICE(gicdev); |
| sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base); |
| sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base); |
| |
| /* Wire the outputs from each CPU's generic timer to the |
| * appropriate GIC PPI inputs, and the GIC's IRQ output to |
| * the CPU's IRQ input. |
| */ |
| for (i = 0; i < smp_cpus; i++) { |
| DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); |
| int ppibase = NUM_IRQS + i * 32; |
| /* physical timer; we wire it up to the non-secure timer's ID, |
| * since a real A15 always has TrustZone but QEMU doesn't. |
| */ |
| qdev_connect_gpio_out(cpudev, 0, |
| qdev_get_gpio_in(gicdev, ppibase + 30)); |
| /* virtual timer */ |
| qdev_connect_gpio_out(cpudev, 1, |
| qdev_get_gpio_in(gicdev, ppibase + 27)); |
| |
| sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); |
| } |
| |
| for (i = 0; i < NUM_IRQS; i++) { |
| pic[i] = qdev_get_gpio_in(gicdev, i); |
| } |
| |
| return fdt_add_gic_node(vbi); |
| } |
| |
| static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic) |
| { |
| char *nodename; |
| hwaddr base = vbi->memmap[VIRT_UART].base; |
| hwaddr size = vbi->memmap[VIRT_UART].size; |
| int irq = vbi->irqmap[VIRT_UART]; |
| const char compat[] = "arm,pl011\0arm,primecell"; |
| const char clocknames[] = "uartclk\0apb_pclk"; |
| |
| sysbus_create_simple("pl011", base, pic[irq]); |
| |
| nodename = g_strdup_printf("/pl011@%" PRIx64, base); |
| qemu_fdt_add_subnode(vbi->fdt, nodename); |
| /* Note that we can't use setprop_string because of the embedded NUL */ |
| qemu_fdt_setprop(vbi->fdt, nodename, "compatible", |
| compat, sizeof(compat)); |
| qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", |
| 2, base, 2, size); |
| qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", |
| GIC_FDT_IRQ_TYPE_SPI, irq, |
| GIC_FDT_IRQ_FLAGS_LEVEL_HI); |
| qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks", |
| vbi->clock_phandle, vbi->clock_phandle); |
| qemu_fdt_setprop(vbi->fdt, nodename, "clock-names", |
| clocknames, sizeof(clocknames)); |
| |
| qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename); |
| g_free(nodename); |
| } |
| |
| static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic) |
| { |
| char *nodename; |
| hwaddr base = vbi->memmap[VIRT_RTC].base; |
| hwaddr size = vbi->memmap[VIRT_RTC].size; |
| int irq = vbi->irqmap[VIRT_RTC]; |
| const char compat[] = "arm,pl031\0arm,primecell"; |
| |
| sysbus_create_simple("pl031", base, pic[irq]); |
| |
| nodename = g_strdup_printf("/pl031@%" PRIx64, base); |
| qemu_fdt_add_subnode(vbi->fdt, nodename); |
| qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); |
| qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", |
| 2, base, 2, size); |
| qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", |
| GIC_FDT_IRQ_TYPE_SPI, irq, |
| GIC_FDT_IRQ_FLAGS_LEVEL_HI); |
| qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); |
| qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); |
| g_free(nodename); |
| } |
| |
| static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic) |
| { |
| int i; |
| hwaddr size = vbi->memmap[VIRT_MMIO].size; |
| |
| /* We create the transports in forwards order. Since qbus_realize() |
| * prepends (not appends) new child buses, the incrementing loop below will |
| * create a list of virtio-mmio buses with decreasing base addresses. |
| * |
| * When a -device option is processed from the command line, |
| * qbus_find_recursive() picks the next free virtio-mmio bus in forwards |
| * order. The upshot is that -device options in increasing command line |
| * order are mapped to virtio-mmio buses with decreasing base addresses. |
| * |
| * When this code was originally written, that arrangement ensured that the |
| * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to |
| * the first -device on the command line. (The end-to-end order is a |
| * function of this loop, qbus_realize(), qbus_find_recursive(), and the |
| * guest kernel's name-to-address assignment strategy.) |
| * |
| * Meanwhile, the kernel's traversal seems to have been reversed; see eg. |
| * the message, if not necessarily the code, of commit 70161ff336. |
| * Therefore the loop now establishes the inverse of the original intent. |
| * |
| * Unfortunately, we can't counteract the kernel change by reversing the |
| * loop; it would break existing command lines. |
| * |
| * In any case, the kernel makes no guarantee about the stability of |
