| /* |
| * ARM translation: M-profile MVE instructions |
| * |
| * Copyright (c) 2021 Linaro, Ltd. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "translate.h" |
| #include "translate-a32.h" |
| |
| static inline int vidup_imm(DisasContext *s, int x) |
| { |
| return 1 << x; |
| } |
| |
| /* Include the generated decoder */ |
| #include "decode-mve.c.inc" |
| |
| typedef void MVEGenLdStFn(TCGv_ptr, TCGv_ptr, TCGv_i32); |
| typedef void MVEGenLdStSGFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32); |
| typedef void MVEGenLdStIlFn(TCGv_ptr, TCGv_i32, TCGv_i32); |
| typedef void MVEGenOneOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr); |
| typedef void MVEGenTwoOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_ptr); |
| typedef void MVEGenTwoOpScalarFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32); |
| typedef void MVEGenTwoOpShiftFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32); |
| typedef void MVEGenLongDualAccOpFn(TCGv_i64, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i64); |
| typedef void MVEGenVADDVFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32); |
| typedef void MVEGenOneOpImmFn(TCGv_ptr, TCGv_ptr, TCGv_i64); |
| typedef void MVEGenVIDUPFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32, TCGv_i32); |
| typedef void MVEGenVIWDUPFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32); |
| typedef void MVEGenCmpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr); |
| typedef void MVEGenScalarCmpFn(TCGv_ptr, TCGv_ptr, TCGv_i32); |
| typedef void MVEGenVABAVFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32); |
| typedef void MVEGenDualAccOpFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32); |
| typedef void MVEGenVCVTRmodeFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32); |
| |
| /* Return the offset of a Qn register (same semantics as aa32_vfp_qreg()) */ |
| static inline long mve_qreg_offset(unsigned reg) |
| { |
| return offsetof(CPUARMState, vfp.zregs[reg].d[0]); |
| } |
| |
| static TCGv_ptr mve_qreg_ptr(unsigned reg) |
| { |
| TCGv_ptr ret = tcg_temp_new_ptr(); |
| tcg_gen_addi_ptr(ret, cpu_env, mve_qreg_offset(reg)); |
| return ret; |
| } |
| |
| static bool mve_no_predication(DisasContext *s) |
| { |
| /* |
| * Return true if we are executing the entire MVE instruction |
| * with no predication or partial-execution, and so we can safely |
| * use an inline TCG vector implementation. |
| */ |
| return s->eci == 0 && s->mve_no_pred; |
| } |
| |
| static bool mve_check_qreg_bank(DisasContext *s, int qmask) |
| { |
| /* |
| * Check whether Qregs are in range. For v8.1M only Q0..Q7 |
| * are supported, see VFPSmallRegisterBank(). |
| */ |
| return qmask < 8; |
| } |
| |
| bool mve_eci_check(DisasContext *s) |
| { |
| /* |
| * This is a beatwise insn: check that ECI is valid (not a |
| * reserved value) and note that we are handling it. |
| * Return true if OK, false if we generated an exception. |
| */ |
| s->eci_handled = true; |
| switch (s->eci) { |
| case ECI_NONE: |
| case ECI_A0: |
| case ECI_A0A1: |
| case ECI_A0A1A2: |
| case ECI_A0A1A2B0: |
| return true; |
| default: |
| /* Reserved value: INVSTATE UsageFault */ |
| gen_exception_insn(s, 0, EXCP_INVSTATE, syn_uncategorized()); |
| return false; |
| } |
| } |
| |
| void mve_update_eci(DisasContext *s) |
| { |
| /* |
| * The helper function will always update the CPUState field, |
| * so we only need to update the DisasContext field. |
| */ |
| if (s->eci) { |
| s->eci = (s->eci == ECI_A0A1A2B0) ? ECI_A0 : ECI_NONE; |
| } |
| } |
| |
| void mve_update_and_store_eci(DisasContext *s) |
| { |
| /* |
| * For insns which don't call a helper function that will call |
| * mve_advance_vpt(), this version updates s->eci and also stores |
| * it out to the CPUState field. |
| */ |
| if (s->eci) { |
| mve_update_eci(s); |
| store_cpu_field(tcg_constant_i32(s->eci << 4), condexec_bits); |
| } |
| } |
| |
| static bool mve_skip_first_beat(DisasContext *s) |
| { |
| /* Return true if PSR.ECI says we must skip the first beat of this insn */ |
| switch (s->eci) { |
| case ECI_NONE: |
| return false; |
| case ECI_A0: |
| case ECI_A0A1: |
| case ECI_A0A1A2: |
| case ECI_A0A1A2B0: |
| return true; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static bool do_ldst(DisasContext *s, arg_VLDR_VSTR *a, MVEGenLdStFn *fn, |
| unsigned msize) |
| { |
| TCGv_i32 addr; |
| uint32_t offset; |
| TCGv_ptr qreg; |
| |
| if (!dc_isar_feature(aa32_mve, s) || |
| !mve_check_qreg_bank(s, a->qd) || |
| !fn) { |
| return false; |
| } |
| |
| /* CONSTRAINED UNPREDICTABLE: we choose to UNDEF */ |
| if (a->rn == 15 || (a->rn == 13 && a->w)) { |
| return false; |
| } |
| |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| offset = a->imm << msize; |
| if (!a->a) { |
| offset = -offset; |
| } |
| addr = load_reg(s, a->rn); |
| if (a->p) { |
| tcg_gen_addi_i32(addr, addr, offset); |
| } |
| |
| qreg = mve_qreg_ptr(a->qd); |
| fn(cpu_env, qreg, addr); |
| |
| /* |
| * Writeback always happens after the last beat of the insn, |
| * regardless of predication |
| */ |
| if (a->w) { |
| if (!a->p) { |
| tcg_gen_addi_i32(addr, addr, offset); |
| } |
| store_reg(s, a->rn, addr); |
| } |
| mve_update_eci(s); |
| return true; |
| } |
| |
| static bool trans_VLDR_VSTR(DisasContext *s, arg_VLDR_VSTR *a) |
| { |
| static MVEGenLdStFn * const ldstfns[4][2] = { |
| { gen_helper_mve_vstrb, gen_helper_mve_vldrb }, |
| { gen_helper_mve_vstrh, gen_helper_mve_vldrh }, |
| { gen_helper_mve_vstrw, gen_helper_mve_vldrw }, |
| { NULL, NULL } |
| }; |
| return do_ldst(s, a, ldstfns[a->size][a->l], a->size); |
| } |
| |
| #define DO_VLDST_WIDE_NARROW(OP, SLD, ULD, ST, MSIZE) \ |
| static bool trans_##OP(DisasContext *s, arg_VLDR_VSTR *a) \ |
| { \ |
| static MVEGenLdStFn * const ldstfns[2][2] = { \ |
| { gen_helper_mve_##ST, gen_helper_mve_##SLD }, \ |
| { NULL, gen_helper_mve_##ULD }, \ |
| }; \ |
| return do_ldst(s, a, ldstfns[a->u][a->l], MSIZE); \ |
| } |
| |
| DO_VLDST_WIDE_NARROW(VLDSTB_H, vldrb_sh, vldrb_uh, vstrb_h, MO_8) |
| DO_VLDST_WIDE_NARROW(VLDSTB_W, vldrb_sw, vldrb_uw, vstrb_w, MO_8) |
| DO_VLDST_WIDE_NARROW(VLDSTH_W, vldrh_sw, vldrh_uw, vstrh_w, MO_16) |
| |
| static bool do_ldst_sg(DisasContext *s, arg_vldst_sg *a, MVEGenLdStSGFn fn) |
| { |
| TCGv_i32 addr; |
| TCGv_ptr qd, qm; |
| |
| if (!dc_isar_feature(aa32_mve, s) || |
| !mve_check_qreg_bank(s, a->qd | a->qm) || |
| !fn || a->rn == 15) { |
| /* Rn case is UNPREDICTABLE */ |
| return false; |
| } |
| |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| addr = load_reg(s, a->rn); |
| |
| qd = mve_qreg_ptr(a->qd); |
| qm = mve_qreg_ptr(a->qm); |
| fn(cpu_env, qd, qm, addr); |
| mve_update_eci(s); |
| return true; |
| } |
| |
| /* |
| * The naming scheme here is "vldrb_sg_sh == in-memory byte loads |
| * signextended to halfword elements in register". _os_ indicates that |
| * the offsets in Qm should be scaled by the element size. |
| */ |
| /* This macro is just to make the arrays more compact in these functions */ |
| #define F(N) gen_helper_mve_##N |
| |
| /* VLDRB/VSTRB (ie msize 1) with OS=1 is UNPREDICTABLE; we UNDEF */ |
| static bool trans_VLDR_S_sg(DisasContext *s, arg_vldst_sg *a) |
| { |
| static MVEGenLdStSGFn * const fns[2][4][4] = { { |
| { NULL, F(vldrb_sg_sh), F(vldrb_sg_sw), NULL }, |
| { NULL, NULL, F(vldrh_sg_sw), NULL }, |
| { NULL, NULL, NULL, NULL }, |
| { NULL, NULL, NULL, NULL } |
| }, { |
| { NULL, NULL, NULL, NULL }, |
| { NULL, NULL, F(vldrh_sg_os_sw), NULL }, |
| { NULL, NULL, NULL, NULL }, |
| { NULL, NULL, NULL, NULL } |
| } |
| }; |
| if (a->qd == a->qm) { |
| return false; /* UNPREDICTABLE */ |
| } |
| return do_ldst_sg(s, a, fns[a->os][a->msize][a->size]); |
| } |
| |
| static bool trans_VLDR_U_sg(DisasContext *s, arg_vldst_sg *a) |
| { |
| static MVEGenLdStSGFn * const fns[2][4][4] = { { |
| { F(vldrb_sg_ub), F(vldrb_sg_uh), F(vldrb_sg_uw), NULL }, |
| { NULL, F(vldrh_sg_uh), F(vldrh_sg_uw), NULL }, |
