| /* |
| * Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/qemu-print.h" |
| #include "cpu.h" |
| #include "internal.h" |
| #include "exec/exec-all.h" |
| #include "qapi/error.h" |
| #include "hw/qdev-properties.h" |
| #include "fpu/softfloat-helpers.h" |
| #include "tcg/tcg.h" |
| |
| static void hexagon_v67_cpu_init(Object *obj) { } |
| static void hexagon_v68_cpu_init(Object *obj) { } |
| static void hexagon_v69_cpu_init(Object *obj) { } |
| static void hexagon_v71_cpu_init(Object *obj) { } |
| static void hexagon_v73_cpu_init(Object *obj) { } |
| |
| static ObjectClass *hexagon_cpu_class_by_name(const char *cpu_model) |
| { |
| ObjectClass *oc; |
| char *typename; |
| char **cpuname; |
| |
| cpuname = g_strsplit(cpu_model, ",", 1); |
| typename = g_strdup_printf(HEXAGON_CPU_TYPE_NAME("%s"), cpuname[0]); |
| oc = object_class_by_name(typename); |
| g_strfreev(cpuname); |
| g_free(typename); |
| if (!oc || !object_class_dynamic_cast(oc, TYPE_HEXAGON_CPU) || |
| object_class_is_abstract(oc)) { |
| return NULL; |
| } |
| return oc; |
| } |
| |
| static Property hexagon_lldb_compat_property = |
| DEFINE_PROP_BOOL("lldb-compat", HexagonCPU, lldb_compat, false); |
| static Property hexagon_lldb_stack_adjust_property = |
| DEFINE_PROP_UNSIGNED("lldb-stack-adjust", HexagonCPU, lldb_stack_adjust, |
| 0, qdev_prop_uint32, target_ulong); |
| static Property hexagon_short_circuit_property = |
| DEFINE_PROP_BOOL("short-circuit", HexagonCPU, short_circuit, true); |
| |
| const char * const hexagon_regnames[TOTAL_PER_THREAD_REGS] = { |
| "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
| "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", |
| "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", |
| "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", |
| "sa0", "lc0", "sa1", "lc1", "p3_0", "c5", "m0", "m1", |
| "usr", "pc", "ugp", "gp", "cs0", "cs1", "c14", "c15", |
| "c16", "c17", "c18", "c19", "pkt_cnt", "insn_cnt", "hvx_cnt", "c23", |
| "c24", "c25", "c26", "c27", "c28", "c29", "c30", "c31", |
| }; |
| |
| /* |
| * One of the main debugging techniques is to use "-d cpu" and compare against |
| * LLDB output when single stepping. However, the target and qemu put the |
| * stacks at different locations. This is used to compensate so the diff is |
| * cleaner. |
| */ |
| static target_ulong adjust_stack_ptrs(CPUHexagonState *env, target_ulong addr) |
| { |
| HexagonCPU *cpu = env_archcpu(env); |
| target_ulong stack_adjust = cpu->lldb_stack_adjust; |
| target_ulong stack_start = env->stack_start; |
| target_ulong stack_size = 0x10000; |
| |
| if (stack_adjust == 0) { |
| return addr; |
| } |
| |
| if (stack_start + 0x1000 >= addr && addr >= (stack_start - stack_size)) { |
| return addr - stack_adjust; |
| } |
| return addr; |
| } |
| |
| /* HEX_REG_P3_0_ALIASED (aka C4) is an alias for the predicate registers */ |