| * enumeration order of virtio devices (as demonstrated by it changing |
| * between kernel versions). For reliable and stable identification |
| * of disks users must use UUIDs or similar mechanisms. |
| */ |
| for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { |
| int irq = vbi->irqmap[VIRT_MMIO] + i; |
| hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; |
| |
| sysbus_create_simple("virtio-mmio", base, pic[irq]); |
| } |
| |
| /* We add dtb nodes in reverse order so that they appear in the finished |
| * device tree lowest address first. |
| * |
| * Note that this mapping is independent of the loop above. The previous |
| * loop influences virtio device to virtio transport assignment, whereas |
| * this loop controls how virtio transports are laid out in the dtb. |
| */ |
| for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { |
| char *nodename; |
| int irq = vbi->irqmap[VIRT_MMIO] + i; |
| hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; |
| |
| nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); |
| qemu_fdt_add_subnode(vbi->fdt, nodename); |
| qemu_fdt_setprop_string(vbi->fdt, nodename, |
| "compatible", "virtio,mmio"); |
| qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", |
| 2, base, 2, size); |
| qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", |
| GIC_FDT_IRQ_TYPE_SPI, irq, |
| GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); |
| g_free(nodename); |
| } |
| } |
| |
| static void create_one_flash(const char *name, hwaddr flashbase, |
| hwaddr flashsize) |
| { |
| /* Create and map a single flash device. We use the same |
| * parameters as the flash devices on the Versatile Express board. |
| */ |
| DriveInfo *dinfo = drive_get_next(IF_PFLASH); |
| DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); |
| const uint64_t sectorlength = 256 * 1024; |
| |
| if (dinfo) { |
| qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), |
| &error_abort); |
| } |
| |
| qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); |
| qdev_prop_set_uint64(dev, "sector-length", sectorlength); |
| qdev_prop_set_uint8(dev, "width", 4); |
| qdev_prop_set_uint8(dev, "device-width", 2); |
| qdev_prop_set_uint8(dev, "big-endian", 0); |
| qdev_prop_set_uint16(dev, "id0", 0x89); |
| qdev_prop_set_uint16(dev, "id1", 0x18); |
| qdev_prop_set_uint16(dev, "id2", 0x00); |
| qdev_prop_set_uint16(dev, "id3", 0x00); |
| qdev_prop_set_string(dev, "name", name); |
| qdev_init_nofail(dev); |
| |
| sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase); |
| } |
| |
| static void create_flash(const VirtBoardInfo *vbi) |
| { |
| /* Create two flash devices to fill the VIRT_FLASH space in the memmap. |
| * Any file passed via -bios goes in the first of these. |
| */ |
| hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2; |
| hwaddr flashbase = vbi->memmap[VIRT_FLASH].base; |
| char *nodename; |
| |
| if (bios_name) { |
| const char *fn; |
| |
| if (drive_get(IF_PFLASH, 0, 0)) { |
| error_report("The contents of the first flash device may be " |
| "specified with -bios or with -drive if=pflash... " |
| "but you cannot use both options at once"); |
| exit(1); |
| } |
| fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); |
| if (!fn || load_image_targphys(fn, flashbase, flashsize) < 0) { |
| error_report("Could not load ROM image '%s'", bios_name); |
| exit(1); |
| } |
| } |
| |
| create_one_flash("virt.flash0", flashbase, flashsize); |
| create_one_flash("virt.flash1", flashbase + flashsize, flashsize); |
| |
| nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); |
| qemu_fdt_add_subnode(vbi->fdt, nodename); |
| qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); |
| qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", |
| 2, flashbase, 2, flashsize, |
| 2, flashbase + flashsize, 2, flashsize); |
| qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); |
| g_free(nodename); |
| } |
| |
| static void create_fw_cfg(const VirtBoardInfo *vbi) |
| { |
| hwaddr base = vbi->memmap[VIRT_FW_CFG].base; |
| hwaddr size = vbi->memmap[VIRT_FW_CFG].size; |
| char *nodename; |
| |
| fw_cfg_init_mem_wide(base + 8, base, 8); |
| |
| nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); |
| qemu_fdt_add_subnode(vbi->fdt, nodename); |
| qemu_fdt_setprop_string(vbi->fdt, nodename, |
| "compatible", "qemu,fw-cfg-mmio"); |
| qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", |
| 2, base, 2, size); |