| { NULL, NULL, F(vldrw_sg_uw), NULL }, |
| { NULL, NULL, NULL, F(vldrd_sg_ud) } |
| }, { |
| { NULL, NULL, NULL, NULL }, |
| { NULL, F(vldrh_sg_os_uh), F(vldrh_sg_os_uw), NULL }, |
| { NULL, NULL, F(vldrw_sg_os_uw), NULL }, |
| { NULL, NULL, NULL, F(vldrd_sg_os_ud) } |
| } |
| }; |
| if (a->qd == a->qm) { |
| return false; /* UNPREDICTABLE */ |
| } |
| return do_ldst_sg(s, a, fns[a->os][a->msize][a->size]); |
| } |
| |
| static bool trans_VSTR_sg(DisasContext *s, arg_vldst_sg *a) |
| { |
| static MVEGenLdStSGFn * const fns[2][4][4] = { { |
| { F(vstrb_sg_ub), F(vstrb_sg_uh), F(vstrb_sg_uw), NULL }, |
| { NULL, F(vstrh_sg_uh), F(vstrh_sg_uw), NULL }, |
| { NULL, NULL, F(vstrw_sg_uw), NULL }, |
| { NULL, NULL, NULL, F(vstrd_sg_ud) } |
| }, { |
| { NULL, NULL, NULL, NULL }, |
| { NULL, F(vstrh_sg_os_uh), F(vstrh_sg_os_uw), NULL }, |
| { NULL, NULL, F(vstrw_sg_os_uw), NULL }, |
| { NULL, NULL, NULL, F(vstrd_sg_os_ud) } |
| } |
| }; |
| return do_ldst_sg(s, a, fns[a->os][a->msize][a->size]); |
| } |
| |
| #undef F |
| |
| static bool do_ldst_sg_imm(DisasContext *s, arg_vldst_sg_imm *a, |
| MVEGenLdStSGFn *fn, unsigned msize) |
| { |
| uint32_t offset; |
| TCGv_ptr qd, qm; |
| |
| if (!dc_isar_feature(aa32_mve, s) || |
| !mve_check_qreg_bank(s, a->qd | a->qm) || |
| !fn) { |
| return false; |
| } |
| |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| offset = a->imm << msize; |
| if (!a->a) { |
| offset = -offset; |
| } |
| |
| qd = mve_qreg_ptr(a->qd); |
| qm = mve_qreg_ptr(a->qm); |
| fn(cpu_env, qd, qm, tcg_constant_i32(offset)); |
| mve_update_eci(s); |
| return true; |
| } |
| |
| static bool trans_VLDRW_sg_imm(DisasContext *s, arg_vldst_sg_imm *a) |
| { |
| static MVEGenLdStSGFn * const fns[] = { |
| gen_helper_mve_vldrw_sg_uw, |
| gen_helper_mve_vldrw_sg_wb_uw, |
| }; |
| if (a->qd == a->qm) { |
| return false; /* UNPREDICTABLE */ |
| } |
| return do_ldst_sg_imm(s, a, fns[a->w], MO_32); |
| } |
| |
| static bool trans_VLDRD_sg_imm(DisasContext *s, arg_vldst_sg_imm *a) |
| { |
| static MVEGenLdStSGFn * const fns[] = { |
| gen_helper_mve_vldrd_sg_ud, |
| gen_helper_mve_vldrd_sg_wb_ud, |
| }; |
| if (a->qd == a->qm) { |
| return false; /* UNPREDICTABLE */ |
| } |
| return do_ldst_sg_imm(s, a, fns[a->w], MO_64); |
| } |
| |
| static bool trans_VSTRW_sg_imm(DisasContext *s, arg_vldst_sg_imm *a) |
| { |
| static MVEGenLdStSGFn * const fns[] = { |
| gen_helper_mve_vstrw_sg_uw, |
| gen_helper_mve_vstrw_sg_wb_uw, |
| }; |
| return do_ldst_sg_imm(s, a, fns[a->w], MO_32); |
| } |
| |
| static bool trans_VSTRD_sg_imm(DisasContext *s, arg_vldst_sg_imm *a) |
| { |
| static MVEGenLdStSGFn * const fns[] = { |
| gen_helper_mve_vstrd_sg_ud, |
| gen_helper_mve_vstrd_sg_wb_ud, |
| }; |
| return do_ldst_sg_imm(s, a, fns[a->w], MO_64); |
| } |
| |
| static bool do_vldst_il(DisasContext *s, arg_vldst_il *a, MVEGenLdStIlFn *fn, |
| int addrinc) |
| { |
| TCGv_i32 rn; |
| |
| if (!dc_isar_feature(aa32_mve, s) || |
| !mve_check_qreg_bank(s, a->qd) || |
| !fn || (a->rn == 13 && a->w) || a->rn == 15) { |
| /* Variously UNPREDICTABLE or UNDEF or related-encoding */ |
| return false; |
| } |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| rn = load_reg(s, a->rn); |
| /* |
| * We pass the index of Qd, not a pointer, because the helper must |
| * access multiple Q registers starting at Qd and working up. |
| */ |
| fn(cpu_env, tcg_constant_i32(a->qd), rn); |
| |
| if (a->w) { |
| tcg_gen_addi_i32(rn, rn, addrinc); |
| store_reg(s, a->rn, rn); |
| } |
| mve_update_and_store_eci(s); |
| return true; |
| } |
| |
| /* This macro is just to make the arrays more compact in these functions */ |
| #define F(N) gen_helper_mve_##N |
| |
| static bool trans_VLD2(DisasContext *s, arg_vldst_il *a) |
| { |
| static MVEGenLdStIlFn * const fns[4][4] = { |
| { F(vld20b), F(vld20h), F(vld20w), NULL, }, |
| { F(vld21b), F(vld21h), F(vld21w), NULL, }, |
| { NULL, NULL, NULL, NULL }, |
| { NULL, NULL, NULL, NULL }, |
| }; |
| if (a->qd > 6) { |
| return false; |
| } |
| return do_vldst_il(s, a, fns[a->pat][a->size], 32); |
| } |
| |
| static bool trans_VLD4(DisasContext *s, arg_vldst_il *a) |
| { |
| static MVEGenLdStIlFn * const fns[4][4] = { |
| { F(vld40b), F(vld40h), F(vld40w), NULL, }, |
| { F(vld41b), F(vld41h), F(vld41w), NULL, }, |
| { F(vld42b), F(vld42h), F(vld42w), NULL, }, |
| { F(vld43b), F(vld43h), F(vld43w), NULL, }, |
| }; |
| if (a->qd > 4) { |
| return false; |
| } |
| return do_vldst_il(s, a, fns[a->pat][a->size], 64); |
| } |
| |
| static bool trans_VST2(DisasContext *s, arg_vldst_il *a) |
| { |
| static MVEGenLdStIlFn * const fns[4][4] = { |
| { F(vst20b), F(vst20h), F(vst20w), NULL, }, |
| { F(vst21b), F(vst21h), F(vst21w), NULL, }, |
| { NULL, NULL, NULL, NULL }, |
| { NULL, NULL, NULL, NULL }, |
| }; |
| if (a->qd > 6) { |
| return false; |
| } |
| return do_vldst_il(s, a, fns[a->pat][a->size], 32); |
| } |
| |
| static bool trans_VST4(DisasContext *s, arg_vldst_il *a) |
| { |
| static MVEGenLdStIlFn * const fns[4][4] = { |
| { F(vst40b), F(vst40h), F(vst40w), NULL, }, |
| { F(vst41b), F(vst41h), F(vst41w), NULL, }, |
| { F(vst42b), F(vst42h), F(vst42w), NULL, }, |
| { F(vst43b), F(vst43h), F(vst43w), NULL, }, |
| }; |
| if (a->qd > 4) { |
| return false; |
| } |
| return do_vldst_il(s, a, fns[a->pat][a->size], 64); |
| } |
| |
| #undef F |
| |
| static bool trans_VDUP(DisasContext *s, arg_VDUP *a) |
| { |
| TCGv_ptr qd; |
| TCGv_i32 rt; |
| |
| if (!dc_isar_feature(aa32_mve, s) || |
| !mve_check_qreg_bank(s, a->qd)) { |
| return false; |
| } |
| if (a->rt == 13 || a->rt == 15) { |
| /* UNPREDICTABLE; we choose to UNDEF */ |
| return false; |
| } |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| rt = load_reg(s, a->rt); |
| if (mve_no_predication(s)) { |
| tcg_gen_gvec_dup_i32(a->size, mve_qreg_offset(a->qd), 16, 16, rt); |
| } else { |
| qd = mve_qreg_ptr(a->qd); |
| tcg_gen_dup_i32(a->size, rt, rt); |
| gen_helper_mve_vdup(cpu_env, qd, rt); |
| } |
| mve_update_eci(s); |
| return true; |
| } |
| |
| static bool do_1op_vec(DisasContext *s, arg_1op *a, MVEGenOneOpFn fn, |
| GVecGen2Fn vecfn) |
| { |
| TCGv_ptr qd, qm; |
| |
| if (!dc_isar_feature(aa32_mve, s) || |
| !mve_check_qreg_bank(s, a->qd | a->qm) || |
| !fn) { |
| return false; |
| } |
| |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| if (vecfn && mve_no_predication(s)) { |
| vecfn(a->size, mve_qreg_offset(a->qd), mve_qreg_offset(a->qm), 16, 16); |
| } else { |
| qd = mve_qreg_ptr(a->qd); |
| qm = mve_qreg_ptr(a->qm); |
| fn(cpu_env, qd, qm); |
| } |
| mve_update_eci(s); |
| return true; |
| } |
| |
| static bool do_1op(DisasContext *s, arg_1op *a, MVEGenOneOpFn fn) |
| { |
| return do_1op_vec(s, a, fn, NULL); |
| } |
| |
| #define DO_1OP_VEC(INSN, FN, VECFN) \ |
| static bool trans_##INSN(DisasContext *s, arg_1op *a) \ |
| { \ |
| static MVEGenOneOpFn * const fns[] = { \ |
| gen_helper_mve_##FN##b, \ |
| gen_helper_mve_##FN##h, \ |
| gen_helper_mve_##FN##w, \ |
| NULL, \ |
| }; \ |
| return do_1op_vec(s, a, fns[a->size], VECFN); \ |
| } |
| |
| #define DO_1OP(INSN, FN) DO_1OP_VEC(INSN, FN, NULL) |
| |
| DO_1OP(VCLZ, vclz) |
| DO_1OP(VCLS, vcls) |
| DO_1OP_VEC(VABS, vabs, tcg_gen_gvec_abs) |
| DO_1OP_VEC(VNEG, vneg, tcg_gen_gvec_neg) |
| DO_1OP(VQABS, vqabs) |
| DO_1OP(VQNEG, vqneg) |
| DO_1OP(VMAXA, vmaxa) |
| DO_1OP(VMINA, vmina) |
| |
| /* |
| * For simple float/int conversions we use the fixed-point |
| * conversion helpers with a zero shift count |
| */ |
| #define DO_VCVT(INSN, HFN, SFN) \ |
| static void gen_##INSN##h(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm) \ |
| { \ |
| gen_helper_mve_##HFN(env, qd, qm, tcg_constant_i32(0)); \ |
| } \ |
| static void gen_##INSN##s(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm) \ |
| { \ |
| gen_helper_mve_##SFN(env, qd, qm, tcg_constant_i32(0)); \ |
| } \ |
| static bool trans_##INSN(DisasContext *s, arg_1op *a) \ |
| { \ |
| static MVEGenOneOpFn * const fns[] = { \ |
| NULL, \ |
| gen_##INSN##h, \ |