| static target_ulong read_p3_0(CPUHexagonState *env) |
| { |
| int32_t control_reg = 0; |
| int i; |
| for (i = NUM_PREGS - 1; i >= 0; i--) { |
| control_reg <<= 8; |
| control_reg |= env->pred[i] & 0xff; |
| } |
| return control_reg; |
| } |
| |
| static void print_reg(FILE *f, CPUHexagonState *env, int regnum) |
| { |
| target_ulong value; |
| |
| if (regnum == HEX_REG_P3_0_ALIASED) { |
| value = read_p3_0(env); |
| } else { |
| value = regnum < 32 ? adjust_stack_ptrs(env, env->gpr[regnum]) |
| : env->gpr[regnum]; |
| } |
| |
| qemu_fprintf(f, " %s = 0x" TARGET_FMT_lx "\n", |
| hexagon_regnames[regnum], value); |
| } |
| |
| static void print_vreg(FILE *f, CPUHexagonState *env, int regnum, |
| bool skip_if_zero) |
| { |
| if (skip_if_zero) { |
| bool nonzero_found = false; |
| for (int i = 0; i < MAX_VEC_SIZE_BYTES; i++) { |
| if (env->VRegs[regnum].ub[i] != 0) { |
| nonzero_found = true; |
| break; |
| } |
| } |
| if (!nonzero_found) { |
| return; |
| } |
| } |
| |
| qemu_fprintf(f, " v%d = ( ", regnum); |
| qemu_fprintf(f, "0x%02x", env->VRegs[regnum].ub[MAX_VEC_SIZE_BYTES - 1]); |
| for (int i = MAX_VEC_SIZE_BYTES - 2; i >= 0; i--) { |
| qemu_fprintf(f, ", 0x%02x", env->VRegs[regnum].ub[i]); |
| } |
| qemu_fprintf(f, " )\n"); |
| } |
| |
| void hexagon_debug_vreg(CPUHexagonState *env, int regnum) |
| { |
| print_vreg(stdout, env, regnum, false); |
| } |
| |
| static void print_qreg(FILE *f, CPUHexagonState *env, int regnum, |
| bool skip_if_zero) |
| { |
| if (skip_if_zero) { |
| bool nonzero_found = false; |
| for (int i = 0; i < MAX_VEC_SIZE_BYTES / 8; i++) { |
| if (env->QRegs[regnum].ub[i] != 0) { |
| nonzero_found = true; |
| break; |
| } |
| } |
| if (!nonzero_found) { |
| return; |
| } |
| } |
| |
| qemu_fprintf(f, " q%d = ( ", regnum); |
| qemu_fprintf(f, "0x%02x", |
| env->QRegs[regnum].ub[MAX_VEC_SIZE_BYTES / 8 - 1]); |
| for (int i = MAX_VEC_SIZE_BYTES / 8 - 2; i >= 0; i--) { |
| qemu_fprintf(f, ", 0x%02x", env->QRegs[regnum].ub[i]); |
| } |
| qemu_fprintf(f, " )\n"); |
| } |
| |
| void hexagon_debug_qreg(CPUHexagonState *env, int regnum) |
| { |
| print_qreg(stdout, env, regnum, false); |
| } |
| |
| static void hexagon_dump(CPUHexagonState *env, FILE *f, int flags) |
| { |
| HexagonCPU *cpu = env_archcpu(env); |
| |
| if (cpu->lldb_compat) { |
| /* |
| * When comparing with LLDB, it doesn't step through single-cycle |
| * hardware loops the same way. So, we just skip them here |
| */ |
| if (env->gpr[HEX_REG_PC] == env->last_pc_dumped) { |
| return; |
| } |
| env->last_pc_dumped = env->gpr[HEX_REG_PC]; |
| } |
| |
| qemu_fprintf(f, "General Purpose Registers = {\n"); |
| for (int i = 0; i < 32; i++) { |
| print_reg(f, env, i); |
| } |
| print_reg(f, env, HEX_REG_SA0); |
| print_reg(f, env, HEX_REG_LC0); |
| print_reg(f, env, HEX_REG_SA1); |
| print_reg(f, env, HEX_REG_LC1); |
| print_reg(f, env, HEX_REG_M0); |