| g_free(nodename); |
| } |
| |
| static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle, |
| int first_irq, const char *nodename) |
| { |
| int devfn, pin; |
| uint32_t full_irq_map[4 * 4 * 8] = { 0 }; |
| uint32_t *irq_map = full_irq_map; |
| |
| for (devfn = 0; devfn <= 0x18; devfn += 0x8) { |
| for (pin = 0; pin < 4; pin++) { |
| int irq_type = GIC_FDT_IRQ_TYPE_SPI; |
| int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); |
| int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; |
| int i; |
| |
| uint32_t map[] = { |
| devfn << 8, 0, 0, /* devfn */ |
| pin + 1, /* PCI pin */ |
| gic_phandle, irq_type, irq_nr, irq_level }; /* GIC irq */ |
| |
| /* Convert map to big endian */ |
| for (i = 0; i < 8; i++) { |
| irq_map[i] = cpu_to_be32(map[i]); |
| } |
| irq_map += 8; |
| } |
| } |
| |
| qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map", |
| full_irq_map, sizeof(full_irq_map)); |
| |
| qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask", |
| 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ |
| 0x7 /* PCI irq */); |
| } |
| |
| static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic, |
| uint32_t gic_phandle) |
| { |
| hwaddr base = vbi->memmap[VIRT_PCIE].base; |
| hwaddr size = vbi->memmap[VIRT_PCIE].size; |
| hwaddr end = base + size; |
| hwaddr size_mmio; |
| hwaddr size_ioport = 64 * 1024; |
| int nr_pcie_buses = 16; |
| hwaddr size_ecam = PCIE_MMCFG_SIZE_MIN * nr_pcie_buses; |
| hwaddr base_mmio = base; |
| hwaddr base_ioport; |
| hwaddr base_ecam; |
| int irq = vbi->irqmap[VIRT_PCIE]; |
| MemoryRegion *mmio_alias; |
| MemoryRegion *mmio_reg; |
| MemoryRegion *ecam_alias; |
| MemoryRegion *ecam_reg; |
| DeviceState *dev; |
| char *nodename; |
| int i; |
| |
| base_ecam = QEMU_ALIGN_DOWN(end - size_ecam, size_ecam); |
| base_ioport = QEMU_ALIGN_DOWN(base_ecam - size_ioport, size_ioport); |
| size_mmio = base_ioport - base; |
| |
| dev = qdev_create(NULL, TYPE_GPEX_HOST); |
| qdev_init_nofail(dev); |
| |
| /* Map only the first size_ecam bytes of ECAM space */ |
| ecam_alias = g_new0(MemoryRegion, 1); |
| ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); |
| memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", |
| ecam_reg, 0, size_ecam); |
| memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); |
| |
| /* Map the MMIO window into system address space so as to expose |
| * the section of PCI MMIO space which starts at the same base address |
| * (ie 1:1 mapping for that part of PCI MMIO space visible through |
| * the window). |
| */ |
| mmio_alias = g_new0(MemoryRegion, 1); |
| mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); |
| memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", |
| mmio_reg, base_mmio, size_mmio); |
| memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); |
| |
| /* Map IO port space */ |
| sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_ioport); |
| |
| for (i = 0; i < GPEX_NUM_IRQS; i++) { |
| sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); |
| } |
| |
| nodename = g_strdup_printf("/pcie@%" PRIx64, base); |
| qemu_fdt_add_subnode(vbi->fdt, nodename); |
| qemu_fdt_setprop_string(vbi->fdt, nodename, |
| "compatible", "pci-host-ecam-generic"); |
| qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci"); |
| qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3); |
| qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2); |
| qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0, |
| nr_pcie_buses - 1); |
| |
| qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", |
| 2, base_ecam, 2, size_ecam); |
| qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", |
| 1, FDT_PCI_RANGE_IOPORT, 2, 0, |
| 2, base_ioport, 2, size_ioport, |
| 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, |
| 2, base_mmio, 2, size_mmio); |
| |
| qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1); |
| create_pcie_irq_map(vbi, gic_phandle, irq, nodename); |
| |
| g_free(nodename); |
| } |
| |
| static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) |
| { |
| const VirtBoardInfo *board = (const VirtBoardInfo *)binfo; |
| |
| *fdt_size = board->fdt_size; |
| return board->fdt; |
| } |
| |
| static void machvirt_init(MachineState *machine) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(machine); |
| qemu_irq pic[NUM_IRQS]; |
| MemoryRegion *sysmem = get_system_memory(); |
| int n; |
| MemoryRegion *ram = g_new(MemoryRegion, 1); |