| gen_##INSN##s, \ |
| NULL, \ |
| }; \ |
| if (!dc_isar_feature(aa32_mve_fp, s)) { \ |
| return false; \ |
| } \ |
| return do_1op(s, a, fns[a->size]); \ |
| } |
| |
| DO_VCVT(VCVT_SF, vcvt_sh, vcvt_sf) |
| DO_VCVT(VCVT_UF, vcvt_uh, vcvt_uf) |
| DO_VCVT(VCVT_FS, vcvt_hs, vcvt_fs) |
| DO_VCVT(VCVT_FU, vcvt_hu, vcvt_fu) |
| |
| static bool do_vcvt_rmode(DisasContext *s, arg_1op *a, |
| ARMFPRounding rmode, bool u) |
| { |
| /* |
| * Handle VCVT fp to int with specified rounding mode. |
| * This is a 1op fn but we must pass the rounding mode as |
| * an immediate to the helper. |
| */ |
| TCGv_ptr qd, qm; |
| static MVEGenVCVTRmodeFn * const fns[4][2] = { |
| { NULL, NULL }, |
| { gen_helper_mve_vcvt_rm_sh, gen_helper_mve_vcvt_rm_uh }, |
| { gen_helper_mve_vcvt_rm_ss, gen_helper_mve_vcvt_rm_us }, |
| { NULL, NULL }, |
| }; |
| MVEGenVCVTRmodeFn *fn = fns[a->size][u]; |
| |
| if (!dc_isar_feature(aa32_mve_fp, s) || |
| !mve_check_qreg_bank(s, a->qd | a->qm) || |
| !fn) { |
| return false; |
| } |
| |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| qd = mve_qreg_ptr(a->qd); |
| qm = mve_qreg_ptr(a->qm); |
| fn(cpu_env, qd, qm, tcg_constant_i32(arm_rmode_to_sf(rmode))); |
| mve_update_eci(s); |
| return true; |
| } |
| |
| #define DO_VCVT_RMODE(INSN, RMODE, U) \ |
| static bool trans_##INSN(DisasContext *s, arg_1op *a) \ |
| { \ |
| return do_vcvt_rmode(s, a, RMODE, U); \ |
| } \ |
| |
| DO_VCVT_RMODE(VCVTAS, FPROUNDING_TIEAWAY, false) |
| DO_VCVT_RMODE(VCVTAU, FPROUNDING_TIEAWAY, true) |
| DO_VCVT_RMODE(VCVTNS, FPROUNDING_TIEEVEN, false) |
| DO_VCVT_RMODE(VCVTNU, FPROUNDING_TIEEVEN, true) |
| DO_VCVT_RMODE(VCVTPS, FPROUNDING_POSINF, false) |
| DO_VCVT_RMODE(VCVTPU, FPROUNDING_POSINF, true) |
| DO_VCVT_RMODE(VCVTMS, FPROUNDING_NEGINF, false) |
| DO_VCVT_RMODE(VCVTMU, FPROUNDING_NEGINF, true) |
| |
| #define DO_VCVT_SH(INSN, FN) \ |
| static bool trans_##INSN(DisasContext *s, arg_1op *a) \ |
| { \ |
| if (!dc_isar_feature(aa32_mve_fp, s)) { \ |
| return false; \ |
| } \ |
| return do_1op(s, a, gen_helper_mve_##FN); \ |
| } \ |
| |
| DO_VCVT_SH(VCVTB_SH, vcvtb_sh) |
| DO_VCVT_SH(VCVTT_SH, vcvtt_sh) |
| DO_VCVT_SH(VCVTB_HS, vcvtb_hs) |
| DO_VCVT_SH(VCVTT_HS, vcvtt_hs) |
| |
| #define DO_VRINT(INSN, RMODE) \ |
| static void gen_##INSN##h(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm) \ |
| { \ |
| gen_helper_mve_vrint_rm_h(env, qd, qm, \ |
| tcg_constant_i32(arm_rmode_to_sf(RMODE))); \ |
| } \ |
| static void gen_##INSN##s(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm) \ |
| { \ |
| gen_helper_mve_vrint_rm_s(env, qd, qm, \ |
| tcg_constant_i32(arm_rmode_to_sf(RMODE))); \ |
| } \ |
| static bool trans_##INSN(DisasContext *s, arg_1op *a) \ |
| { \ |
| static MVEGenOneOpFn * const fns[] = { \ |
| NULL, \ |
| gen_##INSN##h, \ |
| gen_##INSN##s, \ |
| NULL, \ |
| }; \ |
| if (!dc_isar_feature(aa32_mve_fp, s)) { \ |
| return false; \ |
| } \ |
| return do_1op(s, a, fns[a->size]); \ |
| } |
| |
| DO_VRINT(VRINTN, FPROUNDING_TIEEVEN) |
| DO_VRINT(VRINTA, FPROUNDING_TIEAWAY) |
| DO_VRINT(VRINTZ, FPROUNDING_ZERO) |
| DO_VRINT(VRINTM, FPROUNDING_NEGINF) |
| DO_VRINT(VRINTP, FPROUNDING_POSINF) |
| |
| static bool trans_VRINTX(DisasContext *s, arg_1op *a) |
| { |
| static MVEGenOneOpFn * const fns[] = { |
| NULL, |
| gen_helper_mve_vrintx_h, |
| gen_helper_mve_vrintx_s, |
| NULL, |
| }; |
| if (!dc_isar_feature(aa32_mve_fp, s)) { |
| return false; |
| } |
| return do_1op(s, a, fns[a->size]); |
| } |
| |
| /* Narrowing moves: only size 0 and 1 are valid */ |
| #define DO_VMOVN(INSN, FN) \ |
| static bool trans_##INSN(DisasContext *s, arg_1op *a) \ |
| { \ |
| static MVEGenOneOpFn * const fns[] = { \ |
| gen_helper_mve_##FN##b, \ |
| gen_helper_mve_##FN##h, \ |
| NULL, \ |
| NULL, \ |
| }; \ |
| return do_1op(s, a, fns[a->size]); \ |
| } |
| |
| DO_VMOVN(VMOVNB, vmovnb) |
| DO_VMOVN(VMOVNT, vmovnt) |
| DO_VMOVN(VQMOVUNB, vqmovunb) |
| DO_VMOVN(VQMOVUNT, vqmovunt) |
| DO_VMOVN(VQMOVN_BS, vqmovnbs) |
| DO_VMOVN(VQMOVN_TS, vqmovnts) |
| DO_VMOVN(VQMOVN_BU, vqmovnbu) |
| DO_VMOVN(VQMOVN_TU, vqmovntu) |
| |
| static bool trans_VREV16(DisasContext *s, arg_1op *a) |
| { |
| static MVEGenOneOpFn * const fns[] = { |
| gen_helper_mve_vrev16b, |
| NULL, |
| NULL, |
| NULL, |
| }; |
| return do_1op(s, a, fns[a->size]); |
| } |
| |
| static bool trans_VREV32(DisasContext *s, arg_1op *a) |
| { |
| static MVEGenOneOpFn * const fns[] = { |
| gen_helper_mve_vrev32b, |
| gen_helper_mve_vrev32h, |
| NULL, |
| NULL, |
| }; |
| return do_1op(s, a, fns[a->size]); |
| } |
| |
| static bool trans_VREV64(DisasContext *s, arg_1op *a) |
| { |
| static MVEGenOneOpFn * const fns[] = { |
| gen_helper_mve_vrev64b, |
| gen_helper_mve_vrev64h, |
| gen_helper_mve_vrev64w, |
| NULL, |
| }; |
| return do_1op(s, a, fns[a->size]); |
| } |
| |
| static bool trans_VMVN(DisasContext *s, arg_1op *a) |
| { |
| return do_1op_vec(s, a, gen_helper_mve_vmvn, tcg_gen_gvec_not); |
| } |
| |
| static bool trans_VABS_fp(DisasContext *s, arg_1op *a) |
| { |
| static MVEGenOneOpFn * const fns[] = { |
| NULL, |
| gen_helper_mve_vfabsh, |
| gen_helper_mve_vfabss, |
| NULL, |
| }; |
| if (!dc_isar_feature(aa32_mve_fp, s)) { |
| return false; |
| } |
| return do_1op(s, a, fns[a->size]); |
| } |
| |
| static bool trans_VNEG_fp(DisasContext *s, arg_1op *a) |
| { |
| static MVEGenOneOpFn * const fns[] = { |
| NULL, |
| gen_helper_mve_vfnegh, |
| gen_helper_mve_vfnegs, |
| NULL, |
| }; |
| if (!dc_isar_feature(aa32_mve_fp, s)) { |
| return false; |
| } |
| return do_1op(s, a, fns[a->size]); |
| } |
| |
| static bool do_2op_vec(DisasContext *s, arg_2op *a, MVEGenTwoOpFn fn, |
| GVecGen3Fn *vecfn) |
| { |
| TCGv_ptr qd, qn, qm; |
| |
| if (!dc_isar_feature(aa32_mve, s) || |
| !mve_check_qreg_bank(s, a->qd | a->qn | a->qm) || |
| !fn) { |
| return false; |
| } |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| if (vecfn && mve_no_predication(s)) { |
| vecfn(a->size, mve_qreg_offset(a->qd), mve_qreg_offset(a->qn), |
| mve_qreg_offset(a->qm), 16, 16); |
| } else { |
| qd = mve_qreg_ptr(a->qd); |
| qn = mve_qreg_ptr(a->qn); |
| qm = mve_qreg_ptr(a->qm); |
| fn(cpu_env, qd, qn, qm); |
| } |
| mve_update_eci(s); |
| return true; |
| } |
| |
| static bool do_2op(DisasContext *s, arg_2op *a, MVEGenTwoOpFn *fn) |
| { |
| return do_2op_vec(s, a, fn, NULL); |
| } |
| |
| #define DO_LOGIC(INSN, HELPER, VECFN) \ |
| static bool trans_##INSN(DisasContext *s, arg_2op *a) \ |
| { \ |
| return do_2op_vec(s, a, HELPER, VECFN); \ |
| } |
| |
| DO_LOGIC(VAND, gen_helper_mve_vand, tcg_gen_gvec_and) |
| DO_LOGIC(VBIC, gen_helper_mve_vbic, tcg_gen_gvec_andc) |
| DO_LOGIC(VORR, gen_helper_mve_vorr, tcg_gen_gvec_or) |
| DO_LOGIC(VORN, gen_helper_mve_vorn, tcg_gen_gvec_orc) |
| DO_LOGIC(VEOR, gen_helper_mve_veor, tcg_gen_gvec_xor) |
| |
| static bool trans_VPSEL(DisasContext *s, arg_2op *a) |
| { |
| /* This insn updates predication bits */ |
| s->base.is_jmp = DISAS_UPDATE_NOCHAIN; |
| return do_2op(s, a, gen_helper_mve_vpsel); |
| } |
| |
| #define DO_2OP_VEC(INSN, FN, VECFN) \ |
| static bool trans_##INSN(DisasContext *s, arg_2op *a) \ |
| { \ |
| static MVEGenTwoOpFn * const fns[] = { \ |
| gen_helper_mve_##FN##b, \ |
| gen_helper_mve_##FN##h, \ |
| gen_helper_mve_##FN##w, \ |
| NULL, \ |
| }; \ |
| return do_2op_vec(s, a, fns[a->size], VECFN); \ |
| } |
| |
| #define DO_2OP(INSN, FN) DO_2OP_VEC(INSN, FN, NULL) |
| |
| DO_2OP_VEC(VADD, vadd, tcg_gen_gvec_add) |
| DO_2OP_VEC(VSUB, vsub, tcg_gen_gvec_sub) |
| DO_2OP_VEC(VMUL, vmul, tcg_gen_gvec_mul) |
| DO_2OP(VMULH_S, vmulhs) |
| DO_2OP(VMULH_U, vmulhu) |
| DO_2OP(VRMULH_S, vrmulhs) |
| DO_2OP(VRMULH_U, vrmulhu) |
| DO_2OP_VEC(VMAX_S, vmaxs, tcg_gen_gvec_smax) |
| DO_2OP_VEC(VMAX_U, vmaxu, tcg_gen_gvec_umax) |
| DO_2OP_VEC(VMIN_S, vmins, tcg_gen_gvec_smin) |
| DO_2OP_VEC(VMIN_U, vminu, tcg_gen_gvec_umin) |
| DO_2OP(VABD_S, vabds) |
| DO_2OP(VABD_U, vabdu) |
| DO_2OP(VHADD_S, vhadds) |
| DO_2OP(VHADD_U, vhaddu) |
| DO_2OP(VHSUB_S, vhsubs) |