| print_reg(f, env, HEX_REG_M1); |
| print_reg(f, env, HEX_REG_USR); |
| print_reg(f, env, HEX_REG_P3_0_ALIASED); |
| print_reg(f, env, HEX_REG_GP); |
| print_reg(f, env, HEX_REG_UGP); |
| print_reg(f, env, HEX_REG_PC); |
| #ifdef CONFIG_USER_ONLY |
| /* |
| * Not modelled in user mode, print junk to minimize the diff's |
| * with LLDB output |
| */ |
| qemu_fprintf(f, " cause = 0x000000db\n"); |
| qemu_fprintf(f, " badva = 0x00000000\n"); |
| qemu_fprintf(f, " cs0 = 0x00000000\n"); |
| qemu_fprintf(f, " cs1 = 0x00000000\n"); |
| #else |
| print_reg(f, env, HEX_REG_CAUSE); |
| print_reg(f, env, HEX_REG_BADVA); |
| print_reg(f, env, HEX_REG_CS0); |
| print_reg(f, env, HEX_REG_CS1); |
| #endif |
| qemu_fprintf(f, "}\n"); |
| |
| if (flags & CPU_DUMP_FPU) { |
| qemu_fprintf(f, "Vector Registers = {\n"); |
| for (int i = 0; i < NUM_VREGS; i++) { |
| print_vreg(f, env, i, true); |
| } |
| for (int i = 0; i < NUM_QREGS; i++) { |
| print_qreg(f, env, i, true); |
| } |
| qemu_fprintf(f, "}\n"); |
| } |
| } |
| |
| static void hexagon_dump_state(CPUState *cs, FILE *f, int flags) |
| { |
| HexagonCPU *cpu = HEXAGON_CPU(cs); |
| CPUHexagonState *env = &cpu->env; |
| |
| hexagon_dump(env, f, flags); |
| } |
| |
| void hexagon_debug(CPUHexagonState *env) |
| { |
| hexagon_dump(env, stdout, CPU_DUMP_FPU); |
| } |
| |
| static void hexagon_cpu_set_pc(CPUState *cs, vaddr value) |
| { |
| HexagonCPU *cpu = HEXAGON_CPU(cs); |
| CPUHexagonState *env = &cpu->env; |
| env->gpr[HEX_REG_PC] = value; |
| } |
| |
| static vaddr hexagon_cpu_get_pc(CPUState *cs) |
| { |
| HexagonCPU *cpu = HEXAGON_CPU(cs); |
| CPUHexagonState *env = &cpu->env; |
| return env->gpr[HEX_REG_PC]; |
| } |
| |
| static void hexagon_cpu_synchronize_from_tb(CPUState *cs, |
| const TranslationBlock *tb) |
| { |
| HexagonCPU *cpu = HEXAGON_CPU(cs); |
| CPUHexagonState *env = &cpu->env; |
| tcg_debug_assert(!(cs->tcg_cflags & CF_PCREL)); |
| env->gpr[HEX_REG_PC] = tb->pc; |
| } |
| |
| static bool hexagon_cpu_has_work(CPUState *cs) |
| { |
| return true; |
| } |
| |
| static void hexagon_restore_state_to_opc(CPUState *cs, |
| const TranslationBlock *tb, |
| const uint64_t *data) |
| { |
| HexagonCPU *cpu = HEXAGON_CPU(cs); |
| CPUHexagonState *env = &cpu->env; |
| |
| env->gpr[HEX_REG_PC] = data[0]; |
| } |
| |
| static void hexagon_cpu_reset_hold(Object *obj) |
| { |
| CPUState *cs = CPU(obj); |
| HexagonCPU *cpu = HEXAGON_CPU(cs); |
| HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(cpu); |
| CPUHexagonState *env = &cpu->env; |
| |
| if (mcc->parent_phases.hold) { |
| mcc->parent_phases.hold(obj); |
| } |
| |
| set_default_nan_mode(1, &env->fp_status); |
| set_float_detect_tininess(float_tininess_before_rounding, &env->fp_status); |
| } |
| |
| static void hexagon_cpu_disas_set_info(CPUState *s, disassemble_info *info) |
| { |
| info->print_insn = print_insn_hexagon; |