| const char *cpu_model = machine->cpu_model; |
| VirtBoardInfo *vbi; |
| uint32_t gic_phandle; |
| char **cpustr; |
| |
| if (!cpu_model) { |
| cpu_model = "cortex-a15"; |
| } |
| |
| /* Separate the actual CPU model name from any appended features */ |
| cpustr = g_strsplit(cpu_model, ",", 2); |
| |
| vbi = find_machine_info(cpustr[0]); |
| |
| if (!vbi) { |
| error_report("mach-virt: CPU %s not supported", cpustr[0]); |
| exit(1); |
| } |
| |
| vbi->smp_cpus = smp_cpus; |
| |
| if (machine->ram_size > vbi->memmap[VIRT_MEM].size) { |
| error_report("mach-virt: cannot model more than 30GB RAM"); |
| exit(1); |
| } |
| |
| create_fdt(vbi); |
| |
| for (n = 0; n < smp_cpus; n++) { |
| ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]); |
| CPUClass *cc = CPU_CLASS(oc); |
| Object *cpuobj; |
| Error *err = NULL; |
| |
| if (!oc) { |
| fprintf(stderr, "Unable to find CPU definition\n"); |
| exit(1); |
| } |
| cpuobj = object_new(object_class_get_name(oc)); |
| |
| /* Handle any CPU options specified by the user */ |
| cc->parse_features(CPU(cpuobj), cpustr[1], &err); |
| if (err) { |
| error_report("%s", error_get_pretty(err)); |
| exit(1); |
| } |
| |
| if (!vms->secure) { |
| object_property_set_bool(cpuobj, false, "has_el3", NULL); |
| } |
| |
| object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit", |
| NULL); |
| |
| /* Secondary CPUs start in PSCI powered-down state */ |
| if (n > 0) { |
| object_property_set_bool(cpuobj, true, "start-powered-off", NULL); |
| } |
| |
| if (object_property_find(cpuobj, "reset-cbar", NULL)) { |
| object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base, |
| "reset-cbar", &error_abort); |
| } |
| |
| object_property_set_bool(cpuobj, true, "realized", NULL); |
| } |
| g_strfreev(cpustr); |
| fdt_add_timer_nodes(vbi); |
| fdt_add_cpu_nodes(vbi); |
| fdt_add_psci_node(vbi); |
| |
| memory_region_init_ram(ram, NULL, "mach-virt.ram", machine->ram_size, |
| &error_abort); |
| vmstate_register_ram_global(ram); |
| memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram); |
| |
| create_flash(vbi); |
| |
| gic_phandle = create_gic(vbi, pic); |
| |
| create_uart(vbi, pic); |
| |
| create_rtc(vbi, pic); |
| |
| create_pcie(vbi, pic, gic_phandle); |
| |
| /* Create mmio transports, so the user can create virtio backends |
| * (which will be automatically plugged in to the transports). If |
| * no backend is created the transport will just sit harmlessly idle. |
| */ |
| create_virtio_devices(vbi, pic); |
| |
| create_fw_cfg(vbi); |
| |
| vbi->bootinfo.ram_size = machine->ram_size; |
| vbi->bootinfo.kernel_filename = machine->kernel_filename; |
| vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline; |
| vbi->bootinfo.initrd_filename = machine->initrd_filename; |
| vbi->bootinfo.nb_cpus = smp_cpus; |
| vbi->bootinfo.board_id = -1; |
| vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base; |
| vbi->bootinfo.get_dtb = machvirt_dtb; |
| vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0); |
| arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo); |
| } |
| |
| static bool virt_get_secure(Object *obj, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| return vms->secure; |
| } |
| |
| static void virt_set_secure(Object *obj, bool value, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| vms->secure = value; |
| } |
| |
| static void virt_instance_init(Object *obj) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| /* EL3 is enabled by default on virt */ |
| vms->secure = true; |
| object_property_add_bool(obj, "secure", virt_get_secure, |
| virt_set_secure, NULL); |
| object_property_set_description(obj, "secure", |
| "Set on/off to enable/disable the ARM " |
| "Security Extensions (TrustZone)", |
| NULL); |
| } |
| |
| static void virt_class_init(ObjectClass *oc, void *data) |
| { |
| MachineClass *mc = MACHINE_CLASS(oc); |
| |
| mc->name = TYPE_VIRT_MACHINE; |
| mc->desc = "ARM Virtual Machine", |
| mc->init = machvirt_init; |
| mc->max_cpus = 8; |
| } |
| |
| static const TypeInfo machvirt_info = { |
| .name = TYPE_VIRT_MACHINE, |
| .parent = TYPE_MACHINE, |
| .instance_size = sizeof(VirtMachineState), |
| .instance_init = virt_instance_init, |
| .class_size = sizeof(VirtMachineClass), |
| .class_init = virt_class_init, |
| }; |
| |
| static void machvirt_machine_init(void) |
| { |
| type_register_static(&machvirt_info); |
| } |
| |
| machine_init(machvirt_machine_init); |