| DO_2OP(VHSUB_U, vhsubu) |
| DO_2OP(VMULL_BS, vmullbs) |
| DO_2OP(VMULL_BU, vmullbu) |
| DO_2OP(VMULL_TS, vmullts) |
| DO_2OP(VMULL_TU, vmulltu) |
| DO_2OP(VQDMULH, vqdmulh) |
| DO_2OP(VQRDMULH, vqrdmulh) |
| DO_2OP(VQADD_S, vqadds) |
| DO_2OP(VQADD_U, vqaddu) |
| DO_2OP(VQSUB_S, vqsubs) |
| DO_2OP(VQSUB_U, vqsubu) |
| DO_2OP(VSHL_S, vshls) |
| DO_2OP(VSHL_U, vshlu) |
| DO_2OP(VRSHL_S, vrshls) |
| DO_2OP(VRSHL_U, vrshlu) |
| DO_2OP(VQSHL_S, vqshls) |
| DO_2OP(VQSHL_U, vqshlu) |
| DO_2OP(VQRSHL_S, vqrshls) |
| DO_2OP(VQRSHL_U, vqrshlu) |
| DO_2OP(VQDMLADH, vqdmladh) |
| DO_2OP(VQDMLADHX, vqdmladhx) |
| DO_2OP(VQRDMLADH, vqrdmladh) |
| DO_2OP(VQRDMLADHX, vqrdmladhx) |
| DO_2OP(VQDMLSDH, vqdmlsdh) |
| DO_2OP(VQDMLSDHX, vqdmlsdhx) |
| DO_2OP(VQRDMLSDH, vqrdmlsdh) |
| DO_2OP(VQRDMLSDHX, vqrdmlsdhx) |
| DO_2OP(VRHADD_S, vrhadds) |
| DO_2OP(VRHADD_U, vrhaddu) |
| /* |
| * VCADD Qd == Qm at size MO_32 is UNPREDICTABLE; we choose not to diagnose |
| * so we can reuse the DO_2OP macro. (Our implementation calculates the |
| * "expected" results in this case.) Similarly for VHCADD. |
| */ |
| DO_2OP(VCADD90, vcadd90) |
| DO_2OP(VCADD270, vcadd270) |
| DO_2OP(VHCADD90, vhcadd90) |
| DO_2OP(VHCADD270, vhcadd270) |
| |
| static bool trans_VQDMULLB(DisasContext *s, arg_2op *a) |
| { |
| static MVEGenTwoOpFn * const fns[] = { |
| NULL, |
| gen_helper_mve_vqdmullbh, |
| gen_helper_mve_vqdmullbw, |
| NULL, |
| }; |
| if (a->size == MO_32 && (a->qd == a->qm || a->qd == a->qn)) { |
| /* UNPREDICTABLE; we choose to undef */ |
| return false; |
| } |
| return do_2op(s, a, fns[a->size]); |
| } |
| |
| static bool trans_VQDMULLT(DisasContext *s, arg_2op *a) |
| { |
| static MVEGenTwoOpFn * const fns[] = { |
| NULL, |
| gen_helper_mve_vqdmullth, |
| gen_helper_mve_vqdmulltw, |
| NULL, |
| }; |
| if (a->size == MO_32 && (a->qd == a->qm || a->qd == a->qn)) { |
| /* UNPREDICTABLE; we choose to undef */ |
| return false; |
| } |
| return do_2op(s, a, fns[a->size]); |
| } |
| |
| static bool trans_VMULLP_B(DisasContext *s, arg_2op *a) |
| { |
| /* |
| * Note that a->size indicates the output size, ie VMULL.P8 |
| * is the 8x8->16 operation and a->size is MO_16; VMULL.P16 |
| * is the 16x16->32 operation and a->size is MO_32. |
| */ |
| static MVEGenTwoOpFn * const fns[] = { |
| NULL, |
| gen_helper_mve_vmullpbh, |
| gen_helper_mve_vmullpbw, |
| NULL, |
| }; |
| return do_2op(s, a, fns[a->size]); |
| } |
| |
| static bool trans_VMULLP_T(DisasContext *s, arg_2op *a) |
| { |
| /* a->size is as for trans_VMULLP_B */ |
| static MVEGenTwoOpFn * const fns[] = { |
| NULL, |
| gen_helper_mve_vmullpth, |
| gen_helper_mve_vmullptw, |
| NULL, |
| }; |
| return do_2op(s, a, fns[a->size]); |
| } |
| |
| /* |
| * VADC and VSBC: these perform an add-with-carry or subtract-with-carry |
| * of the 32-bit elements in each lane of the input vectors, where the |
| * carry-out of each add is the carry-in of the next. The initial carry |
| * input is either fixed (0 for VADCI, 1 for VSBCI) or is from FPSCR.C |
| * (for VADC and VSBC); the carry out at the end is written back to FPSCR.C. |
| * These insns are subject to beat-wise execution. Partial execution |
| * of an I=1 (initial carry input fixed) insn which does not |
| * execute the first beat must start with the current FPSCR.NZCV |
| * value, not the fixed constant input. |
| */ |
| static bool trans_VADC(DisasContext *s, arg_2op *a) |
| { |
| return do_2op(s, a, gen_helper_mve_vadc); |
| } |
| |
| static bool trans_VADCI(DisasContext *s, arg_2op *a) |
| { |
| if (mve_skip_first_beat(s)) { |
| return trans_VADC(s, a); |
| } |
| return do_2op(s, a, gen_helper_mve_vadci); |
| } |
| |
| static bool trans_VSBC(DisasContext *s, arg_2op *a) |
| { |
| return do_2op(s, a, gen_helper_mve_vsbc); |
| } |
| |
| static bool trans_VSBCI(DisasContext *s, arg_2op *a) |
| { |
| if (mve_skip_first_beat(s)) { |
| return trans_VSBC(s, a); |
| } |
| return do_2op(s, a, gen_helper_mve_vsbci); |
| } |
| |
| #define DO_2OP_FP(INSN, FN) \ |
| static bool trans_##INSN(DisasContext *s, arg_2op *a) \ |
| { \ |
| static MVEGenTwoOpFn * const fns[] = { \ |
| NULL, \ |
| gen_helper_mve_##FN##h, \ |
| gen_helper_mve_##FN##s, \ |
| NULL, \ |
| }; \ |
| if (!dc_isar_feature(aa32_mve_fp, s)) { \ |
| return false; \ |
| } \ |
| return do_2op(s, a, fns[a->size]); \ |
| } |
| |
| DO_2OP_FP(VADD_fp, vfadd) |
| DO_2OP_FP(VSUB_fp, vfsub) |
| DO_2OP_FP(VMUL_fp, vfmul) |
| DO_2OP_FP(VABD_fp, vfabd) |
| DO_2OP_FP(VMAXNM, vmaxnm) |
| DO_2OP_FP(VMINNM, vminnm) |
| DO_2OP_FP(VCADD90_fp, vfcadd90) |
| DO_2OP_FP(VCADD270_fp, vfcadd270) |
| DO_2OP_FP(VFMA, vfma) |
| DO_2OP_FP(VFMS, vfms) |
| DO_2OP_FP(VCMUL0, vcmul0) |
| DO_2OP_FP(VCMUL90, vcmul90) |
| DO_2OP_FP(VCMUL180, vcmul180) |
| DO_2OP_FP(VCMUL270, vcmul270) |
| DO_2OP_FP(VCMLA0, vcmla0) |
| DO_2OP_FP(VCMLA90, vcmla90) |
| DO_2OP_FP(VCMLA180, vcmla180) |
| DO_2OP_FP(VCMLA270, vcmla270) |
| DO_2OP_FP(VMAXNMA, vmaxnma) |
| DO_2OP_FP(VMINNMA, vminnma) |
| |
| static bool do_2op_scalar(DisasContext *s, arg_2scalar *a, |
| MVEGenTwoOpScalarFn fn) |
| { |
| TCGv_ptr qd, qn; |
| TCGv_i32 rm; |
| |
| if (!dc_isar_feature(aa32_mve, s) || |
| !mve_check_qreg_bank(s, a->qd | a->qn) || |
| !fn) { |
| return false; |
| } |
| if (a->rm == 13 || a->rm == 15) { |
| /* UNPREDICTABLE */ |
| return false; |
| } |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| qd = mve_qreg_ptr(a->qd); |
| qn = mve_qreg_ptr(a->qn); |
| rm = load_reg(s, a->rm); |
| fn(cpu_env, qd, qn, rm); |
| mve_update_eci(s); |
| return true; |
| } |
| |
| #define DO_2OP_SCALAR(INSN, FN) \ |
| static bool trans_##INSN(DisasContext *s, arg_2scalar *a) \ |
| { \ |
| static MVEGenTwoOpScalarFn * const fns[] = { \ |
| gen_helper_mve_##FN##b, \ |
| gen_helper_mve_##FN##h, \ |
| gen_helper_mve_##FN##w, \ |
| NULL, \ |
| }; \ |
| return do_2op_scalar(s, a, fns[a->size]); \ |
| } |
| |
| DO_2OP_SCALAR(VADD_scalar, vadd_scalar) |
| DO_2OP_SCALAR(VSUB_scalar, vsub_scalar) |
| DO_2OP_SCALAR(VMUL_scalar, vmul_scalar) |
| DO_2OP_SCALAR(VHADD_S_scalar, vhadds_scalar) |
| DO_2OP_SCALAR(VHADD_U_scalar, vhaddu_scalar) |
| DO_2OP_SCALAR(VHSUB_S_scalar, vhsubs_scalar) |
| DO_2OP_SCALAR(VHSUB_U_scalar, vhsubu_scalar) |
| DO_2OP_SCALAR(VQADD_S_scalar, vqadds_scalar) |
| DO_2OP_SCALAR(VQADD_U_scalar, vqaddu_scalar) |
| DO_2OP_SCALAR(VQSUB_S_scalar, vqsubs_scalar) |
| DO_2OP_SCALAR(VQSUB_U_scalar, vqsubu_scalar) |
| DO_2OP_SCALAR(VQDMULH_scalar, vqdmulh_scalar) |
| DO_2OP_SCALAR(VQRDMULH_scalar, vqrdmulh_scalar) |
| DO_2OP_SCALAR(VBRSR, vbrsr) |
| DO_2OP_SCALAR(VMLA, vmla) |
| DO_2OP_SCALAR(VMLAS, vmlas) |
| DO_2OP_SCALAR(VQDMLAH, vqdmlah) |
| DO_2OP_SCALAR(VQRDMLAH, vqrdmlah) |
| DO_2OP_SCALAR(VQDMLASH, vqdmlash) |
| DO_2OP_SCALAR(VQRDMLASH, vqrdmlash) |
| |
| static bool trans_VQDMULLB_scalar(DisasContext *s, arg_2scalar *a) |
| { |
| static MVEGenTwoOpScalarFn * const fns[] = { |
| NULL, |
| gen_helper_mve_vqdmullb_scalarh, |
| gen_helper_mve_vqdmullb_scalarw, |
| NULL, |
| }; |
| if (a->qd == a->qn && a->size == MO_32) { |
| /* UNPREDICTABLE; we choose to undef */ |
| return false; |
| } |
| return do_2op_scalar(s, a, fns[a->size]); |
| } |
| |
| static bool trans_VQDMULLT_scalar(DisasContext *s, arg_2scalar *a) |
| { |
| static MVEGenTwoOpScalarFn * const fns[] = { |
| NULL, |
| gen_helper_mve_vqdmullt_scalarh, |
| gen_helper_mve_vqdmullt_scalarw, |
| NULL, |
| }; |
| if (a->qd == a->qn && a->size == MO_32) { |
| /* UNPREDICTABLE; we choose to undef */ |
| return false; |
| } |
| return do_2op_scalar(s, a, fns[a->size]); |
| } |
| |
| |
| #define DO_2OP_FP_SCALAR(INSN, FN) \ |
| static bool trans_##INSN(DisasContext *s, arg_2scalar *a) \ |
| { \ |
| static MVEGenTwoOpScalarFn * const fns[] = { \ |
| NULL, \ |
| gen_helper_mve_##FN##h, \ |
| gen_helper_mve_##FN##s, \ |
| NULL, \ |
| }; \ |
| if (!dc_isar_feature(aa32_mve_fp, s)) { \ |
| return false; \ |
| } \ |
| return do_2op_scalar(s, a, fns[a->size]); \ |
| } |
| |
| DO_2OP_FP_SCALAR(VADD_fp_scalar, vfadd_scalar) |