| } |
| |
| static void hexagon_cpu_realize(DeviceState *dev, Error **errp) |
| { |
| CPUState *cs = CPU(dev); |
| HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(dev); |
| Error *local_err = NULL; |
| |
| cpu_exec_realizefn(cs, &local_err); |
| if (local_err != NULL) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| |
| qemu_init_vcpu(cs); |
| cpu_reset(cs); |
| |
| mcc->parent_realize(dev, errp); |
| } |
| |
| static void hexagon_cpu_init(Object *obj) |
| { |
| HexagonCPU *cpu = HEXAGON_CPU(obj); |
| |
| cpu_set_cpustate_pointers(cpu); |
| qdev_property_add_static(DEVICE(obj), &hexagon_lldb_compat_property); |
| qdev_property_add_static(DEVICE(obj), &hexagon_lldb_stack_adjust_property); |
| qdev_property_add_static(DEVICE(obj), &hexagon_short_circuit_property); |
| } |
| |
| #include "hw/core/tcg-cpu-ops.h" |
| |
| static const struct TCGCPUOps hexagon_tcg_ops = { |
| .initialize = hexagon_translate_init, |
| .synchronize_from_tb = hexagon_cpu_synchronize_from_tb, |
| .restore_state_to_opc = hexagon_restore_state_to_opc, |
| }; |
| |
| static void hexagon_cpu_class_init(ObjectClass *c, void *data) |
| { |
| HexagonCPUClass *mcc = HEXAGON_CPU_CLASS(c); |
| CPUClass *cc = CPU_CLASS(c); |
| DeviceClass *dc = DEVICE_CLASS(c); |
| ResettableClass *rc = RESETTABLE_CLASS(c); |
| |
| device_class_set_parent_realize(dc, hexagon_cpu_realize, |
| &mcc->parent_realize); |
| |
| resettable_class_set_parent_phases(rc, NULL, hexagon_cpu_reset_hold, NULL, |
| &mcc->parent_phases); |
| |
| cc->class_by_name = hexagon_cpu_class_by_name; |
| cc->has_work = hexagon_cpu_has_work; |
| cc->dump_state = hexagon_dump_state; |
| cc->set_pc = hexagon_cpu_set_pc; |
| cc->get_pc = hexagon_cpu_get_pc; |
| cc->gdb_read_register = hexagon_gdb_read_register; |
| cc->gdb_write_register = hexagon_gdb_write_register; |
| cc->gdb_num_core_regs = TOTAL_PER_THREAD_REGS + NUM_VREGS + NUM_QREGS; |
| cc->gdb_stop_before_watchpoint = true; |
| cc->disas_set_info = hexagon_cpu_disas_set_info; |
| cc->tcg_ops = &hexagon_tcg_ops; |
| } |
| |
| #define DEFINE_CPU(type_name, initfn) \ |
| { \ |
| .name = type_name, \ |
| .parent = TYPE_HEXAGON_CPU, \ |
| .instance_init = initfn \ |
| } |
| |
| static const TypeInfo hexagon_cpu_type_infos[] = { |
| { |
| .name = TYPE_HEXAGON_CPU, |
| .parent = TYPE_CPU, |
| .instance_size = sizeof(HexagonCPU), |
| .instance_init = hexagon_cpu_init, |
| .abstract = true, |
| .class_size = sizeof(HexagonCPUClass), |
| .class_init = hexagon_cpu_class_init, |
| }, |
| DEFINE_CPU(TYPE_HEXAGON_CPU_V67, hexagon_v67_cpu_init), |
| DEFINE_CPU(TYPE_HEXAGON_CPU_V68, hexagon_v68_cpu_init), |
| DEFINE_CPU(TYPE_HEXAGON_CPU_V69, hexagon_v69_cpu_init), |
| DEFINE_CPU(TYPE_HEXAGON_CPU_V71, hexagon_v71_cpu_init), |
| DEFINE_CPU(TYPE_HEXAGON_CPU_V73, hexagon_v73_cpu_init), |
| }; |
| |
| DEFINE_TYPES(hexagon_cpu_type_infos) |