| DO_2OP_FP_SCALAR(VSUB_fp_scalar, vfsub_scalar) |
| DO_2OP_FP_SCALAR(VMUL_fp_scalar, vfmul_scalar) |
| DO_2OP_FP_SCALAR(VFMA_scalar, vfma_scalar) |
| DO_2OP_FP_SCALAR(VFMAS_scalar, vfmas_scalar) |
| |
| static bool do_long_dual_acc(DisasContext *s, arg_vmlaldav *a, |
| MVEGenLongDualAccOpFn *fn) |
| { |
| TCGv_ptr qn, qm; |
| TCGv_i64 rda_i, rda_o; |
| TCGv_i32 rdalo, rdahi; |
| |
| if (!dc_isar_feature(aa32_mve, s) || |
| !mve_check_qreg_bank(s, a->qn | a->qm) || |
| !fn) { |
| return false; |
| } |
| /* |
| * rdahi == 13 is UNPREDICTABLE; rdahi == 15 is a related |
| * encoding; rdalo always has bit 0 clear so cannot be 13 or 15. |
| */ |
| if (a->rdahi == 13 || a->rdahi == 15) { |
| return false; |
| } |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| qn = mve_qreg_ptr(a->qn); |
| qm = mve_qreg_ptr(a->qm); |
| |
| /* |
| * This insn is subject to beat-wise execution. Partial execution |
| * of an A=0 (no-accumulate) insn which does not execute the first |
| * beat must start with the current rda value, not 0. |
| */ |
| rda_o = tcg_temp_new_i64(); |
| if (a->a || mve_skip_first_beat(s)) { |
| rda_i = rda_o; |
| rdalo = load_reg(s, a->rdalo); |
| rdahi = load_reg(s, a->rdahi); |
| tcg_gen_concat_i32_i64(rda_i, rdalo, rdahi); |
| } else { |
| rda_i = tcg_constant_i64(0); |
| } |
| |
| fn(rda_o, cpu_env, qn, qm, rda_i); |
| |
| rdalo = tcg_temp_new_i32(); |
| rdahi = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(rdalo, rda_o); |
| tcg_gen_extrh_i64_i32(rdahi, rda_o); |
| store_reg(s, a->rdalo, rdalo); |
| store_reg(s, a->rdahi, rdahi); |
| mve_update_eci(s); |
| return true; |
| } |
| |
| static bool trans_VMLALDAV_S(DisasContext *s, arg_vmlaldav *a) |
| { |
| static MVEGenLongDualAccOpFn * const fns[4][2] = { |
| { NULL, NULL }, |
| { gen_helper_mve_vmlaldavsh, gen_helper_mve_vmlaldavxsh }, |
| { gen_helper_mve_vmlaldavsw, gen_helper_mve_vmlaldavxsw }, |
| { NULL, NULL }, |
| }; |
| return do_long_dual_acc(s, a, fns[a->size][a->x]); |
| } |
| |
| static bool trans_VMLALDAV_U(DisasContext *s, arg_vmlaldav *a) |
| { |
| static MVEGenLongDualAccOpFn * const fns[4][2] = { |
| { NULL, NULL }, |
| { gen_helper_mve_vmlaldavuh, NULL }, |
| { gen_helper_mve_vmlaldavuw, NULL }, |
| { NULL, NULL }, |
| }; |
| return do_long_dual_acc(s, a, fns[a->size][a->x]); |
| } |
| |
| static bool trans_VMLSLDAV(DisasContext *s, arg_vmlaldav *a) |
| { |
| static MVEGenLongDualAccOpFn * const fns[4][2] = { |
| { NULL, NULL }, |
| { gen_helper_mve_vmlsldavsh, gen_helper_mve_vmlsldavxsh }, |
| { gen_helper_mve_vmlsldavsw, gen_helper_mve_vmlsldavxsw }, |
| { NULL, NULL }, |
| }; |
| return do_long_dual_acc(s, a, fns[a->size][a->x]); |
| } |
| |
| static bool trans_VRMLALDAVH_S(DisasContext *s, arg_vmlaldav *a) |
| { |
| static MVEGenLongDualAccOpFn * const fns[] = { |
| gen_helper_mve_vrmlaldavhsw, gen_helper_mve_vrmlaldavhxsw, |
| }; |
| return do_long_dual_acc(s, a, fns[a->x]); |
| } |
| |
| static bool trans_VRMLALDAVH_U(DisasContext *s, arg_vmlaldav *a) |
| { |
| static MVEGenLongDualAccOpFn * const fns[] = { |
| gen_helper_mve_vrmlaldavhuw, NULL, |
| }; |
| return do_long_dual_acc(s, a, fns[a->x]); |
| } |
| |
| static bool trans_VRMLSLDAVH(DisasContext *s, arg_vmlaldav *a) |
| { |
| static MVEGenLongDualAccOpFn * const fns[] = { |
| gen_helper_mve_vrmlsldavhsw, gen_helper_mve_vrmlsldavhxsw, |
| }; |
| return do_long_dual_acc(s, a, fns[a->x]); |
| } |
| |
| static bool do_dual_acc(DisasContext *s, arg_vmladav *a, MVEGenDualAccOpFn *fn) |
| { |
| TCGv_ptr qn, qm; |
| TCGv_i32 rda_i, rda_o; |
| |
| if (!dc_isar_feature(aa32_mve, s) || |
| !mve_check_qreg_bank(s, a->qn) || |
| !fn) { |
| return false; |
| } |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| qn = mve_qreg_ptr(a->qn); |
| qm = mve_qreg_ptr(a->qm); |
| |
| /* |
| * This insn is subject to beat-wise execution. Partial execution |
| * of an A=0 (no-accumulate) insn which does not execute the first |
| * beat must start with the current rda value, not 0. |
| */ |
| if (a->a || mve_skip_first_beat(s)) { |
| rda_o = rda_i = load_reg(s, a->rda); |
| } else { |
| rda_i = tcg_constant_i32(0); |
| rda_o = tcg_temp_new_i32(); |
| } |
| |
| fn(rda_o, cpu_env, qn, qm, rda_i); |
| store_reg(s, a->rda, rda_o); |
| |
| mve_update_eci(s); |
| return true; |
| } |
| |
| #define DO_DUAL_ACC(INSN, FN) \ |
| static bool trans_##INSN(DisasContext *s, arg_vmladav *a) \ |
| { \ |
| static MVEGenDualAccOpFn * const fns[4][2] = { \ |
| { gen_helper_mve_##FN##b, gen_helper_mve_##FN##xb }, \ |
| { gen_helper_mve_##FN##h, gen_helper_mve_##FN##xh }, \ |
| { gen_helper_mve_##FN##w, gen_helper_mve_##FN##xw }, \ |
| { NULL, NULL }, \ |
| }; \ |
| return do_dual_acc(s, a, fns[a->size][a->x]); \ |
| } |
| |
| DO_DUAL_ACC(VMLADAV_S, vmladavs) |
| DO_DUAL_ACC(VMLSDAV, vmlsdav) |
| |
| static bool trans_VMLADAV_U(DisasContext *s, arg_vmladav *a) |
| { |
| static MVEGenDualAccOpFn * const fns[4][2] = { |
| { gen_helper_mve_vmladavub, NULL }, |
| { gen_helper_mve_vmladavuh, NULL }, |
| { gen_helper_mve_vmladavuw, NULL }, |
| { NULL, NULL }, |
| }; |
| return do_dual_acc(s, a, fns[a->size][a->x]); |
| } |
| |
| static void gen_vpst(DisasContext *s, uint32_t mask) |
| { |
| /* |
| * Set the VPR mask fields. We take advantage of MASK01 and MASK23 |
| * being adjacent fields in the register. |
| * |
| * Updating the masks is not predicated, but it is subject to beat-wise |
| * execution, and the mask is updated on the odd-numbered beats. |
| * So if PSR.ECI says we should skip beat 1, we mustn't update the |
| * 01 mask field. |
| */ |
| TCGv_i32 vpr = load_cpu_field(v7m.vpr); |
| switch (s->eci) { |
| case ECI_NONE: |
| case ECI_A0: |
| /* Update both 01 and 23 fields */ |
| tcg_gen_deposit_i32(vpr, vpr, |
| tcg_constant_i32(mask | (mask << 4)), |
| R_V7M_VPR_MASK01_SHIFT, |
| R_V7M_VPR_MASK01_LENGTH + R_V7M_VPR_MASK23_LENGTH); |
| break; |
| case ECI_A0A1: |
| case ECI_A0A1A2: |
| case ECI_A0A1A2B0: |
| /* Update only the 23 mask field */ |
| tcg_gen_deposit_i32(vpr, vpr, |
| tcg_constant_i32(mask), |
| R_V7M_VPR_MASK23_SHIFT, R_V7M_VPR_MASK23_LENGTH); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| store_cpu_field(vpr, v7m.vpr); |
| } |
| |
| static bool trans_VPST(DisasContext *s, arg_VPST *a) |
| { |
| /* mask == 0 is a "related encoding" */ |
| if (!dc_isar_feature(aa32_mve, s) || !a->mask) { |
| return false; |
| } |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| gen_vpst(s, a->mask); |
| mve_update_and_store_eci(s); |
| return true; |
| } |
| |
| static bool trans_VPNOT(DisasContext *s, arg_VPNOT *a) |
| { |
| /* |
| * Invert the predicate in VPR.P0. We have call out to |
| * a helper because this insn itself is beatwise and can |
| * be predicated. |
| */ |
| if (!dc_isar_feature(aa32_mve, s)) { |
| return false; |
| } |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| gen_helper_mve_vpnot(cpu_env); |
| /* This insn updates predication bits */ |
| s->base.is_jmp = DISAS_UPDATE_NOCHAIN; |
| mve_update_eci(s); |
| return true; |
| } |
| |
| static bool trans_VADDV(DisasContext *s, arg_VADDV *a) |
| { |
| /* VADDV: vector add across vector */ |
| static MVEGenVADDVFn * const fns[4][2] = { |
| { gen_helper_mve_vaddvsb, gen_helper_mve_vaddvub }, |
| { gen_helper_mve_vaddvsh, gen_helper_mve_vaddvuh }, |
| { gen_helper_mve_vaddvsw, gen_helper_mve_vaddvuw }, |
| { NULL, NULL } |
| }; |
| TCGv_ptr qm; |
| TCGv_i32 rda_i, rda_o; |
| |
| if (!dc_isar_feature(aa32_mve, s) || |
| a->size == 3) { |
| return false; |
| } |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| /* |
| * This insn is subject to beat-wise execution. Partial execution |
| * of an A=0 (no-accumulate) insn which does not execute the first |
| * beat must start with the current value of Rda, not zero. |
| */ |
| if (a->a || mve_skip_first_beat(s)) { |
| /* Accumulate input from Rda */ |
| rda_o = rda_i = load_reg(s, a->rda); |
| } else { |
| /* Accumulate starting at zero */ |
| rda_i = tcg_constant_i32(0); |
| rda_o = tcg_temp_new_i32(); |
| } |
| |
| qm = mve_qreg_ptr(a->qm); |
| fns[a->size][a->u](rda_o, cpu_env, qm, rda_i); |
| store_reg(s, a->rda, rda_o); |
| |
| mve_update_eci(s); |
| return true; |
| } |
| |
| static bool trans_VADDLV(DisasContext *s, arg_VADDLV *a) |
| { |
| /* |
| * Vector Add Long Across Vector: accumulate the 32-bit |
| * elements of the vector into a 64-bit result stored in |
| * a pair of general-purpose registers. |
| * No need to check Qm's bank: it is only 3 bits in decode. |
| */ |
| TCGv_ptr qm; |
| TCGv_i64 rda_i, rda_o; |
| TCGv_i32 rdalo, rdahi; |
| |
| if (!dc_isar_feature(aa32_mve, s)) { |
| return false; |
| } |
| /* |
| * rdahi == 13 is UNPREDICTABLE; rdahi == 15 is a related |
| * encoding; rdalo always has bit 0 clear so cannot be 13 or 15. |
| */ |
| if (a->rdahi == 13 || a->rdahi == 15) { |
| return false; |
| } |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| /* |
| * This insn is subject to beat-wise execution. Partial execution |
| * of an A=0 (no-accumulate) insn which does not execute the first |
| * beat must start with the current value of RdaHi:RdaLo, not zero. |
| */ |
| rda_o = tcg_temp_new_i64(); |
| if (a->a || mve_skip_first_beat(s)) { |
| /* Accumulate input from RdaHi:RdaLo */ |
| rda_i = rda_o; |
| rdalo = load_reg(s, a->rdalo); |
| rdahi = load_reg(s, a->rdahi); |
| tcg_gen_concat_i32_i64(rda_i, rdalo, rdahi); |
| } else { |
| /* Accumulate starting at zero */ |
| rda_i = tcg_constant_i64(0); |
| } |
| |
| qm = mve_qreg_ptr(a->qm); |
| if (a->u) { |
| gen_helper_mve_vaddlv_u(rda_o, cpu_env, qm, rda_i); |
| } else { |
| gen_helper_mve_vaddlv_s(rda_o, cpu_env, qm, rda_i); |
| } |
| |
| rdalo = tcg_temp_new_i32(); |
| rdahi = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(rdalo, rda_o); |
| tcg_gen_extrh_i64_i32(rdahi, rda_o); |
| store_reg(s, a->rdalo, rdalo); |
| store_reg(s, a->rdahi, rdahi); |
| mve_update_eci(s); |
| return true; |
| } |
| |
| static bool do_1imm(DisasContext *s, arg_1imm *a, MVEGenOneOpImmFn *fn, |
| GVecGen2iFn *vecfn) |
| { |
| TCGv_ptr qd; |
| uint64_t imm; |
| |
| if (!dc_isar_feature(aa32_mve, s) || |
| !mve_check_qreg_bank(s, a->qd) || |
| !fn) { |
| return false; |
| } |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| imm = asimd_imm_const(a->imm, a->cmode, a->op); |
| |
| if (vecfn && mve_no_predication(s)) { |
| vecfn(MO_64, mve_qreg_offset(a->qd), mve_qreg_offset(a->qd), |
| imm, 16, 16); |
| } else { |
| qd = mve_qreg_ptr(a->qd); |
| fn(cpu_env, qd, tcg_constant_i64(imm)); |
| } |
| mve_update_eci(s); |
| return true; |
| } |
| |
| static void gen_gvec_vmovi(unsigned vece, uint32_t dofs, uint32_t aofs, |
| int64_t c, uint32_t oprsz, uint32_t maxsz) |
| { |
| tcg_gen_gvec_dup_imm(vece, dofs, oprsz, maxsz, c); |
| } |
| |
| static bool trans_Vimm_1r(DisasContext *s, arg_1imm *a) |
| { |
| /* Handle decode of cmode/op here between VORR/VBIC/VMOV */ |
| MVEGenOneOpImmFn *fn; |
| GVecGen2iFn *vecfn; |
| |
| if ((a->cmode & 1) && a->cmode < 12) { |
| if (a->op) { |
| /* |
| * For op=1, the immediate will be inverted by asimd_imm_const(), |
| * so the VBIC becomes a logical AND operation. |
| */ |
| fn = gen_helper_mve_vandi; |
| vecfn = tcg_gen_gvec_andi; |
| } else { |
| fn = gen_helper_mve_vorri; |
| vecfn = tcg_gen_gvec_ori; |
| } |
| } else { |
| /* There is one unallocated cmode/op combination in this space */ |
| if (a->cmode == 15 && a->op == 1) { |
| return false; |
| } |
| /* asimd_imm_const() sorts out VMVNI vs VMOVI for us */ |
| fn = gen_helper_mve_vmovi; |
| vecfn = gen_gvec_vmovi; |
| } |
| return do_1imm(s, a, fn, vecfn); |
| } |
| |
| static bool do_2shift_vec(DisasContext *s, arg_2shift *a, MVEGenTwoOpShiftFn fn, |
| bool negateshift, GVecGen2iFn vecfn) |
| { |
| TCGv_ptr qd, qm; |
| int shift = a->shift; |
| |
| if (!dc_isar_feature(aa32_mve, s) || |
| !mve_check_qreg_bank(s, a->qd | a->qm) || |
| !fn) { |
| return false; |
| } |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| /* |
| * When we handle a right shift insn using a left-shift helper |
| * which permits a negative shift count to indicate a right-shift, |
| * we must negate the shift count. |
| */ |
| if (negateshift) { |
| shift = -shift; |
| } |
| |
| if (vecfn && mve_no_predication(s)) { |
| vecfn(a->size, mve_qreg_offset(a->qd), mve_qreg_offset(a->qm), |
| shift, 16, 16); |
| } else { |
| qd = mve_qreg_ptr(a->qd); |
| qm = mve_qreg_ptr(a->qm); |
| fn(cpu_env, qd, qm, tcg_constant_i32(shift)); |
| } |
| mve_update_eci(s); |
| return true; |
| } |
| |
| static bool do_2shift(DisasContext *s, arg_2shift *a, MVEGenTwoOpShiftFn fn, |
| bool negateshift) |
| { |
| return do_2shift_vec(s, a, fn, negateshift, NULL); |
| } |
| |
| #define DO_2SHIFT_VEC(INSN, FN, NEGATESHIFT, VECFN) \ |
| static bool trans_##INSN(DisasContext *s, arg_2shift *a) \ |
| { \ |
| static MVEGenTwoOpShiftFn * const fns[] = { \ |
| gen_helper_mve_##FN##b, \ |
| gen_helper_mve_##FN##h, \ |
| gen_helper_mve_##FN##w, \ |
| NULL, \ |
| }; \ |
| return do_2shift_vec(s, a, fns[a->size], NEGATESHIFT, VECFN); \ |
| } |
| |
| #define DO_2SHIFT(INSN, FN, NEGATESHIFT) \ |
| DO_2SHIFT_VEC(INSN, FN, NEGATESHIFT, NULL) |
| |
| static void do_gvec_shri_s(unsigned vece, uint32_t dofs, uint32_t aofs, |
| int64_t shift, uint32_t oprsz, uint32_t maxsz) |
| { |
| /* |
| * We get here with a negated shift count, and we must handle |
| * shifts by the element size, which tcg_gen_gvec_sari() does not do. |
| */ |
| shift = -shift; |
| if (shift == (8 << vece)) { |
| shift--; |
| } |
| tcg_gen_gvec_sari(vece, dofs, aofs, shift, oprsz, maxsz); |
| } |
| |
| static void do_gvec_shri_u(unsigned vece, uint32_t dofs, uint32_t aofs, |
| int64_t shift, uint32_t oprsz, uint32_t maxsz) |
| { |
| /* |
| * We get here with a negated shift count, and we must handle |
| * shifts by the element size, which tcg_gen_gvec_shri() does not do. |
| */ |
| shift = -shift; |
| if (shift == (8 << vece)) { |
| tcg_gen_gvec_dup_imm(vece, dofs, oprsz, maxsz, 0); |
| } else { |
| tcg_gen_gvec_shri(vece, dofs, aofs, shift, oprsz, maxsz); |
| } |
| } |
| |
| DO_2SHIFT_VEC(VSHLI, vshli_u, false, tcg_gen_gvec_shli) |
| DO_2SHIFT(VQSHLI_S, vqshli_s, false) |
| DO_2SHIFT(VQSHLI_U, vqshli_u, false) |
| DO_2SHIFT(VQSHLUI, vqshlui_s, false) |
| /* These right shifts use a left-shift helper with negated shift count */ |
| DO_2SHIFT_VEC(VSHRI_S, vshli_s, true, do_gvec_shri_s) |
| DO_2SHIFT_VEC(VSHRI_U, vshli_u, true, do_gvec_shri_u) |
| DO_2SHIFT(VRSHRI_S, vrshli_s, true) |
| DO_2SHIFT(VRSHRI_U, vrshli_u, true) |
| |
| DO_2SHIFT_VEC(VSRI, vsri, false, gen_gvec_sri) |
| DO_2SHIFT_VEC(VSLI, vsli, false, gen_gvec_sli) |
| |
| #define DO_2SHIFT_FP(INSN, FN) \ |
| static bool trans_##INSN(DisasContext *s, arg_2shift *a) \ |
| { \ |
| if (!dc_isar_feature(aa32_mve_fp, s)) { \ |
| return false; \ |
| } \ |
| return do_2shift(s, a, gen_helper_mve_##FN, false); \ |
| } |
| |
| DO_2SHIFT_FP(VCVT_SH_fixed, vcvt_sh) |
| DO_2SHIFT_FP(VCVT_UH_fixed, vcvt_uh) |
| DO_2SHIFT_FP(VCVT_HS_fixed, vcvt_hs) |
| DO_2SHIFT_FP(VCVT_HU_fixed, vcvt_hu) |
| DO_2SHIFT_FP(VCVT_SF_fixed, vcvt_sf) |
| DO_2SHIFT_FP(VCVT_UF_fixed, vcvt_uf) |
| DO_2SHIFT_FP(VCVT_FS_fixed, vcvt_fs) |
| DO_2SHIFT_FP(VCVT_FU_fixed, vcvt_fu) |
| |
| static bool do_2shift_scalar(DisasContext *s, arg_shl_scalar *a, |
| MVEGenTwoOpShiftFn *fn) |
| { |
| TCGv_ptr qda; |
| TCGv_i32 rm; |
| |
| if (!dc_isar_feature(aa32_mve, s) || |
| !mve_check_qreg_bank(s, a->qda) || |
| a->rm == 13 || a->rm == 15 || !fn) { |
| /* Rm cases are UNPREDICTABLE */ |
| return false; |
| } |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| qda = mve_qreg_ptr(a->qda); |
| rm = load_reg(s, a->rm); |
| fn(cpu_env, qda, qda, rm); |
| mve_update_eci(s); |
| return true; |
| } |
| |
| #define DO_2SHIFT_SCALAR(INSN, FN) \ |
| static bool trans_##INSN(DisasContext *s, arg_shl_scalar *a) \ |
| { \ |
| static MVEGenTwoOpShiftFn * const fns[] = { \ |
| gen_helper_mve_##FN##b, \ |
| gen_helper_mve_##FN##h, \ |
| gen_helper_mve_##FN##w, \ |
| NULL, \ |
| }; \ |
| return do_2shift_scalar(s, a, fns[a->size]); \ |
| } |
| |
| DO_2SHIFT_SCALAR(VSHL_S_scalar, vshli_s) |
| DO_2SHIFT_SCALAR(VSHL_U_scalar, vshli_u) |
| DO_2SHIFT_SCALAR(VRSHL_S_scalar, vrshli_s) |
| DO_2SHIFT_SCALAR(VRSHL_U_scalar, vrshli_u) |
| DO_2SHIFT_SCALAR(VQSHL_S_scalar, vqshli_s) |
| DO_2SHIFT_SCALAR(VQSHL_U_scalar, vqshli_u) |
| DO_2SHIFT_SCALAR(VQRSHL_S_scalar, vqrshli_s) |
| DO_2SHIFT_SCALAR(VQRSHL_U_scalar, vqrshli_u) |
| |
| #define DO_VSHLL(INSN, FN) \ |
| static bool trans_##INSN(DisasContext *s, arg_2shift *a) \ |
| { \ |
| static MVEGenTwoOpShiftFn * const fns[] = { \ |
| gen_helper_mve_##FN##b, \ |
| gen_helper_mve_##FN##h, \ |
| }; \ |
| return do_2shift_vec(s, a, fns[a->size], false, do_gvec_##FN); \ |
| } |
| |
| /* |
| * For the VSHLL vector helpers, the vece is the size of the input |
| * (ie MO_8 or MO_16); the helpers want to work in the output size. |
| * The shift count can be 0..<input size>, inclusive. (0 is VMOVL.) |
| */ |
| static void do_gvec_vshllbs(unsigned vece, uint32_t dofs, uint32_t aofs, |
| int64_t shift, uint32_t oprsz, uint32_t maxsz) |
| { |
| unsigned ovece = vece + 1; |
| unsigned ibits = vece == MO_8 ? 8 : 16; |
| tcg_gen_gvec_shli(ovece, dofs, aofs, ibits, oprsz, maxsz); |
| tcg_gen_gvec_sari(ovece, dofs, dofs, ibits - shift, oprsz, maxsz); |
| } |
| |
| static void do_gvec_vshllbu(unsigned vece, uint32_t dofs, uint32_t aofs, |
| int64_t shift, uint32_t oprsz, uint32_t maxsz) |
| { |
| unsigned ovece = vece + 1; |
| tcg_gen_gvec_andi(ovece, dofs, aofs, |
| ovece == MO_16 ? 0xff : 0xffff, oprsz, maxsz); |
| tcg_gen_gvec_shli(ovece, dofs, dofs, shift, oprsz, maxsz); |
| } |
| |
| static void do_gvec_vshllts(unsigned vece, uint32_t dofs, uint32_t aofs, |
| int64_t shift, uint32_t oprsz, uint32_t maxsz) |
| { |
| unsigned ovece = vece + 1; |
| unsigned ibits = vece == MO_8 ? 8 : 16; |
| if (shift == 0) { |
| tcg_gen_gvec_sari(ovece, dofs, aofs, ibits, oprsz, maxsz); |
| } else { |
| tcg_gen_gvec_andi(ovece, dofs, aofs, |
| ovece == MO_16 ? 0xff00 : 0xffff0000, oprsz, maxsz); |
| tcg_gen_gvec_sari(ovece, dofs, dofs, ibits - shift, oprsz, maxsz); |
| } |
| } |
| |
| static void do_gvec_vshlltu(unsigned vece, uint32_t dofs, uint32_t aofs, |
| int64_t shift, uint32_t oprsz, uint32_t maxsz) |
| { |
| unsigned ovece = vece + 1; |
| unsigned ibits = vece == MO_8 ? 8 : 16; |
| if (shift == 0) { |
| tcg_gen_gvec_shri(ovece, dofs, aofs, ibits, oprsz, maxsz); |
| } else { |
| tcg_gen_gvec_andi(ovece, dofs, aofs, |
| ovece == MO_16 ? 0xff00 : 0xffff0000, oprsz, maxsz); |
| tcg_gen_gvec_shri(ovece, dofs, dofs, ibits - shift, oprsz, maxsz); |
| } |
| } |
| |
| DO_VSHLL(VSHLL_BS, vshllbs) |
| DO_VSHLL(VSHLL_BU, vshllbu) |
| DO_VSHLL(VSHLL_TS, vshllts) |
| DO_VSHLL(VSHLL_TU, vshlltu) |
| |
| #define DO_2SHIFT_N(INSN, FN) \ |
| static bool trans_##INSN(DisasContext *s, arg_2shift *a) \ |
| { \ |
| static MVEGenTwoOpShiftFn * const fns[] = { \ |
| gen_helper_mve_##FN##b, \ |
| gen_helper_mve_##FN##h, \ |
| }; \ |
| return do_2shift(s, a, fns[a->size], false); \ |
| } |
| |
| DO_2SHIFT_N(VSHRNB, vshrnb) |
| DO_2SHIFT_N(VSHRNT, vshrnt) |
| DO_2SHIFT_N(VRSHRNB, vrshrnb) |
| DO_2SHIFT_N(VRSHRNT, vrshrnt) |
| DO_2SHIFT_N(VQSHRNB_S, vqshrnb_s) |
| DO_2SHIFT_N(VQSHRNT_S, vqshrnt_s) |
| DO_2SHIFT_N(VQSHRNB_U, vqshrnb_u) |
| DO_2SHIFT_N(VQSHRNT_U, vqshrnt_u) |
| DO_2SHIFT_N(VQSHRUNB, vqshrunb) |
| DO_2SHIFT_N(VQSHRUNT, vqshrunt) |
| DO_2SHIFT_N(VQRSHRNB_S, vqrshrnb_s) |
| DO_2SHIFT_N(VQRSHRNT_S, vqrshrnt_s) |
| DO_2SHIFT_N(VQRSHRNB_U, vqrshrnb_u) |
| DO_2SHIFT_N(VQRSHRNT_U, vqrshrnt_u) |
| DO_2SHIFT_N(VQRSHRUNB, vqrshrunb) |
| DO_2SHIFT_N(VQRSHRUNT, vqrshrunt) |
| |
| static bool trans_VSHLC(DisasContext *s, arg_VSHLC *a) |
| { |
| /* |
| * Whole Vector Left Shift with Carry. The carry is taken |
| * from a general purpose register and written back there. |
| * An imm of 0 means "shift by 32". |
| */ |
| TCGv_ptr qd; |
| TCGv_i32 rdm; |
| |
| if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) { |
| return false; |
| } |
| if (a->rdm == 13 || a->rdm == 15) { |
| /* CONSTRAINED UNPREDICTABLE: we UNDEF */ |
| return false; |
| } |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| qd = mve_qreg_ptr(a->qd); |
| rdm = load_reg(s, a->rdm); |
| gen_helper_mve_vshlc(rdm, cpu_env, qd, rdm, tcg_constant_i32(a->imm)); |
| store_reg(s, a->rdm, rdm); |
| mve_update_eci(s); |
| return true; |
| } |
| |
| static bool do_vidup(DisasContext *s, arg_vidup *a, MVEGenVIDUPFn *fn) |
| { |
| TCGv_ptr qd; |
| TCGv_i32 rn; |
| |
| /* |
| * Vector increment/decrement with wrap and duplicate (VIDUP, VDDUP). |
| * This fills the vector with elements of successively increasing |
| * or decreasing values, starting from Rn. |
| */ |
| if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) { |
| return false; |
| } |
| if (a->size == MO_64) { |
| /* size 0b11 is another encoding */ |
| return false; |
| } |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| qd = mve_qreg_ptr(a->qd); |
| rn = load_reg(s, a->rn); |
| fn(rn, cpu_env, qd, rn, tcg_constant_i32(a->imm)); |
| store_reg(s, a->rn, rn); |
| mve_update_eci(s); |
| return true; |
| } |
| |
| static bool do_viwdup(DisasContext *s, arg_viwdup *a, MVEGenVIWDUPFn *fn) |
| { |
| TCGv_ptr qd; |
| TCGv_i32 rn, rm; |
| |
| /* |
| * Vector increment/decrement with wrap and duplicate (VIWDUp, VDWDUP) |
| * This fills the vector with elements of successively increasing |
| * or decreasing values, starting from Rn. Rm specifies a point where |
| * the count wraps back around to 0. The updated offset is written back |
| * to Rn. |
| */ |
| if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) { |
| return false; |
| } |
| if (!fn || a->rm == 13 || a->rm == 15) { |
| /* |
| * size 0b11 is another encoding; Rm == 13 is UNPREDICTABLE; |
| * Rm == 13 is VIWDUP, VDWDUP. |
| */ |
| return false; |
| } |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| qd = mve_qreg_ptr(a->qd); |
| rn = load_reg(s, a->rn); |
| rm = load_reg(s, a->rm); |
| fn(rn, cpu_env, qd, rn, rm, tcg_constant_i32(a->imm)); |
| store_reg(s, a->rn, rn); |
| mve_update_eci(s); |
| return true; |
| } |
| |
| static bool trans_VIDUP(DisasContext *s, arg_vidup *a) |
| { |
| static MVEGenVIDUPFn * const fns[] = { |
| gen_helper_mve_vidupb, |
| gen_helper_mve_viduph, |
| gen_helper_mve_vidupw, |
| NULL, |
| }; |
| return do_vidup(s, a, fns[a->size]); |
| } |
| |
| static bool trans_VDDUP(DisasContext *s, arg_vidup *a) |
| { |
| static MVEGenVIDUPFn * const fns[] = { |
| gen_helper_mve_vidupb, |
| gen_helper_mve_viduph, |
| gen_helper_mve_vidupw, |
| NULL, |
| }; |
| /* VDDUP is just like VIDUP but with a negative immediate */ |
| a->imm = -a->imm; |
| return do_vidup(s, a, fns[a->size]); |
| } |
| |
| static bool trans_VIWDUP(DisasContext *s, arg_viwdup *a) |
| { |
| static MVEGenVIWDUPFn * const fns[] = { |
| gen_helper_mve_viwdupb, |
| gen_helper_mve_viwduph, |
| gen_helper_mve_viwdupw, |
| NULL, |
| }; |
| return do_viwdup(s, a, fns[a->size]); |
| } |
| |
| static bool trans_VDWDUP(DisasContext *s, arg_viwdup *a) |
| { |
| static MVEGenVIWDUPFn * const fns[] = { |
| gen_helper_mve_vdwdupb, |
| gen_helper_mve_vdwduph, |
| gen_helper_mve_vdwdupw, |
| NULL, |
| }; |
| return do_viwdup(s, a, fns[a->size]); |
| } |
| |
| static bool do_vcmp(DisasContext *s, arg_vcmp *a, MVEGenCmpFn *fn) |
| { |
| TCGv_ptr qn, qm; |
| |
| if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qm) || |
| !fn) { |
| return false; |
| } |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| qn = mve_qreg_ptr(a->qn); |
| qm = mve_qreg_ptr(a->qm); |
| fn(cpu_env, qn, qm); |
| if (a->mask) { |
| /* VPT */ |
| gen_vpst(s, a->mask); |
| } |
| /* This insn updates predication bits */ |
| s->base.is_jmp = DISAS_UPDATE_NOCHAIN; |
| mve_update_eci(s); |
| return true; |
| } |
| |
| static bool do_vcmp_scalar(DisasContext *s, arg_vcmp_scalar *a, |
| MVEGenScalarCmpFn *fn) |
| { |
| TCGv_ptr qn; |
| TCGv_i32 rm; |
| |
| if (!dc_isar_feature(aa32_mve, s) || !fn || a->rm == 13) { |
| return false; |
| } |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| qn = mve_qreg_ptr(a->qn); |
| if (a->rm == 15) { |
| /* Encoding Rm=0b1111 means "constant zero" */ |
| rm = tcg_constant_i32(0); |
| } else { |
| rm = load_reg(s, a->rm); |
| } |
| fn(cpu_env, qn, rm); |
| if (a->mask) { |
| /* VPT */ |
| gen_vpst(s, a->mask); |
| } |
| /* This insn updates predication bits */ |
| s->base.is_jmp = DISAS_UPDATE_NOCHAIN; |
| mve_update_eci(s); |
| return true; |
| } |
| |
| #define DO_VCMP(INSN, FN) \ |
| static bool trans_##INSN(DisasContext *s, arg_vcmp *a) \ |
| { \ |
| static MVEGenCmpFn * const fns[] = { \ |
| gen_helper_mve_##FN##b, \ |
| gen_helper_mve_##FN##h, \ |
| gen_helper_mve_##FN##w, \ |
| NULL, \ |
| }; \ |
| return do_vcmp(s, a, fns[a->size]); \ |
| } \ |
| static bool trans_##INSN##_scalar(DisasContext *s, \ |
| arg_vcmp_scalar *a) \ |
| { \ |
| static MVEGenScalarCmpFn * const fns[] = { \ |
| gen_helper_mve_##FN##_scalarb, \ |
| gen_helper_mve_##FN##_scalarh, \ |
| gen_helper_mve_##FN##_scalarw, \ |
| NULL, \ |
| }; \ |
| return do_vcmp_scalar(s, a, fns[a->size]); \ |
| } |
| |
| DO_VCMP(VCMPEQ, vcmpeq) |
| DO_VCMP(VCMPNE, vcmpne) |
| DO_VCMP(VCMPCS, vcmpcs) |
| DO_VCMP(VCMPHI, vcmphi) |
| DO_VCMP(VCMPGE, vcmpge) |
| DO_VCMP(VCMPLT, vcmplt) |
| DO_VCMP(VCMPGT, vcmpgt) |
| DO_VCMP(VCMPLE, vcmple) |
| |
| #define DO_VCMP_FP(INSN, FN) \ |
| static bool trans_##INSN(DisasContext *s, arg_vcmp *a) \ |
| { \ |
| static MVEGenCmpFn * const fns[] = { \ |
| NULL, \ |
| gen_helper_mve_##FN##h, \ |
| gen_helper_mve_##FN##s, \ |
| NULL, \ |
| }; \ |
| if (!dc_isar_feature(aa32_mve_fp, s)) { \ |
| return false; \ |
| } \ |
| return do_vcmp(s, a, fns[a->size]); \ |
| } \ |
| static bool trans_##INSN##_scalar(DisasContext *s, \ |
| arg_vcmp_scalar *a) \ |
| { \ |
| static MVEGenScalarCmpFn * const fns[] = { \ |
| NULL, \ |
| gen_helper_mve_##FN##_scalarh, \ |
| gen_helper_mve_##FN##_scalars, \ |
| NULL, \ |
| }; \ |
| if (!dc_isar_feature(aa32_mve_fp, s)) { \ |
| return false; \ |
| } \ |
| return do_vcmp_scalar(s, a, fns[a->size]); \ |
| } |
| |
| DO_VCMP_FP(VCMPEQ_fp, vfcmpeq) |
| DO_VCMP_FP(VCMPNE_fp, vfcmpne) |
| DO_VCMP_FP(VCMPGE_fp, vfcmpge) |
| DO_VCMP_FP(VCMPLT_fp, vfcmplt) |
| DO_VCMP_FP(VCMPGT_fp, vfcmpgt) |
| DO_VCMP_FP(VCMPLE_fp, vfcmple) |
| |
| static bool do_vmaxv(DisasContext *s, arg_vmaxv *a, MVEGenVADDVFn fn) |
| { |
| /* |
| * MIN/MAX operations across a vector: compute the min or |
| * max of the initial value in a general purpose register |
| * and all the elements in the vector, and store it back |
| * into the general purpose register. |
| */ |
| TCGv_ptr qm; |
| TCGv_i32 rda; |
| |
| if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qm) || |
| !fn || a->rda == 13 || a->rda == 15) { |
| /* Rda cases are UNPREDICTABLE */ |
| return false; |
| } |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| qm = mve_qreg_ptr(a->qm); |
| rda = load_reg(s, a->rda); |
| fn(rda, cpu_env, qm, rda); |
| store_reg(s, a->rda, rda); |
| mve_update_eci(s); |
| return true; |
| } |
| |
| #define DO_VMAXV(INSN, FN) \ |
| static bool trans_##INSN(DisasContext *s, arg_vmaxv *a) \ |
| { \ |
| static MVEGenVADDVFn * const fns[] = { \ |
| gen_helper_mve_##FN##b, \ |
| gen_helper_mve_##FN##h, \ |
| gen_helper_mve_##FN##w, \ |
| NULL, \ |
| }; \ |
| return do_vmaxv(s, a, fns[a->size]); \ |
| } |
| |
| DO_VMAXV(VMAXV_S, vmaxvs) |
| DO_VMAXV(VMAXV_U, vmaxvu) |
| DO_VMAXV(VMAXAV, vmaxav) |
| DO_VMAXV(VMINV_S, vminvs) |
| DO_VMAXV(VMINV_U, vminvu) |
| DO_VMAXV(VMINAV, vminav) |
| |
| #define DO_VMAXV_FP(INSN, FN) \ |
| static bool trans_##INSN(DisasContext *s, arg_vmaxv *a) \ |
| { \ |
| static MVEGenVADDVFn * const fns[] = { \ |
| NULL, \ |
| gen_helper_mve_##FN##h, \ |
| gen_helper_mve_##FN##s, \ |
| NULL, \ |
| }; \ |
| if (!dc_isar_feature(aa32_mve_fp, s)) { \ |
| return false; \ |
| } \ |
| return do_vmaxv(s, a, fns[a->size]); \ |
| } |
| |
| DO_VMAXV_FP(VMAXNMV, vmaxnmv) |
| DO_VMAXV_FP(VMINNMV, vminnmv) |
| DO_VMAXV_FP(VMAXNMAV, vmaxnmav) |
| DO_VMAXV_FP(VMINNMAV, vminnmav) |
| |
| static bool do_vabav(DisasContext *s, arg_vabav *a, MVEGenVABAVFn *fn) |
| { |
| /* Absolute difference accumulated across vector */ |
| TCGv_ptr qn, qm; |
| TCGv_i32 rda; |
| |
| if (!dc_isar_feature(aa32_mve, s) || |
| !mve_check_qreg_bank(s, a->qm | a->qn) || |
| !fn || a->rda == 13 || a->rda == 15) { |
| /* Rda cases are UNPREDICTABLE */ |
| return false; |
| } |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| qm = mve_qreg_ptr(a->qm); |
| qn = mve_qreg_ptr(a->qn); |
| rda = load_reg(s, a->rda); |
| fn(rda, cpu_env, qn, qm, rda); |
| store_reg(s, a->rda, rda); |
| mve_update_eci(s); |
| return true; |
| } |
| |
| #define DO_VABAV(INSN, FN) \ |
| static bool trans_##INSN(DisasContext *s, arg_vabav *a) \ |
| { \ |
| static MVEGenVABAVFn * const fns[] = { \ |
| gen_helper_mve_##FN##b, \ |
| gen_helper_mve_##FN##h, \ |
| gen_helper_mve_##FN##w, \ |
| NULL, \ |
| }; \ |
| return do_vabav(s, a, fns[a->size]); \ |
| } |
| |
| DO_VABAV(VABAV_S, vabavs) |
| DO_VABAV(VABAV_U, vabavu) |
| |
| static bool trans_VMOV_to_2gp(DisasContext *s, arg_VMOV_to_2gp *a) |
| { |
| /* |
| * VMOV two 32-bit vector lanes to two general-purpose registers. |
| * This insn is not predicated but it is subject to beat-wise |
| * execution if it is not in an IT block. For us this means |
| * only that if PSR.ECI says we should not be executing the beat |
| * corresponding to the lane of the vector register being accessed |
| * then we should skip performing the move, and that we need to do |
| * the usual check for bad ECI state and advance of ECI state. |
| * (If PSR.ECI is non-zero then we cannot be in an IT block.) |
| */ |
| TCGv_i32 tmp; |
| int vd; |
| |
| if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd) || |
| a->rt == 13 || a->rt == 15 || a->rt2 == 13 || a->rt2 == 15 || |
| a->rt == a->rt2) { |
| /* Rt/Rt2 cases are UNPREDICTABLE */ |
| return false; |
| } |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| /* Convert Qreg index to Dreg for read_neon_element32() etc */ |
| vd = a->qd * 2; |
| |
| if (!mve_skip_vmov(s, vd, a->idx, MO_32)) { |
| tmp = tcg_temp_new_i32(); |
| read_neon_element32(tmp, vd, a->idx, MO_32); |
| store_reg(s, a->rt, tmp); |
| } |
| if (!mve_skip_vmov(s, vd + 1, a->idx, MO_32)) { |
| tmp = tcg_temp_new_i32(); |
| read_neon_element32(tmp, vd + 1, a->idx, MO_32); |
| store_reg(s, a->rt2, tmp); |
| } |
| |
| mve_update_and_store_eci(s); |
| return true; |
| } |
| |
| static bool trans_VMOV_from_2gp(DisasContext *s, arg_VMOV_to_2gp *a) |
| { |
| /* |
| * VMOV two general-purpose registers to two 32-bit vector lanes. |
| * This insn is not predicated but it is subject to beat-wise |
| * execution if it is not in an IT block. For us this means |
| * only that if PSR.ECI says we should not be executing the beat |
| * corresponding to the lane of the vector register being accessed |
| * then we should skip performing the move, and that we need to do |
| * the usual check for bad ECI state and advance of ECI state. |
| * (If PSR.ECI is non-zero then we cannot be in an IT block.) |
| */ |
| TCGv_i32 tmp; |
| int vd; |
| |
| if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd) || |
| a->rt == 13 || a->rt == 15 || a->rt2 == 13 || a->rt2 == 15) { |
| /* Rt/Rt2 cases are UNPREDICTABLE */ |
| return false; |
| } |
| if (!mve_eci_check(s) || !vfp_access_check(s)) { |
| return true; |
| } |
| |
| /* Convert Qreg idx to Dreg for read_neon_element32() etc */ |
| vd = a->qd * 2; |
| |
| if (!mve_skip_vmov(s, vd, a->idx, MO_32)) { |
| tmp = load_reg(s, a->rt); |
| write_neon_element32(tmp, vd, a->idx, MO_32); |
| } |
| if (!mve_skip_vmov(s, vd + 1, a->idx, MO_32)) { |
| tmp = load_reg(s, a->rt2); |
| write_neon_element32(tmp, vd + 1, a->idx, MO_32); |
| } |
| |
| mve_update_and_store_eci(s); |
| return true; |
| } |